JP2011003329A - Polymer heating element - Google Patents

Polymer heating element Download PDF

Info

Publication number
JP2011003329A
JP2011003329A JP2009143856A JP2009143856A JP2011003329A JP 2011003329 A JP2011003329 A JP 2011003329A JP 2009143856 A JP2009143856 A JP 2009143856A JP 2009143856 A JP2009143856 A JP 2009143856A JP 2011003329 A JP2011003329 A JP 2011003329A
Authority
JP
Japan
Prior art keywords
heating element
heat
polymer heating
polymer
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009143856A
Other languages
Japanese (ja)
Inventor
Keizo Nakajima
啓造 中島
Takahito Ishii
隆仁 石井
Katsuhiko Uno
克彦 宇野
Takemi Oketa
岳見 桶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009143856A priority Critical patent/JP2011003329A/en
Publication of JP2011003329A publication Critical patent/JP2011003329A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/006Heaters using a particular layout for the resistive material or resistive elements using interdigitated electrodes

Landscapes

  • Resistance Heating (AREA)
  • Central Heating Systems (AREA)
  • Surface Heating Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer heating element having superior heat transfer, without impairing the comfort at it use.SOLUTION: The polymer heating element includes a pair of electrodes 4a, 4b held between a base side electrical insulation base material 2 and a cover side electrical insulation base material 3 and a polymer resistor 5, arranged between the electrodes 4a, 4b with PTC characteristics, wherein a heat insulating material is used for at least one of the base-side electrical insulation base material 2 and the cover-side electrical insulation substrate 3. Thus, the heat generated by the polymer heating element 5 can be transferred efficiently, whereby the polymer heating element can also be made high in energy-saving and friendly to environment.

Description

本発明は、高分子抵抗体のジュール熱を利用した高分子発熱体に関するものである。   The present invention relates to a polymer heating element using Joule heat of a polymer resistor.

従来から面状発熱体の発熱部として、カーボンブラックや金属粉末、グラファイトなどの導電性物質を樹脂に分散して得られたものが知られている。なかでも導電性物質と樹脂の組合せにより、自己温度制御機能を示すPTC(Positive Temperature Coefficient)発熱体を用いた場合には、温度制御回路が不要となり、部品点数を少なくできるなど、メリットのあるデバイスとして知られている。   2. Description of the Related Art Conventionally, as a heat generating portion of a planar heating element, a material obtained by dispersing a conductive material such as carbon black, metal powder, or graphite in a resin is known. In particular, when a PTC (Positive Temperature Coefficient) heating element that exhibits a self-temperature control function is used by a combination of a conductive material and a resin, a temperature control circuit becomes unnecessary, and the number of parts can be reduced. Known as.

具体的には、図7,8に示すように、セラミックや絶縁処理された金属板など、筺体構造としての機能を有するベース材101上に、導電性インキ組成物を印刷、あるいは塗布して得られる電極102と、これにより給電される位置に抵抗体インク組成物を印刷、あるいは塗布して得られる抵抗体103を設け、さらにこれら電極102および抵抗体103を被覆するカバー材104から発熱体105を形成していた。   Specifically, as shown in FIGS. 7 and 8, the conductive ink composition is obtained by printing or applying on a base material 101 having a function as a casing structure such as a ceramic or an insulating metal plate. And a resistor 103 obtained by printing or applying a resistor ink composition at a position where power is supplied by the electrode 102, and a heating element 105 from a cover material 104 covering the electrode 102 and the resistor 103. Was forming.

電極102および抵抗体103は、ベース材101やカバー材104により外界から隔離して、長期信頼性をたかめているものであった。   The electrode 102 and the resistor 103 are isolated from the outside by the base material 101 and the cover material 104 to increase long-term reliability.

従来から、印刷により高分子抵抗体を形成してこれを発熱体として用いた例としては、露・霜除去用として自動車のドアミラーや洗面台のミラー、床暖房器具等がある(例えば、特許文献1参照)。また、これら発熱体を高分子フィルムや繊維状の柔軟性材料を用いて構成することにより柔軟性機能を付与させたものも見受けられる(例えば、特許文献2,3参照)。   Examples of conventional polymer resistors formed by printing and used as heating elements include automotive door mirrors, washstand mirrors, floor heating appliances, etc. (for example, patent documents) 1). Moreover, what added the flexible function by comprising these heat generating bodies using a polymer film or a fibrous flexible material is also seen (for example, refer patent document 2, 3).

特開2002−371699号公報JP 2002-371699 A 特開2003−109804号公報JP 2003-109804 A 特開2005−174629号公報JP 2005-174629 A

従来の発熱体では柔軟性を発現させるための構成材料として、発熱体を保護、被覆する役目と風合いなどを考慮して一般的な織布や不織布などが多用されている。   In a conventional heating element, a general woven fabric or non-woven fabric is frequently used as a constituent material for expressing flexibility in consideration of the role and texture of protecting and covering the heating element.

例えば、座席用ヒータなどに用いられる場合は、織布や不織布で被覆された発熱体はさらにクッション材などを介し、人体と接触する場合が多かった。   For example, when used for a seat heater or the like, a heating element covered with a woven fabric or a non-woven fabric often comes into contact with a human body via a cushion material or the like.

しかしながら、人体に直接接触する部位への応用も今後益々増大することから、更なる快適性、熱伝達性にも考慮した材質を選択する必要がある。   However, since the application to the part that directly contacts the human body will increase more and more in the future, it is necessary to select a material considering further comfort and heat transfer.

特に、省エネ性にも充分配慮した使用を想定した場合、発熱体からの熱を効率よく外部に伝える素材を選定する必要があるが、現状では発熱体自体の開発が中心であり、周辺部材に関する充分な検討はなされていなかった。   In particular, when it is assumed that energy conservation is fully taken into consideration, it is necessary to select materials that efficiently transmit heat from the heating element to the outside. Sufficient examination has not been made.

一方、地球環境への配慮の点から省エネ性を実現するための素材が数多く登場している
。具体的には、クールビズやウォームビズといった素材に関するものであり、様々な素材が提案されている。
On the other hand, many materials for realizing energy saving have appeared from the viewpoint of consideration for the global environment. Specifically, it relates to materials such as cool biz and warm biz, and various materials have been proposed.

上記従来の技術の問題点に鑑み、本発明が解決しようとする課題は、使用時の快適性を損なうことなく、熱伝達性能の優れた高分子発熱体を提供することを目的とするもので、特に、ヒータの表皮材の素材や構成を検討することにより有効となることを見出したものである。   SUMMARY OF THE INVENTION In view of the above-mentioned problems of the conventional technology, the problem to be solved by the present invention is to provide a polymer heating element having excellent heat transfer performance without impairing comfort during use. In particular, it has been found that it becomes effective by examining the material and configuration of the skin material of the heater.

前記従来の課題を解決するための本発明の高分子発熱体は、ベース側電気絶縁性基材とカバー側電気絶縁性基材に挟持された一対の電極と、これら電極間に配設されたPTC特性を有する高分子抵抗体とを備え、前記ベース側電気絶縁性基材、カバー側電気絶縁性基材の少なくとも一方に保温性素材を用いたものである。   The polymer heating element of the present invention for solving the conventional problems is provided with a pair of electrodes sandwiched between a base-side electrically insulating substrate and a cover-side electrically insulating substrate, and between these electrodes. A polymer resistor having PTC characteristics, and a heat insulating material is used for at least one of the base-side electrically insulating substrate and the cover-side electrically insulating substrate.

これにより、高分子発熱体から発せられた熱を効率よく伝えることが可能となり、省エネ性に優れ、環境にも配慮したものを提供できる。   This makes it possible to efficiently transfer the heat generated from the polymer heating element, providing energy saving and environmentally friendly products.

本発明の高分子発熱体は、保温性を示す電気絶縁性基材を外皮材とするもので、人体などと直接接触させる際にも、或いは直接人体と接触させない場合においても、高分子発熱体からの熱を少ない損失で効率よく伝えることができ、省エネ性能高めることができるものである。   The polymer heating element of the present invention uses an electrically insulating base material that exhibits heat retention as an outer skin material, and the polymer heating element can be used either in direct contact with the human body or the like, or in the case of no direct contact with the human body. Heat can be transferred efficiently with little loss, and energy-saving performance can be improved.

本実施の形態1における高分子発熱体の平面図Plan view of polymer heating element according to Embodiment 1 図1のX−Y断面図XY sectional view of FIG. 本実施の形態2における高分子発熱体の平面図Plan view of polymer heating element in Embodiment 2 図3のX−Y断面図XY cross section of FIG. 本実施の形態3における高分子発熱体の平面図Plan view of polymer heating element according to Embodiment 3 図5のX−Y断面図XY sectional view of FIG. 従来の高分子発熱体の平面図Plan view of conventional polymer heating element 図7のX−Y断面図XY sectional view of FIG.

本発明は、ベース側電気絶縁性基材とカバー側電気絶縁性基材に挟持された一対の電極と、これら電極間に配設されたPTC特性を有する高分子抵抗体とを備え、前記ベース側電気絶縁性基材、カバー側電気絶縁性基材の少なくとも一方に保温性素材を用いたもので、高分子発熱体から発せられた熱を効率よく伝えることが可能となり、省エネ性に優れ、環境にも配慮したものを提供できる。   The present invention includes a base-side electrically insulating substrate and a pair of electrodes sandwiched between the cover-side electrically insulating substrate, and a polymer resistor having PTC characteristics disposed between the electrodes, The heat insulating material is used for at least one of the side electrical insulating base and the cover side electrical insulating base, and it is possible to efficiently transmit the heat generated from the polymer heating element. We can provide environmentally friendly products.

保温性素材とは、素材に対して形状や機能の改良を加えることにより保温性能が改善された素材を意味する。   The heat insulation material means a material whose heat insulation performance is improved by improving the shape and function of the material.

一般には、人体からの熱を逃がしにくくする役割として保温性素材が用いられる場合が多いが、これらの保温性素材を高分子発熱体の表皮材に用いた場合、用いない場合に比較すると、快適性に優れ、軽量性であり、風合い感を損なわずに、高分子発熱体からの熱を効率よく伝えることができるとともに、発熱体への電源供給切られた後でも、素材の有する保温性機能により快適な暖かさを長時間持続することが可能となり、結果として省エネに大きく寄与できる。   In general, heat-insulating materials are often used as a role to make it difficult for heat from the human body to escape, but when these heat-insulating materials are used for the skin material of polymer heating elements, they are more comfortable than when not using them. It is excellent in lightness, lightweight, can efficiently transfer heat from the polymer heating element without impairing the texture, and the heat retaining function of the material even after the power supply to the heating element is cut off This makes it possible to maintain a comfortable warmth for a long time, which can greatly contribute to energy saving.

このように保温性を向上させた素材を用いることによって、高分子発熱体から発せられた熱を無駄に損失することなく、被吸熱体へ熱を効率よく伝えることが可能となる。   By using a material with improved heat retention in this way, it is possible to efficiently transfer heat to the heat sink without wasting heat generated from the polymer heating element.

素材の保温性を知るための指標として、「ある一定の条件下で、生地未着用事に温度が低下しないために必要な熱量(A)を基準に生地着用時に温度が低下しないために必要な熱量(B)との差を割合で表す」、保温率((A−B)/A×100)が定義される場合もあるが、本発明においては高分子発熱体の被覆材として使用するものであり、周辺材料、雰囲気により熱量A及び熱量Bが変動することから定量化定義は行わないが、下記に示すような素材を利用した際に保温性能が改善される場合、それらを保温性素材と定義することにする。   As an index for knowing the heat retaining property of the material, “Under certain conditions, it is necessary for the temperature not to decrease when wearing the fabric on the basis of the amount of heat (A) necessary to prevent the temperature from dropping without wearing the fabric. The heat retention rate ((A−B) / A × 100) may be defined in some cases, but in the present invention, it is used as a coating material for a polymer heating element. Quantitative definition is not performed because the amount of heat A and amount of heat B varies depending on the surrounding material and atmosphere. However, if the heat retention performance is improved when using the materials shown below, they are retained. We will define

つまり、具体的には、中空構造や超極細素材により軽量保温性を実現した素材や蓄熱保温性の素材や遠赤外線放射性の素材、吸湿して発熱する素材などといった発熱する素材や、あるいは相変換物質を利用した温度調整可能な素材を利用することができる。   In other words, specifically, materials that generate heat, such as materials that have achieved lightweight heat retention due to hollow structures and ultra-fine materials, heat storage and heat retention materials, far-infrared radiation materials, materials that absorb heat and absorb heat, or phase conversion A temperature-adjustable material using a substance can be used.

軽量保温素材としては、例えば、ポリエステル中空糸により形成して、ソフトな風合いを兼ね備えるものとすることができる。   As a lightweight heat-retaining material, for example, it can be formed of a polyester hollow fiber and have a soft texture.

蓄熱保温素材としては、例えば、炭化ジルコニウムを練り込んだ繊維が、遠赤外線放射素材としては、例えば、セラミックスをポリエステルに練り込んだ繊維が、吸湿発熱素材としては、例えば、アクリル繊維、ポリエステル繊維の少なくともいずれか一方を含むものが、温度調整素材としては、相変化物質を封入したマイクロカプセルを織編物に加工した素材がそれぞれ考えられよう。   As the heat storage and heat retaining material, for example, a fiber kneaded with zirconium carbide, as a far-infrared radiation material, for example, a fiber kneaded with ceramics in polyester, and as a hygroscopic heat generating material, for example, acrylic fiber, polyester fiber A material that includes at least one of them may be a material obtained by processing a microcapsule encapsulating a phase change material into a woven or knitted fabric as a temperature adjusting material.

また、ベース側電気絶縁性基材、カバー側電気絶縁性基材の少なくとも一方を保温性素材層と絶縁性フィルム層の多層構造とすれば、高分子抵抗体材料の製法、例えば、印刷方式や押し出し方式の如何に関わらず、絶縁性基材として用いることが可能であり、柔軟性、快適性、省エネ性に優れた高分子発熱体を提供することが可能となる。   If at least one of the base-side electrically insulating substrate and the cover-side electrically insulating substrate has a multilayer structure of a heat insulating material layer and an insulating film layer, a method for producing a polymer resistor material, for example, a printing method, Regardless of the extrusion method, it can be used as an insulating substrate, and a polymer heating element excellent in flexibility, comfort, and energy saving can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1,2において、高分子発熱体1は、ベース側電気絶縁性基材2とカバー側電気絶縁性基材3に一対の電極4,4bと、これら電極4a,4bの間に配設され、しかも接続されたPTC特性を有する高分子抵抗体5とを挟持した構成である。
(Embodiment 1)
1 and 2, the polymer heating element 1 is disposed on a base-side electrically insulating base 2 and a cover-side electrically insulating base 3 between a pair of electrodes 4 and 4b and these electrodes 4a and 4b. And it is the structure which pinched | interposed the polymer resistor 5 which has the connected PTC characteristic.

前記ベース側電気絶縁性基材2およびカバー側電気絶縁性基材3は、軽量保温素材として東レ(株)の商品名「セボナーサムロン」を用いた。本素材は予め2つの成分からなる繊維を作り織編物状にしたから片方の成分を溶かすことによって中空化したものであり、軽量性とソフトな風合い感を有するものである。   The base-side electrically insulating substrate 2 and the cover-side electrically insulating substrate 3 used Toray's trade name “Sebon Samron” as a lightweight heat insulating material. This material is made in advance by making a fiber composed of two components and making it into a woven or knitted fabric, so that it is hollowed by melting one of the components, and has a light weight and a soft texture.

ここで、作製手順を述べれば、ベース側電気絶縁性基材2の片側面に高分子抵抗体5を熱融着により配置し、その後、電極4,4bを高分子抵抗体5の両側部に熱融着させ、最後にカバー側電気絶縁性基材3を熱融着させて高分子発熱体1とする。   Here, the manufacturing procedure will be described. The polymer resistor 5 is disposed on one side surface of the base-side electrically insulating substrate 2 by heat fusion, and then the electrodes 4 and 4b are disposed on both sides of the polymer resistor 5. The cover-side electrically insulating base material 3 is finally heat-sealed to form the polymer heating element 1.

電極4,4bとしては、直径0.06mmの錫メッキ銅線を19本撚って得たものである。なお、電極4,4bに給電するためのリード線は省略した。   The electrodes 4 and 4b are obtained by twisting 19 tin-plated copper wires having a diameter of 0.06 mm. Note that lead wires for supplying power to the electrodes 4 and 4b are omitted.

高分子抵抗体5は下記の材料、手順により混練物を作成後、カレンダー加工によりベー
ス側電気絶縁性基材2上にシート状に熱融着加工する。
The polymer resistor 5 is prepared by kneading with the following materials and procedures and then heat-sealing into a sheet on the base-side electrically insulating substrate 2 by calendaring.

すなわち、結晶性樹脂として、エチレン・メタアクリル酸メチル共重合体[商品名「アクリフトCM5021」、融点67℃、住友化学(株)製]30部と、エチレン・メタアクリル酸共重合体[商品名「ニュクレルN1560」、融点90℃、三井・デュポンポリケミカル(株)製)]30部と、エチレン・メタアクリル酸共重合体金属配位物[商品名「ハイミラン1702」、融点90℃、三井・デュポンポリケミカ(株)製]40部とで構成した。   That is, as crystalline resin, ethylene / methyl methacrylate copolymer [trade name “ACRIFT CM5021”, melting point 67 ° C., manufactured by Sumitomo Chemical Co., Ltd.] 30 parts, ethylene / methacrylic acid copolymer [trade name 30 parts of “Nucleel N1560”, melting point 90 ° C., manufactured by Mitsui DuPont Polychemical Co., Ltd.) and ethylene / methacrylic acid copolymer metal coordination product [trade name “Himiran 1702”, melting point 90 ° C., Mitsui DuPont Polychemica Co., Ltd.] 40 parts.

この結晶性樹脂35重量%と、反応性樹脂[商品名「ボンドファースト7B」、住友化学(株)製]2重量%と、2種類の導電体として、カーボンブラック(商品名「プリンテックスL」、1次粒子径21nm、デグサ社製)25重量%と、グラファイト[商品名「GR15」、鱗状黒鉛、日本黒鉛(株)製]18重量%と、難燃剤[商品名「レオフォスRDP」、リン酸エステル系液状難燃剤、味の素(株)製]20重量%により混練物Aを作製した。   35% by weight of this crystalline resin, 2% by weight of a reactive resin [trade name “Bond First 7B”, manufactured by Sumitomo Chemical Co., Ltd.] and carbon black (trade name “Printex L” as two types of conductors) Primary particle size 21 nm, manufactured by Degussa) 25% by weight, graphite [trade name “GR15”, scaly graphite, manufactured by Nippon Graphite Co., Ltd.] 18% by weight, flame retardant [trade name “Reophos RDP”, phosphorus A kneaded product A was prepared with 20 wt% of acid ester liquid flame retardant, manufactured by Ajinomoto Co., Inc.

次に、エラストマーとして、スチレン系熱可塑性エラストマー[商品名「タフテックM1943」)、旭化成エンジニアリング(株)製]40重量%と、カーボンブラック[商品名「#10B」、1次粒子径75nm、三菱化学株製]45重量%と、炭化タングステン[井澤金属(株)製]13重量%と、溶融張力向上剤として、メタアクリル酸アルキル・アクリル酸アルキル共重合物と4フッ化エチレン共重合物との混合物[商品名「メタブレンA3000」、三菱レーヨン(株)製]2重量%とから混練物Bを作製した。   Next, as the elastomer, styrene-based thermoplastic elastomer [trade name “Tuftec M1943”], Asahi Kasei Engineering Co., Ltd. 40% by weight, carbon black [trade name “# 10B”, primary particle size 75 nm, Mitsubishi Chemical Stock] 45 wt%, tungsten carbide [Izawa Metal Co., Ltd.] 13 wt%, and as a melt tension improver, an alkyl methacrylate / alkyl acrylate copolymer and a tetrafluoroethylene copolymer A kneaded product B was prepared from 2% by weight of the mixture [trade name “METABBRENE A3000”, manufactured by Mitsubishi Rayon Co., Ltd.].

そして、混練物Aと混練物Bとを等量と、離型剤として変性シリコーンオイル2重量%と流動性付与剤として、メタアクリル酸アルキル・アクリル酸アルキル共重合物2重量%とを混練して高分子抵抗体5を作製した。   Then, an equal amount of the kneaded material A and the kneaded material B, 2% by weight of modified silicone oil as a release agent, and 2% by weight of an alkyl methacrylate / alkyl acrylate copolymer as a fluidity imparting agent are kneaded. Thus, a polymer resistor 5 was produced.

電極4a,4bは、相対向するように幅の広い一対(電気的に正側と負側)をベース側電気絶縁性基材2、カバー側電気絶縁性基材3の長手方向の外側部に沿って配置してあり、高分子抵抗体5に電流を流すことにより、これを発熱させる。   The electrodes 4a and 4b are arranged in such a manner that a wide pair (electrically positive side and negative side) so as to oppose each other on the outer side in the longitudinal direction of the base-side electrically insulating substrate 2 and the cover-side electrically insulating substrate 3 It is arrange | positioned along with this, and this is made to heat | fever by sending an electric current through the polymer resistor 5. FIG.

本実施の形態において、高分子抵抗体5はPTC特性を有し、温度が上昇すると抵抗値が上昇し、所定の温度になるように自己温度調節機能を有するようになり、温度コントロールが不要で安全性の高い高分子発熱体1としての機能を有するようになる。   In the present embodiment, the polymer resistor 5 has a PTC characteristic, and when the temperature rises, the resistance value rises and has a self-temperature adjusting function so as to reach a predetermined temperature, and temperature control is unnecessary. It comes to have a function as a highly safe polymer heating element 1.

なお、ベース側電気絶縁性基材2とカバー側電気絶縁性基材3との両方に軽量保温素材を用いたが、必ずしもこれに特定されることはなく、例えば、人体と接触する一方に配置した場合においても、熱ロスが少なく、柔軟性、風合い性の良好な高分子発熱体1となろう。   In addition, although the lightweight heat insulation material was used for both the base side electrically insulating base material 2 and the cover side electrically insulating base material 3, it is not necessarily specified to this, for example, it arrange | positions in one side which contacts a human body. Even in such a case, the polymer heating element 1 with less heat loss and good flexibility and texture will be obtained.

通常の保温性を考慮していない同一厚みの織布を基材として用いた場合に比較すると、約5%の省エネ性能を示すことがわかった。   It was found that the energy saving performance of about 5% was exhibited when compared with the case where a woven fabric having the same thickness not considering the normal heat retention was used as the base material.

(実施の形態2)
図3,4において、高分子発熱体11は、ベース側電気絶縁性基材12とカバー側電気絶縁性基材13に一対の電極14a,14bと、これら電極14a,14bに接続して配設され、しかも接続されたPTC特性を有する高分子抵抗体15とを挟持した構成である。
(Embodiment 2)
3 and 4, the polymer heating element 11 is disposed on the base-side electrically insulating substrate 12 and the cover-side electrically insulating substrate 13 so as to be connected to the pair of electrodes 14a and 14b and these electrodes 14a and 14b. In addition, the polymer resistor 15 having the connected PTC characteristic is sandwiched.

前記電極14a,14bは主電極部より相手方向に交互に複数の副電極を分岐した櫛歯
状に設定してある。
The electrodes 14a and 14b are set in a comb-like shape in which a plurality of sub-electrodes are alternately branched in the opposite direction from the main electrode portion.

ベース側電気絶縁性基材12およびカバー側電気絶縁性基材13は、保温性素材層と絶縁性フィルム層の2層構造からなるものを用いた。   The base-side electrically insulating substrate 12 and the cover-side electrically insulating substrate 13 were made of a two-layer structure of a heat retaining material layer and an insulating film layer.

保温性素材層としては、ベース側電気絶縁性基材12、カバー側電気絶縁性基材13の両方とも、ユニチカ(株)の商品名「サーモトロン」を用いた。   As the heat insulating material layer, the product name “Thermotron” of Unitika Co., Ltd. was used for both the base-side electrically insulating substrate 12 and the cover-side electrically insulating substrate 13.

この素材は人体から発生する熱を反射する機能も有しており、発熱体からの熱もあわせ優れた保温性能を示す。   This material also has a function of reflecting heat generated from the human body, and exhibits excellent heat retention performance in combination with heat from the heating element.

絶縁性フィルム層としては、インフレーション法を用いて作成したもので、オレフィン系の熱可塑性樹脂(PPと優れた相溶性を示すPPの軟質化材を含む樹脂)と、耐熱性を発現させるための熱可塑性樹脂(エチレン及びプロピレンを直接反応させて得られた重合型TPO)と、電極や抵抗体との接触特性が良好となるオレフィン系の接着性樹脂(無水マレイン酸成分を含むエチレン成分を含む樹脂)の混練物からなり、合計3種の樹脂ブレンドからなるフィルムで、貼り合わせ後のフィルムの厚みとしては60−70ミクロンのものを得、保温性素材の片側面に熱融着させることによりベース側電気絶縁性基材12、カバー側電気絶縁性基材13を得た。   As an insulating film layer, it was created using an inflation method, and an olefin-based thermoplastic resin (a resin containing PP softening material exhibiting excellent compatibility with PP) and heat resistance are developed. An olefin-based adhesive resin (including an ethylene component including a maleic anhydride component) that provides good contact characteristics between a thermoplastic resin (polymerized TPO obtained by directly reacting ethylene and propylene) and an electrode or a resistor. Resin), a film composed of a total of three types of resin blends, and a film thickness of 60-70 microns after lamination is obtained by heat-sealing to one side of the heat retaining material. A base-side electrically insulating substrate 12 and a cover-side electrically insulating substrate 13 were obtained.

図4では、それら2層構造がわかるように保温性素材層に相当する部分を白枠線で、絶縁性フィルム層に相当する部分を黒太線で図示した。   In FIG. 4, the portion corresponding to the heat insulating material layer is indicated by a white frame line and the portion corresponding to the insulating film layer is indicated by a thick black line so that the two-layer structure can be understood.

このベース側電気絶縁性基材12上に銀ペーストの印刷・乾燥により一対の電極14a,14bと、これら電極14a,14bにより給電される位置にPTC抵抗体インクの印刷・乾燥により高分子抵抗体15を作製した。   A pair of electrodes 14a, 14b is printed on the base-side electrically insulating substrate 12 by printing / drying, and a polymer resistor is formed by printing / drying PTC resistor ink at a position where power is supplied by these electrodes 14a, 14b. 15 was produced.

高分子抵抗体15は、発熱温度が約40℃程度に成るように作製されており、エチレン酢酸ビニル共重合体を2種類組み合わせ、カーボンブラックを混練・架橋したものにアクリロニトリルブチルゴムをバインダーとして溶剤でインク化することにより得、カバー側電気絶縁性基材13を前述した電極14a,14bおよび高分子抵抗体15に貼り合わせた。   The polymer resistor 15 is manufactured to have an exothermic temperature of about 40 ° C., a combination of two types of ethylene vinyl acetate copolymers, kneaded and cross-linked carbon black, and acrylonitrile butyl rubber as a binder. The cover-side electrically insulating base material 13 was bonded to the electrodes 14a and 14b and the polymer resistor 15 described above.

本高分子発熱体11においては、ベース側電気絶縁性基材12とカバー側電気絶縁性基材13の両面ともに保温性素材層と絶縁性フィルム層を有する2層構造としたが、必ずしもこれに特定されることはなく、例えば、人体と接触する一方に配置した場合においても、熱ロスが少なく、柔軟性、風合い性の良好な高分子発熱体11となろう。   The polymer heating element 11 has a two-layer structure in which both the base-side electrically insulating substrate 12 and the cover-side electrically insulating substrate 13 have a heat insulating material layer and an insulating film layer. For example, even when the polymer heating element 11 is arranged on one side in contact with the human body, the polymer heating element 11 with less heat loss and good flexibility and texture will be obtained.

通常の保温性を考慮していない同一厚みの繊維素材層と絶縁性フィルム層からなる基材を用いた場合と比較すると、約6%の省エネ性能を示すことがわかった。   It was found that energy saving performance of about 6% was exhibited when compared with the case of using a base material composed of a fiber material layer and an insulating film layer having the same thickness that does not take into account normal heat retention.

(実施の形態3)
図5,6において、高分子発熱体21は、ベース側電気絶縁性基材22とカバー側電気絶縁性基材23に一対の電極24a,24bと、これら電極24a,24bに接続して配設され、しかも接続されたPTC特性を有する高分子抵抗体25とを挟持した構成である。
(Embodiment 3)
5 and 6, a polymer heating element 21 is disposed on a base-side electrically insulating base material 22 and a cover-side electrically insulating base material 23 and connected to a pair of electrodes 24a, 24b and these electrodes 24a, 24b. In addition, the polymer resistor 25 having the connected PTC characteristic is sandwiched.

前記電極24a,24bは主電極部より相手方向に交互に複数の副電極を分岐した櫛歯状に設定してある。   The electrodes 24a and 24b are set in a comb-like shape in which a plurality of sub-electrodes are alternately branched in the opposite direction from the main electrode portion.

ここで、ベース側電気絶縁性基材22としては、保温性素材層と絶縁性フィルム層の2層構造からなるものを、カバー側電気絶縁性基材23としては絶縁性フィルム層のみからなるものを用いた。   Here, the base-side electrically insulating substrate 22 has a two-layer structure of a heat insulating material layer and an insulating film layer, and the cover-side electrically insulating substrate 23 has only an insulating film layer. Was used.

保温性素材層としては、温度調整素材として住友スリーエム(株)の商品名「ジェネサーモネオ」を用いた。   As the heat-insulating material layer, the product name “Generamoneo” of Sumitomo 3M Co., Ltd. was used as a temperature control material.

本素材は常温域で固体と液体に容易に変化する相変化物質を加工した素材であり、外気温が変化した場合でも素材表面近傍の温度変化が少なく、快適な暖感覚を得ることができる。   This material is a material obtained by processing a phase change material that easily changes into a solid and a liquid in a normal temperature range. Even when the outside air temperature changes, there is little temperature change near the material surface, and a comfortable warm feeling can be obtained.

また、ベース側電気絶縁性基材22の絶縁性フィルム層およびカバー側電気絶縁性基材23の絶縁フィルム層は、シート押出成形装置を用いて作成したもので、オレフィン系の熱可塑性樹脂(PPと優れた相溶性を示すPPの軟質化材を含む樹脂)と、耐熱性を発現させるための熱可塑性樹脂(エチレン及びプロピレンを直接反応させて得られた重合型TPO)と、電極や抵抗体との接触特性が良好となるオレフィン系の接着性樹脂(無水マレイン酸成分を含むエチレン成分を含む樹脂)の混練物からなり、合計3種の樹脂ブレンドからなるフィルムであって、貼り合わせ後のフィルムの厚みとしては50−60ミクロンのものを得、保温性素材の片側面に熱融着させることによりベース側電気絶縁性基材22を得た。   Further, the insulating film layer of the base-side electrically insulating substrate 22 and the insulating film layer of the cover-side electrically insulating substrate 23 are prepared using a sheet extrusion molding apparatus, and are made of an olefin-based thermoplastic resin (PP A resin containing PP softening material exhibiting excellent compatibility), a thermoplastic resin (polymerization type TPO obtained by direct reaction of ethylene and propylene), and electrodes and resistors. It is a film made of a kneaded product of an olefin-based adhesive resin (a resin containing an ethylene component containing a maleic anhydride component) that has good contact characteristics with a total of three types of resin blends. The film thickness was 50-60 microns, and the base-side electrically insulating substrate 22 was obtained by heat-sealing to one side of the heat retaining material.

図6では、それら2層構造がわかるように保温性素材層に相当する部分を白枠線で、絶縁性フィルム層に相当する部分を黒太線で図示した。   In FIG. 6, the portion corresponding to the heat insulating material layer is illustrated with a white frame line, and the portion corresponding to the insulating film layer is illustrated with a thick black line so that the two-layer structure can be understood.

このベース側電気絶縁性基材22上に銀ペーストの印刷・乾燥により一対の電極24a,24bと、これら電極24a,24bにより給電される位置にPTC抵抗体インクの印刷・乾燥により高分子抵抗体25を作製した。   A pair of electrodes 24a and 24b is printed and dried on the base-side electrically insulating base 22 by a silver paste, and a polymer resistor is printed and dried by a PTC resistor ink at a position where power is supplied by the electrodes 24a and 24b. 25 was produced.

高分子抵抗体25は、発熱温度が約40℃程度に成るように作製されており、エチレン酢酸ビニル共重合体を2種類組み合わせ、カーボンブラックを混練・架橋したものにアクリロニトリルブチルゴムをバインダーとして溶剤でインク化することにより得、前述の方法で得た絶縁性フィルム層からなるカバー側電気絶縁性基材23を電極24a,24bおよび高分子抵抗体25に貼り合わせた。   The polymer resistor 25 is manufactured to have an exothermic temperature of about 40 ° C., a combination of two types of ethylene vinyl acetate copolymers, kneaded and cross-linked carbon black, and acrylonitrile butyl rubber as a binder. A cover-side electrically insulating base material 23 made of an insulating film layer obtained by making an ink and made by the above-described method was bonded to the electrodes 24 a and 24 b and the polymer resistor 25.

本高分子発熱体21においては、ベース側電気絶縁性基材22のみが保温性素材層と絶縁性フィルム層を有する2層構造からなるものであり、こちらの面を人体と接触するように配置したところ、熱ロスが少なく、柔軟性、風合い性の良好な高分子発熱体となることがわかった。   In the present polymer heating element 21, only the base-side electrically insulating base material 22 has a two-layer structure having a heat insulating material layer and an insulating film layer, and this surface is arranged so as to come into contact with the human body. As a result, it was found that the polymer heating element had little heat loss and good flexibility and texture.

通常の保温性を考慮していない同一厚みの繊維素材層と絶縁性フィルム層からなる基材を用いた場合と比較すると、約8%の省エネ性能を示すことがわかった。   It was found that energy saving performance of about 8% was exhibited when compared with the case of using a base material composed of a fiber material layer and an insulating film layer having the same thickness that does not take into account normal heat retention.

以上のように本発明にかかる高分子発熱体は、熱を少ない損失で効率よく伝えることができ、省エネ性能高めることができるものであり、自動車の座席装置の暖房用熱源などに装着することが可能である。   As described above, the polymer heating element according to the present invention can efficiently transmit heat with a small loss, can improve energy saving performance, and can be mounted on a heating heat source or the like of an automobile seat device. Is possible.

1,11,21 高分子発熱体
2,12,22 ベース側電気絶縁性基材
3,13,23 カバー側電気絶縁性基材
4a,4b,14a,14b,24a,24b 電極
5,15,25 高分子抵抗体
1,11,21 Polymer heating element 2,12,22 Base-side electrically insulating substrate 3,13,23 Cover-side electrically insulating substrate 4a, 4b, 14a, 14b, 24a, 24b Electrodes 5, 15, 25 Polymer resistor

Claims (9)

ベース側電気絶縁性基材とカバー側電気絶縁性基材に挟持された一対の電極と、これら電極間に配設されたPTC特性を有する高分子抵抗体とを備え、前記ベース側電気絶縁性基材、カバー側電気絶縁性基材の少なくとも一方に保温性素材を用いた高分子発熱体。 A base-side electrically insulating base and a pair of electrodes sandwiched between the cover-side electrically insulating base and a polymer resistor having a PTC characteristic disposed between the electrodes; A polymer heating element using a heat insulating material for at least one of a base material and a cover-side electrically insulating base material. 保温性素材は、軽量保温素材、発熱素材、あるいは温度調整素材の少なくとも1種を含む請求項1記載の高分子発熱体。 The polymer heating element according to claim 1, wherein the heat retaining material includes at least one of a light weight heat retaining material, a heat generating material, and a temperature adjusting material. 発熱素材は、蓄熱保温素材、遠赤外線放射素材、あるいは吸湿発熱素材の少なくとも1種を含む請求項2記載の高分子発熱体。 The polymer heating element according to claim 2, wherein the heat generating material includes at least one of a heat storage and heat retaining material, a far-infrared radiation material, or a moisture absorbing heat generating material. 軽量保温素材は、ポリエステル中空糸より構成した請求項2記載の高分子発熱体。 The polymer heating element according to claim 2, wherein the lightweight heat retaining material is made of a polyester hollow fiber. 蓄熱保温素材は、炭化ジルコニウムを練り込んだ繊維から構成した請求項3記載の高分子発熱体。 4. The polymer heating element according to claim 3, wherein the heat storage and heat retaining material is made of a fiber kneaded with zirconium carbide. 遠赤外線放射素材は、セラミックスをポリエステルに練り込んだ繊維より構成した請求項3記載の高分子発熱体。 The polymer heating element according to claim 3, wherein the far-infrared radiation material is composed of a fiber obtained by kneading ceramics into polyester. 吸湿発熱素材は、アクリル繊維、ポリエステル繊維の少なくともいずれか一方を含むものである請求項3記載の高分子発熱体。 The polymer heating element according to claim 3, wherein the moisture-absorbing heat-generating material includes at least one of acrylic fiber and polyester fiber. 温度調整素材は、相変化物質を封入したマイクロカプセルを織編物に加工した素材から構成した請求項2記載の高分子発熱体。 The polymer heating element according to claim 2, wherein the temperature adjustment material is made of a material obtained by processing a microcapsule enclosing a phase change material into a woven or knitted fabric. ベース側電気絶縁性基材、カバー側電気絶縁性基材の少なくとも一方が保温性素材層と絶縁性フィルム層の多層構造からなる請求項1記載の高分子発熱体。 The polymer heating element according to claim 1, wherein at least one of the base-side electrically insulating substrate and the cover-side electrically insulating substrate has a multilayer structure of a heat insulating material layer and an insulating film layer.
JP2009143856A 2009-06-17 2009-06-17 Polymer heating element Pending JP2011003329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143856A JP2011003329A (en) 2009-06-17 2009-06-17 Polymer heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143856A JP2011003329A (en) 2009-06-17 2009-06-17 Polymer heating element

Publications (1)

Publication Number Publication Date
JP2011003329A true JP2011003329A (en) 2011-01-06

Family

ID=43561152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143856A Pending JP2011003329A (en) 2009-06-17 2009-06-17 Polymer heating element

Country Status (1)

Country Link
JP (1) JP2011003329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498090A (en) * 2011-12-23 2013-07-03 Exo Technologies Ltd Building panel comprising at least one sheet of electrically-conductive polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498090A (en) * 2011-12-23 2013-07-03 Exo Technologies Ltd Building panel comprising at least one sheet of electrically-conductive polymer
GB2498090B (en) * 2011-12-23 2015-09-30 Exo Technologies Ltd Component for a building

Similar Documents

Publication Publication Date Title
US8519305B2 (en) Polymer heating element
JP5657889B2 (en) Heating element
US20130277359A1 (en) Ptc resistor
CN105103650A (en) Radiant heater device
JP4877066B2 (en) Resistor composition and planar heating element using the same
JPWO2012063473A1 (en) Planar heating element and manufacturing method thereof
JP2010091185A (en) Heating apparatus and vehicle heater using the same
CN106536244A (en) Radiant heater
KR101840734B1 (en) heat pad and system using the same
JP5217411B2 (en) Polymer heating element
JP2010111251A (en) Heating device for vehicle
JP2009199794A (en) Planar heating element
JP2010020989A (en) Polymer heating element
JP2004055219A (en) Seat heater
JP2008293671A (en) Resistor composition, and surface heat generating body using this
JP2008300050A (en) Polymer heating element
JP2012227034A (en) Planar heating element
JP2011003329A (en) Polymer heating element
JP5125581B2 (en) Planar heating element
CN104955181B (en) The thick film heating cloth of thick film heating body and application the thick film heating body
JP2010160954A (en) Surface heater
JP2008293670A (en) Resistor composition, and surface heat generating body using this
JP2011003330A (en) Planar heating element and seat using the same
JP2010272267A (en) Polymer heating element
JPH0353486A (en) Heating material and electrode for heating material