JP2009174934A - Ultrasonic phased array transmitter-receiver - Google Patents

Ultrasonic phased array transmitter-receiver Download PDF

Info

Publication number
JP2009174934A
JP2009174934A JP2008012253A JP2008012253A JP2009174934A JP 2009174934 A JP2009174934 A JP 2009174934A JP 2008012253 A JP2008012253 A JP 2008012253A JP 2008012253 A JP2008012253 A JP 2008012253A JP 2009174934 A JP2009174934 A JP 2009174934A
Authority
JP
Japan
Prior art keywords
transmission
received
circuit
switching circuit
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008012253A
Other languages
Japanese (ja)
Other versions
JP4968847B2 (en
Inventor
Hideki Ohira
英樹 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008012253A priority Critical patent/JP4968847B2/en
Publication of JP2009174934A publication Critical patent/JP2009174934A/en
Application granted granted Critical
Publication of JP4968847B2 publication Critical patent/JP4968847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy-to-assemble ultrasonic phased array transmitter-receiver at a low price, by reducing the number of parts of ultrasonic vibrators. <P>SOLUTION: Using a rectangular ultrasonic vibrator 2, when the wavelength of underwater sound wave is defined as λ, the row direction is arranged at an interval of λ; the column direction is arranged at an interval of λ/2; and the received wave signal of twin beams is separated and detected by a FFT processing circuit 8. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水中超音波ビームを形成する超音波振動子のフェイズドアレイに関するもので、特に配列接続方法と駆動方式によって小型軽量化する超音波フェイズドアレイ送受波器に関するものである。   The present invention relates to a phased array of ultrasonic transducers that form an underwater ultrasonic beam, and more particularly to an ultrasonic phased array transducer that is reduced in size and weight by an array connection method and a driving method.

水中においては、超音波のドップラー効果を利用する速度計や超音波の伝搬時間を利用して海底の深さを測る測深器が多く使用されている。この種の速度計や測深器に用いられる代表的な送受波器は、ビームの先端が正方形を形成するように4つのビームを放射する直交4ビームと呼ばれるビームを持つ送受波器である。   In water, speedometers that use the Doppler effect of ultrasonic waves and sounding instruments that measure the depth of the seabed using ultrasonic propagation time are often used. A typical transducer used in this type of speedometer or depth sounder is a transducer having a beam called an orthogonal four beam that emits four beams so that the tip of the beam forms a square.

直交4ビームは平面図上の配置として+字型と×字型とがあり、俯角は60°(鉛直線基準のビーム仰角で30°)が代表的である。   The orthogonal four beams have a + -shape and an X-shape as the arrangement on the plan view, and the depression angle is typically 60 ° (30 ° in terms of vertical beam elevation angle).

従来の送受波器は、水中音波の波長の10〜20倍の直径を有する円盤状の超音波振動子を4個使用し、仰角を予め持たせて送受波器内に配置する構造となっている。   A conventional transducer has a structure in which four disk-shaped ultrasonic transducers having a diameter of 10 to 20 times the wavelength of underwater acoustic waves are used and the elevation angle is set in advance in the transducer. Yes.

超音波ビームの指向幅は、駆動周波数と超音波振動子の外径で定まるが、ドップラー効果を大きくするための条件から指向幅と駆動周波数が設定され、ついで超音波振動子の外径が定められる。   The directivity width of the ultrasonic beam is determined by the drive frequency and the outer diameter of the ultrasonic transducer, but the directivity width and the drive frequency are set according to the conditions for increasing the Doppler effect, and then the outer diameter of the ultrasonic transducer is determined. It is done.

従って、超音波振動子の外径の決定によって、直交4ビームを形成する超音波ドップラー送受信器の形状寸法は概ね定まる。   Therefore, by determining the outer diameter of the ultrasonic transducer, the shape and size of the ultrasonic Doppler transmitter / receiver that forms four orthogonal beams are generally determined.

また、一つのフェイズドアレイで2ビームを形成する円盤状の超音波ドップラー送受信器は、特許文献1で開示されている。図6は、従来のフェイズドアレイ送受波器の配列図、図7は、従来のフェイズドアレイ送受波器の指向性特性図である。   A disk-shaped ultrasonic Doppler transceiver that forms two beams with one phased array is disclosed in Patent Document 1. FIG. 6 is an array diagram of a conventional phased array transducer, and FIG. 7 is a directivity characteristic diagram of the conventional phased array transducer.

この開示例は、図6に示すように、横方向に配列された超音波振動子に対して、COS(余弦)曲線上の値をウエイトW1〜W10としたとき、そのビームパターンは、図7に示すようにグラフの横軸0度(即ち、超音波振動子中心の垂線方向)を中心として左右30度両方向に超音波ビームの主極が形成される。   In this disclosed example, as shown in FIG. 6, when the values on the COS (cosine) curve are set to weights W1 to W10 with respect to the ultrasonic transducers arranged in the horizontal direction, the beam pattern is as shown in FIG. As shown in FIG. 5, the main pole of the ultrasonic beam is formed in both directions of 30 degrees to the left and right about the horizontal axis of 0 degrees (that is, the direction perpendicular to the center of the ultrasonic transducer).

また、電気的接続を変更すれば、縦方向に対しても同様に前後30度両方向に超音波ビームが形成される。   Further, if the electrical connection is changed, an ultrasonic beam is formed in both directions 30 degrees in the longitudinal direction in the same manner.

前記構造による送受波器は形状が大きいため、これを小型にすべく、各種試みがされている。例えば、矩形板状の小さな超音波振動子を平面配列し、前記円盤状の超音波振動子1個と同程度の大きさで直交4ビームを放射できる送受波器の提案がされている。   Since the transducer having the above structure is large in shape, various attempts have been made to make it compact. For example, a transmitter / receiver has been proposed in which rectangular ultrasonic transducers are arranged in a plane and can radiate four orthogonal beams with the same size as one disk-shaped ultrasonic transducer.

前記矩形板状の小さな超音波振動子を平面配列してなる送受波器は、超音波フェイズドアレイ送受波器と呼ばれ、速度や高度等の算出方法は、前記の従来の送受波器と同じであり、4つのビームの反射信号から速度や高度等が算出できる。このような超音波フェイズドアレイ送受波器は、特許文献2または特許文献3に開示されている。   A transducer formed by planarly arranging small rectangular plate-like ultrasonic transducers is called an ultrasonic phased array transducer, and the calculation method of speed, altitude, etc. is the same as that of the conventional transducer described above. The speed, altitude, etc. can be calculated from the reflected signals of the four beams. Such an ultrasonic phased array transducer is disclosed in Patent Document 2 or Patent Document 3.

特開平4−238499号公報JP-A-4-238499 特開2001−197595号公報JP 2001-197595 A 特開2001−305217号公報JP 2001-305217 A

しかしながら、前記従来例の超音波フェイズドアレイ送受波器を用いた場合は、矩形板状の小さな超音波振動子を振動子間の隙間を狭く設計位置に正確に多数配置する必要があるため組立が複雑で高価になるという問題があった。   However, when the ultrasonic phased array transducer of the conventional example is used, it is necessary to arrange a large number of rectangular plate-shaped small ultrasonic transducers in the designed position with a narrow gap between the transducers. There was a problem of being complicated and expensive.

従って、本発明は、上記従来技術の問題点を解決することを課題とする。具体的には、矩形板状の小さな超音波振動子の形状と配列方法の変更及び高速フーリエ変換処理回路(以下、FFT処理回路)を追加することにより、超音波振動子の個数が減り組立が簡単で安価な超音波フェイズドアレイ送受波器を提供することを課題とする。   Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art. Specifically, by changing the shape and arrangement method of the rectangular ultrasonic transducers and adding a fast Fourier transform processing circuit (hereinafter referred to as FFT processing circuit), the number of ultrasonic transducers can be reduced and assembly can be performed. It is an object to provide a simple and inexpensive ultrasonic phased array transducer.

本発明は、上述した問題点を解決すべくなされたもので、本発明による超音波フェイズドアレイ送受波器は、長方形の超音波振動子を用いて、水中音波の波長をλとする時、行方向をλ間隔で配列し、また列方向をλ/2間隔で配列し、ツインビームの受波信号をFFT処理で分離検出することで、超音波振動子の個数が減り、配線等組立が容易になる、超音波フェイズドアレイ送受波器を提供するものである。   The present invention has been made to solve the above-described problems, and an ultrasonic phased array transducer according to the present invention uses a rectangular ultrasonic transducer and performs the operation when the wavelength of the underwater acoustic wave is λ. By arranging the direction at λ intervals and arranging the column direction at λ / 2 intervals and separating and detecting the received signals of twin beams by FFT processing, the number of ultrasonic transducers can be reduced, and assembly of wiring etc. is easy An ultrasonic phased array transducer is provided.

本発明によれば、超音波の放射面が長方形で、前記放射面に表面電極、対向する面に裏面電極を有する超音波振動子を、分極方向を揃えて、長方形の長手方向が列方向になるように平面上のN行、M列(NとMは正の正数)となる行列に、各行には2個以上M/2個以下の前記超音波振動子が配列され、各列には4個以上N×2個以下の前記超音波振動子が配列された超音波フェイズドアレイ送受波器であって、超音波振動子は行の間隔が水中音波の波長比で1±0.25であり、列の間隔が水中音波の波長比で0.5±0.25であるように行列配列され、表面電極を行毎に結線してN本の結線群とし、裏面電極を列毎に結線してM本の結線群とし、前記N本の結線群を上から1+2K番目と、2+2K番目(Kは0以上、N/2−1以下の整数)の2グループに分けて接続して順に第1の行入出力端子(F1)、第2の行入出力端子(F2)とし、前記M本の結線群を右から1+4L番目、2+4L番目、3+4L番目、4+4L番目(Lは0以上、M/4−1以下の整数)の4グループに分けて接続して第1の列入出力端子(R1)、第2の列入出力端子(R2)、第3の列入出力端子(R3)、第4の列入出力端子(R4)とし、前記第1の行入出力端子と前記第2の行入出力端子を第1の変成器(T1)の平衡2次回路に接続し、前記第1の列入出力端子と前記第3の列入出力端子を第2の変成器(T2)の平衡2次回路に接続し、前記第2の列入出力端子と前記第4の列入出力端子を第3の変成器(T3)の平衡2次回路に接続して成り、前記第1の変成器の1次回路から振動子配列の奇数行の接続、偶数行の接続を成し、前記第2の変成器の1次回路から奇数列の交互接続を成し、前記第3の変成器の1次回路から偶数列の交互接続を成したことを特徴とする超音波フェイズドアレイ送受波器が得られる。   According to the present invention, an ultrasonic vibrator having a rectangular radiation surface, a surface electrode on the radiation surface, and a back electrode on the opposite surface, the polarization direction is aligned, and the longitudinal direction of the rectangle is in the column direction. In a matrix having N rows and M columns (N and M are positive positive numbers) on the plane, 2 to M / 2 ultrasonic transducers are arranged in each row, and each column has Is an ultrasonic phased array transducer in which 4 or more and N × 2 or less ultrasonic transducers are arranged, and the ultrasonic transducers have a row interval of 1 ± 0.25 in terms of the wavelength ratio of underwater acoustic waves. The matrix is arranged so that the column spacing is 0.5 ± 0.25 in terms of the wavelength ratio of the underwater acoustic wave, and the front electrode is connected to each row to form N connection groups, and the back electrode is set to each column. Connection is made into M connection groups, and the N connection groups are 1 + 2Kth and 2 + 2Kth from the top (K is 0 or more and N / 2-1 or less). The first row input / output terminal (F1) and the second row input / output terminal (F2) are connected in order, and the M connection groups are 1 + 4Lth, 2 + 4Lth from the right, The first column input / output terminal (R1) and the second column input / output terminal (R2) are divided into four groups of 3 + 4Lth and 4 + 4Lth (L is an integer of 0 or more and M / 4−1 or less). , A third column input / output terminal (R3) and a fourth column input / output terminal (R4), and the first row input / output terminal and the second row input / output terminal are connected to a first transformer (T1). And the first column input / output terminal and the third column input / output terminal are connected to the balanced secondary circuit of the second transformer (T2), and the second column input / output terminal is connected. An output terminal and the fourth column input / output terminal are connected to a balanced secondary circuit of a third transformer (T3). From the primary circuit of the first transformer, Odd-row connections and even-row connections in a mover array, odd-numbered column alternating connections from the primary circuit of the second transformer, and even-numbered columns from the primary circuit of the third transformer Thus, an ultrasonic phased array transducer can be obtained.

また本発明によれば、前記第1の変成器(T1)、前記第2の変成器(T2)、前記第3の変成器(T3)の各1次回路にそれぞれ第1の送受波切替回路(SW1)、第2の送受波切替回路(SW2)、第3の送受波切替回路(SW3)を接続し、前記第1の送受波切替回路と、前記第2の送受波切替回路と前記第3の送受波切替回路の2グループに接続を分割して切り替える送波ビーム切替回路と、前記第1の送受波切替回路から出力される受波ビーム信号と、前記第2の送受波切替回路と前記第3の送受波切替回路から出力される受波信号の位相調整と加算、減算を行う受波ビーム合成回路から出力される受波ビーム信号を切り替えて出力する受波ビーム切替回路と、前記受波ビーム切替回路から出力される受信信号を高速フーリエ変換処理する高速フーリエ変換処理回路とからなることを特徴とする請求項1に記載の超音波フェイズドアレイ送受波器が得られる。   According to the present invention, a first transmission / reception switching circuit is provided in each primary circuit of the first transformer (T1), the second transformer (T2), and the third transformer (T3). (SW1), a second transmission / reception wave switching circuit (SW2), and a third transmission / reception wave switching circuit (SW3) are connected, and the first transmission / reception wave switching circuit, the second transmission / reception wave switching circuit, and the first A transmission beam switching circuit that divides and switches connections into two groups of three transmission / reception switching circuits, a received beam signal output from the first transmission / reception switching circuit, and the second transmission / reception switching circuit; A received beam switching circuit that switches and outputs a received beam signal output from a received beam combining circuit that performs phase adjustment, addition, and subtraction of the received signal output from the third transmission / reception switching circuit; Fast Fourier transform of the received signal output from the receive beam switching circuit Ultrasonic phased array transducer according to claim 1, characterized in that it consists of a fast Fourier transform circuit for management is obtained.

また本発明によれば、前記超音波振動子が前記行列配列されて形成してなる前記平面の中心を通り、前記表面電極が設けられた放射面に対する垂線を含む前記N行配列に対して垂直な面内に前記垂線と成す角度が等しい2つの主極を有する送波縦ツインビームを生成する電気信号を前記超音波振動子に送信し、受信した受波縦ツインビームを前記受波ビーム切替回路を通り、高速フーリエ変換処理回路により受波上シングルビーム相当の周波数と受波下シングルビーム相当の周波数とに分離し、また、前記超音波振動子が前記行列配列されて形成してなる前記平面の中心を通り、前記裏面電極が設けられた対向する面に対する垂線を含む前記M列配列に対して垂直な面内に前記垂線と成す角度が等しい2つの主極を有する送波横ツインビームを生成する電気信号を前記超音波振動子に送信し、受信した受波横ツインビームを前記受波ビーム合成回路で、受波右シングルビームの受信信号と受波左シングルビームの受信信号とに分離し、前記受波ビーム切替回路を通り、高速フーリエ変換処理回路により受波右シングルビーム相当の周波数と受波左シングルビーム相当の周波数とに分離したことを特徴とする超音波フェイズドアレイ送受波器が得られる。   According to the invention, the ultrasonic transducers pass through the center of the plane formed by the matrix arrangement, and are perpendicular to the N-row arrangement including a perpendicular to the radiation surface on which the surface electrode is provided. An electrical signal for generating a transmission longitudinal twin beam having two main poles having the same angle with the perpendicular in a plane is transmitted to the ultrasonic transducer, and the received longitudinal twin beam is switched to the received beam switching The circuit is separated by a fast Fourier transform processing circuit into a frequency equivalent to a single beam on reception and a frequency equivalent to a single beam under reception, and the ultrasonic transducers are formed in the matrix array. A transmission transverse twin beam having two main poles having the same angle with the perpendicular in a plane perpendicular to the M-row arrangement including a perpendicular to the opposing surface provided with the back electrode, passing through the center of the plane The generated electrical signal is transmitted to the ultrasonic transducer, and the received received transverse twin beam is separated into a received right single beam received signal and a received left single beam received signal by the received beam combining circuit. And an ultrasonic phased array transducer that is passed through the received beam switching circuit and separated into a frequency equivalent to the received right single beam and a frequency equivalent to the received left single beam by a fast Fourier transform processing circuit. Is obtained.

前記の如く、本発明によればフェイズドアレイ方式の超音波振動子の形状、配列間隔を変更し、FFT処理回路を追加することにより、超音波振動子の個数が減り、組立が簡単で安価な小型の速度計や測深器を提供することができる。   As described above, according to the present invention, by changing the shape and arrangement interval of the phased array type ultrasonic transducers and adding the FFT processing circuit, the number of ultrasonic transducers is reduced, and the assembly is simple and inexpensive. A small speedometer and sounding instrument can be provided.

本発明による超音波フェイズドアレイ送受波器は、超音波振動子を、行のピッチ間隔が水中における超音波振動子の駆動周波数の波長をλとする時P=(1±0.25)×λ、列のピッチ間隔が水中における超音波振動子の駆動周波数の波長をλとする時P=(0.5±0.25)×λとなるように分極方向を揃えて平面上に行列配列する。さらに超音波振動子を、表面電極を行ごとに2つのグループに分け、裏面電極を列ごとに4つのグループに分ける。この6つのグループの入出力端子を3個の変成器を用いて回路構成する。   In the ultrasonic phased array transducer according to the present invention, when the wavelength of the driving frequency of the ultrasonic vibrator in the water where the pitch interval between the rows is λ is λ, P = (1 ± 0.25) × λ The matrix is arranged in a matrix on the plane with the polarization direction aligned so that the column pitch interval is P = (0.5 ± 0.25) × λ where λ is the wavelength of the driving frequency of the ultrasonic transducer in water. . Further, in the ultrasonic vibrator, the front surface electrode is divided into two groups for each row, and the back surface electrode is divided into four groups for each column. The six groups of input / output terminals are configured using three transformers.

以下、本発明の実施の形態を上げて、本発明の超音波フェイズドアレイ送受波器について図面を参照しながら、さらに詳しく説明する。   The ultrasonic phased array transducer according to the present invention will be described below in more detail with reference to the drawings by raising the embodiment of the present invention.

図1は、本発明の実施の形態を示す超音波フェイズドアレイ送受波器の結線図である。図1には超音波フェイズドアレイ送受波器の超音波振動子と変成器の配列と結線と信号処理の入出力回路の構成を示している。図2は、本発明の実施の形態による超音波フェイズドアレイ送受波器のビームを示す斜視図である。   FIG. 1 is a connection diagram of an ultrasonic phased array transducer according to an embodiment of the present invention. FIG. 1 shows the arrangement and connection of ultrasonic transducers and transformers of an ultrasonic phased array transducer, and the configuration of input / output circuits for signal processing. FIG. 2 is a perspective view showing a beam of the ultrasonic phased array transducer according to the embodiment of the present invention.

最初に超音波フェイズドアレイ送受波器の動作内容の流れをまとめて示す。下記に示すa:送波縦ツインビームの送信、b:受波縦ツインビームの受信、c:送波横ツインビームの送信、d:受波横ツインビームの受信、の大きく4つの超音波フェイズドアレイ送受波器の動作内容がある。それぞれの動作の流れを結線図に沿って、示す。   First, the flow of the operation contents of the ultrasonic phased array transducer is summarized. There are four major ultrasonic phases: a: transmission of a transmitted vertical twin beam, b: reception of a received longitudinal twin beam, c: transmission of a transmitted transverse twin beam, and d: reception of a received transverse twin beam. There is an operation content of the array transducer. The flow of each operation is shown along the connection diagram.

a:送波縦ツインビームの送信
送信信号12 → 送波ビーム切替回路5 → 第1の送受波切替回路SW1 → 第1の変成器T1 → 超音波振動子2 → ビーム9A、9C
a: Transmission of a transmission vertical twin beam Transmission signal 12 → Transmission beam switching circuit 5 → First transmission / reception switching circuit SW1 → First transformer T1 → Ultrasonic transducer 2 → Beams 9A, 9C

b:受波縦ツインビームの受信
ビーム9A、9C → 超音波振動子2 → 第1の変成器T1 → 第1の送受波切替回路SW1 → 受波ビーム信号11A、11C → 受波ビーム切替回路7 → FFT処理回路8 → 受信周波数信号13(受波上シングルビーム相当の周波数、受波下シングルビーム相当の周波数)
b: Reception of received longitudinal twin beams Beams 9A and 9C → ultrasonic transducer 2 → first transformer T1 → first transmission / reception switching circuit SW1 → received beam signals 11A and 11C → received beam switching circuit 7 → FFT processing circuit 8 → Reception frequency signal 13 (frequency equivalent to single beam on reception, frequency equivalent to single beam on reception)

c:送波横ツインビームの送信
送信信号12 → 送波ビーム切替回路5 → 第2の送受波切替回路SW2・第3の送受波切替回路SW3 → 第2の変成器T2・第3の変成器T3 → 超音波振動子2 → ビーム9B、9D
c: Transmission of a transmission horizontal twin beam Transmission signal 12 → Transmission beam switching circuit 5 → Second transmission / reception wave switching circuit SW2 and third transmission / reception wave switching circuit SW3 → Second transformer T2 / third transformer T3 → ultrasonic transducer 2 → beams 9B and 9D

d:受波横ツインビームの受信
ビーム9B、9D → 超音波振動子2 → 第2の変成器T2・第3の変成器T3 → 第2の送受波切替回路SW2・第3の送受波切替回路SW3 → 受波ビーム合成回路6 → 受波ビーム信号11B、11D → 受波ビーム切替回路7 → FFT処理回路8 → 受信周波数信号13(受波左シングルビーム相当の周波数、受波右シングルビーム相当の周波数)
d: Reception of received horizontal twin beam Beams 9B and 9D → ultrasonic transducer 2 → second transformer T2 and third transformer T3 → second transmission / reception wave switching circuit SW2 and third transmission / reception wave switching circuit SW3 → received beam synthesis circuit 6 → received beam signals 11B and 11D → received beam switching circuit 7 → FFT processing circuit 8 → received frequency signal 13 (frequency corresponding to the received left single beam, equivalent to the received right single beam) frequency)

上記a〜dの4種類の送受波を、順番に送波縦ツインビームの送信・受波縦ツインビームの受信・送波横ツインビームの送信・受波横ツインビームの受信することを1サイクルとして、繰り返えされることにより、超音波フェイズドアレイ送受波器の動作が、構成されている。   One cycle of the four types of transmission and reception waves a to d described above in order of transmission, transmission vertical twin beam transmission, reception vertical twin beam reception, transmission horizontal twin beam transmission, reception horizontal twin beam reception As described above, the operation of the ultrasonic phased array transducer is configured.

従来は、超音波振動子を正方形とし、行列のピッチ間隔を水中における超音波振動子の駆動周波数の波長に合致させ、λ/2として配置していたが、この場合行方向で超音波振動子間に隙間が生じ、副極が大きくなり指向性が悪くなるので、実際に製造する際、隙間は出来るだけ狭く設計位置に正確に多数配置する必要があり、指向性の乱れを避けるために、組立が複雑で高価になっていた。本発明は、行方向に並ぶ正方形の超音波振動子2個を長方形の超音波振動子1個で置き換えることで、超音波振動子の個数が半分になる。   Conventionally, the ultrasonic transducer is square, and the pitch interval of the matrix is matched with the wavelength of the driving frequency of the ultrasonic transducer in water and arranged as λ / 2. In this case, however, the ultrasonic transducer is arranged in the row direction. Since gaps are created between them and the sub-poles become larger and the directivity becomes worse, when actually manufacturing, it is necessary to place a large number of gaps as narrow as possible in the design position in order to avoid disturbance of directivity. Assembly was complicated and expensive. In the present invention, the number of ultrasonic transducers is halved by replacing two square ultrasonic transducers arranged in the row direction with one rectangular ultrasonic transducer.

超音波振動子2は、例えばN−6材(NECトーキン社製 圧電セラミックス材ネペック)で構成することができる。この場合、超音波を放射する媒体を水と設定して、水中音速1500m/sとして計算して駆動周波数200kHzの波長(λ)に合致させて、行のピッチ間隔は、7.5mm(λ)とし、列のピッチ間隔は、3.75mm(λ/2)とするため、縦7.0mm、横3.25mm、高さ約7mmのブロックとし、各行と列のブロック間の隙間を0.5mmとし、このブロックの縦と横の成す長方形面の2面に電極を設け一方を正極、他方を負極としたものを使用すれば良い。   The ultrasonic vibrator 2 can be made of, for example, N-6 material (Nepec ceramic material made by NEC TOKIN). In this case, the medium that emits ultrasonic waves is set as water, calculated as underwater sound speed 1500 m / s, and matched with the wavelength (λ) of the driving frequency 200 kHz, and the pitch interval of the rows is 7.5 mm (λ). Since the column pitch interval is 3.75 mm (λ / 2), the length is 7.0 mm, the width is 3.25 mm, and the height is about 7 mm, and the gap between each row and column block is 0.5 mm. In this case, an electrode is provided on two rectangular surfaces formed vertically and horizontally in this block and one of them is a positive electrode and the other is a negative electrode.

また、超音波振動子2の個数を120個とし、紙面の上から下に行をN=10行、列を右から左にM=20列となるような行列を設定する。超音波振動子2の配列は、超音波振動子2の正極を表面電極にし、負極を裏面電極として表面電極が表になるように揃えて、図1のように、各行10個、各列20個の超音波振動子を配列するのではなく、配列した際に、外形が略円形を成す様に、各行、各列とも配列する前記超音波振動子2の個数を調整した。行のピッチ間隔は、7.5mm(λ)とし、列のピッチ間隔は、3.75mm(λ/2)とした。図1において、配列した超音波振動子2の行について行番号を上から下へ1〜10とし、列について列番号を右から左へ1〜20とする。   Further, a matrix is set such that the number of ultrasonic transducers 2 is 120, N = 10 rows from the top to the bottom of the page, and M = 20 columns from the right to the left. The arrangement of the ultrasonic transducers 2 is such that the positive electrode of the ultrasonic transducer 2 is the front electrode, the negative electrode is the back electrode, and the front electrodes are aligned, and as shown in FIG. Rather than arranging the ultrasonic transducers, the number of the ultrasonic transducers 2 arranged in each row and each column was adjusted so that the outer shape would be substantially circular when arranged. The row pitch spacing was 7.5 mm (λ) and the column pitch spacing was 3.75 mm (λ / 2). In FIG. 1, the row numbers of the arranged ultrasonic transducers 2 are 1 to 10 from the top to the bottom, and the column numbers of the columns are 1 to 20 from the right to the left.

表面電極は各超音波振動子2を全て行ごとに接続して10本の横の結線31を作り、さらに上から順に、(1+2K)行目のグループと、(2+2K)行目のグループ(Kは0以上、N/2−1以下の整数)の2つのグループに分けて横の結線31を接続し、第1の行入出力端子F1と第2の行入出力端子F2とする。   As for the surface electrode, all the ultrasonic transducers 2 are connected to each other to form ten horizontal connections 31, and in order from the top, the (1 + 2K) row group and the (2 + 2K) row group (K Are divided into two groups of 0 and N / 2-1 or less), and the horizontal connection 31 is connected to form a first row input / output terminal F1 and a second row input / output terminal F2.

また、裏面電極は各超音波振動子2を全て列ごとに接続して20本の縦の結線32を作り、列を横方向に右から順に、(1+4L)列目のグループと、(2+4L)列目のグループと、(3+4L)列目のグループと、(4+4L)列目のグループ(Lは0以上、M/4−1以下の整数)の4つのグループに分けて縦の結線32を接続し、第1の列入出力端子R1、第2の列入出力端子R2、第3の列入出力端子R3、第4の列入出力端子R4とする。   In addition, the back electrode connects all the ultrasonic transducers 2 in each column to form 20 vertical connections 32, and the columns are arranged in the horizontal direction from the right in the (1 + 4L) column group and (2 + 4L). The vertical connection 32 is divided into four groups: a group in the column, a group in the (3 + 4L) column, and a group in the (4 + 4L) column (L is an integer of 0 or more and M / 4-1 or less). The first column input / output terminal R1, the second column input / output terminal R2, the third column input / output terminal R3, and the fourth column input / output terminal R4.

また、図1に示すように、第1の行入出力端子F1と第2の行入出力端子F2は第1の変成器T1の平衡2次回路に、第1の列入出力端子R1と第3の列入出力端子R3は第2の変成器T2、第2の列入出力端子R2と第4の列入出力端子R4は第3の変成器T3にそれぞれの平衡2次回路に順次接続し、各々の変成器の中性点は接地した。中性点の接地の目的は、耐ノイズ性能を得て表面と裏面の信号の相互干渉を防ぐと共に、変換極性の反転した振動子を直列接続した負荷と平衡回路を構成し、結果として安定した平衡信号を得ることにある。   Further, as shown in FIG. 1, the first row input / output terminal F1 and the second row input / output terminal F2 are connected to the balanced secondary circuit of the first transformer T1, and the first column input / output terminal R1 and the second row input / output terminal F1. The third column input / output terminal R3 is connected to the second transformer T2, and the second column input / output terminal R2 and the fourth column input / output terminal R4 are sequentially connected to the respective balanced secondary circuits to the third transformer T3. The neutral point of each transformer was grounded. The purpose of neutral point grounding is to obtain anti-noise performance and prevent mutual interference between front and back signals, and configure a load circuit and a balanced circuit in which transducers with reversed conversion polarity are connected in series, resulting in stable operation. It is to obtain a balanced signal.

更に、第1の変成器T1、第2の変成器T2、第3の変成器T3の各平衡1次回路側に第1の送受波切替回路SW1、第2の送受波切替回路SW2、第3の送受波切替回路SW3を接続した。平衡1次回路側は、送受の切替が容易な不平衡回路用巻線とし送受信号を各送受波切替回路に入出力する。以上、平衡回路を構成することにより、外来ノイズに対して強い回路構成とすることが出来る。   Furthermore, the first transmission / reception wave switching circuit SW1, the second transmission / reception wave switching circuit SW2, the third transformer T1, the second transformer T2, and the third transformer T3 on the balanced primary circuit side. A transmission / reception switching circuit SW3 was connected. The balanced primary circuit side inputs / outputs transmission / reception signals to / from each transmission / reception switching circuit using a winding for an unbalanced circuit that allows easy switching between transmission and reception. As described above, by configuring the balanced circuit, a circuit configuration that is strong against external noise can be obtained.

また、第1の送受波切替回路SW1、第2の送受波切替回路SW2、第3の送受波切替回路SW3は、送波信号と受波信号の流れる方向の切り替えを行う。ここで、送波ビーム切替回路5は、第1の送受波切替回路SW1、第2の送受波切替回路SW2と第3の送受波切替回路SW3の2つのグループに送る送波縦ツインビームと送波横ツインビームの送信信号12を切り替える回路である。   Further, the first transmission / reception switching circuit SW1, the second transmission / reception switching circuit SW2, and the third transmission / reception switching circuit SW3 switch the direction in which the transmission signal and the reception signal flow. Here, the transmission beam switching circuit 5 includes a transmission longitudinal twin beam to be transmitted to two groups of the first transmission / reception switching circuit SW1, the second transmission / reception switching circuit SW2, and the third transmission / reception switching circuit SW3. It is a circuit for switching the transmission signal 12 of the horizontal transverse twin beam.

図2は、本発明の実施の形態による超音波フェイズドアレイ送受波器のビームを示す斜視図である。本実施の形態による超音波フェイズドアレイ送受波器1Bは、ビーム9Aとビーム9Cからなる送受波縦ツインビームと、ビーム9Bとビーム9Dからなる送受波横ツインビームにより送受波する。   FIG. 2 is a perspective view showing a beam of the ultrasonic phased array transducer according to the embodiment of the present invention. The ultrasonic phased array transducer 1B according to the present embodiment transmits and receives a transmission / reception longitudinal twin beam composed of a beam 9A and a beam 9C and a transmission / reception transverse twin beam composed of a beam 9B and a beam 9D.

また、前記第1の送受波切替回路SW1から出力されるビーム9Aとビーム9Cからなる受波縦ツインビームの受波ビーム信号11A、11Cは、受波ビーム切替回路7からFFT処理回路8に出力され、FFT処理を実施し、周波数を算出する。速度計として使用する場合、停止していればドップラー周波数偏倚はなくビーム9Aとビーム9Cは同じ周波数fo(fo:送信周波数)の1つの周波数が算出され、航走していれば、ビーム9Aとビーム9Cの周波数はfo+Δf、fo−Δf(Δf:ドップラー周波数偏倚)の2つの周波数が算出される。ここで、前記の2つの周波数は、どちらのビームの周波数か判別することはできず、速度方向は演算できないが、このビーム方向の絶対速度の演算は実施できる。水中で使用する主な航走体の航走方向は前であり、波等により斜めに航走するので左右方向の速度、速度方向が測定できれば良い。   Further, the received beam signals 11A and 11C of the received longitudinal twin beam composed of the beam 9A and the beam 9C output from the first transmission / reception switching circuit SW1 are output from the received beam switching circuit 7 to the FFT processing circuit 8. Then, FFT processing is performed to calculate the frequency. When used as a speedometer, there is no Doppler frequency deviation if stopped, and one frequency of the same frequency fo (fo: transmission frequency) is calculated for beam 9A and beam 9A. Two frequencies of the beam 9C are calculated, fo + Δf and fo−Δf (Δf: Doppler frequency deviation). Here, it is not possible to determine which of the two frequencies is the frequency of the beam, and the velocity direction cannot be calculated, but the absolute velocity in the beam direction can be calculated. The main traveling body used in the water has the front traveling direction, and it travels diagonally by waves or the like, so it is only necessary to measure the speed and speed direction in the left-right direction.

第2の送受波切替回路SW2と第3の送受波切替回路SW3から出力される受波信号は、受波ビーム合成回路6に出力され、第2の送受波切替回路SW2の受波信号の位相を90度移相回路6Cで調整して、その調整された90度移相回路6Cの受波信号と第3の送受波切替回路SW3から出力される受波信号を加算回路6Bで加算し、減算回路6Aで減算し、ビーム9Bとビーム9Dからなる受波横ツインビームを受波ビーム信号11Bと受波ビーム信号11Dに分離して受波ビーム信号として出力する。   The reception signals output from the second transmission / reception switching circuit SW2 and the third transmission / reception switching circuit SW3 are output to the reception beam combining circuit 6 and the phase of the reception signal of the second transmission / reception switching circuit SW2. Is adjusted by the 90-degree phase shift circuit 6C, and the received signal of the adjusted 90-degree phase shift circuit 6C and the received signal output from the third transmission / reception switching circuit SW3 are added by the adder circuit 6B. Subtraction is performed by the subtracting circuit 6A, and the received horizontal twin beam composed of the beam 9B and the beam 9D is separated into the received beam signal 11B and the received beam signal 11D and output as a received beam signal.

ビーム合成の原理は、正負極性が共に交互反転している第2の送受波切替回路SW2から出力される奇数行ツインビーム信号と第3の送受波切替回路SW3から出力される偶数行ツインビームとの間に90°の位相差を付与として加算、減算することにより、全行が位相差+90°ステップの配列と等価な状態になり、主極方位がビームの仰角で+30°または−30°のシングルビームに合成される。行間隔と主極方位の関係は式(1)、式(2)となる。   The principle of beam synthesis is that the odd-numbered twin beam signal output from the second transmission / reception switching circuit SW2 in which both positive and negative polarities are alternately inverted and the even-numbered twin beam output from the third transmission / reception switching circuit SW3 By adding and subtracting a phase difference of 90 ° between them, all rows are equivalent to the phase difference + 90 ° step arrangement, and the main pole azimuth is + 30 ° or −30 ° at the elevation angle of the beam. Combined into a single beam. The relationship between the line interval and the main pole direction is expressed by equations (1) and (2).

(2π/λ)×(行間隔:λ/2)×sinθo=+π/2 ・・・(1)
∴sinθo=+1/2、θo=+30°
(2π/λ)×(行間隔:λ/2)×sinθo=−π/2 ・・・(2)
∴sinθo=−1/2、θo=−30°
(2π / λ) × (line interval: λ / 2) × sin θo = + π / 2 (1)
∴sin θo = + 1/2, θo = + 30 °
(2π / λ) × (line interval: λ / 2) × sin θo = −π / 2 (2)
∴sin θo = −1 / 2, θo = −30 °

図3〜図5は、本発明の実施の形態による超音波フェイズドアレイ送受波器の指向性のシミュレーションデータを示すチャート図である。   3 to 5 are charts showing directivity simulation data of the ultrasonic phased array transducer according to the embodiment of the present invention.

図3は送波ビーム切替回路5により第1の送受波切替回路SW1に送信信号を送り、図2で示したビーム9Aとビーム9Cからなる送波縦ツインビームと、送波ビーム切替回路5により第2の送受波切替回路SW2と第3の送受波切替回路SW3に送信信号を送り、図2で示したビーム9Bとビーム9Dからなる送波横ツインビームをシミュレーションした結果である。図4及び図5は受波ビーム合成回路6から出力される図2に示すところのビーム9Bとビーム9Dからなる受波横ツインビームがビーム9Bとビーム9Dに分離されて受波左シングルビームと受波右シングルビームとなって出力される受波信号をシミュレーションした結果である。   In FIG. 3, a transmission signal is sent to the first transmission / reception switching circuit SW1 by the transmission beam switching circuit 5, and the transmission vertical twin beam composed of the beam 9A and the beam 9C shown in FIG. This is a result of sending a transmission signal to the second transmission / reception switching circuit SW2 and the third transmission / reception switching circuit SW3, and simulating the transmission horizontal twin beam composed of the beam 9B and the beam 9D shown in FIG. 4 and 5 show the received horizontal twin beam composed of the beam 9B and the beam 9D shown in FIG. 2 output from the received beam combining circuit 6 and separated into the beam 9B and the beam 9D, and the received left single beam. It is the result of simulating a received signal output as a received right single beam.

前述した如く、本発明による超音波フェイズドアレイ送受波器は、長方形の超音波振動子を用いて、行方向をλ間隔で配列することと、ツインビームの受波信号をFFT処理で分離検出することで、超音波振動子の個数が減り、配線等組立が容易になる。   As described above, the ultrasonic phased array transducer according to the present invention uses rectangular ultrasonic transducers to arrange the row direction at λ intervals and to separate and detect the received signals of twin beams by FFT processing. This reduces the number of ultrasonic transducers and facilitates assembly of wiring and the like.

以上、この発明の実施の形態を説明したが、この発明は、これらの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   As mentioned above, although embodiment of this invention was described, this invention is not restricted to these embodiment, Even if there is a design change of the range which does not deviate from the summary of this invention, it is included in this invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

本発明による超音波フェイズドアレイ送受波器は、ドップラー効果を利用する速度計や伝搬時間を利用する測深器などの測定や測量を水中で行う計測機器に利用することができる。   The ultrasonic phased array transducer according to the present invention can be used for measurement equipment that performs measurement and surveying in water, such as a speedometer using the Doppler effect and a sounding instrument using propagation time.

本発明の実施の形態による超音波フェイズドアレイ送受波器の結線図。The connection diagram of the ultrasonic phased array transducer by embodiment of this invention. 本発明の実施の形態による超音波フェイズドアレイ送受波器のビームを示す斜視図。The perspective view which shows the beam of the ultrasonic phased array transducer by embodiment of this invention. 本発明の実施の形態による超音波フェイズドアレイ送受波器の指向性のシミュレーションデータを示すチャート図。The chart figure which shows the simulation data of the directivity of the ultrasonic phased array transducer by embodiment of this invention. 本発明の実施の形態による超音波フェイズドアレイ送受波器の指向性のシミュレーションデータを示すチャート図。The chart figure which shows the simulation data of the directivity of the ultrasonic phased array transducer by embodiment of this invention. 本発明の実施の形態による超音波フェイズドアレイ送受波器の指向性のシミュレーションデータを示すチャート図。The chart figure which shows the simulation data of the directivity of the ultrasonic phased array transducer by embodiment of this invention. 従来のフェイズドアレイ送受波器の配列図。FIG. 6 is an array diagram of a conventional phased array transducer. 従来のフェイズドアレイ送受波器の指向性特性図。Directivity characteristic diagram of a conventional phased array transducer.

符号の説明Explanation of symbols

1A、1B 超音波フェイズドアレイ送受波器
2 超音波振動子
31 横の結線
32 縦の結線
5 送波ビーム切替回路
6 受波ビーム合成回路
6A 減算回路
6B 加算回路
6C 90度移相回路
7 受波ビーム切替回路
8 高速フーリエ変換処理回路(FFT処理回路)
9A、9B、9C、9D ビーム
11A、11B、1C、11D 受波ビーム信号
12 送信信号
13 受信周波数信号
F1 第1の行入出力端子
F2 第2の行入出力端子
R1 第1の列入出力端子
R2 第2の列入出力端子
R3 第3の列入出力端子
R4 第4の列入出力端子
SW1 第1の送受波切替回路
SW2 第2の送受波切替回路
SW3 第3の送受波切替回路
T1 第1の変成器
T2 第2の変成器
T3 第3の変成器
1A, 1B Ultrasonic phased array transducer 2 Ultrasonic transducer 31 Horizontal connection 32 Vertical connection 5 Transmit beam switching circuit 6 Receive beam synthesis circuit 6A Subtraction circuit 6B Addition circuit 6C 90 degree phase shift circuit 7 Reception Beam switching circuit 8 Fast Fourier transform processing circuit (FFT processing circuit)
9A, 9B, 9C, 9D Beams 11A, 11B, 1C, 11D Received beam signal 12 Transmitted signal 13 Received frequency signal F1 First row input / output terminal F2 Second row input / output terminal R1 First column input / output terminal R2 Second column input / output terminal R3 Third column input / output terminal R4 Fourth column input / output terminal SW1 First transmission / reception switching circuit
SW2 Second transmission / reception switching circuit
SW3 Third transmission / reception switching circuit
T1 1st transformer T2 2nd transformer T3 3rd transformer

Claims (3)

超音波の放射面が長方形で、前記放射面に表面電極、対向する面に裏面電極を有する超音波振動子を、分極方向を揃えて、長方形の長手方向が列方向になるように平面上のN行、M列(NとMは正の正数)となる行列に、各行には2個以上M/2個以下の前記超音波振動子が配列され、各列には4個以上N×2個以下の前記超音波振動子が配列された超音波フェイズドアレイ送受波器であって、超音波振動子は行の間隔が水中音波の波長比で1±0.25であり、列の間隔が水中音波の波長比で0.5±0.25であるように行列配列され、表面電極を行毎に結線してN本の結線群とし、裏面電極を列毎に結線してM本の結線群とし、前記N本の結線群を上から1+2K番目と、2+2K番目(Kは0以上、N/2−1以下の整数)の2グループに分けて接続して順に第1の行入出力端子(F1)、第2の行入出力端子(F2)とし、前記M本の結線群を右から1+4L番目、2+4L番目、3+4L番目、4+4L番目(Lは0以上、M/4−1以下の整数)の4グループに分けて接続して第1の列入出力端子(R1)、第2の列入出力端子(R2)、第3の列入出力端子(R3)、第4の列入出力端子(R4)とし、前記第1の行入出力端子と前記第2の行入出力端子を第1の変成器(T1)の平衡2次回路に接続し、前記第1の列入出力端子と前記第3の列入出力端子を第2の変成器(T2)の平衡2次回路に接続し、前記第2の列入出力端子と前記第4の列入出力端子を第3の変成器(T3)の平衡2次回路に接続して成り、前記第1の変成器の1次回路から振動子配列の奇数行の接続、偶数行の接続を成し、前記第2の変成器の1次回路から奇数列の交互接続を成し、前記第3の変成器の1次回路から偶数列の交互接続を成したことを特徴とする超音波フェイズドアレイ送受波器。   An ultrasonic transducer having a rectangular radiation surface, a surface electrode on the radiation surface, and a back electrode on the opposite surface, is aligned on the plane so that the longitudinal direction of the rectangle is in the column direction with the polarization direction aligned. In a matrix having N rows and M columns (N and M are positive positive numbers), 2 to M / 2 ultrasonic transducers are arranged in each row, and 4 or more N × in each column. An ultrasonic phased array transducer in which two or less of the ultrasonic transducers are arranged, and the ultrasonic transducer has a row interval of 1 ± 0.25 in terms of a wavelength ratio of underwater acoustic waves, and a column interval. Are arranged in a matrix so that the wavelength ratio of the underwater acoustic wave is 0.5 ± 0.25, the front electrodes are connected to each row to form N connection groups, and the back electrodes are connected to each column to form M wires. The N connection groups are divided into 2 groups of 1 + 2Kth and 2 + 2Kth (K is an integer of 0 or more and N / 2-1 or less) from the top. The first row input / output terminal (F1) and the second row input / output terminal (F2) are connected in order, and the M connection groups are 1 + 4Lth, 2 + 4Lth, 3 + 4Lth, 4 + 4Lth from the right. (L is an integer of 0 or more and M / 4-1 or less) divided into four groups and connected to the first column input / output terminal (R1), second column input / output terminal (R2), and third column An input / output terminal (R3) and a fourth column input / output terminal (R4) are used, and the first row input / output terminal and the second row input / output terminal are balanced secondary circuits of the first transformer (T1). The first column input / output terminal and the third column input / output terminal are connected to a balanced secondary circuit of a second transformer (T2), and the second column input / output terminal and the second column input / output terminal 4 column input / output terminals are connected to a balanced secondary circuit of a third transformer (T3), and an odd number of vibrator arrangements from the primary circuit of the first transformer. And even row connections, odd column alternating connections from the primary circuit of the second transformer, and even column alternating connections from the primary circuit of the third transformer. Ultrasonic phased array transducer characterized by that. 前記第1の変成器(T1)、前記第2の変成器(T2)、前記第3の変成器(T3)の各1次回路にそれぞれ第1の送受波切替回路(SW1)、第2の送受波切替回路(SW2)、第3の送受波切替回路(SW3)を接続し、前記第1の送受波切替回路と、前記第2の送受波切替回路と前記第3の送受波切替回路の2グループに接続を分割して切り替える送波ビーム切替回路と、前記第1の送受波切替回路から出力される受波ビーム信号と、前記第2の送受波切替回路と前記第3の送受波切替回路から出力される受波信号の位相調整と加算、減算を行う受波ビーム合成回路から出力される受波ビーム信号を切り替えて出力する受波ビーム切替回路と、前記受波ビーム切替回路から出力される受信信号を高速フーリエ変換処理する高速フーリエ変換処理回路とからなることを特徴とする請求項1に記載の超音波フェイズドアレイ送受波器。   A first transmission / reception switching circuit (SW1), a second transmission circuit (T1), a second transformer (T2), a third transformer (T3), a first transmission / reception wave switching circuit (SW1), a second transformer (T1), a second transformer (T2), and a third transformer (T3). A transmission / reception wave switching circuit (SW2) and a third transmission / reception wave switching circuit (SW3) are connected, and the first transmission / reception wave switching circuit, the second transmission / reception wave switching circuit, and the third transmission / reception wave switching circuit are connected. A transmission beam switching circuit for switching connections divided into two groups, a received beam signal output from the first transmission / reception switching circuit, the second transmission / reception switching circuit, and the third transmission / reception switching Received beam switching circuit for switching and outputting the received beam signal output from the received beam combining circuit that performs phase adjustment, addition, and subtraction of the received signal output from the circuit, and output from the received beam switching circuit Fast Fourier transform of received received signal Ultrasonic phased array transducer according to claim 1, characterized in that it consists of a conversion processing circuit. 前記超音波振動子が前記行列配列されて形成してなる前記平面の中心を通り、前記放射面に対する垂線を含む前記N行配列に対して垂直な面内に前記垂線と成す角度が等しい2つの主極を有する送波縦ツインビームを生成する電気信号を前記超音波振動子に送信し、受信した受波縦ツインビームを前記受波ビーム切替回路を通り、高速フーリエ変換処理回路により受波上シングルビーム相当の周波数と受波下シングルビーム相当の周波数とに分離し、また、前記超音波振動子が前記行列配列されて形成してなる前記平面の中心を通り、前記対向する面に対する垂線を含む前記M列配列に対して垂直な面内に前記垂線と成す角度が等しい2つの主極を有する送波横ツインビームを生成する電気信号を前記超音波振動子に送信し、受信した受波横ツインビームを前記受波ビーム合成回路で、受波右シングルビームの受信信号と受波左シングルビームの受信信号とに分離し、前記受波ビーム切替回路を通り、高速フーリエ変換処理回路により受波右シングルビーム相当の周波数と受波左シングルビーム相当の周波数とに分離したことを特徴とする請求項1または請求項2記載の超音波フェイズドアレイ送受波器。   Two of the ultrasonic transducers having the same angle formed with the perpendicular in a plane perpendicular to the N-row arrangement including the perpendicular to the radiation surface through the center of the plane formed by the matrix arrangement. An electrical signal for generating a transmission longitudinal twin beam having a main pole is transmitted to the ultrasonic transducer, and the received reception longitudinal twin beam passes through the reception beam switching circuit and is received by a fast Fourier transform processing circuit. A frequency corresponding to a single beam and a frequency corresponding to a single beam under reception are separated, and a perpendicular to the opposite surface passes through the center of the plane formed by forming the ultrasonic transducers in the matrix arrangement. An electric signal for generating a transmission transverse twin beam having two main poles having the same angle with the perpendicular in a plane perpendicular to the M-row arrangement is transmitted to the ultrasonic transducer and received. side The received beam is separated by the received beam combining circuit into a received right single beam received signal and a received left single beam received signal, passed through the received beam switching circuit, and received by a fast Fourier transform processing circuit. 3. The ultrasonic phased array transducer according to claim 1, wherein the ultrasonic phased array transducer is separated into a frequency equivalent to a right single beam and a frequency equivalent to a received left single beam.
JP2008012253A 2008-01-23 2008-01-23 Ultrasonic phased array transducer Active JP4968847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008012253A JP4968847B2 (en) 2008-01-23 2008-01-23 Ultrasonic phased array transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012253A JP4968847B2 (en) 2008-01-23 2008-01-23 Ultrasonic phased array transducer

Publications (2)

Publication Number Publication Date
JP2009174934A true JP2009174934A (en) 2009-08-06
JP4968847B2 JP4968847B2 (en) 2012-07-04

Family

ID=41030189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012253A Active JP4968847B2 (en) 2008-01-23 2008-01-23 Ultrasonic phased array transducer

Country Status (1)

Country Link
JP (1) JP4968847B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141173A (en) * 2014-01-30 2015-08-03 株式会社Ihi Underwater sailing body height detection method and underwater sailing body height detection apparatus
KR20190048608A (en) * 2017-10-31 2019-05-09 숭실대학교산학협력단 Apparatus and method for signal processing in sonar system, recording medium for performing the method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131338A (en) * 1975-12-01 1984-07-28 コントロン インスツルメンツ ホールディング エヌ.ブイ. Method and system for forming ultrasonic image
JPH09281218A (en) * 1996-04-10 1997-10-31 Mitsubishi Heavy Ind Ltd Target simulation device for phased array type radar
JP2000147095A (en) * 1998-11-04 2000-05-26 Japan Radio Co Ltd Ultrasonic transducer and ultrasonic locating method
JP2001197595A (en) * 2000-01-11 2001-07-19 Tokin Corp Ultrasonic wave phased array transmitter-receiver
JP2001305217A (en) * 2000-04-27 2001-10-31 Tokin Corp Ultrasonic phased array transmitter/receiver
JP2003290223A (en) * 2001-10-20 2003-10-14 Novasonics Inc System and method for acoustic imaging at two focal lengths with single lens
JP2004012237A (en) * 2002-06-05 2004-01-15 Nec Corp Method and apparatus for detecting vessel by cross-fan beam
JP2006017629A (en) * 2004-07-02 2006-01-19 Furuno Electric Co Ltd Ultrasonic transmitter, ultrasonic transmitter/receiver, and detection device using the same
JP2007192830A (en) * 1996-10-07 2007-08-02 Teledyne Rd Instruments Inc Acoustic system
JP2007240487A (en) * 2006-03-13 2007-09-20 Nec Tokin Corp Ultrasonic phased array echo sounder transducer
JP2007260581A (en) * 2006-03-29 2007-10-11 Nec Tokin Corp Ultrasonic phased array transmitter receiver

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131338A (en) * 1975-12-01 1984-07-28 コントロン インスツルメンツ ホールディング エヌ.ブイ. Method and system for forming ultrasonic image
JPH09281218A (en) * 1996-04-10 1997-10-31 Mitsubishi Heavy Ind Ltd Target simulation device for phased array type radar
JP2007192830A (en) * 1996-10-07 2007-08-02 Teledyne Rd Instruments Inc Acoustic system
JP2000147095A (en) * 1998-11-04 2000-05-26 Japan Radio Co Ltd Ultrasonic transducer and ultrasonic locating method
JP2001197595A (en) * 2000-01-11 2001-07-19 Tokin Corp Ultrasonic wave phased array transmitter-receiver
JP2001305217A (en) * 2000-04-27 2001-10-31 Tokin Corp Ultrasonic phased array transmitter/receiver
JP2003290223A (en) * 2001-10-20 2003-10-14 Novasonics Inc System and method for acoustic imaging at two focal lengths with single lens
JP2004012237A (en) * 2002-06-05 2004-01-15 Nec Corp Method and apparatus for detecting vessel by cross-fan beam
JP2006017629A (en) * 2004-07-02 2006-01-19 Furuno Electric Co Ltd Ultrasonic transmitter, ultrasonic transmitter/receiver, and detection device using the same
JP2007240487A (en) * 2006-03-13 2007-09-20 Nec Tokin Corp Ultrasonic phased array echo sounder transducer
JP2007260581A (en) * 2006-03-29 2007-10-11 Nec Tokin Corp Ultrasonic phased array transmitter receiver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141173A (en) * 2014-01-30 2015-08-03 株式会社Ihi Underwater sailing body height detection method and underwater sailing body height detection apparatus
KR20190048608A (en) * 2017-10-31 2019-05-09 숭실대학교산학협력단 Apparatus and method for signal processing in sonar system, recording medium for performing the method
KR102020989B1 (en) * 2017-10-31 2019-09-11 숭실대학교산학협력단 Apparatus and method for signal processing in sonar system, recording medium for performing the method

Also Published As

Publication number Publication date
JP4968847B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
US20150049590A1 (en) Sub-array transducer apparatus and methods
US20080308343A1 (en) System and method of acoustic doppler beamforming
JPWO2006121034A1 (en) Ultrasonic diagnostic equipment
JP4803728B2 (en) Ultrasonic phased array transducer
JP4968847B2 (en) Ultrasonic phased array transducer
JP5469996B2 (en) Ultrasonic wave transmitter and Doppler velocimeter
JP3640854B2 (en) Ultrasonic phased array transducer
JP2007127561A (en) Ultrasonic transducer
Brown et al. Cylindrical transducer for producing an acoustic spiral wave for underwater navigation (L)
JP4791011B2 (en) Ultrasonic transmitter, ultrasonic transmitter and receiver, and detector using the same
JP3958880B2 (en) Ultrasonic transducer and ultrasonic detection method
JP5207335B2 (en) Ultrasonic phased array transducer
JP5697863B2 (en) Doppler speedometer
JP5164218B2 (en) Ultrasonic phased array transducer
JP3748358B2 (en) Ultrasonic phased array transducer
JPS63139250A (en) Electromagnetic-ultrasonic transducer apparatus
JP4771575B2 (en) Underwater detector
JP2916209B2 (en) Piezoelectric vibrator
JP5628508B2 (en) Underwater detector and its reception characteristic correction method
JPH0479548B2 (en)
JP2006266968A (en) Echo sounder transducer
JP6923884B2 (en) Ultrasonic three-dimensional measuring device
JP2009008425A (en) Transducer for acoustic simulation signal target
JP2577333B2 (en) Scanning sonar receiver
JPS5823904B2 (en) Directional ultrasound transducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4968847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350