JP2010272267A - Polymer heating element - Google Patents

Polymer heating element Download PDF

Info

Publication number
JP2010272267A
JP2010272267A JP2009121657A JP2009121657A JP2010272267A JP 2010272267 A JP2010272267 A JP 2010272267A JP 2009121657 A JP2009121657 A JP 2009121657A JP 2009121657 A JP2009121657 A JP 2009121657A JP 2010272267 A JP2010272267 A JP 2010272267A
Authority
JP
Japan
Prior art keywords
heating element
electrically insulating
polymer
side electrically
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009121657A
Other languages
Japanese (ja)
Inventor
Keizo Nakajima
啓造 中島
Takahito Ishii
隆仁 石井
Katsuhiko Uno
克彦 宇野
Takemi Oketa
岳見 桶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009121657A priority Critical patent/JP2010272267A/en
Publication of JP2010272267A publication Critical patent/JP2010272267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/006Heaters using a particular layout for the resistive material or resistive elements using interdigitated electrodes

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer heating element excellent in heat transfer performance, without impairing comfort at use. <P>SOLUTION: The polymer-heating element has a pair of electrodes 3 sandwiched by a base-side electrically insulating base material 2 and a cover-side electrically insulating base material 5, and a polymer resistive element 4, with PTC characteristics arranged between the pair of electrodes. At least either the base-side electrically insulating base material 2 or the cover-side electrically insulating base material 5 is formed of a high air-permeable raw material. Consequently, the polymer-heating element which can lessen heat-transmission loss and is superior in energy saving, with due consideration on environment being taken into can be provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高分子抵抗体のジュール熱を利用した高分子発熱体に関し、更に詳しくは、発熱体の熱を外部に効率よく伝えるための手段に関するものである。   The present invention relates to a polymer heating element using Joule heat of a polymer resistor, and more particularly to a means for efficiently transferring heat of the heating element to the outside.

従来から面状発熱体の発熱部として、カーボンブラックや金属粉末、グラファイトなどの導電性物質を樹脂に分散して得られたものが知られている。   2. Description of the Related Art Conventionally, as a heat generating portion of a planar heating element, a material obtained by dispersing a conductive material such as carbon black, metal powder, or graphite in a resin is known.

なかでも、導電性物質と樹脂の組合せにより、自己温度制御機能を示すPTC(Positive Temperature Coefficient)発熱体を用いた場合には、温度制御回路が不要となり、部品点数を少なくできるなど、メリットのあるデバイスとして知られている。   In particular, when a PTC (Positive Temperature Coefficient) heating element that exhibits a self-temperature control function is used by combining a conductive material and a resin, there is an advantage that a temperature control circuit is not required and the number of parts can be reduced. Known as a device.

これらの構成は、図7,8に示すように、セラミックや絶縁処理された金属板など、筺体構造としての機能を有するベース材100上に、導電性インキ組成物を印刷、あるいは塗布して得られる電極101と、これにより給電される位置に抵抗体インク組成物を印刷、あるいは塗布して得られる抵抗体102を設け、さらに電極101及び抵抗体102を被覆するカバー材103で発熱体104を形成していた。   As shown in FIGS. 7 and 8, these structures are obtained by printing or applying a conductive ink composition on a base material 100 having a function as a casing structure such as a ceramic or an insulating metal plate. And a resistor 102 obtained by printing or applying a resistor ink composition at a position to which power is supplied, and a heating element 104 with a cover material 103 covering the electrode 101 and the resistor 102. Was forming.

電極101及び抵抗体102は、ベース材100やカバー材103により外界から隔離されるため、長期信頼性を付与されることとなる。   Since the electrode 101 and the resistor 102 are isolated from the outside by the base material 100 and the cover material 103, long-term reliability is imparted.

従来から、印刷により高分子抵抗体を形成してこれを発熱体として用いた例としては、露・霜除去用として自動車のドアミラーや洗面台のミラー、床暖房器具等がある(例えば、特許文献1参照)。   Examples of conventional polymer resistors formed by printing and used as heating elements include automotive door mirrors, washstand mirrors, floor heating appliances, etc. (for example, patent documents) 1).

さらに、これら発熱体を高分子フィルムや繊維状の柔軟性材料を用いて構成することにより柔軟性機能を付与させたものも見受けられる(例えば、特許文献2,3参照)。   Furthermore, it can be seen that these heating elements are provided with a flexible function by using a polymer film or a fibrous flexible material (see, for example, Patent Documents 2 and 3).

特開2002−371699号公報JP 2002-371699 A 特開2003−109804号公報JP 2003-109804 A 特開2005−174629号公報JP 2005-174629 A

従来の発熱体では柔軟性を発現させるための構成材料として、発熱体を保護、被覆する役目と風合いなどを考慮して一般的な織布や不織布などが多用されていた。例えば、座席用ヒータなどに用いられる場合は、織布や不織布で被覆された発熱体はさらにクッション材などを介して人体と接触する場合が多かった。   In the conventional heating element, a general woven fabric or non-woven fabric is often used as a constituent material for expressing flexibility in consideration of the role and texture of protecting and covering the heating element. For example, when used in a seat heater or the like, a heating element covered with a woven fabric or a non-woven fabric often comes into contact with a human body via a cushion material or the like.

しかしながら、人体に直接接触する部位への応用も今後、益々増大することから、更なる快適性、熱伝達性にも考慮した材料が求められている。   However, since the application to the part that directly contacts the human body will increase in the future, a material considering further comfort and heat transfer properties is required.

特に、省エネ性にも充分配慮しながらの使用を想定した場合、発熱体からの熱を効率よく外部に伝える素材を選定する必要があるが、現在は発熱体自体の開発が中心であり、周
辺部材に関する充分な検討はなされていなかった。
In particular, it is necessary to select a material that efficiently transfers heat from the heating element to the outside when it is assumed that it will be used with sufficient consideration for energy saving, but currently the development of the heating element itself is the main focus. Sufficient examination about a member was not made | formed.

一方地球環境への配慮の点から省エネ性を実現するための素材が数多く登場している。具体的にはクールビズやウォームビズといった素材に関するものであり、様々な素材が提案されている。   On the other hand, there are many materials for realizing energy saving from the viewpoint of the global environment. Specifically, it relates to materials such as cool biz and warm biz, and various materials have been proposed.

上記従来の技術の問題点に鑑み、本発明が解決しようとする課題は、使用時の快適性を損なうことなく、熱伝達性能の優れた高分子発熱体を提供することを目的とするもので、特にヒータの表皮材の素材や構成を検討することにより有効となることを見出したものである。   SUMMARY OF THE INVENTION In view of the above-mentioned problems of the conventional technology, the problem to be solved by the present invention is to provide a polymer heating element having excellent heat transfer performance without impairing comfort during use. In particular, it has been found that it becomes effective by examining the material and configuration of the skin material of the heater.

前記従来の課題を解決するための本発明の高分子発熱体は、ベース側電気絶縁性基材とカバー側電気絶縁性基材に挟持してなる一対の電極と、前記一対の電極間に配設されたPTC特性を有する高分子抵抗体とを備え、前記ベース側電気絶縁性基材及び前記カバー側電気絶縁性基材の少なくとも1つが高通気性素材を有するものである。   The polymer heating element of the present invention for solving the above conventional problems includes a pair of electrodes sandwiched between a base-side electrically insulating substrate and a cover-side electrically insulating substrate, and a pair of electrodes. And a polymer resistor having PTC characteristics, and at least one of the base-side electrically insulating base and the cover-side electrically insulating base has a highly air-permeable material.

本発明の高分子発熱体は、高通気性を示す電気絶縁性基材を外皮材とする高分子発熱体であり、人体などと直接接触させる際に、高効率で快適に熱を伝えることができるものである。   The polymer heating element of the present invention is a polymer heating element having an electrically insulating base material having high air permeability as an outer skin material, and can transmit heat efficiently and comfortably when directly contacting a human body or the like. It can be done.

本発明の実施の形態1における高分子発熱体の平面図The top view of the polymer heating element in Embodiment 1 of this invention 図1のX−Y断面図XY sectional view of FIG. 本発明の実施の形態2における高分子発熱体の平面図Plan view of polymer heating element in Embodiment 2 of the present invention 図3のX−Y断面図XY cross section of FIG. 本発明の実施の形態3における高分子発熱体の平面図The top view of the polymer heating element in Embodiment 3 of this invention 図5のX−Y断面図XY sectional view of FIG. 従来の高分子発熱体の平面図Plan view of conventional polymer heating element 図7のX−Y断面図XY sectional view of FIG.

第1の発明は、ベース側電気絶縁性基材とカバー側電気絶縁性基材に挟持してなる一対の電極と、この一対の電極間に配設されたPTC特性を有する高分子抵抗体とを備え、ベース側電気絶縁性基材及びカバー側電気絶縁性基材の少なくとも1つが高通気性素材を有してなり、伝熱ロスを小さくすることが可能となり、省エネ性に優れ環境にも配慮した高分子発熱体を提供できる。   A first invention includes a pair of electrodes sandwiched between a base-side electrically insulating substrate and a cover-side electrically insulating substrate, and a polymer resistor having PTC characteristics disposed between the pair of electrodes, And at least one of the base-side electrically insulating substrate and the cover-side electrically insulating substrate has a highly breathable material, which makes it possible to reduce heat transfer loss and is excellent in energy saving and environment. Considerable polymer heating elements can be provided.

第2の発明は、特に、第1の発明の高分子発熱体において、高通気性素材が、温度感応性を示すものであり、低温状態では繊維の網目が閉じているが、高温状態では湿度の影響を受け網目が開くため、直接温度因子による影響ではないが間接的に温度上昇によりその効果を発揮することができるものであり、特に高温時の通気性を良好に保つことが可能となるものである。   In the second invention, in particular, in the polymer heating element of the first invention, the highly breathable material exhibits temperature sensitivity, and the fiber network is closed in the low temperature state, but the humidity is high in the high temperature state. Since the mesh opens under the influence of temperature, it is not directly affected by the temperature factor, but it can exert its effect indirectly by increasing the temperature, and it is possible to maintain good air permeability especially at high temperatures. Is.

第3の発明は、特に、第1または第2の発明の高分子発熱体において、温度感応性を示す高通気性素材が、レーヨンとアクリルを組み合わせた繊維により形成され、ソフトな風合いを兼ね備えると共に省エネ性を発揮することができる高品質な高分子発熱体を提供できる。   In the third aspect of the invention, in particular, in the polymer heating element of the first or second aspect of the invention, the highly breathable material showing temperature sensitivity is formed of fibers combining rayon and acrylic, and has a soft texture. It is possible to provide a high-quality polymer heating element that can exhibit energy saving performance.

第4の発明は、特に、第1〜3のいずれか一つ発明の高分子発熱体において、高通気性素材がそれぞれ異材料からなる縦糸繊維と横糸繊維を含む構成からなることにより、生地に空間ができやすい構造となり、高い通気性を実現させることができる。   In the fourth aspect of the invention, in particular, in the polymer heating element according to any one of the first to third aspects, the highly breathable material includes warp fibers and weft fibers made of different materials. The structure is easy to create a space, and high air permeability can be realized.

第5の発明は、特に、第4の発明の高分子発熱体において、それぞれ異材料からなる縦糸繊維と横糸繊維を含む構成からなる高通気性素材が、縦糸にポリエステル繊維を、横糸には表面に凹凸形状を有する綿糸よりなる繊維を用いることによって、繊維表面に凹凸を簡易に作成でき、結果この構造により生地に空間ができ、高い通気性を実現できる。   According to a fifth aspect of the invention, in particular, in the polymer heating element of the fourth aspect of the invention, the highly breathable material comprising warp fibers and weft fibers, each made of different materials, comprises polyester fibers for the warps and surface for the weft By using a fiber made of cotton yarn having a concavo-convex shape, it is possible to easily create concavo-convex on the fiber surface. As a result, a space can be formed in the fabric by this structure, and high air permeability can be realized.

第6の発明は、特に、第1〜5のいずれか一つの発明の高分子発熱体において、高通気性素材が、中空繊維を含むものからなり、軽量化と快適性の両立を図ることが可能となる。   In the sixth aspect of the invention, in particular, in the polymer heating element of any one of the first to fifth aspects, the highly breathable material includes hollow fibers, so that both weight reduction and comfort can be achieved. It becomes possible.

第7の発明は、特に、第6の発明の高分子発熱体において、中空繊維からなる高通気性素材が中空形状化されたポリエステル綿からなり、通気性と軽量性を備えた生地を得ることができる。   According to a seventh aspect of the invention, in the polymer heating element of the sixth aspect of the invention, a highly breathable material made of hollow fibers is made of polyester cotton having a hollow shape, and a fabric having breathability and lightness is obtained. Can do.

第8の発明は、特に、第1から第7のいずれか1つの発明の高分子発熱体において、ベース側電気絶縁性基材及び前記カバー側電気絶縁性基材の少なくとも1つが、高通気性素材層と絶縁性フィルム層の多層構造からなるものであり、高分子抵抗体材料の製法、たとえば印刷方式や押し出し方式の如何に関わらず、絶縁性基材として用いることが可能であり、柔軟性、快適性、省エネ性に優れた高分子発熱体を提供することが可能となる。   In the eighth invention, in particular, in the polymer heating element of any one of the first to seventh inventions, at least one of the base-side electrically insulating base and the cover-side electrically insulating base is highly air-permeable. It consists of a multilayer structure of a material layer and an insulating film layer, and can be used as an insulating base material regardless of the production method of polymer resistor material, for example, printing method or extrusion method. It is possible to provide a polymer heating element excellent in comfort and energy saving.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1,2において、高分子発熱体1は、ベース側電気絶縁性基材2上に、一対の電極3,3’と高分子抵抗体4を配置し、これらをカバー側電気絶縁性基材5で覆って構成したものである。
(Embodiment 1)
1 and 2, the polymer heating element 1 has a pair of electrodes 3 and 3 'and a polymer resistor 4 disposed on a base-side electrically insulating substrate 2, and these are covered with a cover-side electrically insulating substrate. 5 is covered.

前記ベース側電気絶縁性基材2及びカバー側電気絶縁性基材5としては同じ種類のものを用いた。つまり、ベンベルグ(レーヨンの一種)とマイクロ抗ピルアクリル(非常に細いアクリル)を組み合わせた繊維で作製されたものを用いた。   The base-side electrically insulating substrate 2 and the cover-side electrically insulating substrate 5 were the same type. In other words, a fiber made of a combination of Bemberg (a kind of rayon) and micro anti-pill acrylic (very thin acrylic) was used.

そして、ベース側電気絶縁性基材2の片側面に高分子抵抗体4を熱融着により配置し、その後電極3,3’を高分子抵抗体4に熱融着させ、最後にカバー側電気絶縁性基材5を熱融着させ高分子発熱体1を作製した。   Then, the polymer resistor 4 is disposed on one side of the base-side electrically insulating base material 2 by thermal fusion, and then the electrodes 3 and 3 ′ are thermally fused to the polymer resistor 4, and finally the cover-side electrical Insulating substrate 5 was heat-sealed to produce polymer heating element 1.

電極3,3’としては、直径0.06mmの錫メッキ銅線を19本撚って得たものである。なお電極3,3’に給電するためのリード線は省略した。   The electrodes 3 and 3 ′ are obtained by twisting 19 tin-plated copper wires having a diameter of 0.06 mm. A lead wire for supplying power to the electrodes 3 and 3 'is omitted.

高分子抵抗体4は下記の材料、手順により混練物を作成後、カレンダー加工によりベース側電気絶縁性基材2上にシート状に熱融着加工することにより得た。   The polymer resistor 4 was obtained by preparing a kneaded material using the following materials and procedures and then heat-sealing the base-side electrically insulating base material 2 into a sheet shape by calendering.

すなわち、高分子抵抗体4は、結晶性樹脂として、エチレン・メタアクリル酸メチル共重合体(商品名「アクリフトCM5021」、融点67℃、住友化学株式会社製)30部と、エチレン・メタアクリル酸共重合体(商品名「ニュクレルN1560」、融点90℃、三井・デュポンポリケミカル株式会社製)30部と、エチレン・メタアクリル酸共重合体金属配位物(商品名「ハイミラン1702」、融点90℃、三井・デュポンポリケミカ
株式会社製)40部とで構成した。
That is, the polymer resistor 4 includes, as a crystalline resin, 30 parts of an ethylene / methacrylic acid copolymer (trade name “Acrylift CM5021”, melting point 67 ° C., manufactured by Sumitomo Chemical Co., Ltd.), ethylene / methacrylic acid. 30 parts of copolymer (trade name “Nucleel N1560”, melting point 90 ° C., manufactured by Mitsui DuPont Polychemical Co., Ltd.), ethylene / methacrylic acid copolymer metal coordination product (trade name “Himiran 1702”, melting point 90 C., 40 parts by Mitsui DuPont Polychemica Co., Ltd.).

この結晶性樹脂35重量%と、反応性樹脂(商品名「ボンドファースト7B」、住友化学株式会社製)2重量%と、2種類の導電体として、カーボンブラック(商品名「プリンテックスL」、1次粒子径21nm、デグサ社製)25重量%と、グラファイト(商品名「GR15」、鱗状黒鉛、日本黒鉛株式会社製)18重量%と、難燃剤(商品名「レオフォスRDP」、リン酸エステル系液状難燃剤、味の素株式会社製)20重量%により混練物Aを作製した。   35% by weight of this crystalline resin, 2% by weight of a reactive resin (trade name “Bond First 7B”, manufactured by Sumitomo Chemical Co., Ltd.), and carbon black (trade name “Printex L”, Primary particle size 21 nm, 25% by weight manufactured by Degussa), graphite (trade name “GR15”, scale-like graphite, manufactured by Nippon Graphite Co., Ltd.) 18% by weight, flame retardant (trade name “Reophos RDP”, phosphate ester A kneaded product A was prepared with 20% by weight of an aqueous liquid flame retardant (manufactured by Ajinomoto Co., Inc.).

次に、エラストマーとして、スチレン系熱可塑性エラストマー(商品名「タフテックM1943」)、旭化成エンジニアリング株式会社製)40重量%と、カーボンブラック(商品名「#10B」、1次粒子径75nm、三菱化学株式会社製)45重量%と炭化タングステン(井澤金属株式会社製)13重量%と、溶融張力向上剤として、メタアクリル酸アルキル・アクリル酸アルキル共重合物と4フッ化エチレン共重合物との混合物(商品名「メタブレンA3000」、三菱レーヨン株式会社製)2重量%から混練物Bを作製した。   Next, as the elastomer, 40% by weight of a styrene thermoplastic elastomer (trade name “Tuftec M1943”, manufactured by Asahi Kasei Engineering Co., Ltd.), carbon black (trade name “# 10B”, primary particle diameter 75 nm, Mitsubishi Chemical Corporation) 45% by weight made by company) and 13% by weight tungsten carbide (made by Izawa Metal Co., Ltd.), and a mixture of an alkyl methacrylate / alkyl acrylate copolymer and a tetrafluoroethylene copolymer as a melt tension improver ( A kneaded product B was prepared from 2% by weight of a trade name “METABBRENE A3000” (manufactured by Mitsubishi Rayon Co., Ltd.).

そして、混練物Aと混練物Bとを等量と、離型剤として変性シリコーンオイル2重量%と流動性付与剤として、メタアクリル酸アルキル・アクリル酸アルキル共重合物2重量%とを混練して高分子抵抗体4を作製した。   Then, an equal amount of the kneaded material A and the kneaded material B, 2% by weight of modified silicone oil as a release agent, and 2% by weight of an alkyl methacrylate / alkyl acrylate copolymer as a fluidity imparting agent are kneaded. Thus, a polymer resistor 4 was produced.

電極3,3’は、相対向するように幅の広い一対(電気的に正側と負側)を面状発熱体1の長手方向の外側部に沿って配置され、高分子抵抗体4に電流を流すことにより、発熱させる。   The electrodes 3 and 3 ′ are arranged so that a pair (widely positive side and negative side) of the electrodes 3 and 3 ′ is opposed to each other along the outer side in the longitudinal direction of the planar heating element 1. Heat is generated by passing an electric current.

本実施の形態において、高分子抵抗体4はPTC特性を有し、温度が上昇すると抵抗値が上昇し、所定の温度になるように自己温度調節機能を有するようになり、温度コントロールが不要で安全性の高い面状発熱体1としての機能を有するようになる。   In the present embodiment, the polymer resistor 4 has PTC characteristics, and when the temperature rises, the resistance value rises, and has a self-temperature adjusting function so as to reach a predetermined temperature, and temperature control is unnecessary. It has a function as the highly safe planar heating element 1.

本高分子発熱体1においては、ベース側電気絶縁性基材2とカバー側電気絶縁性基材5の両面ともに、高通気性素材のものを用いた構成からなり、どちらの面を人体と接触するように配置した場合においても、熱ロスが少なく、柔軟性、風合い性の良好な高分子発熱体となることがわかった。   In this polymer heating element 1, both the base-side electrically insulating base material 2 and the cover-side electrically insulating base material 5 are made of a highly breathable material, and either surface is in contact with the human body. Even when arranged in such a manner, it has been found that the polymer heating element has little heat loss and good flexibility and texture.

また、高通気性素材としては、温度感応性を示す素材や、それぞれ異繊維材料からなる縦糸繊維と横糸繊維を含む構成からなる素材、中空繊維を含む素材を挙げることができる。   In addition, examples of the highly breathable material include a material exhibiting temperature sensitivity, a material composed of warp fibers and weft fibers each made of different fiber materials, and a material containing hollow fibers.

さらに、高通気性素材は温度感応性を示すものが好ましい。素材としては、湿度の影響により繊維の網目が開閉、伸縮するものを利用することができる。例えば旭化成株式会社製の「サーモギア」繊維などを挙げることができ、温度が低い場合には繊維の網目が閉じた状態を保持しているが、温度が高くなると汗や湿気を感知して網目が開く原理を利用したものである。   Furthermore, it is preferable that the highly breathable material exhibits temperature sensitivity. As the material, a material in which the mesh of the fiber opens and closes and expands and contracts due to the influence of humidity can be used. For example, “Thermogear” fiber manufactured by Asahi Kasei Co., Ltd. can be mentioned. When the temperature is low, the fiber mesh is kept closed. However, when the temperature is high, the mesh is detected by detecting sweat and moisture. It uses the principle of opening.

本実施の形態の高分子発熱体1に温度感応性を示す素材を用いる場合には、発熱状況に応じて、人体からの発熱により生じる汗や湿気を感じ取ることにより、素材の網目が開くこととなり、結果として、一定時間経過後には高分子発熱体1と人体との間の通気性が良好となるために、伝熱効率を高めることができる。   In the case where a temperature-sensitive material is used for the polymer heating element 1 of the present embodiment, the mesh of the material is opened by sensing sweat or moisture caused by heat generated from the human body according to the heat generation situation. As a result, the heat transfer efficiency can be improved because the air permeability between the polymer heating element 1 and the human body becomes good after a certain time has elapsed.

(実施の形態2)
図3,4は実施の形態2を示し、高分子発熱体11は、ベース側電気絶縁性基材12上に、一対の櫛歯状電極13,13’と高分子抵抗体14を配置し、これらをカバー側電気絶縁性基材15で覆って構成したものである。
(Embodiment 2)
3 and 4 show the second embodiment. In the polymer heating element 11, a pair of comb-like electrodes 13 and 13 'and a polymer resistor 14 are arranged on a base-side electrically insulating substrate 12, These are configured by covering with a cover-side electrically insulating base material 15.

ベース側電気絶縁性基材12及びカバー側電気絶縁性基材15は、それぞれ高通気性素材層12a,15aと絶縁性フィルム層12b,15bの2層構造からなるものを用いた。   The base-side electrically insulating substrate 12 and the cover-side electrically insulating substrate 15 were each made of a two-layer structure of highly breathable material layers 12a and 15a and insulating film layers 12b and 15b.

高通気性素材層12a,15aとしては、ベース側電気絶縁性基材12とカバー側電気絶縁性基材15の両方とも縦糸にポリエステル長繊維とエジプト綿を、横糸に表面に通気性の高い隙間を持たせることができる「シャミラン」糸とエジプト綿を用いた素材のものを用いた。   As the highly breathable material layers 12a and 15a, both the base-side electrically insulating substrate 12 and the cover-side electrically insulating substrate 15 are made of polyester long fiber and Egyptian cotton as warp and a highly air-permeable gap on the surface as weft. We used “Samilan” yarn and Egyptian cotton.

絶縁性フィルム層12b,15bとしては、インフレーション法を用いて作成したもので、オレフィン系の熱可塑性樹脂(PPと優れた相溶性を示すPPの軟質化材を含む樹脂)と、耐熱性を発現させるための熱可塑性樹脂(エチレン及びプロピレンを直接反応させて得られた重合型TPO)と、電極や抵抗体との接触特性が良好となるオレフィン系の接着性樹脂(無水マレイン酸成分を含むエチレン成分を含む樹脂)の混練物からなり、合計3種の樹脂ブレンドからなるフィルムで、貼り合わせ後のフィルムの厚みとしては60−70ミクロンのものを得、高通気性素材12a,15aの片側面に熱融着させた。   The insulating film layers 12b and 15b are formed by using an inflation method, and exhibit heat resistance with an olefin-based thermoplastic resin (a resin including a PP softening material having excellent compatibility with PP). Olefin-based adhesive resin (ethylene containing maleic anhydride component) with good contact characteristics between the thermoplastic resin (polymerized TPO obtained by direct reaction of ethylene and propylene) and the electrode and resistor Resin containing components), a film composed of a total of three types of resin blends, and a film thickness of 60-70 microns after lamination is obtained. One side of the highly breathable materials 12a, 15a It was heat-sealed.

このベース側電気絶縁性基材12上に銀ペーストの印刷・乾燥により一対の電極13と、電極13により給電される位置にPTC抵抗体インクの印刷・乾燥により高分子抵抗体14を作製した。   A pair of electrodes 13 was printed on the base-side electrically insulating substrate 12 by printing / drying silver paste, and a polymer resistor 14 was produced by printing / drying PTC resistor ink at a position where power was supplied by the electrodes 13.

高分子抵抗体14は、発熱温度が約40℃程度に成るように作製されており、エチレン酢酸ビニル共重合体を2種類組み合わせ、カーボンブラックを混練・架橋したものにアクリロニトリルブチルゴムをバインダーとして溶剤でインク化することにより得、カバー側電気絶縁性基材15を前述した電極13及び高分子抵抗体14に貼り合わせた。   The polymer resistor 14 is manufactured to have an exothermic temperature of about 40 ° C., a combination of two types of ethylene vinyl acetate copolymers, kneaded and cross-linked carbon black, and acrylonitrile butyl rubber as a binder. The cover-side electrically insulating base material 15 was bonded to the electrode 13 and the polymer resistor 14 described above.

本高分子発熱体11においては、ベース側電気絶縁性基材12とカバー側電気絶縁性基材15の両面ともに高通気性素材層12a,15aと絶縁性フィルム層12b,15bを有する2層構造からなるものであるが、高通気性素材層12a,15aが外側と接触する構造となっており、どちら側の面を人体と接触するように配置した場合においても、熱ロスが少なく、柔軟性、風合い性の良好な高分子発熱体11となることがわかった。   The polymer heating element 11 has a two-layer structure in which both the base-side electrically insulating substrate 12 and the cover-side electrically insulating substrate 15 have high air permeability material layers 12a and 15a and insulating film layers 12b and 15b. However, the highly breathable material layers 12a and 15a are in contact with the outside, and even when either side is placed in contact with the human body, there is little heat loss and flexibility. It was found that the polymer heating element 11 with good texture was obtained.

(実施の形態3)
図5,6は実施の形態3を示し、高分子発熱体21は、ベース側電気絶縁性基材22上に、一対の櫛歯状電極23,23’と高分子抵抗体24を配置し、これらをカバー側電気絶縁性基材25で覆って構成したものである。
(Embodiment 3)
5 and 6 show the third embodiment, in which the polymer heating element 21 has a pair of comb-like electrodes 23 and 23 'and a polymer resistor 24 arranged on a base-side electrically insulating substrate 22, These are configured by covering with a cover-side electrically insulating substrate 25.

ベース側電気絶縁性基材22として、高通気性素材層22aと絶縁性フィルム層22bの2層構造からなるものを、カバー側電気絶縁性基材25としては絶縁性フィルム層25bのみからなるものを用いた。   The base-side electrically insulating substrate 22 has a two-layer structure of a highly breathable material layer 22a and an insulating film layer 22b, and the cover-side electrically insulating substrate 25 has only an insulating film layer 25b. Was used.

高通気性素材層22aとしては、中空形状にしたポリエステル綿と、細繊度の綿を混紡させた糸からなる素材のものを用いた。   As the highly breathable material layer 22a, a material made of a yarn made by blending a hollow polyester fiber and a fine cotton was used.

ベース側電気絶縁性基材22の絶縁性フィルム層22b及びカバー側電気絶縁性基材25の絶縁フィルム層25bは、シート押出成形装置を用いて作成したもので、オレフィン
系の熱可塑性樹脂(PPと優れた相溶性を示すPPの軟質化材を含む樹脂)と、耐熱性を発現させるための熱可塑性樹脂(エチレン及びプロピレンを直接反応させて得られた重合型TPO)と、電極や抵抗体との接触特性が良好となるオレフィン系の接着性樹脂(無水マレイン酸成分を含むエチレン成分を含む樹脂)の混練物からなり、合計3種の樹脂ブレンドからなるフィルムであり、貼り合わせ後のフィルムの厚みとしては50−60ミクロンのものとした。
The insulating film layer 22b of the base-side electrically insulating substrate 22 and the insulating film layer 25b of the cover-side electrically insulating substrate 25 are prepared using a sheet extrusion molding apparatus, and are made of an olefin-based thermoplastic resin (PP A resin containing PP softening material exhibiting excellent compatibility), a thermoplastic resin (polymerization type TPO obtained by directly reacting ethylene and propylene), and electrodes and resistors. A film made of a kneaded mixture of olefinic adhesive resins (resins containing an ethylene component including a maleic anhydride component) that have good contact characteristics with the resin, and a film composed of a total of three types of resin blends. The thickness of the film was 50-60 microns.

ベース側電気絶縁性基材22にあっては、その高通気性素材22aの片側面に絶縁性フィルム層22bを熱融着させる。   In the base-side electrically insulating substrate 22, the insulating film layer 22b is heat-sealed to one side surface of the highly breathable material 22a.

このベース側電気絶縁性基材22上に銀ペーストの印刷・乾燥により一対の電極23,23’と、これら電極23,23’により給電される位置にPTC抵抗体インクの印刷・乾燥により高分子抵抗体24を作製した。   A pair of electrodes 23, 23 ′ is printed on the base-side electrically insulating substrate 22 by printing / drying, and a polymer is formed by printing / drying the PTC resistor ink at a position where power is supplied by these electrodes 23, 23 ′. The resistor 24 was produced.

高分子抵抗体24は、発熱温度が約40℃程度に成るように作製されており、エチレン酢酸ビニル共重合体を2種類組み合わせ、カーボンブラックを混練・架橋したものにアクリロニトリルブチルゴムをバインダーとして溶剤でインク化することにより得、前述の方法で得た絶縁性フィルム層25bからなるカバー側電気絶縁性基材25を電極23,23’及び高分子抵抗体24に貼り合わせた。   The polymer resistor 24 is manufactured to have an exothermic temperature of about 40 ° C., a combination of two types of ethylene vinyl acetate copolymers, kneaded and cross-linked carbon black, and acrylonitrile butyl rubber as a binder. The cover-side electrically insulating base material 25 made of the insulating film layer 25b obtained by the above-described method and bonded to the electrodes 23 and 23 'and the polymer resistor 24 was bonded.

本高分子発熱体21においては、ベース側電気絶縁性基材22のみが高通気性素材層22aと絶縁性フィルム層22bを有する2層構造からなるものであり、こちらの面を人体と接触するように配置したところ、熱ロスが少なく、柔軟性、風合い性の良好な高分子発熱体となることがわかった。   In the present polymer heating element 21, only the base-side electrically insulating base material 22 has a two-layer structure having a highly breathable material layer 22a and an insulating film layer 22b, and this surface is in contact with the human body. As a result of the arrangement, it was found that the polymer heating element had low heat loss and good flexibility and texture.

以上のように本発明に係る高分子発熱体によれば、人体などと直接接触させる際に、高効率で快適に熱を伝えることが可能で、暖房器具などに応用すれば高い省エネ性能を実現できる。   As described above, according to the polymer heating element of the present invention, it is possible to conduct heat efficiently and comfortably when directly contacting a human body, etc., and realize high energy saving performance when applied to a heating appliance or the like. it can.

1,11,21 高分子発熱体
2,12,22 ベース側電気絶縁性基材
3,13,23 電極
4,14,24 高分子抵抗体
5,15,25 カバー側電気絶縁性基材
12a,15a 高通気性素材層
12b,15b 絶縁性フィルム層
1,11,21 Polymer heating element 2,12,22 Base side electrically insulating substrate 3,13,23 Electrode 4,14,24 Polymer resistor 5,15,25 Cover side electrically insulating substrate 12a, 15a Highly breathable material layer 12b, 15b Insulating film layer

Claims (8)

ベース側電気絶縁性基材とカバー側電気絶縁性基材とで挟持された一対の電極と、前記一対の電極間に配設されたPTC特性を有する高分子抵抗体とを具備し、前記ベース側電気絶縁性基材及び前記カバー側電気絶縁性基材の少なくとも一方を高通気性素材で構成した高分子発熱体。 A pair of electrodes sandwiched between a base-side electrically insulating substrate and a cover-side electrically insulating substrate; and a polymer resistor having a PTC characteristic disposed between the pair of electrodes. A polymer heating element in which at least one of a side electrically insulating base and the cover side electrically insulating base is made of a highly breathable material. 高通気性素材が温度感応性を有する請求項1記載の高分子発熱体。 The polymer heating element according to claim 1, wherein the highly breathable material has temperature sensitivity. 温度感応性を有する高通気性素材をレーヨンとアクリルとを組み合わせた繊維により形成した請求項2記載の高分子発熱体。 3. The polymer heating element according to claim 2, wherein the highly breathable material having temperature sensitivity is formed of a fiber combining rayon and acrylic. 高通気性素材をそれぞれ異材料からなる縦糸繊維と横糸繊維で構成した請求項1〜3いずれか1項記載の高分子発熱体。 The polymer heating element according to any one of claims 1 to 3, wherein the highly breathable material is composed of warp and weft fibers made of different materials. 縦糸にポリエステル繊維を、横糸には表面に凹凸形状を有する繊維をそれぞれ使用した請求項4に記載の高分子発熱体。 The polymer heating element according to claim 4, wherein polyester fibers are used for the warp and fibers having an uneven shape on the surface are used for the weft. 高通気性素材が中空繊維を含む請求項4記載の高分子発熱体。 The polymer heating element according to claim 4, wherein the highly breathable material includes hollow fibers. 中空繊維からなる高通気性素材を中空形状化されたポリエステル綿で構成した請求項6に記載の高分子発熱体。 7. The polymer heating element according to claim 6, wherein the highly breathable material made of hollow fibers is made of polyester cotton having a hollow shape. ベース側電気絶縁性基材及びカバー側電気絶縁性基材の少なくとも1つが高通気性素材層と絶縁性フィルム層の多層構造からなる請求項1〜7のいずれか1項に記載の高分子発熱体。 The polymer heat generation according to any one of claims 1 to 7, wherein at least one of the base-side electrically insulating substrate and the cover-side electrically insulating substrate has a multilayer structure of a highly air-permeable material layer and an insulating film layer. body.
JP2009121657A 2009-05-20 2009-05-20 Polymer heating element Pending JP2010272267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121657A JP2010272267A (en) 2009-05-20 2009-05-20 Polymer heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121657A JP2010272267A (en) 2009-05-20 2009-05-20 Polymer heating element

Publications (1)

Publication Number Publication Date
JP2010272267A true JP2010272267A (en) 2010-12-02

Family

ID=43420147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121657A Pending JP2010272267A (en) 2009-05-20 2009-05-20 Polymer heating element

Country Status (1)

Country Link
JP (1) JP2010272267A (en)

Similar Documents

Publication Publication Date Title
US8519305B2 (en) Polymer heating element
EP2123120B1 (en) Ptc resistor
JP4877066B2 (en) Resistor composition and planar heating element using the same
JP2010091185A (en) Heating apparatus and vehicle heater using the same
JP2010052710A (en) Heater, and heating device for vehicle using the same
JP5217411B2 (en) Polymer heating element
JP2008198407A (en) Sheet heater
JP2010020989A (en) Polymer heating element
JP2008293671A (en) Resistor composition, and surface heat generating body using this
JP2012227034A (en) Planar heating element
JP2010160954A (en) Surface heater
JP5125581B2 (en) Planar heating element
JP2010272267A (en) Polymer heating element
JP2011003330A (en) Planar heating element and seat using the same
JP2011003329A (en) Polymer heating element
JP2006342449A (en) Heating supporter
JP2008293670A (en) Resistor composition, and surface heat generating body using this
JP2010257683A (en) Planar heating element, and method of manufacturing the same
JP2011003328A (en) Polymer heating element
JP2009266631A (en) Polymer exothermic body
JP2010020990A (en) Planar heating element
JP2009176549A (en) Polymer heating element
JP2009176548A (en) Surface heating element
JP2010244971A (en) Surface heating body
JP4633587B2 (en) Mirror for vehicle with heater and method for manufacturing the same