JPS63139250A - Electromagnetic-ultrasonic transducer apparatus - Google Patents

Electromagnetic-ultrasonic transducer apparatus

Info

Publication number
JPS63139250A
JPS63139250A JP61286462A JP28646286A JPS63139250A JP S63139250 A JPS63139250 A JP S63139250A JP 61286462 A JP61286462 A JP 61286462A JP 28646286 A JP28646286 A JP 28646286A JP S63139250 A JPS63139250 A JP S63139250A
Authority
JP
Japan
Prior art keywords
coils
emat
receiving
frequencies
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61286462A
Other languages
Japanese (ja)
Inventor
Kazuo Morimoto
森本 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61286462A priority Critical patent/JPS63139250A/en
Publication of JPS63139250A publication Critical patent/JPS63139250A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To generate ultrasonic waves having a plurality of frequencies by one electromagnetic-ultrasonic transducer (EMAT), by providing EMAT, a transmission coil and a receiving coil. CONSTITUTION:EMAT consisting of a magnet generating a magnetic field in the direction parallel or vertical to a surface to be inspected and three coils arranged to the surface of the magnet in a zigzag pattern so as to be shifted by a 1/3 pitch to each other is provided. Further, transmission coils 3a-3c supplying currents same in frequency to three coils with respect to a plurality of frequencies so as to shift the same by a definite phase and receiving coils 3a'-3c' receiving the receiving signals of three coils so as to delay the same by delay circuits 7a-7c corresponding to respective transmission phase shifts with respect to each of the frequencies are provided. By this method, ultrasonic waves having a plurality of frequencies can be generated by one EMAT.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は構造物等の超音波探さに用いる電磁超音波トラ
ンスデユーサ−装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electromagnetic ultrasonic transducer device used for ultrasonic detection of structures and the like.

〔従来の技術〕[Conventional technology]

従来の縦波斜角電磁超音波トランスデユーチー(以下E
MATとい5)は、例えば第6図(A)正面図、(B)
底面図に示すように、磁石1及び補楓2よシなシ被検面
に平行方向の磁界を発生する磁界発生部分と、ピッチT
で蛇行するコイル3とから構成されておシ、コイル乙に
周波数fの電流を流すと、第7図説明図に示すように、
紙面に直角方向の渦電流Jが発生し、この渦電流はピッ
チTで方向が反転している。他方磁石1により水平方向
の磁界Bが発生し、渦電流Jとの相互作用によシカFが
発生し、コイル乙の各部を励振する。
Conventional longitudinal wave oblique electromagnetic ultrasound transducer (hereinafter referred to as E)
MAT5) is, for example, shown in Fig. 6 (A) front view, (B)
As shown in the bottom view, the magnetic field generating portion that generates a magnetic field in a direction parallel to the test surface, such as the magnet 1 and the deflector 2, and the pitch T
When a current of frequency f is passed through coil B, as shown in the explanatory diagram in Fig. 7,
An eddy current J is generated in a direction perpendicular to the plane of the paper, and the direction of this eddy current is reversed at a pitch T. On the other hand, the magnet 1 generates a horizontal magnetic field B, which interacts with the eddy current J to generate a magnetic field F, which excites each part of the coil B.

このとき力Fの方向はピッチTで反転しており、励振に
よシ生じる超音波の位相は180゜異なっている。
At this time, the direction of the force F is reversed by the pitch T, and the phases of the ultrasonic waves generated by the excitation differ by 180°.

このため各点からの超音波の波面は次の(1)式のとき
一致し、合成波面Wが屈折角θの方向に被検体10中を
伝搬する。
Therefore, the wavefronts of the ultrasonic waves from each point match when the following equation (1) is satisfied, and the composite wavefront W propagates through the subject 10 in the direction of the refraction angle θ.

Tssin O= V/(2f)      s・*・
o fl)たソしVは被検体1o中の超音波の音速であ
る。
Tssin O=V/(2f) s・*・
o fl) The velocity V is the sound velocity of the ultrasound in the subject 1o.

なお受画については上述の逆のメカニズムで行われる。Note that image reception is performed using the reverse mechanism described above.

しかしながらこのような装置においては、(1)式よシ
明らかなように、屈折角θ及びコイルピッチTが決まっ
ているので、周波数は一定とな)、それ以外の周波数で
は必要な超音波が得られない。
However, in such a device, as is clear from equation (1), the refraction angle θ and coil pitch T are fixed, so the frequency is constant), and the necessary ultrasonic waves cannot be obtained at other frequencies. I can't.

従って1個のE M A Tでは1周波数しか効率よく
発生できず、欠陥の特性を調べるにあたり別の周波数に
変えたい場合には、コイルピッチの異なるEMAT2個
以上を取換える必要がある。
Therefore, one EMAT can efficiently generate only one frequency, and if it is desired to change to a different frequency when investigating the characteristics of a defect, it is necessary to replace two or more EMATs with different coil pitches.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、このような事情に鑑みて提案されたもので、
1個のEMATにより複数の周波数の超音波を発生でき
、従って欠陥の特性に応じE M A Tを取換える必
要がないEMA丁。
The present invention was proposed in view of these circumstances, and
An EMA device that can generate ultrasonic waves of multiple frequencies with one EMAT, and therefore does not require replacing the EMAT depending on the characteristics of the defect.

〔、を提供することを目的さす石) 〔問題点を解決するだめの手段〕[a stone whose purpose is to provide [Failure to solve the problem]

そのために本発明は、被検面に対し平行又は直角方向の
磁界を発生する磁石及び同磁石表面に互いにhピッチず
つずらせて蛇行配置した3本のコイルからなる電磁超音
波トランスデユーサ−と、上記3本のコイルに一定位相
ずらせて同一周波数の電流を複数の周波数について送給
する送信回路と、上記3本のコイルの受信信号を上記各
周波数についてそれぞれの送信位相ずれに応じた遅延を
かけて受信する受信回路とを具えたことを特徴とする。
To this end, the present invention provides an electromagnetic ultrasonic transducer comprising a magnet that generates a magnetic field in a direction parallel or perpendicular to the surface to be inspected, and three coils arranged meanderingly on the surface of the magnet, shifted by h pitches from each other; A transmission circuit that sends currents of the same frequency to multiple frequencies with a certain phase shift to the three coils, and a transmission circuit that delays the received signals of the three coils according to the transmission phase shift for each frequency. and a receiving circuit for receiving signals.

〔作 用〕[For production]

上述の構成によシ、1個のE M A Tによシ複数の
周波数の超音波を発生でき、従って欠陥の特性に応じE
MATを取換える必要がないEMATを得ることができ
る。
With the above configuration, one EMAT can generate ultrasonic waves of multiple frequencies, and therefore the EMAT can generate ultrasonic waves of multiple frequencies depending on the characteristics of the defect.
It is possible to obtain an EMAT without the need to replace the MAT.

〔実施例〕〔Example〕

本発明の実施例を図面について説明すると、第1図は縦
波斜角E M A T本体を示し、同図(A)は正面図
、同図(B)は底面図、第2図はE M A T装置全
体の系統図、第3図は同上のコイルに流す電流の波形図
、第4図は同上の斜角入射メカニズムの説明図、第5図
は横波用EMATの底面図である。
An embodiment of the present invention will be explained with reference to the drawings. Fig. 1 shows the longitudinal wave oblique angle E MAT main body, Fig. 1 (A) is a front view, Fig. 2 (B) is a bottom view, and Fig. 2 is E A system diagram of the entire MAT device, FIG. 3 is a waveform diagram of the current flowing through the coil, FIG. 4 is an explanatory diagram of the oblique incidence mechanism, and FIG. 5 is a bottom view of the EMAT for transverse waves.

まず縦波斜角E M A T本体を示す第1図において
、磁石1と一対の補極2によシ磁界Q発生部分を構成し
、3本のコイル3a、3b。
First, in FIG. 1 showing the main body of the longitudinal wave oblique angle E MAT, a magnetic field Q generating portion is constituted by a magnet 1 and a pair of commutated poles 2, and three coils 3a and 3b.

3CはそれぞれピッチTで矩形波的に蛇行するとともに
互いにT/3ピッチずつずらせて配設されている。
3C meander like a rectangular wave with a pitch T, and are arranged to be shifted from each other by a pitch of T/3.

このE M A Tを用いて送信及び受信するときの装
置構成を示す第2図において、各送信コイル5a、3b
、3cはそれぞれ送信器4a、4b、4cに接続されて
いる。送信コントローラー5は、クシ返し送信を行うた
めのくり返しパルスの発生と、各送信器4a〜4Cへの
発振周波数及び位相を制御する。
In FIG. 2 showing the device configuration when transmitting and receiving using this EMAT, each transmitting coil 5a, 3b
, 3c are connected to transmitters 4a, 4b, 4c, respectively. The transmission controller 5 controls the generation of repeated pulses for performing comb-back transmission and the oscillation frequency and phase to each transmitter 4a to 4C.

また送信コイルと同様構成の各受信コイル3a、3b、
3cはそれぞれアンプ6a、6bs6Cに接続されてお
シ、各アンプの出力はそれぞれ遅延回路7a、7b、7
cを介して加算回路8で加算され表示器9に表示される
In addition, each receiving coil 3a, 3b having the same configuration as the transmitting coil,
3c are connected to amplifiers 6a, 6bs6C, respectively, and the outputs of each amplifier are connected to delay circuits 7a, 7b, 7, respectively.
The signals are added by the adder circuit 8 via the signal line c and displayed on the display 9.

このような装置において、周波数fの超音波を屈折角θ
で入射するときの動作を説明する。
In such a device, an ultrasonic wave with a frequency f is refracted at a refraction angle θ
We will explain the operation when it is incident.

送信器4a〜4Cは、第3図に示すように、周波数fで
位相が互いに60 異なる送信電流を発生する。このと
き第4図に示すように、d、e、fの点では渦電流が発
生し、この点よフ超音波が発生する。dg 、 eh 
、 fi  の各距離は、(1)式を用いて次のに)〜
(41式のようになる。
As shown in FIG. 3, the transmitters 4a to 4C generate transmission currents having a frequency f and phases different from each other by 60°. At this time, as shown in FIG. 4, eddy currents are generated at points d, e, and f, and ultrasonic waves are generated from these points. dg, eh
, fi are calculated as follows using equation (1):
(It will look like formula 41.

dg = T−sinθ=2     、、・、、 +
、b;五 =ス’I”5sinθ = ム      
  争・・・・ (3]λ 宜==j−T−sinθ=−・・・・・(43に こでλは超音波の波長(= V/f )上記各長さは、
隣接するものと比較すると2/6(位相でいえば60)
となり、第3図に示す送信電流の位相と一致する。この
ため屈折角θ方向で超音波の波面の位相が一致し、合成
波面を形成し、屈折角θの超音波を発生する。
dg = T-sin θ=2, ・,, +
,b;5=S'I"5sinθ=mu
Conflict... (3) λ = = j - T - sin θ = - (43) where λ is the wavelength of the ultrasonic wave (= V/f) The above lengths are:
Compared to the adjacent one, it is 2/6 (60 in terms of phase)
This matches the phase of the transmission current shown in FIG. Therefore, the phases of the wavefronts of the ultrasonic waves match in the direction of the refraction angle θ, forming a composite wavefront, and generating an ultrasonic wave with the refraction angle θ.

次に周波数を6倍として3fの電流を互いに180位相
を変えてコイル3a、3b、3cに加え、発生する超音
波を屈折角θで入射するときの1作を説明する。
Next, one example will be described in which the frequency is increased six times, currents of 3f are applied to the coils 3a, 3b, and 3c with a phase change of 180, and the generated ultrasonic waves are incident at a refraction angle θ.

この場合は上記(2) 、 (31、(43式で周波数
が3倍であるので、このときの波長λ1と上記波長λの
関係は下式のようになる。
In this case, the frequency is tripled in the above formulas (2), (31, and (43), so the relationship between the wavelength λ1 and the wavelength λ at this time is as shown in the following formula.

λ:3λ、         e、5es(51これを
(2) 、 (3) 、 (4)に代入すると次の(6
)〜(8)が得られる。
λ: 3λ, e, 5es (51 Substituting this into (2), (3), (4) gives the following (6
) to (8) are obtained.

−3−−−−−f6) dg=、λ1 eh−λ         seems(7)富=1λ
         ・・・・・(8)これらの差はiλ
1(位相でいえば180)となっており、送信電流の位
相と一致しているため、屈折角θの方向に超音波を発生
させる。
−3−−−−−f6) dg=,λ1 eh−λseems(7)Wealth=1λ
...(8) The difference between these is iλ
1 (or 180 in terms of phase), which matches the phase of the transmission current, so that an ultrasonic wave is generated in the direction of the refraction angle θ.

次に受信について説明すると、送信と逆のにそれぞれ上
記で説明した位相のずれた超音波信号が検出されるので
、これをそれぞれアンプ6ae6b、6cで増幅し、位
相ずれを遅延回路7a、7b、7cを用いることにょシ
一致するようにした上、これらを加算回路8により合成
し、表示器9に表示する。
Next, reception will be explained. Ultrasonic signals having a phase shift as described above are detected in contrast to the transmission, so these are amplified by amplifiers 6ae6b and 6c, respectively, and the phase shift is corrected by delay circuits 7a and 7b. 7c, these are combined by an adder circuit 8 and displayed on a display 9.

また屈折角θを90 にして、音速を表面波(約290
0m/s)とすれば、表面波用EMATとして同様のこ
とが実施できる。
Also, the refraction angle θ is set to 90 degrees, and the sound velocity is changed to a surface wave (approximately 290 degrees).
0 m/s), the same thing can be implemented as a surface wave EMAT.

更に磁石構造を第5図のようにして、被検面に直角方向
の磁界が生じるようにすれば、横波用E M A Tを
構成でき、同様の効果を生じさせることができる。
Furthermore, if the magnet structure is changed as shown in FIG. 5 so that a magnetic field is generated in a direction perpendicular to the surface to be measured, a transverse wave EMAT can be constructed and a similar effect can be produced.

〔発明の効果〕〔Effect of the invention〕

要するに本発明によれば、被検面に対し平行又は直角方
向の磁界を発生する磁石及び同磁石表面に互いに73ピ
ッチずつずらせて蛇行配置した6本のコイルからなる電
磁超音波トランスデユーサ−と、上記6本のコイルに一
定位相ずらせて同一周波数の電流を複数の周波数につい
て送給する送信回路と、上記6本のコイルの受信信号を
上記各周波数についてそれぞれの送信位相ずれに応じた
遅延をかけて受信する受信回路とを具えたことによシ、
1個のE M A Tによシ複数の周波数の超音波を発
生でき、従って欠陥の特性に応じEMATを取換える必
要がないEMATを得るから、本発明は産業上極めて有
益なものである。
In short, according to the present invention, an electromagnetic ultrasonic transducer includes a magnet that generates a magnetic field in a direction parallel or perpendicular to the surface to be inspected, and six coils arranged meanderingly on the surface of the magnet, shifted by 73 pitches from each other. , a transmission circuit that sends currents of the same frequency to multiple frequencies with a certain phase shift to the six coils, and a transmission circuit that delays the received signals of the six coils at each frequency according to the transmission phase shift. Because it is equipped with a receiving circuit for receiving data over and over
The present invention is extremely useful industrially because it provides an EMAT that can generate ultrasonic waves of multiple frequencies with one EMAT and therefore does not require replacing the EMAT depending on the characteristics of the defect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明電磁超音波トランスデユーサ−
装置を縦波斜角EMATに適用した一実施例を示すもの
で、第1図はEMAT本体を示し、同図(A)は正面図
、同図(B)は底面図、第2図はEMAT装置全体の系
統図、第3図は同上のコイルに流す電流の波形図、第4
図は同上の斜角入射メカニズムの説明図、第5図は横波
用EMATの底面図である。 第6図は従来の縦波斜角E M A Tを示し、同図(
A)は正面図、同図CB)は底面図、第7図は同上の動
作説明図である。 1・・・磁石、2・・・捕獲、3a、3b、3c・・・
送信コイル、3a、3b’、3c’・・・受信コイ乞4
a、4b、4c・・・送信器、5・・・送信コントロー
ラー、6 a 、 6 b 、 6 C・・・アンプ、
7a。 7b、7c・・・遅延回路、8・・・加算回路、9・・
・表示器。 復代理人 弁理士 塚 本 正 文 第1図 (A) CB) 第2図 第3図 第4図 第5図 第6図
Figures 1 to 4 show the electromagnetic ultrasonic transducer of the present invention.
This shows an example in which the device is applied to a longitudinal wave oblique EMAT. Figure 1 shows the main body of the EMAT, Figure (A) is a front view, Figure (B) is a bottom view, and Figure 2 is the EMAT. A system diagram of the entire device, Figure 3 is a waveform diagram of the current flowing through the same coil as above, and Figure 4 is a diagram of the current flowing through the same coil.
The figure is an explanatory diagram of the oblique incidence mechanism same as above, and FIG. 5 is a bottom view of the EMAT for transverse waves. Fig. 6 shows the conventional longitudinal wave oblique angle E M A T, and the same figure (
A) is a front view, CB) is a bottom view, and FIG. 7 is an explanatory diagram of the same operation. 1...Magnet, 2...Capture, 3a, 3b, 3c...
Transmitting coils, 3a, 3b', 3c'...Receiving coil 4
a, 4b, 4c...transmitter, 5...transmission controller, 6a, 6b, 6C...amplifier,
7a. 7b, 7c...delay circuit, 8...addition circuit, 9...
·display. Sub-Agent Patent Attorney Masa Tsukamoto Figure 1 (A) CB) Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 被検面に対し平行又は直角方向の磁界を発 生する磁石及び同磁石表面に互いに1/3ピッチずつず
らせて蛇行配置した3本のコイルからなる電磁超音波ト
ランスデューサーと、上記3本のコイルに一定位相ずら
せて同一周波数の電流を複数の周波数について送給する
送信回路と、上記3本のコイルの受信信号を上記各周波
数についてそれぞれの送信位相ずれに応じた遅延をかけ
て受信する受信回路とを具えたことを特徴とする電磁超
音波トランスデューサー装置。
[Scope of Claims] An electromagnetic ultrasonic transducer consisting of a magnet that generates a magnetic field in a direction parallel or perpendicular to a surface to be inspected, and three coils arranged in a meandering manner on the surface of the magnet, shifted by 1/3 pitch from each other; A transmission circuit that sends currents of the same frequency to multiple frequencies with a certain phase shift to the three coils, and a transmission circuit that delays the received signals of the three coils according to the transmission phase shift for each frequency. An electromagnetic ultrasonic transducer device comprising: a receiving circuit for receiving signals.
JP61286462A 1986-12-01 1986-12-01 Electromagnetic-ultrasonic transducer apparatus Pending JPS63139250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61286462A JPS63139250A (en) 1986-12-01 1986-12-01 Electromagnetic-ultrasonic transducer apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61286462A JPS63139250A (en) 1986-12-01 1986-12-01 Electromagnetic-ultrasonic transducer apparatus

Publications (1)

Publication Number Publication Date
JPS63139250A true JPS63139250A (en) 1988-06-11

Family

ID=17704703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61286462A Pending JPS63139250A (en) 1986-12-01 1986-12-01 Electromagnetic-ultrasonic transducer apparatus

Country Status (1)

Country Link
JP (1) JPS63139250A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220972A (en) * 2010-04-14 2011-11-04 Kyushu Electric Power Co Inc Electromagnetic ultrasonic sensor
JP2012506540A (en) * 2008-10-24 2012-03-15 インスティトゥート ドクター フェルスター ゲーエムベーハー ウント コー カーゲー Electromagnetic acoustic transducer and ultrasonic inspection system having the electromagnetic acoustic transducer
JP2014077716A (en) * 2012-10-11 2014-05-01 Jfe Steel Corp Method and device for transmitting/receiving electromagnetic ultrasonic wave
JP2016121949A (en) * 2014-12-25 2016-07-07 株式会社神戸製鋼所 Electromagnetic ultrasonic sensor
WO2021255114A1 (en) * 2020-06-18 2021-12-23 Rosen Swiss Ag Method for non-destructively testing objects, in particular planar objects, made of a fibre-reinforced composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506540A (en) * 2008-10-24 2012-03-15 インスティトゥート ドクター フェルスター ゲーエムベーハー ウント コー カーゲー Electromagnetic acoustic transducer and ultrasonic inspection system having the electromagnetic acoustic transducer
JP2011220972A (en) * 2010-04-14 2011-11-04 Kyushu Electric Power Co Inc Electromagnetic ultrasonic sensor
JP2014077716A (en) * 2012-10-11 2014-05-01 Jfe Steel Corp Method and device for transmitting/receiving electromagnetic ultrasonic wave
JP2016121949A (en) * 2014-12-25 2016-07-07 株式会社神戸製鋼所 Electromagnetic ultrasonic sensor
WO2021255114A1 (en) * 2020-06-18 2021-12-23 Rosen Swiss Ag Method for non-destructively testing objects, in particular planar objects, made of a fibre-reinforced composite material

Similar Documents

Publication Publication Date Title
Li et al. Implementing guided wave mode control by use of a phased transducer array
EP0005071A2 (en) Probe for electronic scanning type ultrasonic diagnostic apparatus
Dias An experimental investigation of the cross-coupling between elements of an acoustic imaging array transducer
JPS63139250A (en) Electromagnetic-ultrasonic transducer apparatus
US20060173341A1 (en) Electromagnetic ultrasound converter
JP4803728B2 (en) Ultrasonic phased array transducer
JP6463962B2 (en) Ultrasonic flaw detection system and inspection method
JP2007127561A (en) Ultrasonic transducer
JP3958880B2 (en) Ultrasonic transducer and ultrasonic detection method
JP4968847B2 (en) Ultrasonic phased array transducer
EP0455970B1 (en) Acoustic image signal delay
Lugovtsova et al. Characterization of a Flexible Piezopolymer-Based Interdigital Transducer for Selective Excitation of Ultrasonic Guided Waves
US20040244490A1 (en) Method and apparaus for measuring acoustic properties of materials to determine other physical propertiesfield of the invention
Kubrusly et al. Measurement of plate thickness based on the optimal unidirectional generation of ultrasonic waves using dual electromagnetic acoustic transducer
JP3341824B2 (en) Electronic scanning ultrasonic flaw detector
JP2017069662A (en) Piezoelectric element substrate, piezoelectric module, ultrasonic module and ultrasonic device
JP5207335B2 (en) Ultrasonic phased array transducer
JPS5934176A (en) Phased array vibrator driving system
JPS58132657A (en) Electromagnetic ultrasonic flaw detector for slender pipe
JP2894934B2 (en) Ultrasonic receiver
JPS5824785Y2 (en) Array-shaped ultrasonic probe
JPS6228862B2 (en)
JPS5823904B2 (en) Directional ultrasound transducer
JPH0251149B2 (en)
JPS6193951A (en) Ultrasonic probe and its production