JP2009199794A - Planar heating element - Google Patents

Planar heating element Download PDF

Info

Publication number
JP2009199794A
JP2009199794A JP2008038237A JP2008038237A JP2009199794A JP 2009199794 A JP2009199794 A JP 2009199794A JP 2008038237 A JP2008038237 A JP 2008038237A JP 2008038237 A JP2008038237 A JP 2008038237A JP 2009199794 A JP2009199794 A JP 2009199794A
Authority
JP
Japan
Prior art keywords
heating element
planar heating
polymer resistor
electrodes
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008038237A
Other languages
Japanese (ja)
Inventor
Akihiro Umeda
章広 梅田
Takahito Ishii
隆仁 石井
Katsuhiko Uno
克彦 宇野
Keizo Nakajima
啓造 中島
Yu Fukuda
祐 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008038237A priority Critical patent/JP2009199794A/en
Publication of JP2009199794A publication Critical patent/JP2009199794A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2227Electric heaters incorporated in vehicle trim components, e.g. panels or linings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/006Heaters using a particular layout for the resistive material or resistive elements using interdigitated electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Seats For Vehicles (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer resistor which achieves a high resistance change magnification and has an excellent self temperature control. <P>SOLUTION: A planar heating element is constructed of at least a pair of electrodes 3A, 3B arranged on an electric insulating substrate 2 and a polymer resistor 4 connected electrically to the pair of electrodes 3A, 3B, the polymer resistor 4 is formed of a thermoplastic resin and fine powder of carbon material, and the carbon material is made a thin film-piece shape. Since the carbon material is made into thin film-piece shape, a high resistance change magnification can be achieved, and thereby, the planar heating element having an excellent self temperature control can be obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、任意の面形状を有する器具に装着可能な柔軟性と高い信頼性を有する変形自在な面状発熱体に関するものである。   The present invention relates to a deformable planar heating element having flexibility and high reliability that can be attached to a device having an arbitrary surface shape.

従来、この種の面状発熱体は、発熱部がベースポリマーと導電性物質とを溶媒に分散させた抵抗体インクを基材に印刷して乾燥させ、焼成して作製されていた(例えば特許文献1、特許文献2参照)。   Conventionally, this type of planar heating element has been manufactured by printing, drying, and firing a resistor ink in which a heating part has a base polymer and a conductive material dispersed in a solvent (for example, patents). Reference 1 and Patent Reference 2).

この種の抵抗体には一般に、導電性物質としてカーボンブラック、金属粉末などが用いられ、ベースポリマーとして結晶性樹脂が用いられる。このような材料によって発熱部はPTC特性を発揮する。   For this type of resistor, generally, carbon black, metal powder, or the like is used as a conductive substance, and a crystalline resin is used as a base polymer. With such a material, the heat generating portion exhibits PTC characteristics.

図6,7に具体的構成を示す。すなわち、面状発熱体30は、電気絶縁性の基材31と一対の櫛形状電極32、33と高分子抵抗体34と被覆材35とを有する。   A specific configuration is shown in FIGS. That is, the planar heating element 30 includes an electrically insulating base 31, a pair of comb-shaped electrodes 32 and 33, a polymer resistor 34, and a covering material 35.

基材31はポリエステルフィルムなどの樹脂で構成されている。   The base material 31 is made of a resin such as a polyester film.

櫛形状電極32、33は基材31上に銀ペースト等の導電性ペーストを印刷・乾燥して形成されている。   The comb-shaped electrodes 32 and 33 are formed on a base material 31 by printing and drying a conductive paste such as a silver paste.

高分子抵抗体34は、櫛形状電極32、33により給電される位置に高分子抵抗体インクを印刷し、乾燥させて形成されている。   The polymer resistor 34 is formed by printing a polymer resistor ink at a position where power is supplied by the comb-shaped electrodes 32 and 33 and drying the ink.

基材31と同様の材質の被覆材35は櫛形状電極32、33と高分子抵抗体34とを被覆して保護している。   The covering material 35 made of the same material as the base material 31 covers and protects the comb-shaped electrodes 32 and 33 and the polymer resistor 34.

基材31、被覆材35としてポリエステルフィルムを用いる場合、前記被覆材35に例えば変性ポリエチレン等の熱融着性樹脂36を予め接着しておく。そして、熱を与えながら加圧する。   When a polyester film is used as the base material 31 and the covering material 35, a heat-fusible resin 36 such as modified polyethylene is bonded in advance to the covering material 35. And it pressurizes, giving heat.

このようにすることにより、基材31と被覆材35とが熱融着性樹脂36を介して接合される。   By doing in this way, the base material 31 and the coating | covering material 35 are joined via the heat-fusible resin 36. FIG.

被覆材35と熱融着性樹脂36とは、櫛形状電極32、33と高分子抵抗体34とを外界から隔離する。そのため面状発熱体30には長期信頼性が付与される。   The covering material 35 and the heat-fusible resin 36 isolate the comb-shaped electrodes 32 and 33 and the polymer resistor 34 from the outside. Therefore, long-term reliability is imparted to the planar heating element 30.

PTC特性とは、温度上昇によって抵抗値が上昇し、ある温度に達すると抵抗値が急激に増加する抵抗温度特性を意味している。   The PTC characteristic means a resistance temperature characteristic in which the resistance value increases as the temperature rises, and the resistance value increases rapidly when a certain temperature is reached.

PTC特性を有する高分子抵抗体34は、面状発熱体30に自己温度調節機能を付与することができる。   The polymer resistor 34 having PTC characteristics can give the planar heating element 30 a self-temperature adjusting function.

また、非晶質ポリマーと結晶性ポリマー粒子とカーボンブラックと無機充填剤からなるPTC組成物を有機溶剤に分散させ、インクを作製した後、電極を設けた樹脂フィルム上にPTC組成物インクで高分子抵抗体を印刷し、架橋のための熱処理を行い、高分子抵抗体の保護層として樹脂フィルムを積層した面状発熱体も見受けられる。   Further, a PTC composition composed of amorphous polymer, crystalline polymer particles, carbon black, and an inorganic filler is dispersed in an organic solvent to prepare an ink, and then the PTC composition ink is coated on the resin film provided with electrodes. There can also be seen a planar heating element in which a molecular resistor is printed, a heat treatment for crosslinking is performed, and a resin film is laminated as a protective layer of the polymer resistor.

この面状発熱体は、前者の面状発熱体と同様な発熱機能を有するものである。   This planar heating element has a heating function similar to that of the former planar heating element.

従来のPTC特性は、抵抗値が数100Ω/□の領域では、抵抗体の50℃の抵抗値と20℃の抵抗値の比である抵抗変化倍率(50℃抵抗値/20℃抵抗値:以下、抵抗変化倍率と言う)はすべて2未満であった例えば、特許文献1、特許文献2参照)。
特開昭56−13689号公報 特開平8−120182号公報
In the conventional PTC characteristic, in the region where the resistance value is several hundred Ω / □, the resistance change ratio (50 ° C. resistance value / 20 ° C. resistance value: below) The resistance change magnification) was less than 2 (see, for example, Patent Document 1 and Patent Document 2).
Japanese Patent Laid-Open No. 56-13689 JP-A-8-120182

前記従来の面状発熱体30には、基材31としてポリエステルフィルムなどの剛直な材料が用いられている。   The conventional planar heating element 30 uses a rigid material such as a polyester film as the base material 31.

また基材31と、その上に印刷された櫛形状電極32、33、高分子抵抗体34と、さらにその上に配置された接着層を有する被覆材35とから構成された5層構造を有する。そのため、基材31や被覆材35の材質やその厚さによっては、柔軟性に欠ける。   The substrate 31 has a five-layer structure including a comb-shaped electrode 32, 33 printed thereon, a polymer resistor 34, and a covering 35 having an adhesive layer disposed thereon. . Therefore, depending on the material and the thickness of the base material 31 and the covering material 35, flexibility is lacking.

すなわち、面状発熱体30をカーシートヒータ(自動車の座席暖房用ヒータ)に用いる場合に着座感が損なわれ、ハンドルヒータに用いる場合には手触り感が損なわれる。   That is, when the planar heating element 30 is used as a car seat heater (heater for heating a seat of an automobile), the seating feeling is impaired, and when it is used as a handle heater, the feeling of touch is impaired.

また、形状が面状であるため、その面の一部に着座等による荷重が加わった場合、その力が全体に及んで面状発熱体30が変形する。   Moreover, since the shape is planar, when a load due to sitting or the like is applied to a part of the surface, the force is exerted on the entire surface and the planar heating element 30 is deformed.

その変形の形状によっては、面状発熱体30の端に近いほど変形量が増え、面の一部に折り皺などが生じる。   Depending on the shape of the deformation, the closer to the end of the sheet heating element 30, the larger the amount of deformation, causing creases or the like in part of the surface.

この折り皺部分で櫛形状電極32、33や高分子抵抗体34に亀裂などが生じる可能性がある。そのため耐久性が低下する可能性がある。   There is a possibility that cracks or the like may occur in the comb-shaped electrodes 32 and 33 and the polymer resistor 34 in the folded portion. Therefore, durability may be reduced.

さらに、従来のPTC特性では抵抗変化倍率が低いため、温度上昇が遅く、また自己温度制御の性能に欠けるという課題を有していた。   Further, the conventional PTC characteristics have a problem that the resistance change magnification is low, so that the temperature rise is slow and the performance of the self-temperature control is lacking.

本発明は、前記従来の課題を解決するもので、外力が加わっても十分な柔軟性を有し、しかも抵抗変化倍率をも向上させた面状発熱体を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a planar heating element that has sufficient flexibility even when an external force is applied and that has improved resistance change magnification.

前記従来の課題を解決するために、本発明の面状発熱体は、電気絶縁性基材上に配設された少なくとも1対の電極と、前記1対の電極と電気的に接続された高分子抵抗体とからなり、この高分子抵抗体は熱可塑性樹脂および炭素材料の微粉末で形成され、かつ、前記炭素材料を薄片状としたことを特徴とする。   In order to solve the above-described conventional problems, the planar heating element of the present invention includes at least one pair of electrodes disposed on an electrically insulating substrate, and a high electrical connection with the pair of electrodes. The polymer resistor is formed of a thermoplastic resin and a fine powder of a carbon material, and the carbon material is formed into a thin piece.

炭素材料を薄片状にすることにより、低抵抗であるにもかかわらず、高い抵抗変化倍率を実現でき、これによって、優れた自己温度制御を有した高分子抵抗体を得ることができるものである。   By making the carbon material into a flaky shape, a high resistance change magnification can be realized in spite of low resistance, and thereby a polymer resistor having excellent self-temperature control can be obtained. .

また、少なくとも1対の電極と高分子抵抗体の3層構造で構成しているので柔軟性を発揮しやすくすることができる。   Moreover, since it is comprised by the 3 layer structure of at least 1 pair of electrode and polymer resistor, it can make it easy to exhibit a softness | flexibility.

本発明の面状発熱体は、高いPTC特性を有する高分子抵抗体で構成することにより、自己温度制御の性能に優れ、かつ加工性が高いことにより、生産性を向上させることができ、低コストの高分子抵抗体を作製することができ、また、従来の5〜6層構造の構成の面状発熱体に対して、本発明は3層構造の構成とすることにより、柔軟性が高く、カーシートヒータなどのように外力による変形に対して強い面状発熱体とすることができ、優れた耐久性、信頼性、着座感、手触り感を実現することができるとともに、低コストの面状発熱体を提供することができる。   The planar heating element of the present invention is composed of a polymer resistor having high PTC characteristics, so that it has excellent self-temperature control performance and high workability, so that productivity can be improved and low A cost-effective polymer resistor can be produced, and the present invention is highly flexible by adopting a three-layer structure compared to the conventional planar heating element having a five- to six-layer structure. It can be a planar heating element that is resistant to deformation due to external force, such as a car seat heater, and can realize excellent durability, reliability, a feeling of sitting, a feeling of touch, and a low-cost surface A heating element can be provided.

第1の発明は、電気絶縁性基材上に配設された少なくとも1対の電極と、前記1対の電極と電気的に接続された高分子抵抗体とからなり、この高分子抵抗体は熱可塑性樹脂および炭素材料の微粉末で形成され、かつ、前記炭素材料を薄片状としたことを特徴とする。   The first invention comprises at least one pair of electrodes disposed on an electrically insulating substrate, and a polymer resistor electrically connected to the pair of electrodes, It is formed of a fine powder of a thermoplastic resin and a carbon material, and the carbon material is formed into a flake shape.

炭素材料を薄片状にすることにより、炭素材料の微粉末同士が、一方の結晶層の面上に他方の結晶層の端部が面と線との関係で接触することになり、全体での導電パスの接点が少なく、少しの熱膨張によって接点が離れる分散構造を形成する。すなわち、熱膨張によって敏感に抵抗値が増加することとなり、抵抗体の抵抗変化倍率を高くすることができる。   By making the carbon material into a flaky shape, the fine powders of the carbon material are in contact with each other on the surface of one crystal layer in the relationship between the surface and the line. There are few contacts in the conductive path, and a dispersed structure is formed in which the contacts are separated by a slight thermal expansion. That is, the resistance value increases sensitively due to thermal expansion, and the resistance change magnification of the resistor can be increased.

また、少なくとも1対の電極と高分子抵抗体の3層構造で構成しているので柔軟性を発揮しやすくすることができる。   Moreover, since it is comprised by the 3 layer structure of at least 1 pair of electrode and polymer resistor, it can make it easy to exhibit a softness | flexibility.

第2の発明は、薄片状の微粉末が黒鉛であるものである。黒鉛は六方晶系、六角板状結晶であり、亀の甲状の層状物質で、面内は強い共有結合で繋がっているが、層と層の間は弱いファンデルワールス力で結合している。それゆえに層状に剥離し、薄片形状を形成しやすい。また、面内は導電性が高い。   In the second invention, the flaky fine powder is graphite. Graphite is a hexagonal, hexagonal plate-like crystal, and is a layered material with a turtle shell shape, and the layers are connected by strong covalent bonds, but the layers are bonded by a weak van der Waals force. Therefore, it peels into layers and is easy to form a flake shape. In addition, the conductivity is high in the surface.

したがって、ある特定の黒鉛を選定することで、容易に薄片状の導電体を混合させた高分子抵抗体を構成することができる。   Therefore, by selecting a specific graphite, a polymer resistor in which flaky conductors are easily mixed can be configured.

第3の発明は、特に、薄片状が、結晶層方向の厚みに対する結晶面方向の長さの比が、20倍以上であるものである。結晶層方向の厚みと結晶面方向の長さが同等のものであると、導電体同士の接点が多く、抵抗体全体で抵抗値が高くなり、また、熱膨張による接点乖離が悪くなる。一方、厚みと長さの比を変えた試験によれば、20倍以上であるものは抵抗変化倍率が著しく高くなった。したがって、PTC特性の高い面状発熱体を実現することができる。   In the third invention, in particular, the ratio of the length in the crystal plane direction to the thickness in the crystal layer direction in the flake shape is 20 times or more. If the thickness in the crystal layer direction and the length in the crystal plane direction are the same, there are many contacts between conductors, the resistance value of the entire resistor becomes high, and contact divergence due to thermal expansion becomes worse. On the other hand, according to the test in which the ratio between the thickness and the length was changed, the resistance change magnification was remarkably increased when the ratio was 20 times or more. Therefore, a planar heating element with high PTC characteristics can be realized.

第4の発明は、球状のカーボンブラックを混合させたことを特徴とするものである。導電性は黒鉛に保持させ、導電パスの切れ易さは黒鉛と球状カーボンブラックの点接触によって起こすものである。薄片状の黒鉛に球状のカーボンブラックを混合させた試験により、導電性の低下を抑えつつ、抵抗抵抗変化倍率を高くすることができる。したがって、PTC特性の高い面状発熱体を実現することができる。   The fourth invention is characterized in that spherical carbon black is mixed. Conductivity is maintained in graphite, and the continuity of the conductive path is caused by point contact between graphite and spherical carbon black. By the test in which spherical carbon black is mixed with flaky graphite, the resistance resistance change magnification can be increased while suppressing the decrease in conductivity. Therefore, a planar heating element with high PTC characteristics can be realized.

第5の発明は、特に、高分子抵抗体をカレンダー加工によって成型することを特徴とするものである。カレンダー加工することによって薄片状の導電体を可動性良く配向するこが可能となり、抵抗抵抗変化倍率を高くすることができる。したがって、PTC特性の高い面状発熱体を実現することができる。   The fifth invention is particularly characterized in that the polymer resistor is molded by calendering. By calendering, the flaky conductor can be oriented with good mobility, and the resistance-resistance change magnification can be increased. Therefore, a planar heating element with high PTC characteristics can be realized.

第6の発明は、前記面状発熱体を自動車の座席装置に配備し、暖房に供するようにしたものである。   In a sixth aspect of the invention, the planar heating element is provided in a seat device of an automobile and is used for heating.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。また各実施の形態特有の構成を適宜組み合わせることができる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment. In addition, a configuration unique to each embodiment can be combined as appropriate.

(実施の形態1)
図1,2において、面状発熱体1は、電気絶縁性基材2と、第1、第2線条電極3A,3Bと、高分子抵抗体4とを含む。
(Embodiment 1)
1 and 2, the planar heating element 1 includes an electrically insulating substrate 2, first and second linear electrodes 3 </ b> A and 3 </ b> B, and a polymer resistor 4.

線条電極3A、3Bは電気絶縁性基材2に、それぞれが左右対称になるように配置され、糸5で部分的に縫い付けられている。   The linear electrodes 3A and 3B are arranged on the electrically insulating base material 2 so as to be symmetrical with each other, and are partially sewn with a thread 5.

高分子抵抗体4は線条電極3A,3Bが配置された電気絶縁性基材2上にTダイ押し出し法によりフィルム状に押し出して形成されている。これにより高分子抵抗体4が線条電極3A,3Bと電気絶縁性基材2とに熱融着している。   The polymer resistor 4 is formed on the electrically insulating base material 2 on which the linear electrodes 3A and 3B are disposed by extrusion in the form of a film by a T-die extrusion method. As a result, the polymer resistor 4 is thermally fused to the linear electrodes 3A and 3B and the electrically insulating substrate 2.

面状発熱体1の中央部は、線条電極3A,3Bと電気絶縁性基材2とに高分子抵抗体4が熱融着された後に打ち抜かれている。このようにして面状発熱体1が構成されている。   The central portion of the sheet heating element 1 is punched after the polymer resistor 4 is thermally fused to the linear electrodes 3A and 3B and the electrically insulating substrate 2. Thus, the planar heating element 1 is configured.

なお、線条電極3A,3Bに電源からの電力を供給するためのリード線は図示していない。   In addition, the lead wire for supplying the electric power from a power supply to the filament electrodes 3A and 3B is not illustrated.

また、線条電極3A、3Bの配線パターンを変更することで打ち抜き部位は中央部に特定されることはなく任意である。   Further, by changing the wiring pattern of the line electrodes 3A and 3B, the punched portion is not specified at the central portion and is arbitrary.

図3,4は自動車の座席装置に装着したもので、座部6や、それより立ち上がらせた背もたれ部7に前記面状発熱体1が暖房用に装着してある。具体的には、電気絶縁性基材2が表面側に位置するように配置してある。   3 and 4 are mounted on a seat device of an automobile, and the planar heating element 1 is mounted for heating on a seat portion 6 and a backrest portion 7 raised from the seat portion 6. Specifically, it arrange | positions so that the electrically insulating base material 2 may be located in the surface side.

前記座部6や背もたれ部7は、基材8と表皮9とが用いられている。ウレタンパット等の基材8は、座席に腰掛けた人体による荷重がかかった時に変形し、荷重がかからなくなると形状が復元する。   The seat portion 6 and the backrest portion 7 use a base material 8 and an outer skin 9. The base material 8 such as a urethane pad is deformed when a load is applied by a human body seated on the seat, and the shape is restored when the load is no longer applied.

表皮9は基材8を覆っている。すなわち、面状発熱体1は、基材8に高分子抵抗体4側を、表皮9に電気絶縁性基材2側を配置して取り付けられる。   The skin 9 covers the base material 8. That is, the planar heating element 1 is attached by arranging the polymer resistor 4 side on the base material 8 and the electrically insulating base material 2 side on the skin 9.

なお、座部6や背もたれ部7の吊り込み部(図示せず)に対応するために、中央部や周縁部に吊り込むための電気絶縁性基材2の延長部(図示せず)が設けられている場合がある。   In addition, in order to correspond to the hanging part (not shown) of the seat part 6 and the backrest part 7, the extension part (not shown) of the electrically insulating base material 2 for suspending to a center part and a peripheral part is provided. May have been.

このように薄い面状発熱体1は変形可能な基材8と表皮9に沿って配置されている。そのため、面状発熱体1も座部6や背もたれ部7の変形に対応して相似の変形をしなければならない。   Thus, the thin sheet heating element 1 is disposed along the deformable base material 8 and the skin 9. Therefore, the planar heating element 1 must also undergo similar deformation corresponding to the deformation of the seat 6 and the backrest 7.

そのために、種々の発熱パターンを設計し、そのための線条電極3A,3Bの配置形状を変更する必要がある。ここではその詳細は省略する。   Therefore, it is necessary to design various heat generation patterns and change the arrangement shape of the line electrodes 3A and 3B for that purpose. The details are omitted here.

相対向するように配置された幅の広い1対の線条電極3A,3Bは、面状発熱体1の長手方向の外側部沿って配設されている。線条電極3A,3Bに重なるように配設された高分子抵抗体4に線条電極3A,3Bより給電することで、高分子抵抗体4に電流が流れて
発熱する。
A pair of wide linear electrodes 3 </ b> A and 3 </ b> B arranged so as to face each other are arranged along the outer side in the longitudinal direction of the planar heating element 1. By feeding power from the line electrodes 3A and 3B to the polymer resistor 4 disposed so as to overlap the line electrodes 3A and 3B, a current flows through the polymer resistor 4 to generate heat.

高分子抵抗体4はPTC特性を有し、温度が上昇すると抵抗値が上昇して、所定の温度になるように自己温度調節機能を有する。   The polymer resistor 4 has PTC characteristics, and has a self-temperature adjusting function so that the resistance value increases as the temperature rises to reach a predetermined temperature.

すなわち、高分子抵抗体4は面状発熱体1に安全性が高く温度コントロールを不要とする機能を付与する。   That is, the polymer resistor 4 gives the planar heating element 1 a function that is highly safe and does not require temperature control.

また、自動車用座席装置に組み込まれるヒータとして、面状発熱体1は着座感や難燃性を満足することができる。   Moreover, the planar heating element 1 can satisfy a seating feeling and a flame retardance as a heater incorporated in the vehicle seat apparatus.

着座感は、紙のような音鳴り感がなく、座席表皮材と同等の伸び特性、すなわち5%の伸びに対して7kgf以下の荷重であることで満足できる。   The seating sensation is satisfactory because there is no squeaking like paper and an elongation characteristic equivalent to that of the seat skin material, that is, a load of 7 kgf or less for an elongation of 5%.

またPTC特性のない発熱体に比べて、PTC特性を有する面状発熱体1は速熱性と省エネ性とを発揮することができる。   In addition, the planar heating element 1 having the PTC characteristic can exhibit quick heat and energy saving as compared with the heating element having no PTC characteristic.

PTC特性のない発熱体は、温度制御器を必要し、温度制御器はオン−オフ(ON−OFF)制御で通電を制御して発熱温度を制御している。特に、線条発熱線を用いたPTC特性のない発熱体の場合、線条発熱線間の低温部を回避するため、ON時の発熱体温度を約80℃まで上昇させており、表皮10とはある程度の距離をおいて配置する必要がある。   A heating element having no PTC characteristic requires a temperature controller, and the temperature controller controls the heat generation temperature by controlling energization by ON-OFF control. In particular, in the case of a heating element having a PTC characteristic using a filament heating wire, the heating element temperature at the time of ON is raised to about 80 ° C. in order to avoid a low temperature portion between the filament heating wires. Need to be placed at some distance.

これに対し面状発熱体1では、発熱体温度が40℃〜50℃の範囲に自己制御される。そのため、表皮9の近傍に近接して配置することができる。面状発熱体1は発熱体温度が低く、表皮9の近傍に配置されることより、速熱性と外部への放熱ロスを低減できる。そのため省エネルギー性を実現できる。   On the other hand, in the planar heating element 1, the heating element temperature is self-controlled within a range of 40 ° C to 50 ° C. Therefore, it can be arranged close to the vicinity of the skin 9. Since the sheet heating element 1 has a low heating element temperature and is disposed in the vicinity of the skin 9, it can reduce the rapid heating property and heat radiation loss to the outside. Therefore, energy saving can be realized.

従来の面状発熱体が基材と電極と高分子抵抗体と熱融着性樹脂と被覆材との5〜6層構造で構成されているのに対して、本実施の形態の面状発熱体1は、電気絶縁性基材2と1対の線条電極3A,3Bと高分子抵抗体4との3層構造で構成している。この簡素な構成により、外力が加わってもその外力の規制が少なくなるので柔軟性を発揮しやすくなる。   Whereas the conventional sheet heating element is composed of a 5-6 layer structure of a base material, an electrode, a polymer resistor, a heat-fusible resin, and a coating material, the sheet heating of the present embodiment The body 1 is composed of a three-layer structure of an electrically insulating substrate 2, a pair of filament electrodes 3A and 3B, and a polymer resistor 4. With this simple configuration, even when an external force is applied, the restriction of the external force is reduced, and thus flexibility is easily exhibited.

したがって、自動車用座席装置の暖房用として用いた際に外力を受けても柔軟性が高いので容易に変形し、従来のように折り皺が原因で起こる高分子抵抗体の亀裂や剥離が防止される。   Therefore, when used for heating an automobile seat device, it is highly flexible even when subjected to an external force, so it is easily deformed, and cracking and peeling of the polymer resistor caused by creases as in the past are prevented. The

また、面状発熱体1は3層の簡素な構成で作製することができるので生産性に優れ、かつ面状発熱体1を構成する材料費が少なくなる。その結果、低コストで生産できる。   Further, the planar heating element 1 can be manufactured with a simple configuration of three layers, so that the productivity is excellent and the material cost for configuring the planar heating element 1 is reduced. As a result, it can be produced at low cost.

また、高分子抵抗体4を挟んで通気性のないポリエステルシートなどの樹脂フィルムを用いていないので従来の面状発熱体のようにカーシートヒータやハンドルヒータに用いられた場合に湿気がこもりやすいという課題が解決され、長時間使用しても初期と同等の着座感や手触り感が得られ、快適な暖房効果が得られる。   Further, since a resin film such as a non-breathable polyester sheet is not used with the polymer resistor 4 interposed therebetween, moisture is likely to be trapped when used for a car seat heater or a handle heater as in a conventional sheet heating element. This solves the problem, and even when used for a long time, a seating feeling and a touch feeling equivalent to those in the initial stage can be obtained, and a comfortable heating effect can be obtained.

電気絶縁性基材2は、例えばポリエステル繊維で作製されたニードルパンチタイプの不織布が用いられる。   As the electrically insulating base material 2, for example, a needle punch type nonwoven fabric made of polyester fiber is used.

これ以外にポリエステル織布を用いてもよい。これらの電気絶縁性基材2は、面状発熱体1に柔軟性を付与し、外力が加わっても容易に変形してカーシートヒータとして用いた
際の着座感を向上させる。
Besides this, a polyester woven fabric may be used. These electrically insulating base materials 2 impart flexibility to the planar heating element 1 and easily deform even when an external force is applied to improve the seating feeling when used as a car seat heater.

特に、線条電極3A,3Bを縫製により取り付ける場合は、縫製による電気絶縁性基材2の針孔から発生する亀裂の防止や柔軟性の点で上記の不織布、織布が最適である。   In particular, when the linear electrodes 3A and 3B are attached by sewing, the above nonwoven fabric and woven fabric are optimal in terms of prevention of cracks generated from the needle holes of the electrically insulating base material 2 by sewing and flexibility.

線条電極3A,3Bは、電気絶縁性基材2にミシン等で縫製されて取り付けられる。この方法で作製された構成によると、線条電極3A,3Bは、電気絶縁性基材2に強固な固定と電気絶縁性基材2の変形に追従した変形が可能となり、機械的信頼性が向上する。   The filament electrodes 3A and 3B are attached to the electrically insulating substrate 2 by sewing with a sewing machine or the like. According to the structure manufactured by this method, the linear electrodes 3A and 3B can be firmly fixed to the electrically insulating substrate 2 and deformed following the deformation of the electrically insulating substrate 2, and mechanical reliability is improved. improves.

また、電気絶縁性基材2への縫製は、糸5によって行われるので電極材料や形状の選択範囲が広がる。   Moreover, since the sewing to the electrically insulating base material 2 is performed by the thread 5, the selection range of the electrode material and the shape is expanded.

さらに線条電極3A,3Bは、従来の複雑な櫛形電極とは異なり、少なくとも直線状の1対の形状の簡素な構成とすることができるので材料費が廉価で低コスト化が図れる。   Furthermore, unlike the conventional complicated comb-shaped electrodes, the line electrodes 3A and 3B can be made to have a simple configuration of at least a straight pair of shapes, so that the material cost is low and the cost can be reduced.

また、自動車の座席装置に用いた際に外力が加わっても線条電極3A,3Bの皺の発生が抑制され、電極の破損が防止される。   Moreover, even when an external force is applied when used in a seat device of an automobile, generation of wrinkles of the line electrodes 3A and 3B is suppressed, and damage to the electrodes is prevented.

線条電極3A,3Bは、金属導線と金属編組導線の少なくとも1種で構成される。これらの材料は、電気基材絶縁性2への縫製加工が容易であり、生産性が高い。   The filament electrodes 3A and 3B are composed of at least one of a metal conductor and a metal braided conductor. These materials are easy to sew to the electric base material insulation 2 and have high productivity.

また、金属導線、金属編組導線の材質、形状の選択範囲が広がる。   Further, the selection range of the material and shape of the metal conductor and the metal braided conductor is widened.

また、金属導線、金属編組導線は可撓性に優れ、かつ機械的強度が高いので面状発熱体の伸び、屈曲、変形などを繰り返しても長期にわたり耐え得る。   Further, since the metal conductor and the metal braided conductor are excellent in flexibility and have high mechanical strength, they can endure for a long period of time even if the planar heating element is repeatedly stretched, bent, or deformed.

また、電極は線条で構成されているので従来の複雑な櫛形電極とは異なり、簡素な構成とすることができ、電極材料の低コスト化が図れる。   In addition, since the electrode is composed of a filament, unlike the conventional complicated comb-shaped electrode, it can have a simple structure, and the cost of the electrode material can be reduced.

線条電極3A,3Bの抵抗は、できるだけ低く、線条電極3A,3Bでの電圧ドロップが小さいことが好ましい。   It is preferable that the resistance of the line electrodes 3A and 3B is as low as possible, and the voltage drop at the line electrodes 3A and 3B is small.

線条電極3A,3Bは、面状発熱体1に印加する電圧の電圧ドロップが1V以下となる抵抗値が適しており、抵抗値で表現すれば1Ω/m以下がよい。   The linear electrodes 3A and 3B are suitable to have a resistance value at which the voltage drop of the voltage applied to the planar heating element 1 is 1 V or less, and is preferably 1 Ω / m or less in terms of the resistance value.

また、線条電極3A,3Bの線径は、大きいと面状発熱体1に凹凸が形成され、着座感が損なわれるため、直径1mm以下が好ましく、さらにより快適な着座感を実現するには直径0.5mm以下がよい。   In addition, if the wire diameter of the filament electrodes 3A and 3B is large, unevenness is formed in the planar heating element 1 and the seating feeling is impaired. Therefore, the diameter is preferably 1 mm or less, and an even more comfortable seating feeling is realized. The diameter is preferably 0.5 mm or less.

この抵抗値を実現する材料は、銅、錫メッキを施した銅、銅−銀合金の単線、撚り線、編組線が挙げられる。特に、機械的強度の点では引っ張り強度の高い銅−銀のそれらを用いることが好ましい。   Examples of the material that realizes the resistance value include copper, tin-plated copper, copper-silver alloy single wire, stranded wire, and braided wire. Particularly, in terms of mechanical strength, it is preferable to use copper-silver having high tensile strength.

自動車の座席装置のように発熱温度が40〜50℃と比較的低い場合には、PTC特性を発現する被反応樹脂として、低融点の樹脂である変性オレフィン系樹脂、例えばエチレン酢酸ビニル共重合体、エチレンアクリル酸エチル共重合体、エチレンメタクリル酸メチル共重合体、エチレンメタクリル酸共重合体、エチレンアクリル酸ブチル等のエステル系のエチレンコポリマーを用いることが好ましい。   When the heat generation temperature is relatively low, such as 40-50 ° C. as in a car seat device, a modified olefin resin, such as an ethylene vinyl acetate copolymer, which is a low-melting resin, is used as a reaction resin that exhibits PTC characteristics. It is preferable to use ester-based ethylene copolymers such as ethylene ethyl acrylate copolymer, ethylene methyl methacrylate copolymer, ethylene methacrylic acid copolymer, and ethylene butyl acrylate.

以上のように、高分子抵抗体4を構成する樹脂の組成の最適化により、高分子抵抗体4
の安定した膜厚のフィルム加工、優れた耐久性、信頼性を実現することができるが、高分子抵抗体4のPTC特性すなわち20℃と50℃の抵抗変化倍率が2倍以上得られないという課題を有する。抵抗変化倍率が2倍以上あれば、低温時での発熱の立ち上がりが早く、高温時での発熱低下が瞬時にでき、自己制御機能に優れた面状発熱体を構成することができるからである。
As described above, the polymer resistor 4 is optimized by optimizing the composition of the resin constituting the polymer resistor 4.
Although it is possible to achieve film processing with a stable film thickness, excellent durability, and reliability, the PTC characteristics of the polymer resistor 4, that is, the resistance change magnification of 20 ° C. and 50 ° C. cannot be obtained more than twice. Has a problem. If the resistance change magnification is 2 times or more, the rise of heat generation at low temperatures is quick, the heat generation at high temperatures can be instantaneously reduced, and a planar heating element with excellent self-control function can be configured. .

そこで実施の形態として、導電体として薄片状である黒鉛を使用する。   Therefore, as an embodiment, graphite in the form of flakes is used as the conductor.

次に、面状発熱体1の作製方法について述べる。   Next, a method for producing the planar heating element 1 will be described.

先ず、ポリエステル繊維の不織布からなる電気絶縁性基材2に直径0.05μmの銅―銀合金線19本を撚り線化したものを用い、ポリエステルの糸5で図1で示す形状にミシンで縫製し、線条電極3A,3Bを形成する。   First, an electrically insulating base material 2 made of polyester fiber non-woven fabric is formed by twisting 19 copper-silver alloy wires having a diameter of 0.05 .mu.m into a shape shown in FIG. Then, the line electrodes 3A and 3B are formed.

この時の1対の線条電極3A,3Bの電極間距離は100mmとしている。   The distance between the pair of linear electrodes 3A and 3B at this time is 100 mm.

次に、PTC特性を発現する熱可塑性樹脂に導電体を加え、可塑剤を添加して混練混合し、フィルム状に成型する。   Next, a conductor is added to a thermoplastic resin that exhibits PTC characteristics, a plasticizer is added, and the mixture is kneaded and mixed to form a film.

このようにして高分子抵抗体4が作製される。なお、混練混合は、熱ロール、ニーダー、2軸混練機などの装置で行われる。   In this way, the polymer resistor 4 is produced. In addition, kneading | mixing mixing is performed with apparatuses, such as a hot roll, a kneader, and a biaxial kneader.

高分子抵抗体4の厚みは、特に限定されるものではないが、柔軟性、材料コスト、適正な抵抗値、加重が加わった時の強さの点で20〜200μmが適切であり、望ましくは30〜100μmがよい。   The thickness of the polymer resistor 4 is not particularly limited, but 20 to 200 μm is appropriate in terms of flexibility, material cost, appropriate resistance value, and strength when a load is applied. 30-100 micrometers is good.

ここで、フィルム状高分子抵抗体4の形成には、カレンダー加工法を用いる。   Here, a calendering method is used for forming the film-like polymer resistor 4.

カレンダー加工法とは、図5に示すように、カレンダー装置20の熱ロール21間を高分子抵抗体4が通過する時に圧延されフィルム化し、そのフィルム化した高分子抵抗体4と電気絶縁性基材2とをラミネートするものである。熱ロール21の温度は170〜190℃である。   As shown in FIG. 5, the calendering method is a film formed by rolling a polymer resistor 4 as it passes between the heat rolls 21 of the calender device 20, and forming the filmed polymer resistor 4 and an electrically insulating group. The material 2 is laminated. The temperature of the hot roll 21 is 170-190 degreeC.

また、フィルム作製の比較として、熱プレス法を用いた。熱プレス法は、加熱した金属板で挟み、圧延するものである。熱プレスの温度は200℃で行った。   Moreover, the hot press method was used as a comparison of film production. The hot press method is to sandwich and roll between heated metal plates. The temperature of the hot press was 200 ° C.

フィルム状に成型された高分子抵抗体4は、予め作製された線条電極3A,3Bを取り付けた電気絶縁性基材2の線条電極3A,3Bの存在する面と熱融着されて貼り合わされる。   The polymer resistor 4 molded into a film shape is heat-bonded to the surface of the electrically insulating substrate 2 on which the linear electrodes 3A and 3B prepared in advance are present, and is pasted. Combined.

以上のようにして面状発熱体1が完成する。   The planar heating element 1 is completed as described above.

線条電極3A,3Bと高分子抵抗体4、電気絶縁性基材2と高分子抵抗体4は、それぞれ熱融着により接合されることにより、線条電極3A,3Bは電気絶縁性基材2と高分子抵抗体4との間に電気的に接続された状態で配置されている。   The linear electrodes 3A and 3B and the polymer resistor 4 and the electrically insulating substrate 2 and the polymer resistor 4 are joined by thermal fusion, whereby the linear electrodes 3A and 3B are electrically insulated substrate. 2 and the polymer resistor 4 are arranged in an electrically connected state.

高分子抵抗体4は、柔軟性のあるシートまたはフィルムとすることにより、面状発熱体1に外力が加わっても電気絶縁性基材2と同様に高分子抵抗体4自体が外力に応じて伸びや変形を起こすので、高分子抵抗体4の亀裂や破断などの破損が防止され、優れた耐久性を実現する。   The polymer resistor 4 is made of a flexible sheet or film, so that even if an external force is applied to the planar heating element 1, the polymer resistor 4 itself responds to the external force in the same manner as the electrically insulating substrate 2. Since elongation and deformation occur, breakage such as cracks and breaks of the polymer resistor 4 is prevented, and excellent durability is realized.

また、高分子抵抗体4をシートまたはフィルム状に形成することにより、印刷膜の高分子抵抗体よりもその膜厚を厚くすることができ、線条電極3A,3Bとの電気的接続および機械的接合の信頼性が高くなる。   Further, by forming the polymer resistor 4 in the form of a sheet or a film, the film thickness can be made thicker than the polymer resistor of the printed film, and electrical connection with the linear electrodes 3A and 3B and the machine The reliability of the joint is increased.

さらに、連続で押出成型される高分子抵抗体4を線条電極3A,3Bが取り付けられた電気絶縁性基材2に貼り合わせながら接着加工できるので生産性に優れ、低コストが実現できる。   Further, since the polymer resistor 4 continuously extruded can be bonded while being bonded to the electrically insulating substrate 2 to which the linear electrodes 3A and 3B are attached, it is excellent in productivity and low cost can be realized.

また、高分子抵抗体4は、電気絶縁性基材2よりも伸びが同等かそれ以上とすることが好ましい。高分子抵抗体4の伸びを電気絶縁性基材2と同等かそれ以上とすることにより、機械的強度の強い電気絶縁性基材2が外力による伸びや変形を規制することができるのでより優れた耐久性、信頼性が得られる。   In addition, it is preferable that the polymer resistor 4 has an elongation equal to or greater than that of the electrically insulating substrate 2. By making the elongation of the polymer resistor 4 equal to or greater than that of the electrically insulating substrate 2, the electrically insulating substrate 2 having a high mechanical strength can regulate elongation and deformation due to external force, and thus is more excellent. Durability and reliability.

また、高分子抵抗体4を電気絶縁性基材2と線条電極3A,3B上に配置することにより、予め線条電極3A,3Bが取り付けられた電気絶縁性基材2に高分子抵抗体4を貼り付ける製法を採用することができる。   Further, by arranging the polymer resistor 4 on the electrically insulating substrate 2 and the filament electrodes 3A and 3B, the polymer resistor is attached to the electrically insulating substrate 2 to which the filament electrodes 3A and 3B are previously attached. The manufacturing method which affixes 4 is employable.

この製法によれば、成型直後の高分子抵抗体4は温度が高い状態であるので容易に、かつ強固に線条電極3A,3Bと電気絶縁性基材2に接着される。   According to this manufacturing method, since the polymer resistor 4 immediately after molding is in a high temperature state, it is easily and firmly adhered to the linear electrodes 3A and 3B and the electrically insulating substrate 2.

その結果、電気的接続、機械的接合が安定して得られる。   As a result, electrical connection and mechanical joining can be obtained stably.

さらに、高分子抵抗体4を線条電極3A,3Bに熱融着することにより、線条電極3A,3Bの周囲に高分子抵抗体4の材料が移行し、線条電極3A,3Bと高分子抵抗体4は点接着ではなく、面接着とすることができる。   Furthermore, by thermally fusing the polymer resistor 4 to the line electrodes 3A and 3B, the material of the polymer resistor 4 moves around the line electrodes 3A and 3B, and the line electrodes 3A and 3B are high. The molecular resistor 4 can be a surface bond instead of a point bond.

その結果、線条電極3A,3Bと高分子抵抗体4の機械的接合と電気的接続が強固になり、面状発熱体1として電気的、機械的に安定したものが得られる。   As a result, mechanical joining and electrical connection between the line electrodes 3A and 3B and the polymer resistor 4 are strengthened, and an electrically and mechanically stable sheet heating element 1 can be obtained.

以上のように構成された面状発熱体1は、座部6や背もたれ部7に、電気絶縁性基材2が表面側になるように配置して用いることが好適である。すなわち、電気絶縁性基材2によるクッション性で線条電極3の厚みや固さによる凹凸間が座面で感じられず、着座感や背もたれ感を損なうことがない。   The planar heating element 1 configured as described above is preferably used by being disposed on the seat portion 6 or the backrest portion 7 so that the electrically insulating base material 2 is on the surface side. That is, with the cushioning property of the electrically insulating base material 2, the unevenness due to the thickness and hardness of the line electrode 3 is not felt on the seating surface, and the seating feeling and the backrest feeling are not impaired.

次に、表1に、導電体としての薄片状の黒鉛が、結晶層方向の厚みに対する結晶面方向の長さの比が20倍であるもの(厚み0.5μm、長さ10μm)、それ以上であるもの(厚み0.3μm、長さ15μm)を使用して作成したテストサンプルの抵抗値と抵抗抵抗変化倍率を示す(No.3、5)。   Next, in Table 1, the ratio of the length in the crystal plane direction to the thickness in the crystal layer direction of the flaky graphite as a conductor is 20 times (thickness 0.5 μm, length 10 μm), more (Nos. 3, 5) are shown for the resistance value and resistance resistance change magnification of a test sample prepared using the above (thickness 0.3 μm, length 15 μm).

また、導電体としての薄片状の黒鉛が、結晶層方向の厚みに対する結晶面方向の長さの比が20倍であるもの(厚み0.5μm、長さ10μm)に球状のカーボンブラックを加えたもの(No.6)、比較として球状のカーボンブラック、球状の黒鉛を使用したもの(No.2、4)を示した。   Also, spherical carbon black was added to a flaky graphite as a conductor in which the ratio of the length in the crystal plane direction to the thickness in the crystal layer direction was 20 times (thickness 0.5 μm, length 10 μm). (No. 6), and spherical carbon black and spherical graphite (No. 2, 4) are shown for comparison.

ここで、No.1〜3は熱プレス法により、No.4〜6はカレンダー法によりサンプルをフィルム化した。   Here, no. Nos. 1 to 3 are obtained by the hot press method. Samples 4 to 6 were made into films by the calendar method.

Figure 2009199794
Figure 2009199794

表1より、球状の黒鉛より薄片状の黒鉛の方が、抵抗値は低下しかつ、抵抗変化倍率が高くなること、さらに、カレンダー加工法による方がその効果が顕著であることが判明する。   From Table 1, it is found that the flaky graphite has a lower resistance value and a higher resistance change magnification than the spherical graphite, and that the effect by the calendering method is more remarkable.

また、薄片状の黒鉛に球状のカーボンブラックを添加することによっても、同効果を実現できる。   The same effect can also be realized by adding spherical carbon black to flaky graphite.

そして、結晶層方向の厚みに対する結晶面方向の長さの比が20倍程度であれば、結晶層方向の厚みに対する結晶面方向の長さの比がそれ以上のものと同様な効果を得ることができることが分かる。   And, if the ratio of the length in the crystal plane direction to the thickness in the crystal layer direction is about 20 times, the same effect as that in which the ratio of the length in the crystal plane direction to the thickness in the crystal layer direction is higher than that can be obtained. You can see that

したがって、これらの効果を得ることによって抵抗変化倍率が2以上の面状発熱体を実現することができる。   Therefore, a planar heating element having a resistance change magnification of 2 or more can be realized by obtaining these effects.

本発明による面状発熱体は、構成が簡素で、PTC特性に特に優れる。この面状発熱体は、例えば連続した曲面や平面の組み合わせ等のある器具の表面形状に装着可能であるため、暖房用ヒータとして自動車の座席、ハンドル、その他の暖房を必要とする電気床暖房などの器具に適用できる。また、生産性に優れ低コストが図れるので応用商品の適用範囲が拡大される。   The planar heating element according to the present invention has a simple configuration and is particularly excellent in PTC characteristics. Since this planar heating element can be mounted on the surface shape of an appliance having, for example, a continuous curved surface or a combination of flat surfaces, an automobile floor, a handle, and other electric floor heating that requires heating as a heater for heating, etc. Applicable to any apparatus. In addition, since the productivity is excellent and the cost can be reduced, the application range of applied products is expanded.

本発明の実施の形態1における面状発熱体を示す平面図The top view which shows the planar heating element in Embodiment 1 of this invention 図1のX−Y断面図XY sectional view of FIG. 実施の形態1の面状発熱体を取り付けた自動車の座席装置を示す透視側面図FIG. 6 is a perspective side view showing the seat device of the automobile to which the planar heating element of the first embodiment is attached. 同座席装置の透視正面図Perspective front view of the seat device 面状発熱体の作製装置の一例の概略構成を示す断面図Sectional drawing which shows schematic structure of an example of the manufacturing apparatus of a planar heating element 従来の面状発熱体の平面図Plan view of a conventional planar heating element 図6のX−Y断面図XY sectional view of FIG.

符号の説明Explanation of symbols

1 面状発熱体
2 電気絶縁性基材
3A,3B 線状電極
4 高分子抵抗体
DESCRIPTION OF SYMBOLS 1 Planar heating element 2 Electrical insulating base material 3A, 3B Linear electrode 4 Polymer resistor

Claims (6)

電気絶縁性基材上に配設された少なくとも1対の電極と、前記1対の電極と電気的に接続された高分子抵抗体とからなり、この高分子抵抗体は熱可塑性樹脂および炭素材料の微粉末で形成され、かつ、前記炭素材料を薄片状としたことを特徴とする面状発熱体。 It comprises at least one pair of electrodes disposed on an electrically insulating substrate and a polymer resistor electrically connected to the pair of electrodes, the polymer resistor comprising a thermoplastic resin and a carbon material. A planar heating element, characterized in that the carbon material is made into a thin piece. 炭素材料が黒鉛である請求項1記載の面状発熱体。 The planar heating element according to claim 1, wherein the carbon material is graphite. 薄片状炭素材料の結晶層方向の厚みに対する結晶面方向の長さの比が20倍以上である請求項1記載の面状発熱体。 The planar heating element according to claim 1, wherein the ratio of the length in the crystal plane direction to the thickness in the crystal layer direction of the flaky carbon material is 20 times or more. 球状のカーボンブラックを混合させたことを特徴とする請求項2または3記載の面状発熱体。 4. A planar heating element according to claim 2, wherein spherical carbon black is mixed. 高分子抵抗体をカレンダー加工によって成型することを特徴とする請求項1記載の面状発熱体。 2. A planar heating element according to claim 1, wherein the polymer resistor is molded by calendering. 請求項1〜5いずれか1項記載の面状発熱体を組み込んだ自動車用座席装置。 An automobile seat device incorporating the sheet heating element according to any one of claims 1 to 5.
JP2008038237A 2008-02-20 2008-02-20 Planar heating element Pending JP2009199794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038237A JP2009199794A (en) 2008-02-20 2008-02-20 Planar heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038237A JP2009199794A (en) 2008-02-20 2008-02-20 Planar heating element

Publications (1)

Publication Number Publication Date
JP2009199794A true JP2009199794A (en) 2009-09-03

Family

ID=41143106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038237A Pending JP2009199794A (en) 2008-02-20 2008-02-20 Planar heating element

Country Status (1)

Country Link
JP (1) JP2009199794A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158906A1 (en) * 2010-06-16 2011-12-22 積水化学工業株式会社 Polyolefin-based resin composition
US10373745B2 (en) 2014-06-12 2019-08-06 LMS Consulting Group Electrically conductive PTC ink with double switching temperatures and applications thereof in flexible double-switching heaters
WO2020016853A1 (en) 2018-07-20 2020-01-23 LMS Consulting Group Thermal substrate with high-resistance magnification and positive temperature coefficient
US10822513B1 (en) 2019-04-26 2020-11-03 1-Material Inc Electrically conductive PTC screen printable ink composition with low inrush current and high NTC onset temperature
US10822512B2 (en) 2016-02-24 2020-11-03 LMS Consulting Group Thermal substrate with high-resistance magnification and positive temperature coefficient
US11332632B2 (en) 2016-02-24 2022-05-17 Lms Consulting Group, Llc Thermal substrate with high-resistance magnification and positive temperature coefficient ink
DE102015207645B4 (en) 2014-12-10 2023-07-20 Hyundai Motor Company heating panel for a vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158906A1 (en) * 2010-06-16 2011-12-22 積水化学工業株式会社 Polyolefin-based resin composition
JP5791601B2 (en) * 2010-06-16 2015-10-07 積水化学工業株式会社 Polyolefin resin composition
US10047219B2 (en) 2010-06-16 2018-08-14 Sekisui Chemical Co., Ltd. Polyolefin-based resin composition
US10373745B2 (en) 2014-06-12 2019-08-06 LMS Consulting Group Electrically conductive PTC ink with double switching temperatures and applications thereof in flexible double-switching heaters
US10902982B2 (en) 2014-06-12 2021-01-26 Lms Consulting Group, Llc Electrically conductive PTC ink with double switching temperatures and applications thereof in flexible double-switching heaters
DE102015207645B4 (en) 2014-12-10 2023-07-20 Hyundai Motor Company heating panel for a vehicle
US10822512B2 (en) 2016-02-24 2020-11-03 LMS Consulting Group Thermal substrate with high-resistance magnification and positive temperature coefficient
US11332632B2 (en) 2016-02-24 2022-05-17 Lms Consulting Group, Llc Thermal substrate with high-resistance magnification and positive temperature coefficient ink
US11859094B2 (en) 2016-02-24 2024-01-02 Lms Consulting Group, Llc Thermal substrate with high-resistance magnification and positive temperature coefficient ink
WO2020016853A1 (en) 2018-07-20 2020-01-23 LMS Consulting Group Thermal substrate with high-resistance magnification and positive temperature coefficient
US10822513B1 (en) 2019-04-26 2020-11-03 1-Material Inc Electrically conductive PTC screen printable ink composition with low inrush current and high NTC onset temperature

Similar Documents

Publication Publication Date Title
EP2123120B1 (en) Ptc resistor
US8519305B2 (en) Polymer heating element
JP2009199794A (en) Planar heating element
JPWO2007110976A1 (en) Sheet heating element and seat using the same
JP4877066B2 (en) Resistor composition and planar heating element using the same
JP5217411B2 (en) Polymer heating element
JP2004055219A (en) Seat heater
JP2010020989A (en) Polymer heating element
JP2008293671A (en) Resistor composition, and surface heat generating body using this
RU2401518C1 (en) Resistor with positive temperature coefficient
JP2011003330A (en) Planar heating element and seat using the same
JP5125581B2 (en) Planar heating element
JP2009009706A (en) Planar heating element
JP2009117199A (en) Surface heating body
JP4647846B2 (en) Surface heating element and manufacturing method thereof
JP2008293670A (en) Resistor composition, and surface heat generating body using this
JP2008310967A (en) Surface heating element
JP2010257685A (en) Planar heating element
JP2009193689A (en) Polymer resistor and its manufacturing method
JP2010257684A (en) Planar heating element
JP2010244971A (en) Surface heating body
JP2010097793A (en) Planar heating element
JP2009176549A (en) Polymer heating element
JP2009266631A (en) Polymer exothermic body
JP2010129425A (en) Resistive element composition and heating element using this