JP2009176549A - Polymer heating element - Google Patents

Polymer heating element Download PDF

Info

Publication number
JP2009176549A
JP2009176549A JP2008013300A JP2008013300A JP2009176549A JP 2009176549 A JP2009176549 A JP 2009176549A JP 2008013300 A JP2008013300 A JP 2008013300A JP 2008013300 A JP2008013300 A JP 2008013300A JP 2009176549 A JP2009176549 A JP 2009176549A
Authority
JP
Japan
Prior art keywords
heating element
polymer
electrodes
conductive
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008013300A
Other languages
Japanese (ja)
Inventor
Keizo Nakajima
啓造 中島
Takahito Ishii
隆仁 石井
Katsuhiko Uno
克彦 宇野
Akihiro Umeda
章広 梅田
Yu Fukuda
祐 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008013300A priority Critical patent/JP2009176549A/en
Publication of JP2009176549A publication Critical patent/JP2009176549A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/006Heaters using a particular layout for the resistive material or resistive elements using interdigitated electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Landscapes

  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer resistor showing low resistance, capable of being molded in a thin wall shape, which intends to improve flexibility, and a feeling of use, and reliability of a planar heating element when mounted on a fixture, and to realize reduction of the cost. <P>SOLUTION: The polymer heating element comprises an electrical insulating substrate 2, at least a pair of electrodes 3, 3' formed of parallel thin metallic wires formed on the electrical insulating substance 2, a polymer resistor 4 having PTC characteristics and not being in direct contact with the pair of electrodes 3, 3', and conductive layers 5, 5' being in contact with both the electrodes 3, 3' and the polymer resistor 4. With this constitution, it is no more necessary to constitute a comb-like configuration in a portion between the electrodes for feeding current to the polymer resistor 4, whereby the electrodes can be disposed at a wide interval. Then, this can reduce the amount of electrodes, and since patterning of the polymer resistor 4 is not needed, the planar heating element can be provided at low cost. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高分子抵抗体のジュール熱を利用した高分子発熱体に関し、更に詳しくは、長期信頼性を有し、かつ低コストで作成できる高分子発熱体に関するものである。   The present invention relates to a polymer heating element using Joule heat of a polymer resistor, and more particularly to a polymer heating element that has long-term reliability and can be produced at low cost.

従来から面状発熱体の発熱部として、カーボンブラックや金属粉末、グラファイトなどの導電性物質を樹脂に分散して得られたものが知られている。   2. Description of the Related Art Conventionally, as a heat generating portion of a planar heating element, a material obtained by dispersing a conductive material such as carbon black, metal powder, or graphite in a resin is known.

なかでも導電性物質と樹脂との組合せにより、自己温度制御機能を示すPTC発熱体(正の抵抗温度特性を意味するPositive Temperature Coefficientの略)を用いた場合には、温度制御回路が不要となり、部品点数を少なくできるなど、メリットのあるデバイスとして知られている。   In particular, by using a PTC heating element that exhibits a self-temperature control function (abbreviation of Positive Temperature Coefficient, which means a positive resistance temperature characteristic) by a combination of a conductive material and a resin, a temperature control circuit becomes unnecessary, It is known as a device that has advantages such as a reduced number of parts.

さらに述べると、図4に示すように、発熱体21は、セラミックや絶縁処理された金属板など、筺体構造としての機能を有するベース材22上に、導電性インキ組成物を印刷、あるいは塗布して得られる電極23と、これにより給電される位置に抵抗体インク組成物を印刷、あるいは塗布して得られる抵抗体24を設けることで形成されていた。   More specifically, as shown in FIG. 4, the heating element 21 is obtained by printing or applying a conductive ink composition on a base material 22 having a function as a casing structure, such as a ceramic or an insulating metal plate. The electrode 23 obtained in this way, and the resistor 24 obtained by printing or applying the resistor ink composition at the position where power is supplied by the electrode 23 are provided.

従来から、印刷により高分子抵抗体を形成してこれを発熱体として用いた例としては、露・霜除去用として自動車のドアミラーや洗面台のミラー、床暖房器具等がある(例えば特許文献1参照)。
特開2002−371699号公報
Conventionally, examples in which a polymer resistor is formed by printing and used as a heating element include a door mirror of an automobile, a mirror of a wash basin, a floor heater, etc. for dew / frost removal (for example, Patent Document 1). reference).
JP 2002-371699 A

前記従来の構成では、用いられる抵抗体組成物の比抵抗は通常1000Ω・cm以上であり、そのため櫛形電極のように非常に近接して給電する構成となっていた。また通常、櫛形電極は銀ペーストを用い、印刷・乾燥により形成されるので、その使用量が多くなるため高価なものとなっていた。   In the conventional configuration, the specific resistance of the resistor composition to be used is usually 1000 Ω · cm or more, so that power is supplied very close like a comb electrode. In general, the comb-shaped electrode is made of silver paste, and is formed by printing and drying. Therefore, the amount of the comb-shaped electrode increases, so that the comb electrode is expensive.

高分子抵抗体をインクとして作製したものは、塗布量調整により数十ミクロンメートル程度の薄膜状に発熱部を形成できるので、高分子発熱体としての柔軟性を発揮することは容易である。   In the case where a polymer resistor is manufactured as an ink, the heat generating portion can be formed in a thin film of about several tens of micrometers by adjusting the coating amount, and therefore it is easy to exhibit flexibility as a polymer heating element.

しかしながらが、インク状の高分子抵抗体を塗布する面としては、平滑で含浸することがなく、かつ腰のあるポリエステルフィルムなどの電気絶縁性基材を用いる必要があり、柔軟性を損ねる結果となっていた。   However, as the surface on which the ink-like polymer resistor is applied, it is necessary to use an electrically insulating base material such as a polyester film having a smooth and non-impregnated surface, which results in a loss of flexibility. It was.

また、高分子発熱体の給電部として、高価な導電性ペーストを櫛型電極として多量に用いる必要があるため、コストが高いという欠点を有していた。   Further, since it is necessary to use a large amount of expensive conductive paste as a comb-shaped electrode as a power feeding portion of the polymer heating element, there is a disadvantage that the cost is high.

一方、押し出し成型に用いる抵抗体では、インクに供するものに比べてミリメートル単位の厚肉となり、柔軟性に欠けるとともに、電極ケーブル間が近接した構成となり面状発熱体と言えるものでななかった。   On the other hand, the resistor used for extrusion molding is thicker in millimeters than the one used for the ink, lacks flexibility, and has a configuration in which the electrode cables are close to each other, so it cannot be said to be a planar heating element.

Tダイ押し出し加工やカレンダー加工などの薄肉成型法もあるが、これらの加工法に適した高分子抵抗体の提案はされていない。   There are thin-wall molding methods such as T-die extrusion and calendering, but no polymer resistor suitable for these methods has been proposed.

上記従来の技術の問題点に鑑み、本発明が解決しようとする課題は、薄肉成型可能な低抵抗を示す高分子抵抗体を提供した場合、柔軟性と器具に装着した際の面状発熱体の使用感と信頼性を向上させるとともに低コスト化を図った高分子発熱体を提供することにある。   In view of the above-mentioned problems of the conventional technology, the problem to be solved by the present invention is that when a polymer resistor showing a low resistance capable of being thin-walled is provided, a planar heating element when mounted on a device with flexibility. An object of the present invention is to provide a polymer heating element that improves the feeling of use and reliability and reduces costs.

前記従来の課題を解決するための本発明の高分子発熱体は、電気絶縁性基材と、前記電気絶縁性基材上に配置された少なくとも一対の平行金属細線からなる電極と、この一対の電極とは直接接触しないPTC特性を有する高分子抵抗体と、前記電極と高分子抵抗体との双方に接触する導電層から形成されてなるものである。   The polymer heating element of the present invention for solving the conventional problems includes an electrically insulating substrate, an electrode composed of at least a pair of parallel metal thin wires disposed on the electrically insulating substrate, and the pair of The electrode is formed of a polymer resistor having PTC characteristics that is not in direct contact with the electrode, and a conductive layer that is in contact with both the electrode and the polymer resistor.

本発明では低抵抗を示す高分子抵抗体を薄膜に形成することを基本とするものであるが、この構成により、高分子抵抗体に給電する電極間を櫛形構成とする必要性はなくなり、広い間隔で電極を配置することが可能となり、電極の使用量を低減するとともに高分子抵抗体をパターン化する必要がないため低コストの面状発熱体を提供できる。   In the present invention, a polymer resistor having a low resistance is basically formed in a thin film. However, this configuration eliminates the need for a comb-shaped configuration between the electrodes that feed the polymer resistor, and thus wide. Electrodes can be arranged at intervals, and the amount of electrodes used can be reduced, and it is not necessary to pattern the polymer resistor, so that a low-cost planar heating element can be provided.

導電層と同様の機能を果たすものとして、導電性の被覆材があるが、本発明においては、電極と導電層、及び導電層と高分子抵抗体のそれぞれが接着された状態であれば良く、電極自身の被覆の状態は問わない。   As a material that performs the same function as the conductive layer, there is a conductive coating material. In the present invention, the electrode and the conductive layer, and the conductive layer and the polymer resistor may be in a bonded state, The state of the coating of the electrode itself does not matter.

結果として電極部が導電層により全面が覆われたものであっても良いし、また一部のみが覆われたような状態であっても構わない。   As a result, the electrode portion may be entirely covered with the conductive layer, or may be in a state where only a part is covered.

本発明よれば、薄膜かつ低抵抗の面状発熱体を提供できるとともに、柔軟性に富み、使用感と信頼性も高めることができ、しかも低コスト化を促進できるものである。   According to the present invention, it is possible to provide a planar heating element having a thin film and a low resistance, a high flexibility, a feeling of use and a high reliability, and a reduction in cost can be promoted.

第1の発明は、電気絶縁性基材と、前記電気絶縁性基材上に配置された少なくとも一対の平行金属細線からなる電極と、この一対の電極とは直接接触しないPTC特性を有する高分子抵抗体と、前記該電極と高分子抵抗体との双方に接触する導電層から形成されてなり、抵抗体組成物に給電する電極間を櫛形構成とする必要性はなくなり、広い間隔で電極を配置することが可能となり、電極の使用量を低減するとともに高分子抵抗体をパターン化する必要がないため低コストの面状発熱体を提供できる。   The first invention relates to an electrically insulating substrate, an electrode composed of at least a pair of parallel metal wires disposed on the electrically insulating substrate, and a polymer having PTC characteristics that are not in direct contact with the pair of electrodes. It is formed from a resistor and a conductive layer in contact with both the electrode and the polymer resistor, and there is no need to have a comb-shaped configuration between the electrodes for supplying power to the resistor composition. It is possible to arrange the electrodes, and it is possible to provide a low-cost planar heating element because the amount of the electrode used is reduced and the polymer resistor need not be patterned.

また、複雑な工法を必要とせず、Tダイやカレンダーロール法などによって得た高分子抵抗体や導電層を電極と共に電気絶縁性基材に熱融着などによって貼り合わせることによって容易に作製できる。   Further, it can be easily manufactured by attaching a polymer resistor or a conductive layer obtained by T-die or calender roll method together with an electrode to an electrically insulating base material by heat fusion or the like without requiring a complicated construction method.

さらに、平行金属細線からなる電極と高分子抵抗体との間に設けた導電層が、電極及び高分子抵抗体との密着性を仲介する役割を果たし、屈曲性や折り曲げ性に対する耐久性が向上できる。   Furthermore, the conductive layer provided between the electrode made of parallel metal wires and the polymer resistor plays a role in mediating the adhesion between the electrode and the polymer resistor, and the durability against bending and bending properties is improved. it can.

また、平行金属細線からなる電極は、金属線同士は互いに接触することなく複数本が平行に配置した構成となっており、万が一断線した際においても、導電層が存在することによりスパーク発生を抑制することができるため、安全性を向上させることができる。   In addition, the electrode made of parallel metal thin wires has a configuration in which a plurality of metal wires are arranged in parallel without contacting each other, and the occurrence of sparks is suppressed by the presence of a conductive layer even if it is disconnected. Therefore, safety can be improved.

また、平行金属細線が独立しているために、電流集中が発生しない。   Further, since the parallel metal thin wires are independent, current concentration does not occur.

第2の発明は、特に、第1の発明において、導電層がカーボンブラック、グラファイト、カーボンナノチューブ、カーボン繊維、導電性セラミック繊維、導電性ウィスカ、金属繊維、導電性無機酸化物、導電性ポリマー繊維の少なくとも一種から選ばれる導電体を含むものであり、導電体の原料が比較的安価にかつ安定して入手できるため、高品質でコストを抑えた高分子発熱体を提供できる。   In the second invention, in particular, in the first invention, the conductive layer is carbon black, graphite, carbon nanotube, carbon fiber, conductive ceramic fiber, conductive whisker, metal fiber, conductive inorganic oxide, conductive polymer fiber. Therefore, since the raw material of the conductor can be obtained relatively inexpensively and stably, a high-quality and low-cost polymer heating element can be provided.

第3の発明は、特に、第2の発明において、導電性セラミック繊維が、炭素、ケイ素、チタン、タングステンの少なくとも一つの元素を含むものであり、化学的にも機械的にも安定した高分子発熱体を比較的容易に作成することができ、信頼性の高い高分子発熱体を得ることができる。   In the third invention, in particular, in the second invention, the conductive ceramic fiber contains at least one element of carbon, silicon, titanium, and tungsten, and is a polymer that is chemically and mechanically stable. A heating element can be produced relatively easily, and a highly reliable polymer heating element can be obtained.

また、これら導電性セラミック繊維は燃えにくい材質であり、外部からの着火に対しても難燃性、不燃性を示す。   In addition, these conductive ceramic fibers are a material that does not easily burn, and show flame retardancy and non-flammability against external ignition.

第4の発明は、特に、第1,2の発明において、導電層の比抵抗が0.01〜500Ω・cmであり、導電層での発熱ロスなどが少なく、電気的にも安定した高分子発熱体を作成できる。   The fourth invention is a polymer that is electrically stable, particularly in the first and second inventions, wherein the conductive layer has a specific resistance of 0.01 to 500 Ω · cm, a heat loss in the conductive layer is small, and the like. A heating element can be created.

0.01Ω・cmよりも小さくするためには導電体の比率を高める必要があるが、その場合バインダとなる樹脂比率が低くなるため金属との密着性が低下してしまう。   In order to make it smaller than 0.01 Ω · cm, it is necessary to increase the ratio of the conductor. However, in this case, the resin ratio as the binder is decreased, so that the adhesion with the metal is decreased.

また、500Ω・cmよりも大きくなると、電圧を印加した際に高分子抵抗体よりも導電層の抵抗値が大きくなり、導電層のみが発熱し、面状発熱体を得ることができない。   On the other hand, if it exceeds 500 Ω · cm, the resistance value of the conductive layer becomes larger than that of the polymer resistor when a voltage is applied, and only the conductive layer generates heat, and a planar heating element cannot be obtained.

第5の発明は、特に、第1、2の発明において、導電層がリン系、窒素系、シリコーン系の少なくとも1種の難燃剤を含有することによって、外部から加熱された場合においてもまた電極線が断線して局部的に温度上昇などが生じても、発煙発火を抑制することができる最適な高分子発熱体を提供することができる。   According to a fifth aspect of the invention, in particular, in the first and second aspects of the invention, the conductive layer contains at least one flame retardant of phosphorous, nitrogen and silicone, so that the electrode is also heated when externally heated. Even if a wire breaks and a temperature rise or the like occurs locally, it is possible to provide an optimal polymer heating element that can suppress smoke and ignition.

第6の発明は、特に、第1の発明の高分子発熱体において、電極が銀銅合金の金属細線からなり、柔軟性、屈曲性に優れるため、良好な発熱特性を有する高分子発熱体を長期に渡り提供することができる。   The sixth invention is a polymer heating element according to the first invention, in which the electrode is made of a thin metal wire of silver-copper alloy and has excellent flexibility and flexibility. Can be provided for a long time.

第7の発明は、特に、第1の発明において、電気絶縁性基材、電極、高分子抵抗体及び導電層が柔軟性を有するものであり、人体などと直接接触させるようなデバイスとしても用いることができる高分子発熱体を提供することができる。   In the seventh invention, in particular, in the first invention, the electrically insulating substrate, the electrode, the polymer resistor, and the conductive layer have flexibility, and are used as a device that is brought into direct contact with a human body or the like. It is possible to provide a polymer heating element that can be used.

第8の発明は、特に、第1の発明において、電気絶縁性基材が樹脂フィルム、織布、不織布の少なくとも1種からなり、柔軟性、快適性、長期信頼性に優れた高分子発熱体を得ることができる。   In the eighth invention, in particular, in the first invention, the electrically insulating substrate is made of at least one of a resin film, a woven fabric and a non-woven fabric, and is a polymer heating element excellent in flexibility, comfort and long-term reliability. Can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1において、高分子発熱体1は、電気絶縁性基材2上に、一対の電極3,3’及び、高分子抵抗体4、及び導電層5,5’を含む。
(Embodiment 1)
In FIG. 1, the polymer heating element 1 includes a pair of electrodes 3, 3 ′, a polymer resistor 4, and conductive layers 5, 5 ′ on an electrically insulating substrate 2.

例えば、電気絶縁性基材2は、ポリエステル繊維で作製されたニードルパンチタイプのもので、難燃剤が含浸処理された不織布を用いることができる。   For example, the electrically insulating substrate 2 is a needle punch type made of polyester fiber, and a nonwoven fabric impregnated with a flame retardant can be used.

一対の電極3,3’としては、線径0.06mmの銀銅合金線を15本独立して平行を維持するように配置したものであり、不織布上の所定位置に熱融着処理し得た。   As a pair of electrodes 3 and 3 ′, 15 silver-copper alloy wires having a wire diameter of 0.06 mm are arranged so as to be maintained in parallel independently, and can be heat-sealed at predetermined positions on the nonwoven fabric. It was.

電極3,3’とは直接接触しないように高分子抵抗体4を同様に熱融着により配置し、その後、電極3,3’及び高分子抵抗体4を接触させるための導電層5,5’を熱融着することにより高分子発熱体1を得た。   Similarly, the polymer resistor 4 is disposed by thermal fusion so as not to directly contact the electrodes 3 and 3 ′, and then the conductive layers 5 and 5 for contacting the electrodes 3 and 3 ′ and the polymer resistor 4. The polymer heating element 1 was obtained by thermally fusing '.

なお、電極3,3’に給電するためのリード線は省略した。   A lead wire for supplying power to the electrodes 3 and 3 'is omitted.

このとき、高分子抵抗体4は下記の材料、手順により混練物を作成後、カレンダー加工によりフィルム状に加工したものを使用した。   At this time, the polymer resistor 4 was prepared by preparing a kneaded material according to the following materials and procedures and then processing it into a film by calendering.

高分子抵抗体4は、結晶性樹脂として、エチレン・メタアクリル酸メチル共重合体(商品名「アクリフトCM5021」、融点67℃、住友化学(株)製)30部と、エチレン・メタアクリル酸共重合体(商品名「ニュクレルN1560」、融点90℃、三井・デュポンポリケミカル(株)製)30部と、エチレン・メタアクリル酸共重合体金属配位物(商品名「ハイミラン1702」、融点90℃、三井・デュポンポリケミカ(株)製)40部とで構成した。   Polymer Resistor 4 includes, as a crystalline resin, ethylene / methacrylic acid methyl copolymer (trade name “ACRIFT CM5021”, melting point 67 ° C., manufactured by Sumitomo Chemical Co., Ltd.) 30 parts, ethylene / methacrylic acid copolymer 30 parts of a polymer (trade name “Nucleel N1560”, melting point 90 ° C., manufactured by Mitsui DuPont Polychemical Co., Ltd.) and a metal coordination product of ethylene / methacrylic acid copolymer (trade name “HIMILAN 1702”, melting point 90 And 40 parts of Mitsui DuPont Polychemica Co., Ltd.).

この結晶性樹脂35重量%と、反応性樹脂(商品名「ボンドファースト7B」、住友化学(株)製)2重量%と、2種類の導電体として、カーボンブラック(商品名「プリンテックスL」、1次粒子径21nm、グサ社製)25重量%と、グラファイト(商品名「GR15」、鱗状黒鉛、日本黒鉛(株)製)18重量%と、難燃剤(商品名「レオフォスRDP」、リン酸エステル系液状難燃剤、味の素(株)製)20重量%により混練物Aを作製した。   35% by weight of this crystalline resin, 2% by weight of a reactive resin (trade name “Bond First 7B”, manufactured by Sumitomo Chemical Co., Ltd.), and carbon black (trade name “Printex L” as two types of conductors) Primary particle size 21 nm, 25% by weight (Gusa), graphite (trade name “GR15”, scaly graphite, Nippon Graphite Co., Ltd.) 18% by weight, flame retardant (trade name “Reophos RDP”, phosphorus A kneaded material A was prepared with 20% by weight of an acid ester liquid flame retardant, manufactured by Ajinomoto Co., Inc.

次に、エラストマーとして、スチレン系熱可塑性エラストマー(商品名「タフテックM1943」)、旭化成エンジニアリング(株)製)40重量%と、カーボンブラック(商品名「#10B」、1次粒子径75nm、三菱化学株製)45重量%と炭化タングステン(井澤金属(株)製)13重量%と、溶融張力向上剤として、メタアクリル酸アルキル・アクリル酸アルキル共重合物と4フッ化エチレン共重合物との混合物(商品名「メタブレンA3000」、三菱レーヨン(株)製)2重量%から混練物Bを作製した。   Next, as the elastomer, styrene thermoplastic elastomer (trade name “Tuftec M1943”), 40% by weight, manufactured by Asahi Kasei Engineering Co., Ltd., carbon black (trade name “# 10B”, primary particle diameter 75 nm, Mitsubishi Chemical) Co., Ltd.) 45 wt%, tungsten carbide (Izawa Metal Co., Ltd.) 13 wt%, and a mixture of alkyl methacrylate / alkyl acrylate copolymer and tetrafluoroethylene copolymer as melt tension improver A kneaded product B was prepared from 2% by weight (trade name “METABBRENE A3000”, manufactured by Mitsubishi Rayon Co., Ltd.).

そして、混練物Aと混練物Bとを等量と、離型剤として変性シリコーンオイル2重量%と流動性付与剤として、メタアクリル酸アルキル・アクリル酸アルキル共重合物2重量%とを混練して高分子抵抗体4を作製した。   Then, an equal amount of the kneaded material A and the kneaded material B, 2% by weight of modified silicone oil as a release agent, and 2% by weight of an alkyl methacrylate / alkyl acrylate copolymer as a fluidity imparting agent are kneaded. Thus, a polymer resistor 4 was produced.

導電層5,5’は、バインダとして高分子抵抗体4を作成する際に使用した結晶性樹脂を35重量%と、導電体として、導電性ウィスカ(商品名「FTL−110」、針状酸化チタン、石原産業(株)製)35重量%、カーボンブラック(商品名「プリンテックスL」、1次粒子径21nm、グサ社製)20重量%、難燃剤(商品名「レオフォスRDP」、リン酸エステル系液状難燃剤、味の素(株)製)10重量%により混練物を得、厚み100μmのフィルムを作成して得た。比抵抗は20Ω・cmであった。   The conductive layers 5 and 5 ′ are made of 35% by weight of crystalline resin used for forming the polymer resistor 4 as a binder and conductive whisker (trade name “FTL-110”, acicular oxidation as a conductor). Titanium, manufactured by Ishihara Sangyo Co., Ltd.) 35% by weight, carbon black (trade name “Printex L”, primary particle diameter 21 nm, manufactured by Gusa) 20% by weight, flame retardant (trade name “Reophos RDP”, phosphoric acid A kneaded material was obtained from 10% by weight of an ester-based liquid flame retardant, manufactured by Ajinomoto Co., Inc., and a film having a thickness of 100 μm was prepared. The specific resistance was 20 Ω · cm.

この面状発熱体1は、図2、および図3に示したように、座席暖房用ヒータとして自動車の座席装置7である座部8及び背もたれ9に基材2側を上部として取り付けて使用されるものである。   As shown in FIGS. 2 and 3, the planar heating element 1 is used as a seat heating heater with a base member 2 side attached to a seat portion 8 and a backrest 9 that are a seat device 7 of an automobile. Is.

座部8及び背もたれ9の吊り込み部(図示せず)に対応するために中央部や周縁部に吊
り込むための耳部(基材2の延長部)が設けられるが、ここでは省略している。
Ear portions (extension portions of the base material 2) are provided to be suspended in the central portion and the peripheral portion in order to correspond to the suspended portions (not shown) of the seat portion 8 and the backrest 9, but are omitted here. Yes.

また、このような面状発熱体1を装着した座部8及び背もたれ9は、一般的に座席に腰掛けた人体による荷重がかかった時に変形し、荷重がかからなくなると復元するウレタンパット等の座席基材10と座席表皮11を備えており、従って、座部8及び背もたれ9の座席基材10上に高分子抵抗体4側を、座席表皮11に基材2側を配置して取り付けられる薄い面状発熱体1も、前記した座部8及び背もたれ9の変形に対応して相似の変形をしなければならない。   In addition, the seat 8 and the backrest 9 on which the planar heating element 1 is mounted are generally deformed when a load is applied by a human body seated on the seat, such as a urethane pad that is restored when the load is no longer applied. The seat base 10 and the seat skin 11 are provided, and therefore, the polymer resistor 4 side is disposed on the seat base 10 of the seat 8 and the backrest 9 and the base 2 side is disposed on the seat skin 11. The thin sheet heating element 1 must be similarly deformed corresponding to the deformation of the seat 8 and the backrest 9 described above.

そのために、種々の発熱パターンの設計、そのための電極3,3’並びに導電層5,5’の配置形状を変更する必要があることは言うまでもないが、ここでは省略している。   For this purpose, it is needless to say that various heat generation pattern designs and the arrangement shapes of the electrodes 3 and 3 ′ and the conductive layers 5 and 5 ′ need to be changed.

電極3,3’は、相対向するように幅の広い一対(電気的に正側と負側)を面状発熱体1の長手方向の外側部に沿って配置し、これに接触するように配設した導電層5,5’を介し、高分子抵抗体4に電流が流れ、発熱する。   The electrodes 3 and 3 ′ are arranged so that a wide pair (electrically positive side and negative side) is arranged along the outer side in the longitudinal direction of the planar heating element 1 so as to be opposed to each other, and come into contact therewith. A current flows through the polymer resistor 4 through the disposed conductive layers 5 and 5 ', and heat is generated.

本実施の形態において、高分子抵抗体4はPTC特性を有し、温度が上昇すると抵抗値が上昇し、所定の温度になるように自己温度調節機能を有するようになり、温度コントロールが不要で安全性の高い面状発熱体1としての機能を有するようになる。   In the present embodiment, the polymer resistor 4 has PTC characteristics, and when the temperature rises, the resistance value rises, and has a self-temperature adjusting function so as to reach a predetermined temperature, and temperature control is unnecessary. It has a function as the highly safe planar heating element 1.

また、自動車用座席に組み込まれるカーシートヒーターとしては着座感や難燃性を満足することができる。   In addition, as a car seat heater incorporated in an automobile seat, a seating feeling and flame retardancy can be satisfied.

着座感は、紙のような音鳴り感がなく、座席表皮材と同等の伸び特性、すなわち、5%の伸びに対して7kgf以下の荷重であることで満足できる。   The seating feeling can be satisfied by the fact that there is no squeaking like paper and an elongation characteristic equivalent to that of the seat skin material, that is, a load of 7 kgf or less for 5% elongation.

また、PTC特性を有する面状発熱体として速熱性と省エネ性を、従来のチュービングヒータを発熱体とするものに比べて発揮することができる。チュービングヒータを発熱体とするものは、温度制御器を必要として、ON−OFF制御で通電を制御して発熱温度を制御している。   Further, as a planar heating element having PTC characteristics, quick heat and energy saving can be exhibited as compared with a conventional heating element using a tubing heater. A tube heater that uses a heating element requires a temperature controller and controls the heat generation temperature by controlling energization by ON-OFF control.

ON時のヒータ線温度は約80℃まで上昇するため、座席表皮材とはある程度の距離をおいて配置する必要があるのに対して、本実施の形態の面状発熱体では、発熱温度が40℃〜50℃の範囲に自己制御されるので、座席表皮材近傍に近接して配置することができる。発熱温度が低く、座席近傍であることより、速熱性と外部への放熱ロスを低減できることによる省エネ性を実現できる。   Since the heater wire temperature at the time of ON rises to about 80 ° C., it is necessary to dispose it at a certain distance from the seat skin material. On the other hand, in the planar heating element of this embodiment, the heating temperature is high. Since it is self-controlled in the range of 40 ° C. to 50 ° C., it can be arranged close to the seat skin material. Since the heat generation temperature is low and it is in the vicinity of the seat, it is possible to realize energy saving by being able to reduce heat loss and heat dissipation loss to the outside.

また、電気絶縁性基材2に難燃性不織布を用いて、また、高分子抵抗体4、導電層5,5’に難燃剤を配合することで難燃性を実現できる。   In addition, flame retardancy can be realized by using a flame retardant nonwoven fabric for the electrical insulating base material 2 and blending a flame retardant with the polymer resistor 4 and the conductive layers 5 and 5 ′.

難燃性は、面状発熱体1単品での自動車用内装材難燃規格FMVSS302規格(水平着火で不燃性はもとより自己消火するものや、標線間の燃焼速度が80mm/min以下であれば適合する)を満足する必要があり、少なくとも難燃剤の充填量が10重量%以上あれば適合できることを確認した。   Flame retardancy is the automotive interior material flame retardant standard FMVSS302 (single fire extinguishing as well as nonflammability due to horizontal ignition, or if the burning rate between marked lines is 80 mm / min or less It was confirmed that it can be met if the amount of the flame retardant is at least 10% by weight.

本実施例で得た面状発熱体1を、80℃炉中放置試験、150℃炉中放置試験、−20℃と50℃のヒートサイクル試験を実施した。その結果、それぞれ、500時間、200時間、200回後も抵抗値変化率はいずれも初期の30%以内であった。この要因としては、反応性樹脂による架橋反応により結晶性樹脂そのもの、および結晶性樹脂と導電体との結合を図ったことに起因していると考えられた。   The planar heating element 1 obtained in this example was subjected to an 80 ° C. oven standing test, a 150 ° C. oven standing test, and a −20 ° C. and 50 ° C. heat cycle test. As a result, the resistance value change rate was within 30% of the initial value after 500 hours, 200 hours and 200 times, respectively. The reason for this was considered to be that the crystalline resin itself and the bonding between the crystalline resin and the conductor were attempted by a crosslinking reaction with the reactive resin.

優れたPTC特性を発揮するために、複数の導電体を組み合わせることと、海島構成とすることを本実施の形態では適用している。そのメカニズムの詳細は現時点では不明であるが以下のように推察している。   In this embodiment, a combination of a plurality of conductors and a sea-island configuration are applied in order to exhibit excellent PTC characteristics. The details of the mechanism are currently unknown, but are presumed as follows.

まず、PTC特性を有する抵抗体組成物とするためには、用いる結晶性樹脂は、その融点が発熱飽和温度以上の近傍にあるものを選択する必要がある。   First, in order to obtain a resistor composition having PTC characteristics, it is necessary to select a crystalline resin to be used whose melting point is in the vicinity of the exothermic saturation temperature.

導電体としては、できるだけ少ない添加量で所定の抵抗値を達成することが求められるが、そうした導電体は一般的には導電性カーボンブラックと呼ばれるもので、1次粒子径が約20nm以下でストラクチャー(葡萄の房のように1次粒子の集合体のことをいう。吸油量で相関付けられている)の発達した構造のものであるが、そうした導電性カーボンブラックでは一方で、PTC特性を発現しにくいという欠点を有していた。   The conductor is required to achieve a predetermined resistance value with the smallest possible addition amount, but such a conductor is generally called conductive carbon black, and has a primary particle diameter of about 20 nm or less and a structure. (It is an aggregate of primary particles such as a bunch of coral, which is correlated with oil absorption.) On the other hand, such conductive carbon black exhibits PTC characteristics. It had the disadvantage of being difficult to do.

これは、導電性カーボンブラックではストラクチャーが発達して、結晶性樹脂の温度による比容積の変化(これがPTC特性発現の主因と言われている)によってもストラクチャーの導電パスが切断されにくいことによるといわれている。   This is because the structure of conductive carbon black is developed, and the conductive path of the structure is not easily cut even by the change in specific volume due to the temperature of the crystalline resin (which is said to be the main cause of the PTC characteristics). It is said.

一方で、1次粒子径の大きいカーボンブラックは優れたPTC特性を有することを発明者らは知見として得ていた。   On the other hand, the inventors have obtained as knowledge that carbon black having a large primary particle diameter has excellent PTC characteristics.

また、グラファイトのような導電体は、カーボンブラックに比べるとさらに粒子径が大きく、かつ鱗片のような層状構造を有すること、さらに、金属やセラミックなどの粒子径が大きく、無定形の優れた導電性(小さい体積固有抵抗を有する。カーボンやグラファイト系の100分の1以下)を有すること、これらの複数の導電体を組み合わせることで、厚みが約100ミクロンメートル以下で、面積抵抗が400Ω□以下、比抵抗が3Ω・cm以下の抵抗を有するとともに、PTC特性のひとつの指標となる20℃の抵抗値の対する50℃の抵抗値の比が1.5以上、20℃の抵抗値の対する80℃の抵抗値の比が5以上の抵抗体組成物とすることができた。   In addition, a conductor such as graphite has a particle size larger than that of carbon black and has a layered structure such as a scale, and has a large particle size such as metal or ceramic, and has excellent amorphous conductivity. By combining these multiple conductors, the thickness is about 100 microns or less and the sheet resistance is 400 Ω □ or less. Further, the specific resistance is 3 Ω · cm or less, and the ratio of the resistance value at 50 ° C. to the resistance value at 20 ° C., which is one index of the PTC characteristics, is 1.5 or more and 80 against the resistance value at 20 ° C. A resistor composition having a resistance value ratio of 5 or more could be obtained.

こうした低抵抗でありながら優れたPTC特性を発揮できたメカニズムの詳細は不明であるが、結晶性樹脂と複数の導電体を組み合わせたことによる新規な導電パスの形成と、難燃剤を液状としたことで、液体の大きな熱膨張係数を利用することができたことによると考えている。   Although the details of the mechanism that was able to demonstrate excellent PTC characteristics while being low resistance are unknown, the formation of a new conductive path by combining a crystalline resin and a plurality of conductors, and the flame retardant made liquid This is considered to be due to the fact that the large thermal expansion coefficient of the liquid could be used.

また、モンタン酸部分けん化エステルなどのワックス、さらには他のワックス等の可塑剤や分散剤を必要に応じて用いても良いことは言うまでもない。   It goes without saying that waxes such as montanic acid partly saponified esters, and plasticizers and dispersants such as other waxes may be used as necessary.

また、導電体の形状としてはウィスカ形状のものを用いて実施したが、球状やその他イガ形状のものでも構わない。   Further, although the conductor is formed using a whisker shape, it may be spherical or other rug shape.

さらに、本実施の形態では高分子抵抗体4と電極3,3’が同一平面内では重ねあわない配置で示したが、導電層5,5’を介して接触するような形態であれば積層された配置であっても構わない。   Further, in the present embodiment, the polymer resistor 4 and the electrodes 3 and 3 ′ are shown so as not to overlap each other in the same plane. It may be arranged.

以上のように、本発明にかかる面状発熱体は、柔軟性に富み、信頼性が高く、暖房用発熱体として自動車の座席装置、ハンドル装置、その他の部位の暖房に供することができる。   As described above, the planar heating element according to the present invention has high flexibility and high reliability, and can be used as a heating element for heating a vehicle seat device, a handle device, and other parts.

(a)は本実施の形態1における高分子発熱体の構成を示す平面図、(b)は(a)のX−Y断面図(A) is a top view which shows the structure of the polymer heating element in this Embodiment 1, (b) is XY sectional drawing of (a). 本発明の実施の形態1における面状発熱体を取りつけた自動車の座席を示す透視側面図The perspective side view which shows the seat of the motor vehicle which attached the planar heating element in Embodiment 1 of this invention 図2に示す座席の透視正面図A perspective front view of the seat shown in FIG. (a)は従来の発熱体を示す平面図、(b)は(a)のX−Y断面図(A) is a top view which shows the conventional heat generating body, (b) is XY sectional drawing of (a).

符号の説明Explanation of symbols

1 高分子発熱体
2 電気絶縁性基材
3,3’ 電極
4 高分子抵抗体
5,5’ 導電層
7 座席装置
8 座部
9 背もたれ
10 座席基材
11 座席表皮
DESCRIPTION OF SYMBOLS 1 Polymer heating element 2 Electrically insulating base material 3, 3 'electrode 4 Polymer resistor 5, 5' Conductive layer 7 Seat apparatus 8 Seat part 9 Backrest 10 Seat base material 11 Seat skin

Claims (8)

電気絶縁性基材と、前記電気絶縁性基材上に配設された少なくとも一対の平行金属細線からなる電極と、前記一対の電極とは直接接触しないPTC特性を有する高分子抵抗体と、前記電極と高分子抵抗体との双方に接触する導電層とを具備した高分子発熱体。 An electrically insulating substrate, an electrode composed of at least a pair of parallel metal wires disposed on the electrically insulating substrate, a polymer resistor having a PTC characteristic that is not in direct contact with the pair of electrodes, A polymer heating element comprising a conductive layer in contact with both an electrode and a polymer resistor. 前記導電層がカーボンブラック、グラファイト、カーボンナノチューブ、カーボン繊維、導電性セラミック繊維、導電性ウィスカ、金属繊維、導電性無機酸化物、導電性ポリマー繊維の少なくとも一種から選ばれる導電体を含む請求項1記載の高分子発熱体。 The conductive layer includes a conductor selected from at least one of carbon black, graphite, carbon nanotube, carbon fiber, conductive ceramic fiber, conductive whisker, metal fiber, conductive inorganic oxide, and conductive polymer fiber. The polymer heating element as described. 前記導電性セラミック繊維が、炭素、ケイ素、チタン、タングステンの少なくとも一つの元素を含む請求項2記載の高分子発熱体。 The polymer heating element according to claim 2, wherein the conductive ceramic fiber contains at least one element of carbon, silicon, titanium, and tungsten. 前記導電層の比抵抗が0.01〜500Ω・cmである請求項1または2記載の高分子発熱体。 The polymer heating element according to claim 1 or 2, wherein the conductive layer has a specific resistance of 0.01 to 500 Ω · cm. 前記導電層がリン系、窒素系、シリコーン系の少なくとも1種の難燃剤を含有する請求項1または2記載の高分子発熱体。 The polymer heating element according to claim 1 or 2, wherein the conductive layer contains at least one flame retardant of phosphorus, nitrogen, and silicone. 前記電極が銀銅合金の金属細線からなる請求項1記載の高分子発熱体。 The polymer heating element according to claim 1, wherein the electrode is made of a thin metal wire of a silver-copper alloy. 前記電気絶縁性基材、前記電極、前記高分子抵抗体及び前記導電層が柔軟性を有する請求項1記載の高分子発熱体。 The polymer heating element according to claim 1, wherein the electrically insulating substrate, the electrode, the polymer resistor, and the conductive layer have flexibility. 前記電気絶縁性基材が樹脂フィルム、織布、不織布の少なくとも1種からなる請求項1または7記載の高分子発熱体。 The polymer heating element according to claim 1 or 7, wherein the electrically insulating substrate comprises at least one of a resin film, a woven fabric, and a nonwoven fabric.
JP2008013300A 2008-01-24 2008-01-24 Polymer heating element Pending JP2009176549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008013300A JP2009176549A (en) 2008-01-24 2008-01-24 Polymer heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008013300A JP2009176549A (en) 2008-01-24 2008-01-24 Polymer heating element

Publications (1)

Publication Number Publication Date
JP2009176549A true JP2009176549A (en) 2009-08-06

Family

ID=41031434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008013300A Pending JP2009176549A (en) 2008-01-24 2008-01-24 Polymer heating element

Country Status (1)

Country Link
JP (1) JP2009176549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467434A (en) * 2019-07-18 2019-11-19 武汉纺织大学 The preparation method of skeleton coated electric heating function ceramics, product and application method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467434A (en) * 2019-07-18 2019-11-19 武汉纺织大学 The preparation method of skeleton coated electric heating function ceramics, product and application method

Similar Documents

Publication Publication Date Title
WO2009104361A1 (en) Polymer heating element
JP5201137B2 (en) Polymer resistor
JP5217411B2 (en) Polymer heating element
JP4877066B2 (en) Resistor composition and planar heating element using the same
JP2010020989A (en) Polymer heating element
JP2010052710A (en) Heater, and heating device for vehicle using the same
JP2010111251A (en) Heating device for vehicle
JP2008198407A (en) Sheet heater
JP2008293671A (en) Resistor composition, and surface heat generating body using this
JP2009199794A (en) Planar heating element
JP2012227034A (en) Planar heating element
JP2004055219A (en) Seat heater
JP5125581B2 (en) Planar heating element
JP2009176549A (en) Polymer heating element
JP2009266631A (en) Polymer exothermic body
JP2008293670A (en) Resistor composition, and surface heat generating body using this
JP2010257683A (en) Planar heating element, and method of manufacturing the same
CN101578912B (en) PTC resistor
JP5126156B2 (en) Planar heating element
JP2010244971A (en) Surface heating body
JP2010129425A (en) Resistive element composition and heating element using this
JP2011003328A (en) Polymer heating element
JP2010132055A (en) Vehicle heater
JP2010020990A (en) Planar heating element
JP2011003329A (en) Polymer heating element