JP4791011B2 - Ultrasonic transmitter, ultrasonic transmitter and receiver, and detector using the same - Google Patents

Ultrasonic transmitter, ultrasonic transmitter and receiver, and detector using the same

Info

Publication number
JP4791011B2
JP4791011B2 JP2004197025A JP2004197025A JP4791011B2 JP 4791011 B2 JP4791011 B2 JP 4791011B2 JP 2004197025 A JP2004197025 A JP 2004197025A JP 2004197025 A JP2004197025 A JP 2004197025A JP 4791011 B2 JP4791011 B2 JP 4791011B2
Authority
JP
Japan
Prior art keywords
channel
vibrator
rad
group
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004197025A
Other languages
Japanese (ja)
Other versions
JP2006017629A (en
Inventor
健一 渡辺
裕士 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2004197025A priority Critical patent/JP4791011B2/en
Publication of JP2006017629A publication Critical patent/JP2006017629A/en
Application granted granted Critical
Publication of JP4791011B2 publication Critical patent/JP4791011B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

この発明は、所定探知領域内の所定方向に指向性を有する超音波信号の送信ビームを形成して探知領域内に送信し、探知領域内の物標からの反射信号を受信して受信ビームを形成する超音波送受波器、およびこの超音波送受波器を備え、探知領域内の物標の探知を行う探知装置に関するものである。   In the present invention, a transmission beam of an ultrasonic signal having directivity in a predetermined direction within a predetermined detection area is formed and transmitted to the detection area, a reflected signal from a target in the detection area is received, and a reception beam is received. The present invention relates to an ultrasonic transducer to be formed, and a detection device that includes the ultrasonic transducer and detects a target in a detection area.

従来、潮流計、ドップラーソナー、および多方向魚群探知機では、自船に対して複数方向を探知するため、複数方向にペンシルビームを形成する超音波送受波器を用いている。 このような従来の超音波送受波器としては、観測方位の数に対応した複数の平板振動子を探知しようとする観測方位に傾斜させて配列した超音波送受波器や、複数の振動子を円筒形状や球形状に配列形成したフェーズドアレイ型超音波送受波器等が考案されている。しかしながら、平板振動子を用いた超音波送受波器では、送受波器自体が大きくなるとともに、ビーム方向を可変することができない。また、フェーズドアレイ型超音波送受波器では、送受波器自体は小さくなるが振動子毎に送受波回路を必要とするため、送受信回路が複雑になるとともに回路規模が大きく、コストが高くなってしまう。   Conventionally, tidal current meters, Doppler sonars, and multidirectional fish finders use ultrasonic transducers that form pencil beams in multiple directions in order to detect multiple directions with respect to the ship. As such a conventional ultrasonic transducer, an ultrasonic transducer or a plurality of transducers arranged in a tilted manner in the observation direction to be detected is detected, such as a plurality of flat plate transducers corresponding to the number of observation directions. Phased array type ultrasonic transducers arranged in a cylindrical or spherical shape have been devised. However, in an ultrasonic transducer using a flat plate vibrator, the transducer itself becomes large and the beam direction cannot be varied. Moreover, in a phased array type ultrasonic transducer, the transducer itself is small, but a transducer circuit is required for each transducer. Therefore, the transceiver circuit is complicated, the circuit scale is large, and the cost is increased. End up.

これらの問題を解決するため、振動子を特定直線方向に配列形成し、これら振動子を駆動する信号を制御することで、所定方位にビームを形成する送受波器が考案されているが、振動子の配列方向を含む垂直面の方向にしかビームを形成することができない。このため、振動子を2次元に配列形成して、これら振動子の駆動信号を制御することで複数方位にビームを形成する超音波送受波器が考案されている(例えば、特許文献1参照。)。
特開2000−147095公報
In order to solve these problems, transducers have been devised that form transducers in a specific direction by arranging transducers in a specific linear direction and controlling the signals that drive these transducers. A beam can be formed only in the direction of the vertical plane including the arrangement direction of the children. For this reason, an ultrasonic transducer has been devised in which transducers are two-dimensionally formed and beams are formed in a plurality of directions by controlling drive signals of these transducers (see, for example, Patent Document 1). ).
JP 2000-147095 A

しかしながら、特許文献1に記載された超音波送受波器では、水平方向に角度π/3ずつずれた6方向、例えば、船首方向、右舷前方、右舷後方、船尾方向、左舷後方、左舷前方の探知を行うのに、送信時に2チャンネル、受信時に12チャンネルが必要となる。すなわち、少なくとも14チャンネル分の配線パターンが必要となる。このため、送受信回路基板のパターンが複雑になり、平板状アレイ自体は小さくても送受信回路の回路規模が大きくなってしまい、装置を小型化する場合に問題となる。また、12チャンネル分の信号を処理して6方向を探知するため、信号処理が複雑になってしまう。   However, in the ultrasonic transmitter / receiver described in Patent Document 1, detection in six directions shifted by an angle π / 3 in the horizontal direction, for example, bow direction, starboard front, starboard rear, stern direction, port rear, port front To do this, 2 channels are required for transmission and 12 channels are required for reception. That is, a wiring pattern for at least 14 channels is required. For this reason, the pattern of the transmission / reception circuit board becomes complicated, and even if the flat array itself is small, the circuit scale of the transmission / reception circuit becomes large, which becomes a problem when the apparatus is downsized. In addition, since signals for 12 channels are processed to detect six directions, signal processing becomes complicated.

この発明の目的は、さらに少ないチャンネル構成で、所定複数方向の送信ビームおよび受信ビームを形成し、簡素な構造で小型化の超音波送受波器を構成すること、およびこの超音波送受波器を用いて小型の探知装置を構成することにある。   An object of the present invention is to form a transmission beam and a reception beam in a plurality of predetermined directions with a smaller number of channel configurations, to form a miniaturized ultrasonic transducer with a simple structure, and to provide this ultrasonic transducer It is intended to constitute a small detection device.

この発明の超音波送波器は、それぞれに複数の振動子を配列した9チャンネルの振動子アレイからなり、全ての振動子が正三角形格子状に配列形成されている平面振動子アレイであって、
前記振動子アレイは、隣り合う振動子の中心間距離が長さ(2/3 1/2 )dであり、
第1チャンネルの振動子、第2チャンネルの振動子、および第3チャンネルの振動子を各振動子の中心間距離を長さ(2/3 1/2 )dとした正三角形状に隣接させてなる第1グループと、第4チャンネルの振動子、第5チャンネルの振動子、および第6チャンネルの振動子を各振動子の中心間距離を長さ(2/3 1/2 )dとした正三角形状に隣接させてなる第2グループと、第7チャンネルの振動子、第8チャンネルの振動子、および第9チャンネルの振動子を各振動子の中心間距離を長さ(2/3 1/2 )dとした正三角形状に隣接させてなる第3グループとが構成され、
前記第1チャンネルの振動子に対する前記第2、第3チャンネルの振動子の位置・方位と、前記第4チャンネルの振動子に対する前記第5、第6チャンネルの振動子の位置・方位と、前記第7チャンネルの振動子に対する前記第8、第9チャンネルの振動子の位置・方位とが一致する関係にあり、
前記第1グループ、第2グループ、および第3グループを各グループの中心間距離を長さ2dとした正三角形状で構成するパターンで繰り返してなる平面振動子アレイと、
該平面振動子アレイの各チャンネルの振動子に所定の位相関係を有する送信用駆動信号を与えることで、前記平面振動子アレイの振動子配列面に垂直な方向の送信ビーム、または、該垂直な方向の送信ビームに対して放射状に前記振動子配列面に投射した角がπ/3となる6方向の送信ビーム、または、前記垂直な方向の送信ビームに対して放射状に前記振動子配列面に投影した角が2π/3となる3方向の送信ビームとを形成する送信ビーム形成手段とを備えたことを特徴としている。
Ultrasonic transmitters of the invention consists of nine channels of the transducer array in which a plurality of transducers, each a plan transducer array in which all the transducers are arranged and formed in a regular triangle lattice pattern ,
In the transducer array, the distance between the centers of adjacent transducers is a length (2/3 1/2 ) d,
The first channel vibrator, the second channel vibrator, and the third channel vibrator are adjacent to each other in the shape of an equilateral triangle having a distance (2/3 1/2 ) d between the centers of the vibrators. The first group and the fourth channel vibrator, the fifth channel vibrator, and the sixth channel vibrator are positively set with the distance between the centers of each vibrator being a length (2/3 1/2 ) d. The second group formed adjacent to each other in a triangular shape, the seventh channel vibrator, the eighth channel vibrator, and the ninth channel vibrator are set to have a center-to-center distance of each vibrator (2/3 1 / 2 ) A third group is formed adjacent to the equilateral triangular shape d.
The position and orientation of the second and third channel vibrators with respect to the first channel vibrator, the position and orientation of the fifth and sixth channel vibrators with respect to the fourth channel vibrator, The positions and orientations of the eighth and ninth channel vibrators with respect to the seven channel vibrators are in agreement with each other,
A plane transducer array in which the first group, the second group, and the third group are repeated in a pattern that is formed in a regular triangle shape with the distance between the centers of each group being 2d;
By applying a transmission drive signal having a predetermined phase relationship to the transducer of each channel of the planar transducer array, the transmission beam in a direction perpendicular to the transducer array surface of the planar transducer array, or the vertical 6 directions of transmission beams whose angle projected onto the transducer array surface radially with respect to the transmission beam in the direction is π / 3, or radially on the transducer array surface with respect to the transmission beam in the vertical direction Transmitting beam forming means for forming a transmitting beam in three directions with a projected angle of 2π / 3 is provided.

この構成では、各チャンネルの振動子に前記位相制御を行うことで、所定の複数方向に複数の等位相面が形成されて、送信ビームが形成される。この際、互いにπ/3の角を成す6方向と、振動子面に対して垂直な1方向との7方向に等位相面を形成する送信用駆動信号を与えることで同時に7方向の送信ビームが形成される。また、前記振動子配列面に平行な面を等位相面とする送信用駆動信号と、前記6方向の内の互いの成す角が2π/3となる3方向に垂直な方向を等位相面とする送信用駆動信号と、前記6方向の内の前記3方向とは異なる互いに成す角が2π/3となる3方向に垂直な方向を等位相面とする送信用駆動信号とで、順次各チャンネルの振動子に位相制御を行うことで、異なる2つの3方向の送信ビームと、振動子面に対して垂直な1方向の送信ビームとが、個別に形成される。この際、同時に送信するビーム数が減少することで、送信信号強度が強くなる。   In this configuration, by performing the phase control on the transducer of each channel, a plurality of equiphase surfaces are formed in a predetermined plurality of directions, and a transmission beam is formed. At this time, a transmission beam for transmission in seven directions is simultaneously provided by applying transmission drive signals for forming an equiphase surface in seven directions of six directions that form an angle of π / 3 and one direction perpendicular to the transducer surface. Is formed. Further, a transmission drive signal having a plane parallel to the transducer array plane as an equiphase plane, and a direction perpendicular to the three directions in which the angle formed between the six directions is 2π / 3 is defined as an equiphase plane. The transmission drive signal to be transmitted and the transmission drive signal having an equiphase surface in the direction perpendicular to the three directions where the angle formed between the three directions different from the three directions out of the six directions is 2π / 3, are sequentially applied to each channel. By performing phase control on these transducers, two different transmission beams in three directions and a transmission beam in one direction perpendicular to the transducer surface are individually formed. At this time, the transmission signal intensity is increased by reducing the number of beams transmitted simultaneously.

また、この発明の超音波送波器は、具体的に、振動子アレイで、第1チャンネルの振動子、第2チャンネルの振動子、および第3チャンネルの振動子を各振動子の中心間距離を長さ(2/31/2)dとした正三角形状に隣接させてなる第1グループと、第4チャンネルの振動子、第5チャンネルの振動子、および第6チャンネルの振動子を各振動子の中心間距離を長さ(2/31/2)dとした正三角形状に隣接させてなる第2グループと、第7チャンネルの振動子、第8チャンネルの振動子、および第9チャンネルの振動子を各振動子の中心間距離を長さ(2/31/2)dとした正三角形状に隣接させてなる第3グループとが構成され、第1チャンネルの振動子に対する第2、第3チャンネルの振動子の位置・方位と、第4チャンネルの振動子に対する第5、第6チャンネルの振動子の位置・方位と、第7チャンネルの振動子に対する第8、第9チャンネルの振動子の位置・方位とが一致する関係にあり、第1グループ、第2グループ、および第3グループを各グループの中心間距離を長さ2dとした正三角形状で構成するパターンで繰り返してなる平面振動子アレイと、該平面振動子アレイの振動子に、グループ毎に位相が2π/3rad.ずつ異なる送信用駆動信号を与え、または全てのグループに同じ位相の送信用駆動信号を与える送信ビーム形成手段と、を備えたことを特徴としている。 In addition, the ultrasonic transmitter of the present invention is specifically a transducer array in which the first channel transducer, the second channel transducer, and the third channel transducer are centered between the transducers. A first group adjacent to each other in an equilateral triangle shape having a length (2/3 1/2 ) d, a fourth channel vibrator, a fifth channel vibrator, and a sixth channel vibrator. A second group adjacent to each other in an equilateral triangle having a distance between the centers of the vibrators of length (2/3 1/2 ) d, a seventh channel vibrator, an eighth channel vibrator, and a ninth A third group of channel oscillators adjacent to each other in the form of an equilateral triangle having a distance (2/3 1/2 ) d between the centers of the respective oscillators. 2. 3rd channel transducer position and orientation and 4th channel transducer The position and orientation of the fifth and sixth channel vibrators and the position and orientation of the eighth and ninth channel vibrators with respect to the seventh channel vibrator are in agreement with each other. A plane transducer array in which a group and a third group are repeated in a pattern composed of an equilateral triangle having a center-to-center distance of each group of length 2d, and the phase of each group in the transducers of the plane transducer array 2π / 3 rad. Transmission beam forming means for giving different transmission drive signals to each other, or giving transmission drive signals of the same phase to all groups.

この構成では、特定方向に垂直な方向に並ぶ第1チャンネルの振動子群の中心と、第2グループの中心と、第3グループの前記特定方向に平行な方向の間隔は振動子の中心間距離(2/31/2)dに対して間隔dとなる。この特定方向に平行な間隔dで配置されたグループに対して、グループ毎に2π/3rad.の位相差を有する送信用駆動信号を印加する。
図24は、特定方向に配列された振動子に印加される駆動信号の位相と送信ビームとの関係を示した図であり、(a)は左端の振動子101から右端の振動子104に亘り順に位相を2π/3rad.ずつずらした場合を示し、(b)は左端の振動子101から右端の振動子104に亘り順に位相を−2π/3rad.ずつずらした場合、右端の振動子104から左端の振動子101に亘り順に位相を2π/3rad.ずつずらした場合について示す。
In this configuration, the distance between the center of the transducer group of the first channel arranged in the direction perpendicular to the specific direction, the center of the second group, and the direction of the third group parallel to the specific direction is the distance between the centers of the transducers. The distance d is (2/3 1/2 ) d. For groups arranged at an interval d parallel to the specific direction, 2π / 3 rad. A transmission drive signal having a phase difference of is applied.
FIG. 24 is a diagram showing the relationship between the phase of the drive signal applied to the transducers arranged in a specific direction and the transmission beam. FIG. 24A shows the range from the leftmost transducer 101 to the rightmost transducer 104. In order, the phase is 2π / 3 rad. (B) shows the phase in the order of -2π / 3 rad. From the leftmost vibrator 101 to the rightmost vibrator 104. When the phase is shifted one by one, the phase is 2π / 3 rad. In order from the vibrator 104 at the right end to the vibrator 101 at the left end. The case of shifting each is shown.

図24に示すように、振動子を特定方向(配列方向)に対して間隔dで配置した場合、各振動子から発生する超音波の等位相面の間隔Dは、振動子の配列方向と等位相面との為す角をθとすると、
D=d・sinθ となる。
また、配列方向に隣接する振動子に2π/3rad.の位相差が設けられた場合、等位相面の間隔Dは、超音波信号の波長をλとすると、
D=λ/3 となる。
よって、 d・sinθ=λ/3 式(1)
の関係が成り立つ。
As shown in FIG. 24, when the transducers are arranged at an interval d with respect to a specific direction (arrangement direction), the interval D of the equiphase surfaces of the ultrasonic waves generated from the transducers is equal to the arrangement direction of the transducers. If the angle made with the phase plane is θ,
D = d · sin θ.
Further, 2π / 3 rad. When the phase difference is provided, the interval D between the equiphase surfaces is λ as the wavelength of the ultrasonic signal.
D = λ / 3.
Therefore, d · sin θ = λ / 3 Formula (1)
The relationship holds.

このため、所望の方向に送信ビームを形成させるには、前記成り立つように、超音波信号の周波数(波長)と振動子の間隔dとを設定すればよい。
すなわち、所望周波数の送信駆動信号を前記の位相関係となるように各振動子に印加することで、特定方向に平行で水平面に対して角度θの方向を進行方向とする送信ビームを形成することができる。そして、位相を進ませる方向を変えることで、送信ビームの特定方向に対する進行方向をπrad.(180°)変える、すなわち逆方向に変えることができる。
For this reason, in order to form a transmission beam in a desired direction, the frequency (wavelength) of the ultrasonic signal and the interval d between the transducers may be set as described above.
That is, by applying a transmission drive signal of a desired frequency to each transducer so as to have the above phase relationship, a transmission beam is formed that is parallel to a specific direction and has a direction of an angle θ with respect to a horizontal plane as a traveling direction. Can do. Then, by changing the direction in which the phase is advanced, the traveling direction of the transmission beam with respect to the specific direction is changed to π rad. It can be changed (180 °), ie in the opposite direction.

ここで、前述の構成では、図5に示すように、第1グループの振動子と、第2グループの振動子と、第3グループの振動子とが、それぞれの為す角を2π/3rad.とする3方向において、前述の関係、すなわち、その特定方向に沿って間隔dで配置された関係にあるので、これらの方向に平行な方向で、鉛直下方向に対して所定角を有する方向を進行方向とする送信ビームが形成される。そして、図6(a)、図7(a)に示すように、位相制御の方向(位相の進行する方向)を逆転させることで、それぞれに、図6(b)、図7(b)に示すような2π/3rad.の角度を為す3方向の送信ビームが形成され、合わせて6方向の送信ビームが形成される。さらに、全てのチャンネルの振動子に同位相の送信用駆動信号を印加することで、等位相面は鉛直方向(水平方向に垂直な方向)となりこの方向を進行方向とする送信ビームが形成される。すなわち、前述のそれぞれ3チャンネルからなる3つのグループで9チャンネルの構成により時分割で7方向の送信ビームが略同時に形成される。   Here, in the configuration described above, as shown in FIG. 5, the angle formed by the first group of transducers, the second group of transducers, and the third group of transducers is 2π / 3 rad. In the three directions, the relationship described above, that is, the relationship arranged at the interval d along the specific direction, the direction having a predetermined angle with respect to the vertical downward direction in the direction parallel to these directions. A transmission beam having a traveling direction is formed. Then, as shown in FIGS. 6 (a) and 7 (a), by reversing the direction of phase control (direction in which the phase proceeds), respectively, in FIGS. 6 (b) and 7 (b), respectively. 2π / 3 rad. A transmission beam in three directions having an angle of 5 is formed, and a transmission beam in six directions is formed in total. Furthermore, by applying a transmission drive signal having the same phase to the transducers of all channels, the equiphase surface becomes the vertical direction (direction perpendicular to the horizontal direction), and a transmission beam having this direction as the traveling direction is formed. . That is, in the above-described three groups each including three channels, transmission beams in seven directions are formed substantially simultaneously in a time division manner with a nine-channel configuration.

また、この発明の超音波送波器は、具体的に、振動子アレイで、隣り合う振動子の中心間距離が長さ(2/31/2)dであり、第1チャンネルの振動子、第2チャンネルの振動子、および第3チャンネルの振動子を各振動子の中心間距離を長さ(2/31/2)dとした正三角形状に隣接させてなる第1グループと、第4チャンネルの振動子、第5チャンネルの振動子および第6チャンネルの振動子を各振動子の中心間距離を長さ(2/31/2)dとした正三角形状に隣接させてなる第2グループと、第7チャンネルの振動子、第8チャンネルの振動子、および第9チャンネルの振動子を各振動子の中心間距離を長さ(2/31/2)dとした正三角形状に隣接させてなる第3グループとが構成され、第1チャンネルの振動子に対する第2、第3チャンネルの振動子の位置・方位と、第4チャンネルの振動子に対する第5、第6チャンネルの振動子の位置・方位と、第7チャンネルの振動子に対する第8、第9チャンネルの振動子の位置・方位とが一致する関係にあり、第1グループ、第2グループ、および第3グループを各グループの中心間距離を長さ2dとした正三角形状で構成するパターンで繰り返してなる平面振動子アレイと、第1チャンネルの振動子、第4チャンネルの振動子、第7チャンネルの振動子に同相の送信用駆動信号を与え、第2チャンネルの振動子、第5チャンネルの振動子、第8チャンネルの振動子のそれぞれに、この順で2π/3rad.ずつ位相が進む送信用駆動信号を与え、第3チャンネルの振動子、第9チャンネルの振動子、第6チャンネルの振動子のそれぞれに、この順で2π/3rad.ずつ位相が進む送信用駆動信号を与える送信ビーム形成手段と、を備えたことを特徴としている。 The ultrasonic wave transmitter according to the present invention is specifically a transducer array in which the distance between the centers of adjacent transducers is a length (2/3 1/2 ) d, and the first channel transducer A first group in which the second channel vibrator and the third channel vibrator are adjacent to each other in an equilateral triangle shape with a distance (2/3 1/2 ) d between the centers of the vibrators; The fourth channel transducer, the fifth channel transducer, and the sixth channel transducer are adjacent to each other in the shape of an equilateral triangle having a distance (2/3 1/2 ) d between the centers of the transducers. The second group, the seventh channel transducer, the eighth channel transducer, and the ninth channel transducer are equilateral triangles with the center-to-center distance of each transducer being the length (2/3 1/2 ) d. A third group is formed adjacent to the shape, and the second and third channels for the vibrator of the first channel are formed. Position and orientation of the transducer of the channel, positions and orientations of the fifth and sixth channel transducers with respect to the fourth channel transducer, and positions of the eighth and ninth channel transducers with respect to the seventh channel transducer. A planar transducer array in which the orientations coincide with each other and the first group, the second group, and the third group are repeated in a pattern that is formed in an equilateral triangle shape with the distance between the centers of each group being 2d. In-phase transmission drive signals are applied to the first channel transducer, the fourth channel transducer, and the seventh channel transducer, and the second channel transducer, the fifth channel transducer, and the eighth channel transducer In each of the vibrators, 2π / 3 rad. A transmission drive signal whose phase is advanced step by step is applied to each of the third channel transducer, the ninth channel transducer, and the sixth channel transducer in this order. Transmission beam forming means for providing a transmission drive signal whose phase advances step by step.

この構成では、第1チャンネルの振動子、第4チャンネルの振動子、および第7チャンネルの振動子が、それぞれの為す角が2π/3rad.の3方向に対して間隔2dで配置され、同位相の送信用駆動信号が印加されるので、これらのチャンネルの振動子から形成される送信ビームは水平方向に垂直な方向に向く。また、第2チャンネルの振動子、第5チャンネルの振動子、および第8チャンネルの振動子が水平面のそれぞれの為す角が2π/3rad.の3方向に対して間隔2dで配置され、位相差2π/3rad.ずつの送信用駆動信号が印加されるので、それぞれの為す角が2π/3rad.となる3方向の送信ビームが構成される。また、第3チャンネルの振動子、第6チャンネルの振動子、および第9チャンネルの振動子がそれぞれの為す角が2π/3rad.の3方向に対して間隔2dで配置され、位相差2π/3rad.ずつの送信用駆動信号が印加されるので、それぞれの為す角が2π/3rad.となる、前記第2、第5、第8チャンネルの振動子から形成される送信ビームとは異なる3方向の送信ビームが構成される。すなわち、7方向同時に送信ビームが形成される。   In this configuration, the first channel vibrator, the fourth channel vibrator, and the seventh channel vibrator each have an angle of 2π / 3 rad. Since the transmission drive signals having the same phase are applied to the three directions, the transmission beams formed from the transducers of these channels are directed in the direction perpendicular to the horizontal direction. Further, the angle formed by the second channel vibrator, the fifth channel vibrator, and the eighth channel vibrator on the horizontal plane is 2π / 3 rad. Are arranged at intervals of 2d with respect to the three directions, and a phase difference of 2π / 3 rad. Since each transmission drive signal is applied, the angle between them is 2π / 3 rad. A transmission beam in three directions is formed. The angle formed by the third channel vibrator, the sixth channel vibrator, and the ninth channel vibrator is 2π / 3 rad. Are arranged at intervals of 2d with respect to the three directions, and a phase difference of 2π / 3 rad. Since each transmission drive signal is applied, the angle between them is 2π / 3 rad. Thus, a transmission beam in three directions different from the transmission beam formed from the transducers of the second, fifth, and eighth channels is configured. That is, a transmission beam is formed simultaneously in seven directions.

また、この発明の超音波送受波器は、前述の超音波送波器を備え、平面振動子アレイの第1の特定方向に垂直な方向に並ぶ3つのチャンネルからなる、第1の特定方向に平行な方向に隣接する3つのグループに対して、第1の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第1の位相制御と、第1の特定方向に対して所定回転方向に2π/3rad.の角度を為す第2の特定方向に垂直な方向に並ぶ3つのチャンネルからなる、第2の特定方向に平行な方向に隣接する3つのグループに対して、第2の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第2の位相制御と、第1の特定方向と前記第2の特定方向とのそれぞれに対して2π/3rad.の角度を為す第3の特定方向に垂直な方向に並ぶ3つのチャンネルからなる、第3の特定方向に平行な方向に隣接する3つのグループに対して、第3の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第3の位相制御と、を同時に行う受信ビーム形成手段を備えたことを特徴としている。   In addition, an ultrasonic transducer of the present invention includes the above-described ultrasonic transducer, and includes three channels arranged in a direction perpendicular to the first specific direction of the planar transducer array in a first specific direction. With respect to three groups adjacent in the parallel direction, the phase of the received signal of each group is sequentially 2π / 3 rad. The first phase control to be advanced step by step, and 2π / 3 rad. In a predetermined rotation direction with respect to the first specific direction. The three groups adjacent to each other in the direction parallel to the second specific direction, which are composed of three channels arranged in a direction perpendicular to the second specific direction, are arranged in order along the second specific direction. The phase of the received signal of the group of 2π / 3 rad. Second phase control to be advanced step by step, and 2π / 3 rad. For each of the first specific direction and the second specific direction. For three groups adjacent to each other in a direction parallel to the third specific direction, each of which is composed of three channels arranged in a direction perpendicular to the third specific direction at an angle of, respectively, along the third specific direction. The phase of the received signal of the group of 2π / 3 rad. It is characterized in that a reception beam forming means for simultaneously performing the third phase control to be advanced step by step is provided.

この構成では、特定方向に垂直な方向にそれぞれ3つのチャンネルがならぶ3列のグループの位相を2π/3rad.ずつずらす制御を行うことで、各チャンネルの振動子が受信した信号の前記特定方向の成分が抽出されて、前記特定方向の受信ビームが形成される。この特定方向は、振動子の配列からそれぞれ2π/3rad.の為す角を有する3方向に存在する。このため、各特定方向に対して、各チャンネルが受信した受信信号の位相制御を行うことで、前記3方向の受信ビームが同時に形成される。   In this configuration, the phase of a group of three rows each having three channels arranged in a direction perpendicular to a specific direction is set to 2π / 3 rad. By performing the shift control, the component in the specific direction of the signal received by the transducer of each channel is extracted, and the reception beam in the specific direction is formed. This specific direction is 2π / 3 rad. It exists in three directions with an angle between For this reason, the reception beams in the three directions are simultaneously formed by controlling the phase of the reception signal received by each channel in each specific direction.

また、この発明の超音波送受波器は、前述の超音波送波器を備え、平面振動子アレイの第1の特定方向に垂直な方向に並ぶ3つのチャンネルからなる、第1の特定方向に平行な方向に隣接する3つのグループに対して、第1の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第1の位相制御、および、第1の特定方向と逆方向の第4の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第4の位相制御と、第1の特定方向に対して所定回転方向に2π/3rad.の角度を為す第2の特定方向に垂直な方向に並ぶ3つのチャンネルからなる、第2の特定方向に平行な方向に隣接する3つのグループに対して、第2の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第2の位相制御、および、第2の特定方向と逆方向の第5の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第5の位相制御と、第1の特定方向と第2の特定方向とのそれぞれに対して2π/3rad.の角度を為す第3の特定方向に垂直な方向に並ぶ3つのチャンネルからなる、第3の特定方向に平行な方向に隣接する3つのグループに対して、第3の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第3の位相制御、および、第3の特定方向と逆方向の第6の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第6の位相制御とを、同時に行う受信ビーム形成手段を備えたことを特徴としている。   In addition, an ultrasonic transducer of the present invention includes the above-described ultrasonic transducer, and includes three channels arranged in a direction perpendicular to the first specific direction of the planar transducer array in a first specific direction. With respect to three groups adjacent in the parallel direction, the phase of the received signal of each group is sequentially 2π / 3 rad. First phase control for advancing step by step, and the phase of the received signal of each group in order along a fourth specific direction opposite to the first specific direction by 2π / 3 rad. 4th phase control to advance step by step, and 2π / 3 rad. In a predetermined rotation direction with respect to the first specific direction. The three groups adjacent to each other in the direction parallel to the second specific direction, which are composed of three channels arranged in a direction perpendicular to the second specific direction, are arranged in order along the second specific direction. The phase of the received signal of the group of 2π / 3 rad. Second phase control for advancing step by step, and the phase of the received signal of each group in order along the fifth specific direction opposite to the second specific direction is 2π / 3 rad. For each of the fifth specific phase and the first specific direction and the second specific direction. For three groups adjacent to each other in a direction parallel to the third specific direction, each of which is composed of three channels arranged in a direction perpendicular to the third specific direction at an angle of, respectively, along the third specific direction. The phase of the received signal of the group of 2π / 3 rad. Third phase control for advancing step by step, and the phase of the received signal of each group in order along the sixth specific direction opposite to the third specific direction is 2π / 3 rad. A reception beam forming means for simultaneously performing the sixth phase control to be advanced step by step is provided.

この構成では、特定方向に垂直な方向にそれぞれ3つのチャンネルがならぶ3列のグループの位相を2π/3rad.ずつずらす制御を行うことで、各チャンネルの振動子が受信した信号の前記特定方向の成分が抽出されて、前記特定方向の受信ビームが形成される。この特定方向は、振動子の配列からそれぞれπ/3rad.の為す角を有する6方向、言い換えれば、互いに角度πrad.(逆方向)の関係にある2つの特定方向がそれぞれ為す角2π/3rad.で3組、存在する。このため、各特定方向に対して、各チャンネルが受信した受信信号の位相制御を行うことで、前記6方向の受信ビームが同時に形成される。   In this configuration, the phase of a group of three rows each having three channels arranged in a direction perpendicular to a specific direction is set to 2π / 3 rad. By performing the shift control, the component in the specific direction of the signal received by the transducer of each channel is extracted, and the reception beam in the specific direction is formed. This specific direction is determined by π / 3 rad. 6 directions having an angle formed by each other, in other words, the angle πrad. The angle 2π / 3 rad. Which two specific directions which have a relationship of (reverse direction) make, respectively. There are three pairs. Therefore, the reception beams in the six directions are simultaneously formed by controlling the phase of the reception signal received by each channel in each specific direction.

また、この発明の超音波送受波器は、全てのチャンネルの受信信号を同位相にする同位相制御を備え、該同位相制御も同時に行うことを特徴としている。   In addition, the ultrasonic transducer of the present invention is characterized by having in-phase control for making the received signals of all the channels the same phase, and performing the in-phase control at the same time.

この構成では、各チャンネルが受信した受信信号を同位相に位相制御することで、水平面(前記6方向を有する面)に対して垂直な方向の受信ビームが同時に形成される。   In this configuration, the reception signals received by the respective channels are phase-controlled in the same phase, so that reception beams in the direction perpendicular to the horizontal plane (the plane having the six directions) are simultaneously formed.

また、この発明の超音波送受波器の受信ビーム形成手段は、第1の位相制御、第2の位相制御、および第3の位相制御を同時に行う第1受信制御と、第4の位相制御、第5の位相制御、および第6の位相制御とを同時に行う第2受信制御とを備え、少なくとも第1受信制御、第2受信制御のいずれかを実行することを特徴としている。   The reception beam forming means of the ultrasonic transducer of the present invention includes a first reception control for simultaneously performing the first phase control, the second phase control, and the third phase control, and a fourth phase control. And a second reception control for simultaneously performing the fifth phase control and the sixth phase control, wherein at least one of the first reception control and the second reception control is executed.

この構成では、受信ビームの方向が互いに2π/3の角を成す3方向になるので、受信ビームのデータ量が削減されて、データ処理に係る時間が削減される。すなわち、受信ビームのデータが簡素化されデータ処理が容易となり、高速化される。   In this configuration, since the directions of the reception beams are three directions that form an angle of 2π / 3, the amount of data of the reception beams is reduced, and the time for data processing is reduced. That is, the received beam data is simplified, data processing is facilitated, and the speed is increased.

また、この発明の探知装置は、前述の超音波送受波器と、送信駆動信号を制御するとともに、受信信号からなる受信ビームに基づき探知データを生成する制御手段とを備えたことを特徴としている。   In addition, the detection device of the present invention is characterized by comprising the above-described ultrasonic transducer and a control means for controlling the transmission drive signal and generating detection data based on the reception beam composed of the reception signal. .

この構成では、前述の超音波送受波器を用いることで、9チャンネルからなる振動子を制御して、送信時には時分割で略同時または同時に鉛直下方向に対して所定角θの、送信ビームを為す角π/3rad.で6方向に形成するとともに、鉛直下方向の送信ビームを形成して、計7方向の送信ビームを形成する。また、受信時には送信ビームの方向に対応して前記7方向に同時に受信ビームを形成して、周囲の状況を探知する。   In this configuration, the above-described ultrasonic transducer is used to control a 9-channel transducer, and at the time of transmission, a transmission beam having a predetermined angle θ with respect to the vertical downward direction is substantially simultaneously or simultaneously in a time division manner. Angle π / 3 rad. Are formed in 6 directions, and a vertically downward transmission beam is formed to form a total of 7 transmission beams. At the time of reception, a reception beam is simultaneously formed in the seven directions corresponding to the direction of the transmission beam, and the surrounding situation is detected.

この発明によれば、簡素な構造でありながら、7方向に同時に送受信が可能な超音波送受波器を構成することができる。   According to the present invention, it is possible to configure an ultrasonic transducer that can transmit and receive simultaneously in seven directions while having a simple structure.

また、この発明によれば、前述の7方向の内、同時送信方向を3方向とすることで、送信強度の強い超音波送受波器を構成することができる。   Further, according to the present invention, an ultrasonic wave transmitter / receiver with high transmission intensity can be configured by setting the simultaneous transmission direction to three directions among the above-mentioned seven directions.

本発明の実施形態に係る超音波送受波器およびこれを備えた探知装置について図を参照して説明する。なお、本説明では、探知装置として、水中を探知する水中探知装置を例に説明する。
図1は本発明の超音波送受波器1を備えた探知装置の概略構成を示すブロック図である。
図1に示すように、本発明の探知装置は、水中の所定領域に対して所定の指向性を有する超音波信号の送信ビームを形成して探知領域内を送信し、領域内の物標に反射した反射信号を受信して、受信ビームを形成する超音波送受波器1と、該超音波送受波器1に駆動制御信号を与える制御回路6と、各方位の受信データから探知画像データを生成して表示器8に出力する画像処理回路7(本発明の「探知データ生成手段」に相当。)と、帯域通過フィルタ(BPF)70と、表示画像データに基づき画像を表示する表示器8とから構成されている。
An ultrasonic transducer according to an embodiment of the present invention and a detection apparatus including the ultrasonic transducer will be described with reference to the drawings. In this description, an underwater detection device that detects underwater will be described as an example of the detection device.
FIG. 1 is a block diagram showing a schematic configuration of a detection apparatus provided with an ultrasonic transducer 1 of the present invention.
As shown in FIG. 1, the detection device of the present invention forms a transmission beam of an ultrasonic signal having a predetermined directivity with respect to a predetermined area in water, transmits the detection area, and transmits it to a target in the area. An ultrasonic transducer 1 that receives the reflected signal reflected to form a reception beam, a control circuit 6 that provides a drive control signal to the ultrasonic transducer 1, and detection image data from the received data in each direction. An image processing circuit 7 (corresponding to “detection data generating means” of the present invention) that is generated and output to the display 8, a band-pass filter (BPF) 70, and a display 8 that displays an image based on the display image data. It consists of and.

超音波送受波器1は、水平面に平行な面を主面とし、船底に設置された、9チャンネルからなる平面振動子アレイ2と、平面振動アレイ2の送受信を切り替える送受波切替器3と、平面振動子アレイ2の各振動子に与える送信用駆動信号を生成する送信駆動信号生成回路4と、平面振動子アレイ2の各振動子からの受信信号に基づき受信ビームを形成し、各方位の受信データを出力する受信ビーム形成回路5とを備える。そして、送信駆動信号生成回路4と送受波切替器3とは送信アンプ40を介して3チャンネルのバスラインで接続されており、送受波切替器3と平面振動子アレイ2とは、平面振動子アレイ2のチャンネル数に相当する9チャンネルのバスラインで接続され、送受波切替器3と受信ビーム形成回路5とは受信アンプ50を介して9チャンネルのバスラインで接続されている。送受波切替器3は平面振動子アレイ2の振動子で超音波信号を送信するか、反射信号を受信するかを制御回路6から与えられるタイミング信号に基づいて切り替え、送信時には入力される3チャンネルの送信駆動信号をそれぞれ平面振動子アレイ2の9チャンネルの振動子の設定されたチャンネルに出力する。一方、送受波切替器3は平面振動子アレイ2からの9チャンネルの受信信号をそのまま受信ビーム形成回路5に出力する。なお、送信駆動信号生成回路4、送受波切替器3間のバスラインの3チャンネルと送受波切替器3、平面振動子アレイ2間のバスラインの9チャンネルとは予め対応関係が設定されており、同様に、平面振動子アレイ2、送受波切替器3間のバスラインの9チャンネルと、送受波切替器3、受信ビーム形成回路5間のバスラインの9チャンネルとも予め対応関係が設定されている。送信駆動信号生成回路4は制御回路6から入力された駆動制御信号に基づき、所望の指向性を有する送信ビームが形成されるように、各振動子に与える駆動信号を生成し、後述する位相制御等を行って送受波切替器3を介して平面振動子アレイ2を構成する各振動子に出力する。受信ビーム形成回路5は、平面振動子アレイ2を構成する各振動子が受信した反射信号を送受波切替器3を介して入力し、後述する位相制御処理を行うことで、前記送信ビームに対応する所定の指向性を有する受信ビームを形成して出力する。受信ビーム形成回路5から出力された受信ビームは、帯域通過フィルタ(BPF)70を介して画像処理回路7に入力される。ここで、BPF70は、受信ビームの所定周波数帯域成分のみを通過させる。これにより、受信ビームは所定のティルト角を有する。言い換えれば、所定のティルト角の受信ビームが形成される。画像処理回路7は、この所定ティルト角の受信ビームに基づいて、表示器8の仕様に応じた形式の探知画像データを生成して、表示器8に出力する。
ここで、送信駆動信号生成回路4、送信アンプ40、および送受波切替器3が本発明の「送信ビーム形成手段」に相当し、制御回路6、送信駆動信号生成回路4、送信アンプ40、送受波切替器3、および平面振動子アレイ2が本発明の「超音波送波器」に相当する。
The ultrasonic transmitter / receiver 1 has a plane parallel to a horizontal plane as a main surface and is installed on the ship bottom, a 9-channel planar transducer array 2, a transmission / reception switch 3 that switches between transmission and reception of the planar vibration array 2, A transmission drive signal generation circuit 4 for generating a transmission drive signal to be given to each transducer of the planar transducer array 2 and a reception beam are formed on the basis of reception signals from each transducer of the planar transducer array 2, and each direction And a reception beam forming circuit 5 for outputting reception data. The transmission drive signal generation circuit 4 and the transmission / reception wave switching unit 3 are connected by a three-channel bus line via the transmission amplifier 40, and the transmission / reception wave switching unit 3 and the planar transducer array 2 are planar transducers. The 9-channel bus lines corresponding to the number of channels of the array 2 are connected, and the transmission / reception switch 3 and the reception beam forming circuit 5 are connected via the reception amplifier 50 via the 9-channel bus lines. The transmission / reception switching device 3 switches between transmitting an ultrasonic signal by the transducer of the planar transducer array 2 or receiving a reflected signal based on a timing signal given from the control circuit 6, and is input to the three channels. Are transmitted to the set channels of the 9-channel transducers of the planar transducer array 2, respectively. On the other hand, the transmission / reception switch 3 outputs the reception signals of 9 channels from the planar transducer array 2 to the reception beam forming circuit 5 as they are. A correspondence relationship is set in advance between the three channels of the bus line between the transmission drive signal generation circuit 4 and the transmission / reception switch 3 and the nine channels of the bus line between the transmission / reception switch 3 and the plane transducer array 2. Similarly, a correspondence relationship is set in advance for the nine channels of the bus line between the planar transducer array 2 and the transmission / reception switch 3 and the nine channels of the bus line between the transmission / reception switch 3 and the reception beam forming circuit 5. Yes. The transmission drive signal generation circuit 4 generates a drive signal to be given to each transducer based on the drive control signal input from the control circuit 6 so that a transmission beam having a desired directivity is formed, and phase control to be described later And the like are outputted to each transducer constituting the planar transducer array 2 via the transmission / reception switch 3. The reception beam forming circuit 5 inputs the reflected signal received by each transducer constituting the planar transducer array 2 via the transmission / reception switch 3 and performs phase control processing described later to cope with the transmission beam. A reception beam having a predetermined directivity is formed and output. The reception beam output from the reception beam forming circuit 5 is input to the image processing circuit 7 via a band pass filter (BPF) 70. Here, the BPF 70 passes only a predetermined frequency band component of the reception beam. Thereby, the reception beam has a predetermined tilt angle. In other words, a reception beam having a predetermined tilt angle is formed. The image processing circuit 7 generates detection image data in a format according to the specification of the display 8 based on the received beam having the predetermined tilt angle, and outputs the detected image data to the display 8.
Here, the transmission drive signal generation circuit 4, the transmission amplifier 40, and the transmission / reception wave switch 3 correspond to the “transmission beam forming means” of the present invention, and the control circuit 6, the transmission drive signal generation circuit 4, the transmission amplifier 40, the transmission / reception unit The wave switch 3 and the planar transducer array 2 correspond to the “ultrasonic wave transmitter” of the present invention.

次に、平面振動子アレイ2の構成について、図2、図3、図4を参照して説明する。
図2は平面振動子アレイ2の構成を示し、(a)は超音波信号発信面の平面図(水中から船底方向をみた平面図)であり、(b)は(a)におけるA−A’断面図である。そして、振動子を表す円内の数字はチャンネル番号を示す。
また、図3は図2に示した平面振動子アレイ2の各振動子の位置関係を示した図であり、(a)は平面図、(b)はその部分拡大平面図である。
また、図4は図2に示した平面振動子アレイ2の配線パターンを示した構成図である。 なお、図3(a)、図4ではチャンネル番号を省略しているが、振動子の配置は図2に示す配置と同じである。
Next, the configuration of the planar transducer array 2 will be described with reference to FIGS. 2, 3, and 4. FIG.
2A and 2B show the configuration of the planar transducer array 2, wherein FIG. 2A is a plan view of the ultrasonic signal transmission surface (plan view of the bottom of the ship viewed from the water), and FIG. 2B is AA ′ in FIG. It is sectional drawing. A number in a circle representing the vibrator indicates a channel number.
3 is a diagram showing the positional relationship of each transducer of the planar transducer array 2 shown in FIG. 2, wherein (a) is a plan view and (b) is a partially enlarged plan view thereof.
4 is a configuration diagram showing a wiring pattern of the planar vibrator array 2 shown in FIG. Although channel numbers are omitted in FIGS. 3A and 4, the arrangement of the vibrators is the same as that shown in FIG.

図に示すように、平面振動子アレイ2は、船首−船尾方向に垂直な辺とこの辺に対して為す角がπ/3rad.となる二辺とからなる正三角形を基本構成とする正三角形格子構造(図3(a)参照。)であり、この正三角形の頂点位置に振動子100(100a〜100c、100e〜100j)が設置されている。正三角形の一辺の長さ、すなわち、振動子100における中心間距離(2/31/2)dおよび振動子列間の間隔dは、前述の式(1)に基づいて、送信信号の波長λと、鉛直下方向と探知方向との為す角であるティルト角θとにより予め設定されている。例えば、送信信号の波長λを15mm(周波数を100kHz)にし、ティルト角θをπ/6rad.(30°)にしたい場合には、振動子列間の間隔dを10mmに設定している。 As shown in the figure, the plane transducer array 2 has a side perpendicular to the bow-stern direction and an angle formed with respect to this side by π / 3 rad. Is an equilateral triangle lattice structure (see FIG. 3A) having an equilateral triangle having two sides as a basic configuration, and the vibrator 100 (100a to 100c, 100e to 100j) is located at the apex position of the equilateral triangle. is set up. The length of one side of the equilateral triangle, that is, the center-to-center distance (2/3 1/2 ) d in the transducer 100 and the spacing d between the transducer arrays are based on the above-described equation (1). It is set in advance by λ and a tilt angle θ which is an angle formed by the vertically downward direction and the detection direction. For example, the wavelength λ of the transmission signal is 15 mm (frequency is 100 kHz), and the tilt angle θ is π / 6 rad. When it is desired to set (30 °), the distance d between the transducer arrays is set to 10 mm.

振動子100はそれぞれ9チャンネルに分けられており、それぞれのチャンネルの振動子100a〜100c、100e〜100jは図2、図3に示す関係に配置されている。なお、図2(a)、図3(b)では各チャンネルの代表する振動子にのみ記号を付し、他の振動子は属するチャンネル番号のみを示した。また、以下の説明では、各チャンネルに属する振動子は、属するチャンネル番号を頭に付し第nチャンネル振動子と称する(nはチャンネル番号)。   The vibrator 100 is divided into nine channels, and the vibrators 100a to 100c and 100e to 100j of the respective channels are arranged in the relationship shown in FIGS. In FIGS. 2A and 3B, symbols are given only to the transducers represented by each channel, and only the channel numbers to which the other transducers belong are shown. Further, in the following description, the transducers belonging to each channel are referred to as n-th channel transducers with the channel number to which they belong as the head (n is the channel number).

図3(b)に示すように、第1、第2、第3チャンネル振動子100a〜100cの中心をそれぞれ頂点として一辺の長さが(2/31/2)dの正三角形が形成されており、第2、第3チャンネル振動子100b,100cを結ぶ辺が船首−船尾方向に対して垂直で、この辺に対して船首側に第1チャンネル振動子100aが配置されている。第4チャンネル振動子100eは第3チャンネル振動子100cに対して第2チャンネル振動子100bと対称の位置に配置されており、第5チャンネル振動子100fは第3チャンネル振動子100cに対して第1チャンネル振動子100aと対称の位置に配置されている。第6チャンネル振動子100gは第4チャンネル振動子100eと第5チャンネル振動子100fとともに一辺の長さが(2/31/2)dの正三角形を構成する位置に配置されており、言い換えれば、第6チャンネル振動子100gは第4、第5チャンネル振動子100e,100fを結ぶ線を線対称の基準として第3チャンネル振動子100cと対称の位置に配置されている。第7チャンネル振動子100hは第6チャンネル振動子100gに対して第5チャンネル振動子100fと対称の位置に配置されており、第8チャンネル振動子100iは第6チャンネル振動子100gに対して第4チャンネル振動子100eと対称の位置に配置されている。第9チャンネル振動子100jは第7チャンネル振動子100hと第8チャンネル振動子100iとともに一辺の長さが(2/31/2)dの正三角形を構成する位置に配置されており、言い換えれば、第9チャンネル振動子100jは第7、第8チャンネル振動子100h,100iを結ぶ線を線対称の基準として第6チャンネル振動子100gと対称の位置に配置されている。また、同時に、第9チャンネル振動子100jは、第1、第2チャンネル振動子100a,100bとで一辺の長さが(2/31/2)dの正三角形を形成するとともに、第2、第4チャンネル振動子100b,100eとで一辺の長さが(2/31/2)dの正三角形を形成する位置に配置されている。そして、平面振動子アレイ2はこのような基本構成を所定パターン繰り返すことにより形成されている。 As shown in FIG. 3B, equilateral triangles having a side length of (2/3 1/2 ) d with the centers of the first, second, and third channel vibrators 100a to 100c as vertices are formed. The side connecting the second and third channel vibrators 100b and 100c is perpendicular to the bow-stern direction, and the first channel vibrator 100a is disposed on the bow side with respect to this side. The fourth channel vibrator 100e is disposed at a position symmetrical to the second channel vibrator 100b with respect to the third channel vibrator 100c, and the fifth channel vibrator 100f is first with respect to the third channel vibrator 100c. It is arranged at a position symmetrical to the channel vibrator 100a. The sixth channel vibrator 100g is arranged at a position that forms an equilateral triangle having a side length of (2/3 1/2 ) d together with the fourth channel vibrator 100e and the fifth channel vibrator 100f, in other words. The sixth channel vibrator 100g is disposed at a position symmetrical to the third channel vibrator 100c with the line connecting the fourth and fifth channel vibrators 100e and 100f as a line symmetry reference. The seventh channel vibrator 100h is disposed at a position symmetrical to the fifth channel vibrator 100f with respect to the sixth channel vibrator 100g, and the eighth channel vibrator 100i is fourth with respect to the sixth channel vibrator 100g. It is arranged at a position symmetrical to the channel vibrator 100e. The ninth channel vibrator 100j is arranged at a position that forms an equilateral triangle with a side length of (2/3 1/2 ) d together with the seventh channel vibrator 100h and the eighth channel vibrator 100i, in other words. The ninth channel vibrator 100j is arranged at a position symmetrical to the sixth channel vibrator 100g with the line connecting the seventh and eighth channel vibrators 100h and 100i as a line symmetry reference. At the same time, the ninth channel vibrator 100j forms an equilateral triangle with one side length of (2/3 1/2 ) d with the first and second channel vibrators 100a and 100b, The fourth channel vibrators 100b and 100e are arranged at positions that form an equilateral triangle having a side length of (2/3 1/2 ) d. The planar transducer array 2 is formed by repeating such a basic configuration in a predetermined pattern.

このような構成の平面振動子アレイ2は、強誘電体等からなる圧電効果を有する基板と、この基板の両面の対向する位置に形成された電極とにより形成される。例えば、図2(b)に示すように、振動子100f〜100hは圧電基板101の両面の対向する位置に電極102を配列形成することで、それぞれ形成される。このような圧電基板101は、両面の電極102間に所定電圧を印加すると基板特有の周波数で振動する。すなわち、圧電基板101の電極102で挟まれた部分が圧電振動子として機能する。これにより、図2(b)に示すように圧電基板101の両面に電極102が配列形成されることで、振動子100f〜100hを配列(アレイ化)している。なお、本説明では、圧電基板両面に対向電極を形成することにより振動子アレイを形成したが、単に絶縁基板に前記配置パターンに従い単体の振動素子を配置する構造を用いてもよい。   The planar vibrator array 2 having such a configuration is formed by a substrate having a piezoelectric effect made of a ferroelectric or the like and electrodes formed at opposing positions on both surfaces of the substrate. For example, as shown in FIG. 2B, the vibrators 100f to 100h are formed by arranging electrodes 102 at positions facing each other on both surfaces of the piezoelectric substrate 101, respectively. Such a piezoelectric substrate 101 vibrates at a frequency peculiar to the substrate when a predetermined voltage is applied between the electrodes 102 on both sides. That is, the portion sandwiched between the electrodes 102 of the piezoelectric substrate 101 functions as a piezoelectric vibrator. Thus, as shown in FIG. 2B, the electrodes 102 are arranged on both surfaces of the piezoelectric substrate 101, so that the vibrators 100f to 100h are arranged (arrayed). In this description, the vibrator array is formed by forming the counter electrodes on both surfaces of the piezoelectric substrate, but a structure in which a single vibration element is simply arranged on the insulating substrate according to the arrangement pattern may be used.

このように形成された振動子100(100a〜100c,100e〜100j)は、図4に示す配線パターンで配線されている。船首−船尾方向に垂直な方向にならぶ第1チャンネル振動子100aは、それぞれ配線パターンL12,L13,L14,L15で並列接続されており、全ての第1チャンネル振動子100aがポートP1に接続されている。同様に、第2チャンネル振動子100bはそれぞれ配線パターンL21,L22,L23,L24,L25でポートP2に並列接続され、第3チャンネル振動子100cはそれぞれ配線パターンL31,L32,L33,L34,L35でポートP3に並列接続されている。また、第4チャンネル振動子100eはそれぞれ配線パターンL41,L42,L43,L44,L45でポートP4に並列接続され、第5チャンネル振動子100fはそれぞれ配線パターンL51,L52,L53,L54,L55でポートP5に並列接続され、第6チャンネル振動子100gはそれぞれ配線パターンL61,L62,L63,L64,L65でポートP6に並列接続されている。さらに、第7チャンネル振動子100hはそれぞれ配線パターンL71,L72,L73,L74,L75でポートP7に並列接続され、第8チャンネル振動子100iはそれぞれ配線パターンL81,L82,L83,L84でポートP8に並列接続され、第9チャンネル振動子100jはそれぞれ配線パターンL91,L92,L93,L94でポートP9に並列接続されている。そして、これらポートP1〜P9が前述の送受波切替器3とのバスラインの各ラインにそれぞれ接続されており、各振動子100a〜100c,100e〜100jの他方の端子は、例えば、それぞれチャンネル毎に接地されている。このような構成とすることで、平面振動子アレイ2の全ての振動子が第1チャンネル〜第9チャネルに分けて接続される。なお、前述の配線パターンとしては、圧電基板の両面に対向電極を形成する構造の場合には圧電基板の一方面に配線パターン電極を形成することにより実現され、単体の振動素子を用いる場合には絶縁基板表面に形成した配線パターン電極や導体線による振動素子の端子を接続することにより実現される。   The vibrators 100 (100a to 100c, 100e to 100j) formed in this way are wired with the wiring pattern shown in FIG. The first channel vibrators 100a aligned in the direction perpendicular to the bow-stern direction are connected in parallel by wiring patterns L12, L13, L14, and L15, respectively, and all the first channel vibrators 100a are connected to the port P1. Yes. Similarly, the second channel vibrator 100b is connected in parallel to the port P2 through wiring patterns L21, L22, L23, L24, and L25, and the third channel vibrator 100c is connected through wiring patterns L31, L32, L33, L34, and L35, respectively. The port P3 is connected in parallel. The fourth channel vibrator 100e is connected in parallel to the port P4 with wiring patterns L41, L42, L43, L44, and L45, respectively, and the fifth channel vibrator 100f is a port with wiring patterns L51, L52, L53, L54, and L55, respectively. The sixth channel vibrator 100g is connected in parallel to P5, and connected in parallel to the port P6 by wiring patterns L61, L62, L63, L64, and L65, respectively. Further, the seventh channel vibrator 100h is connected in parallel to the port P7 with wiring patterns L71, L72, L73, L74, and L75, respectively, and the eighth channel vibrator 100i is connected to the port P8 with wiring patterns L81, L82, L83, and L84, respectively. The ninth channel vibrator 100j is connected in parallel and connected in parallel to the port P9 by wiring patterns L91, L92, L93, and L94, respectively. These ports P1 to P9 are respectively connected to the respective lines of the bus line with the aforementioned transmission / reception switch 3, and the other terminals of the transducers 100a to 100c and 100e to 100j are, for example, each channel. Is grounded. With such a configuration, all the transducers of the planar transducer array 2 are divided and connected to the first channel to the ninth channel. The above-mentioned wiring pattern is realized by forming a wiring pattern electrode on one surface of the piezoelectric substrate in the case where the counter electrode is formed on both surfaces of the piezoelectric substrate, and when a single vibration element is used. This is realized by connecting the wiring pattern electrodes formed on the surface of the insulating substrate and the terminals of the vibration elements using conductor wires.

次に、このような構成の探知装置の送信時の動作について説明する。
(1)9つのチャンネルの振動子を時分割で略同時に駆動する場合
探知開始命令が入力されると、制御回路6は、入力された探知方向(ティルト)に応じた超音波送信信号を生成する制御信号を超音波送受波器1の送信駆動信号発生回路4に出力する。例えば、前述の振動子の配列パターン(d=10mm)である場合に、ティルト角をπ/4rad.(45°)にする入力がされれば超音波送信信号の周波数を70.7kHzに設定し、ティルト角をπ/6rad.(30°)にする入力がされれば超音波送信信号の周波数を100kHzに設定する。この際、制御回路6からは、9つのチャンネルを3つのグループに分け、時分割でグループに与える駆動信号の位相を制御する制御信号も送信駆動信号発生回路4に出力される。具体的には、第1チャンネル〜第3チャンネルを第1グループとし、第4チャンネル〜第6チャンネルを第2グループとし、第7チャンネル〜第9チャンネルを第3グループとする制御信号を送信駆動信号発生回路4に出力する。この制御を行うことで、平面振動子アレイ2は、図5に示すように、第1グループ振動子110a、第2グループ振動子110b、および第3グループ振動子110cを、中心間距離2dで正三角形格子状に配列形成した構造と同等となる。
図5は、平面振動子アレイ2の第1〜第3グループの構成パターンを示す構成図である。
この構造では、船首−船尾方向に平行な方向、および船首−船尾方向に対して為す角がπ/6の方向において、第1グループ振動子110aの配列位置と、第2グループ振動子110bの配列位置と、第3グループ振動子110cの配列位置とが間隔dで配置された構成となる。
Next, the operation at the time of transmission of the detection device having such a configuration will be described.
(1) When driving transducers of nine channels substantially simultaneously in time division When a detection start command is input, the control circuit 6 generates an ultrasonic transmission signal corresponding to the input detection direction (tilt). The control signal is output to the transmission drive signal generation circuit 4 of the ultrasonic transducer 1. For example, in the case of the above-described transducer arrangement pattern (d = 10 mm), the tilt angle is π / 4 rad. (45 °), the frequency of the ultrasonic transmission signal is set to 70.7 kHz, and the tilt angle is π / 6 rad. If an input for (30 °) is input, the frequency of the ultrasonic transmission signal is set to 100 kHz. At this time, the control circuit 6 divides the nine channels into three groups, and also outputs a control signal for controlling the phase of the drive signal given to the group in a time division manner to the transmission drive signal generation circuit 4. Specifically, the control signals for the first channel to the third channel as the first group, the fourth channel to the sixth channel as the second group, and the seventh channel to the ninth channel as the third group are transmitted drive signals. Output to the generation circuit 4. By performing this control, as shown in FIG. 5, the planar transducer array 2 causes the first group transducer 110a, the second group transducer 110b, and the third group transducer 110c to be positive at a center distance 2d. This is equivalent to a structure arranged in a triangular lattice.
FIG. 5 is a configuration diagram showing the configuration patterns of the first to third groups of the planar transducer array 2.
In this structure, the arrangement position of the first group transducer 110a and the arrangement of the second group transducer 110b in the direction parallel to the bow-stern direction and the angle formed with respect to the bow-stern direction is π / 6. The position and the arrangement position of the third group transducer 110c are arranged at the interval d.

送信駆動信号発生回路4は制御回路6から入力された制御信号に従い、振動子が所望周波数の超音波送信信号を送信するための送信駆動信号を発生し、グループ毎に出力する送信駆動信号の位相制御を行う。具体的には、時分割で図6(a)に示す位相制御と、図7(a)に示す位相制御と、全てのチャンネル(グループ)を同位相にする位相制御とを行う。
図6(a)は第1の位相制御を示すブロック図であり、図6(b)は図6(a)に示す位相制御を行った場合の水平方向に射影した送信ビームの進行方向を示す図である。また、図7(a)は第2の位相制御を示すブロック図であり、図7(b)は図7(a)に示す位相制御を行った場合の水平方向に射影した送信ビームの方向を示す図である。
まず、図6(a)に示すように、基準の送信駆動信号と、2π/3rad.位相進みの送信駆動信号と、4π/3rad.位相進みの送信駆動信号が、3系統のバスラインによりそれぞれ送受波切替器3に出力される。そして、基準送信駆動信号が第1グループ振動子110aを構成する第1〜第3チャンネルの振動子(100a〜100c)にそれぞれバスラインおよびポートP1〜P3を介してに出力され、2π/3rad.位相進みの送信駆動信号が第2グループ振動子110bを構成する第4〜第6チャンネルの振動子(100e〜100g)にそれぞれバスラインおよびポートP4〜P6を介して出力され、4π/3rad.位相進みの送信駆動信号が第3グループ振動子110cを構成する第7〜第9チャンネルの振動子(100h〜100j)にそれぞれバスラインおよびポートP7〜P9を介して出力される。
The transmission drive signal generation circuit 4 generates a transmission drive signal for the transducer to transmit an ultrasonic transmission signal having a desired frequency in accordance with the control signal input from the control circuit 6, and the phase of the transmission drive signal output for each group Take control. Specifically, the phase control shown in FIG. 6 (a), the phase control shown in FIG. 7 (a), and the phase control for setting all channels (groups) to the same phase are performed in a time division manner.
FIG. 6A is a block diagram showing the first phase control, and FIG. 6B shows the traveling direction of the transmission beam projected in the horizontal direction when the phase control shown in FIG. 6A is performed. FIG. FIG. 7A is a block diagram showing the second phase control, and FIG. 7B shows the direction of the transmission beam projected in the horizontal direction when the phase control shown in FIG. 7A is performed. FIG.
First, as shown in FIG. 6A, a reference transmission drive signal and 2π / 3 rad. A phase advance transmission drive signal; and 4π / 3 rad. The phase advance transmission drive signal is output to the transmission / reception switch 3 via the three bus lines. The reference transmission drive signal is output to the first to third channel vibrators (100a to 100c) constituting the first group vibrator 110a via the bus line and the ports P1 to P3, respectively, and 2π / 3 rad. The phase advance transmission drive signal is output to the fourth to sixth channel vibrators (100e to 100g) constituting the second group vibrator 110b via the bus line and the ports P4 to P6, respectively, and 4π / 3 rad. The phase advance transmission drive signal is output to the seventh to ninth channel vibrators (100h to 100j) constituting the third group vibrator 110c via the bus line and ports P7 to P9, respectively.

このような送信駆動信号が各振動子に印加されると、第1グループ振動子110a、第2グループ振動子110b、第3グループ振動子110cから送信される超音波信号は、図6(b)に示すように、船首方向、この船首方向から右舷方向に2π/3rad.回転した右舷後方、および船首方向から左舷方向に2π/3rad.回転した左舷後方の三方向に垂直な等位相面を水平方向に対してティルト角θの方向に有する。このため、これらの方向を進行方向とする3つの送信ビームTxBeam1〜TxBean3が形成されて探知領域内に送信される。   When such a transmission drive signal is applied to each transducer, the ultrasonic signals transmitted from the first group transducer 110a, the second group transducer 110b, and the third group transducer 110c are shown in FIG. 2π / 3 rad. From the bow direction to the starboard direction. Rotated starboard rear and 2π / 3 rad. An equiphase surface perpendicular to the three directions behind the rotated port is provided in the direction of the tilt angle θ with respect to the horizontal direction. For this reason, three transmission beams TxBeam1 to TxBean3 having these directions as traveling directions are formed and transmitted in the detection area.

次に、図7(a)に示すように、基準の送信駆動信号と、4π/3rad.位相進みの送信駆動信号と、2π/3rad.位相進みの送信駆動信号が、3系統のバスラインによりそれぞれ送受波切替器3に出力される。そして、基準送信駆動信号が第1グループ振動子110aを構成する第1〜第3チャンネルの振動子(100a〜100c)にそれぞれバスラインおよびポートP1〜P3を介してに出力され、4π/3rad.位相進みの送信駆動信号が第2グループ振動子110bを構成する第4〜第6チャンネルの振動子(100e〜100g)にそれぞれバスラインおよびポートP4〜P6を介して出力され、2π/3rad.位相進みの送信駆動信号が第3グループ振動子110cを構成する第7〜第9チャンネルの振動子(100h〜100j)にそれぞれバスラインおよびポートP7〜P9を介して出力される。   Next, as shown in FIG. 7A, the reference transmission drive signal and 4π / 3 rad. A phase advance transmission drive signal and 2π / 3 rad. The phase advance transmission drive signal is output to the transmission / reception switch 3 via the three bus lines. Then, the reference transmission drive signal is output to the first to third channel vibrators (100a to 100c) constituting the first group vibrator 110a via the bus line and the ports P1 to P3, respectively, and 4π / 3 rad. The phase advance transmission drive signal is output to the fourth to sixth channel vibrators (100e to 100g) constituting the second group vibrator 110b via the bus line and the ports P4 to P6, respectively, and 2π / 3 rad. The phase advance transmission drive signal is output to the seventh to ninth channel vibrators (100h to 100j) constituting the third group vibrator 110c via the bus line and ports P7 to P9, respectively.

このような送信駆動信号が各振動子に印加されると、第1グループ振動子110a、第2グループ振動子110b、第3グループ振動子110cから送信される超音波信号は、図7(b)に示すように、船尾方向、この船尾方向から左舷方向に2π/3rad.回転した左舷前方、および船尾方向から右舷方向に2π/3rad.回転した右舷前方の三方向に垂直な等位相面を水平方向に対してティルト角θの方向に有する。このため、これらの方向を進行方向とする3つの送信ビームTxBeam4〜TxBeam6が形成されて探知領域内に送信される。   When such a transmission drive signal is applied to each transducer, the ultrasonic signals transmitted from the first group transducer 110a, the second group transducer 110b, and the third group transducer 110c are shown in FIG. 2π / 3 rad. From the stern direction to the port side as shown in FIG. Rotated port forward and 2π / 3 rad. From stern direction to starboard direction. An equiphase surface perpendicular to the three directions in front of the rotated starboard is provided in the direction of the tilt angle θ with respect to the horizontal direction. For this reason, three transmission beams TxBeam4 to TxBeam6 having these directions as traveling directions are formed and transmitted in the detection area.

次に、全てのグループ振動子110a〜110cに同位相の送信駆動信号が印加されると、等位相面は鉛直方向に垂直な方向となり、鉛直方向を進行方向とする送信ビームTxBeam7が形成されて探知領域内に送信される。   Next, when a transmission drive signal having the same phase is applied to all the group transducers 110a to 110c, the equiphase plane becomes a direction perpendicular to the vertical direction, and a transmission beam TxBeam7 having the vertical direction as the traveling direction is formed. It is transmitted in the detection area.

図8は送信ビームの指向性を示す図であり、(a)が水平方向の指向性を示し、(b)が鉛直方向の指向性を示す。
前述の制御を行うことで、図8に示すように、自船200の船底に設置された平面振動子アレイ2から、鉛直方向に対してティルト角θを為し、船首方向、船尾方向、船首から右舷方向にπ/3rad.、2π/3rad.回転した右舷前方および右舷後方、船首から左舷方向にπ/3rad.、2π/3rad.回転した左舷前方および左舷後方の6方向と、鉛直下方向の7方向に略同時に送信ビームTxBeam1〜7を形成して探知領域内に送信することができる。
FIG. 8 is a diagram showing the directivity of the transmission beam, where (a) shows the directivity in the horizontal direction, and (b) shows the directivity in the vertical direction.
By performing the above-described control, as shown in FIG. 8, a tilt angle θ is made with respect to the vertical direction from the planar vibrator array 2 installed on the bottom of the ship 200, and the bow direction, stern direction, bow To starboard direction from π / 3 rad. 2π / 3 rad. Rotated starboard front and starboard rearward, π / 3 rad. 2π / 3 rad. Transmit beams TxBeam 1 to 7 can be formed and transmitted in the detection area in substantially the same six directions of the forward port front and rear port and seven directions of the vertically downward direction.

次に、このような構成の探知装置の送信ビームのシミュレーション結果について説明する。なお、このシミュレーションでは、振動子間隔dを10mmとし、超音波信号の周波数を100kHzとし、さらに音速を1500m/sに設定している。
図9(a)は送信ビームTxBeam1〜3の水平指向性を示し、図9(b)は送信ビームTxBeam1の垂直指向性を示す。ここで、水平指向性は、鉛直方向からπ/6の角度を為す方向を断面とし、0deg.が船首方向、−方向が左舷方向、+方向が右舷方向を示す。また、垂直指向性は、船首−船尾方向を断面とし、0deg.が鉛直真下方向、90deg.(π/2rad.)が船首方向(水平面)、−90deg.(−π/2rad.)が船尾方向(水平面)を示す。
図9に示すように、前述の構成で前述の制御を行うことにより水平指向性で0deg.±120deg.(±2π/3rad.)方向、すなわち、船首方向と、船首方向から右舷方向に120deg.(2π/3rad.)方向(右舷後方)と、船首方向から左舷方向に120deg.(2π/3rad.)方向(左舷後方)とに、垂直指向性で30deg.(π/6rad.)方向、すなわち、鉛直下方向と為す角30deg.(π/6rad.)を生じる方向に送信ビームTxBeam1〜3を形成することができる。
Next, the simulation result of the transmission beam of the detection device having such a configuration will be described. In this simulation, the transducer interval d is set to 10 mm, the frequency of the ultrasonic signal is set to 100 kHz, and the sound speed is set to 1500 m / s.
FIG. 9A shows the horizontal directivity of the transmission beams TxBeam1 to 3, and FIG. 9B shows the vertical directivity of the transmission beam TxBeam1. Here, the horizontal directivity is 0 deg. With the cross section taken as an angle of π / 6 from the vertical direction. Indicates the bow direction,-direction indicates the port direction, and + direction indicates the starboard direction. The vertical directivity is 0 deg. With the cross section in the bow-stern direction. Is vertically downward, 90 deg. (Π / 2 rad.) Is the bow direction (horizontal plane), −90 deg. (−π / 2 rad.) Indicates the stern direction (horizontal plane).
As shown in FIG. 9, 0 deg. ± 120 deg. (± 2π / 3 rad.) Direction, that is, 120 deg. From the bow direction to the starboard direction from the bow direction. (2π / 3 rad.) Direction (starboard rear) and 120 deg. In the (2π / 3 rad.) Direction (back port side), the vertical directivity is 30 deg. (Π / 6 rad.) Direction, that is, an angle of 30 deg. Transmission beams TxBeam1 to 3 can be formed in a direction that generates (π / 6 rad.).

図10(a)は送信ビームTxBeam4〜6の水平指向性を示し、図10(b)は送信ビームTxBeam4の垂直指向性を示す。ここで、水平指向性は、鉛直方向から30deg.(π/6rad.)の角度を為す方向を断面とし、0deg.が船首方向、−方向が左舷方向、+方向が右舷方向を示す。また、垂直指向性は、船首−船尾方向を断面とし、0deg.が鉛直真下方向、90deg.(π/2rad.)が船首方向(水平面)、−90deg.(−π/2rad.)が船尾方向(水平面)を示す。
図10に示すように、前述の構成で前述の制御を行うことにより水平指向性で180deg.±120deg.(±2π/3rad.)方向、すなわち、船尾方向と、船尾方向から左舷方向に120deg.(2π/3rad.)方向(左舷前方)と、船尾方向から右舷方向に120deg.(2π/3rad.)方向(右舷前方)とに、垂直指向性で30deg.(π/6rad.)方向、すなわち、鉛直下方向と為す角30deg.(π/6rad.)を生じる方向に送信ビームTxBeam4〜6を形成することができる。
FIG. 10A shows the horizontal directivity of the transmission beams TxBeam4 to 6, and FIG. 10B shows the vertical directivity of the transmission beam TxBeam4. Here, the horizontal directivity is 30 deg. The direction that forms an angle of (π / 6 rad.) Is the cross section, and 0 deg. Indicates the bow direction,-direction indicates the port direction, and + direction indicates the starboard direction. The vertical directivity is 0 deg. With the cross section in the bow-stern direction. Is vertically downward, 90 deg. (Π / 2 rad.) Is the bow direction (horizontal plane), −90 deg. (−π / 2 rad.) Indicates the stern direction (horizontal plane).
As shown in FIG. 10, 180 deg. ± 120 deg. (± 2π / 3 rad.) Direction, that is, 120 deg. From the stern direction to the port side from the stern direction. (2π / 3 rad.) Direction (front port side) and 120 deg. In the (2π / 3 rad.) Direction (starboard front), the vertical directivity is 30 deg. (Π / 6 rad.) Direction, that is, an angle of 30 deg. Transmission beams TxBeam4 to 6 can be formed in a direction that generates (π / 6 rad.).

図11(a),(b)は送信ビームTxBeam7の垂直指向性を示す。ここで、図11(a)の垂直指向性は、船首−船尾方向を断面とし、0deg.が鉛直真下方向、90deg.(π/2rad.)が船首方向(水平面)、−90deg.(−π/2rad.)が船尾方向(水平面)を示す。また、図11(b)の垂直指向性は、右舷−左舷方向を断面とし、0deg.が鉛直真下方向、90deg.(π/2rad.)が右舷方向(水平面)、−90deg.(−π/2rad.)が左舷方向(水平面)を示す。
図11に示すように、前述の構成で前述の制御を行うことにより船首−船尾方向に対する垂直指向性および、右舷−左舷方向に対する垂直指向性においても0deg.方向、すなわち鉛直真下方向に送信ビームTxBeam7を形成することができる。
FIGS. 11A and 11B show the vertical directivity of the transmission beam TxBeam7. Here, the vertical directivity of FIG. 11 (a) has a cross section in the bow-stern direction, and 0 deg. Is vertically downward, 90 deg. (Π / 2 rad.) Is the bow direction (horizontal plane), −90 deg. (−π / 2 rad.) Indicates the stern direction (horizontal plane). Also, the vertical directivity of FIG. 11 (b) is 0 deg. Is vertically downward, 90 deg. (Π / 2 rad.) Is starboard direction (horizontal plane), −90 deg. (−π / 2 rad.) Indicates the port direction (horizontal plane).
As shown in FIG. 11, by performing the above-described control with the above-described configuration, the vertical directivity in the bow-stern direction and the vertical directivity in the starboard-portal direction are also 0 deg. The transmission beam TxBeam7 can be formed in the direction, that is, the direction directly below the vertical direction.

(2)9つのチャンネルの振動子を同時に駆動する場合
前述の(1)の場合のように、探知開始命令が入力されると、制御回路6は制御信号を超音波送受波器1の送信駆動信号発生回路4に出力する。この際、制御回路6からは、9つのチャンネルを3つのグループに分け、同時に各グループに与える駆動信号の位相を制御する制御信号も送信駆動信号発生回路4に出力される。具体的には、第1チャンネル〜第3チャンネル、第4チャンネル、第7チャンネルを第1グループとし、第5チャンネル、第9チャンネルを第2グループとし、第6チャンネル、第8チャンネルを第3グループとする制御信号を送信駆動信号発生回路4に出力する。
(2) When simultaneously driving the transducers of nine channels As in the case of (1) described above, when a detection start command is input, the control circuit 6 transmits the control signal to the ultrasonic transducer 1 for transmission. Output to the signal generation circuit 4. At this time, the control circuit 6 divides the nine channels into three groups and simultaneously outputs a control signal for controlling the phase of the drive signal applied to each group to the transmission drive signal generation circuit 4. Specifically, the first channel to the third channel, the fourth channel, and the seventh channel are set as the first group, the fifth channel and the ninth channel are set as the second group, and the sixth channel and the eighth channel are set as the third group. Is output to the transmission drive signal generation circuit 4.

送信駆動信号発生回路4は制御回路6から入力された制御信号に従い、振動子が所望周波数の超音波送信信号を送信するための送信駆動信号を発生し、グループ毎に出力する送信駆動信号の位相制御を行う。具体的には図12、図13に示す位相制御を行う。すなわち、第1グループに属する第1チャンネル〜第3チャンネル、第4チャンネル、第7チャンネルに出力する送信駆動信号を基準信号として、第5チャンネル、第9チャンネルに2π/3rad.位相進み信号を出力し、第6チャンネル、第8チャンネルに4π/3rad.位相進み信号を出力する。   The transmission drive signal generation circuit 4 generates a transmission drive signal for the transducer to transmit an ultrasonic transmission signal having a desired frequency in accordance with the control signal input from the control circuit 6, and the phase of the transmission drive signal output for each group Take control. Specifically, the phase control shown in FIGS. 12 and 13 is performed. That is, the transmission drive signals output to the first channel to the third channel, the fourth channel, and the seventh channel belonging to the first group are used as reference signals, and 2π / 3 rad. A phase advance signal is output, and 4π / 3 rad. Outputs a phase advance signal.

図12は平面振動子アレイの各振動子に印加される信号の位相関係を示した図であり、図13は位相制御を示すブロック図である。
このように位相制御された各送信駆動信号は前記3つのグループ毎にそれぞれ異なるバスラインを介して送受波切替器3に入力される。送受波切替器3は、制御信号に従い3種類の位相の異なる信号を各チャンネルの振動子に出力する。各チャンネルの振動子は印加された送信駆動信号に従い超音波信号を探知領域内に送信する。
FIG. 12 is a diagram showing the phase relationship of signals applied to each transducer of the planar transducer array, and FIG. 13 is a block diagram showing phase control.
Each transmission drive signal that is phase-controlled in this way is input to the transmission / reception switch 3 via a different bus line for each of the three groups. The transmission / reception switch 3 outputs three types of signals having different phases to the transducers of the respective channels according to the control signal. The transducer of each channel transmits an ultrasonic signal into the detection area in accordance with the applied transmission drive signal.

図14、図15は、図13に示す位相制御が行われた場合の、各チャンネル振動子と送信ビームとの関係を示す図であり、図14(a)が第2チャンネル振動子、第5チャンネル振動子、第8チャンネル振動子と送信ビームTxBeam1〜TxBeam3とを関係を示し、図14(b)が第3チャンネル振動子、第6チャンネル振動子、第9チャンネル振動子と送信ビームTxBeam4〜TxBeam6との関係を示し、図15が第1チャンネル振動子、第4チャンネル振動子、第7チャンネル振動子と送信ビームTxBeam7との関係を示す。なお、図14(a),(b)、図15(a)は平面振動子アレイ2を正面視した図であり、図15(b)は平面振動子アレイ2を側面視した図である。   14 and 15 are diagrams showing the relationship between each channel transducer and the transmission beam when the phase control shown in FIG. 13 is performed. FIG. 14A shows the second channel transducer and the fifth channel. FIG. 14B shows the relationship between the channel transducer, the eighth channel transducer, and the transmission beams TxBeam1 to TxBeam3, and FIG. 14B shows the third channel transducer, the sixth channel transducer, the ninth channel transducer, and the transmission beams TxBeam4 to TxBeam6. FIG. 15 shows the relationship between the first channel transducer, the fourth channel transducer, the seventh channel transducer, and the transmission beam TxBeam7. 14A, 14B, and 15A are views of the planar transducer array 2 viewed from the front, and FIG. 15B is a diagram of the planar transducer array 2 viewed from the side.

(A)図14(a)に示すように、第2チャンネル振動子100bの列と、第5チャンネル振動子100fの列と、第8チャンネル振動子100iの列とが、船首−船尾方向、この船首−船尾方向に対して船首方向から右舷方向に2π/3rad.回転した方向、およびこの船首−船尾方向に対して船首方向から左舷方向に2π/3rad.回転した方向、に平行に間隔dで配置される関係にある。そして、図13に示す位相制御が行われることで、第2チャンネル振動子100bに印加される駆動信号に対して、第5チャンネル振動子100fに印加される駆動信号は2π/3rad.位相が進み、第8チャンネル振動子100iに印加される駆動信号は4π/3rad.位相が進む。これにより、図14(a)に示すように、第2チャンネル振動子100b、第5チャンネル振動子100f、第8グループ振動子100iから送信される超音波信号は、船首方向、この船首方向から右舷方向に2π/3rad.回転した右舷後方、および船首方向から左舷方向に2π/3rad.回転した左舷後方の三方向に垂直な等位相面を鉛直方向に対してティルト角θの方向に有する。このため、これらの方向を進行方向とする3つの送信ビームTxBeam1〜TxBeam3が形成されて探知領域内に送信される。   (A) As shown in FIG. 14A, the row of the second channel transducer 100b, the row of the fifth channel transducer 100f, and the row of the eighth channel transducer 100i are in the bow-stern direction. 2π / 3 rad. From the bow direction to the starboard direction with respect to the bow-stern direction. 2π / 3 rad. From the bow direction to the port direction with respect to the direction of rotation and the bow-stern direction. There is a relationship of being arranged at a distance d parallel to the direction of rotation. 13 is performed, the drive signal applied to the fifth channel transducer 100f is 2π / 3 rad. With respect to the drive signal applied to the second channel transducer 100b. The drive signal applied to the eighth channel transducer 100i is 4π / 3 rad. The phase advances. As a result, as shown in FIG. 14A, the ultrasonic signals transmitted from the second channel transducer 100b, the fifth channel transducer 100f, and the eighth group transducer 100i are transmitted in the bow direction, starboard from the bow direction. 2π / 3 rad. Rotated starboard rear and 2π / 3 rad. An equiphase surface perpendicular to the three directions behind the rotated port is provided in the direction of the tilt angle θ with respect to the vertical direction. Therefore, three transmission beams TxBeam1 to TxBeam3 having these directions as traveling directions are formed and transmitted in the detection area.

(B)同様に、図14(b)に示すように、第3チャンネル振動子100cの列と、第6チャンネル振動子100gの列と、第9チャンネル振動子100jの列とが、船首−船尾方向、この船首−船尾方向に対して船首方向から右舷方向に2π/3rad.回転した方向、およびこの船首−船尾方向に対して船首方向から左舷方向に2π/3rad.回転した方向、に平行に間隔dで配置される関係にある。そして、図13に示す位相制御が行われることで、第3チャンネル振動子100cに印加される駆動信号に対して、第6チャンネル振動子100gに印加される駆動信号は4π/3rad.位相が進み、第9チャンネル振動子100jに印加される駆動信号は2π/3rad.位相が進む。これにより、図14(b)に示すように、第3チャンネル振動子100c、第6チャンネル振動子100g、第9グループ振動子100jから送信される超音波信号は、船尾方向、この船尾方向から左舷方向に2π/3rad.回転した左舷前方、および船尾方向から右舷方向に2π/3rad.回転した右舷前方の三方向に垂直な等位相面を鉛直方向に対してティルト角θの方向に有する。このため、これらの方向を進行方向とする3つの送信ビームTxBeam4〜TxBeam6が形成されて探知領域内に送信される。   (B) Similarly, as shown in FIG. 14 (b), the row of the third channel vibrator 100c, the row of the sixth channel vibrator 100g, and the row of the ninth channel vibrator 100j are composed of the bow-stern. Direction, 2π / 3 rad. From the bow direction to the starboard direction with respect to the bow-stern direction. 2π / 3 rad. From the bow direction to the port direction with respect to the direction of rotation and the bow-stern direction. There is a relationship of being arranged at a distance d parallel to the direction of rotation. 13 is performed, the drive signal applied to the sixth channel transducer 100g is 4π / 3 rad. To the drive signal applied to the third channel transducer 100c. The drive signal applied to the ninth channel transducer 100j is 2π / 3 rad. The phase advances. As a result, as shown in FIG. 14 (b), the ultrasonic signals transmitted from the third channel transducer 100c, the sixth channel transducer 100g, and the ninth group transducer 100j are transmitted in the stern direction, and ported from the stern direction. 2π / 3 rad. Rotated port forward and 2π / 3 rad. From stern direction to starboard direction. An equiphase surface perpendicular to the three directions in front of the rotated starboard is provided in the direction of the tilt angle θ with respect to the vertical direction. For this reason, three transmission beams TxBeam4 to TxBeam6 having these directions as traveling directions are formed and transmitted in the detection area.

(C)また、同様に、図15(a)に示すように、第1チャンネル振動子100aの列と、第4チャンネル振動子100eの列と、第7チャンネル振動子100hの列とが、船首−船尾方向、この船首−船尾方向に対して船首方向から右舷方向に2π/3rad.回転した方向、およびこの船首−船尾方向に対して船首方向から左舷方向に2π/3rad.回転した方向、に平行に間隔dで配置される関係にある。そして、図13に示す位相制御が行われることで、第1チャンネル振動子100a、第4チャンネル振動子100g、および第9チャンネル振動子100jに印加される駆動信号は同相になる。これにより、図15に示すように、超音波信号の等位相面は水平方向となり、鉛直下方向を進行方向とする送信ビームTxBeam7が形成され探知領域内に送信される。
これら(A)、(B)、(C)の関係は同時に発生するので、前述の送信ビームTxBeam1〜7も同時に形成されて出力される。
(C) Similarly, as shown in FIG. 15A, the row of the first channel vibrator 100a, the row of the fourth channel vibrator 100e, and the row of the seventh channel vibrator 100h are connected to the bow. -Stern direction, this bow-2π / 3 rad. From the bow direction to the starboard direction with respect to the stern direction. 2π / 3 rad. From the bow direction to the port direction with respect to the direction of rotation and the bow-stern direction. There is a relationship of being arranged at a distance d parallel to the direction of rotation. 13 is performed, the drive signals applied to the first channel transducer 100a, the fourth channel transducer 100g, and the ninth channel transducer 100j are in phase. As a result, as shown in FIG. 15, the equiphase surface of the ultrasonic signal is in the horizontal direction, and a transmission beam TxBeam 7 having the vertical downward direction as the traveling direction is formed and transmitted into the detection area.
Since the relationships (A), (B), and (C) occur simultaneously, the above-described transmission beams TxBeam 1 to 7 are also formed and output at the same time.

このような構成、制御とすることで、図8に示すように、自船200の船底に設置された平面振動子アレイ2から、鉛直方向に対してティルト角θを為し、船首方向、船尾方向、船首から右舷方向にπ/3rad.、2π/3rad.回転した右舷前方および右舷後方、船首から左舷方向にπ/3rad.、2π/3rad.回転した左舷前方および左舷後方の6方向と、鉛直下方向の7方向に同時に送信ビームTxBeam1〜7を形成して探知領域内に送信することができる。
次に、このような構成の探知装置の受信時の動作について説明する。
図16は受信ビーム形成する位相制御を表したブロック図である。
受信時には、送受波切替器3は平面振動子アレイの第1チャンネル振動子〜第9チャンネル振動子で受信した受信信号をそれぞれ個別のバスラインを介して、受信ビーム形成回路5に出力する。受信ビーム形成回路5は図16に示すブロック図を実現する回路構成からなり、それぞれ3つのチャンネル振動子の信号を、個別の組み合わせで合成する9つの受信信号合成回路51a〜51c,51e〜51jと、これら受信信号合成回路51a〜51c,51e〜51jの出力信号の内、所定の出力信号の位相制御を行う位相制御回路52a〜52c,52e〜52g,53a〜53c,53e〜53gと、受信信号合成回路51a〜51c,51e〜51jからの出力信号および位相制御回路52a〜52c,52e〜52g,53a〜53c,53e〜53gからの出力信号の内所定の出力信号をそれぞれ異なる組み合わせで合成して受信ビームを形成する受信信号合成回路54a〜54c,54e〜51hとを備えている。
このような構成の受信ビーム形成回路5では、第1〜第9チャンネル振動子が受信した受信信号から次に示す方法で受信ビームRxBeam1〜RxBeam7を形成する。
With such a configuration and control, as shown in FIG. 8, the tilt angle θ is made with respect to the vertical direction from the plane transducer array 2 installed on the bottom of the ship 200, and the bow direction, stern is determined. Direction, π / 3 rad. 2π / 3 rad. Rotated starboard front and starboard rearward, π / 3 rad. 2π / 3 rad. Transmission beams TxBeam 1 to 7 can be simultaneously formed and transmitted in the detection area in the rotated six directions of the port front and rear of the port and the seven directions of the vertical downward direction.
Next, the operation at the time of reception of the detection device having such a configuration will be described.
FIG. 16 is a block diagram showing phase control for forming a reception beam.
At the time of reception, the transmission / reception switch 3 outputs the reception signals received by the first to ninth channel transducers of the planar transducer array to the reception beam forming circuit 5 via individual bus lines. The reception beam forming circuit 5 has a circuit configuration that realizes the block diagram shown in FIG. 16, and includes nine reception signal synthesis circuits 51a to 51c and 51e to 51j that synthesize signals of three channel transducers in individual combinations. Among the output signals of these received signal combining circuits 51a to 51c and 51e to 51j, phase control circuits 52a to 52c, 52e to 52g, 53a to 53c, 53e to 53g for performing phase control of predetermined output signals, and received signals The output signals from the combining circuits 51a to 51c and 51e to 51j and the output signals from the phase control circuits 52a to 52c, 52e to 52g, 53a to 53c, and 53e to 53g are combined in different combinations. Reception signal combining circuits 54a to 54c and 54e to 51h that form reception beams are provided.
In the reception beam forming circuit 5 having such a configuration, reception beams RxBeam1 to RxBeam7 are formed from the reception signals received by the first to ninth channel transducers by the following method.

受信信号合成回路51aは第1、第8、第9チャンネル振動子から出力される受信信号を合成して出力し、受信信号合成回路51bは第2、第3、第4チャンネル振動子から出力される受信信号を合成して出力し、受信信号合成回路51cは第5、第6、第7チャンネル振動子から出力される受信信号を合成して出力する。これら受信信号合成回路51a〜51cの出力信号は、船首−船尾方向に垂直な方向に配列されたチャンネル振動子群ごとの受信信号を表す。
また、受信信号合成回路51eは第2、第7、第9チャンネル振動子から出力される受信信号を合成して出力し、受信信号合成回路51fは第1、第3、第5チャンネル振動子から出力される受信信号を合成して出力し、受信信号合成回路51gは第4、第6、第8チャンネル振動子から出力される受信信号を合成して出力する。これら受信信号合成回路51e〜51gの出力信号は、船首−船尾方向に対して船首方向から右舷方向に2π/3回転した方向に垂直な方向に配列されたチャンネル振動子群毎の受信信号を表す。
また、受信信号合成回路51hは第3、第7、第8チャンネル振動子から出力される受信信号を合成して出力し、受信信号合成回路51iは第1、第2、第6チャンネル振動子から出力される受信信号を合成して出力し、受信信号合成回路51jは第4、第5、第9チャンネル振動子から出力される受信信号を合成して出力する。これら受信信号合成回路51e〜51gの出力信号は、船首−船尾方向に対して船首方向から左舷方向に2π/3rad.回転した方向に垂直な方向に配列されたチャンネル振動子群毎の受信信号を表す。
The reception signal synthesis circuit 51a synthesizes and outputs the reception signals output from the first, eighth, and ninth channel transducers, and the reception signal synthesis circuit 51b outputs from the second, third, and fourth channel transducers. The reception signal combining circuit 51c combines and outputs the reception signals output from the fifth, sixth, and seventh channel transducers. The output signals of these reception signal synthesis circuits 51a to 51c represent reception signals for each channel transducer group arranged in a direction perpendicular to the bow-stern direction.
The reception signal synthesis circuit 51e synthesizes and outputs the reception signals output from the second, seventh, and ninth channel transducers, and the reception signal synthesis circuit 51f includes the first, third, and fifth channel transducers. The received signal output is synthesized and output, and the received signal synthesis circuit 51g synthesizes and outputs the received signals output from the fourth, sixth, and eighth channel transducers. The output signals of these reception signal synthesis circuits 51e to 51g represent reception signals for each channel transducer group arranged in a direction perpendicular to the direction of 2π / 3 rotation from the bow direction to the starboard direction with respect to the bow-stern direction. .
The reception signal synthesis circuit 51h synthesizes and outputs the reception signals output from the third, seventh, and eighth channel transducers, and the reception signal synthesis circuit 51i includes the first, second, and sixth channel transducers. The received signal output is synthesized and output, and the received signal synthesis circuit 51j synthesizes and outputs the received signals output from the fourth, fifth and ninth channel transducers. The output signals of these reception signal combining circuits 51e to 51g are 2π / 3 rad. From the bow direction to the port direction with respect to the bow-stern direction. The received signal for each channel transducer group arranged in a direction perpendicular to the rotated direction is represented.

位相制御回路52a〜52c,52e〜52gは受信信号合成回路51c,51e,51i,51a,51f,51jの出力信号の位相をそれぞれ2π/3進める位相制御を行って出力し、位相制御回路53a〜53c,53e〜53gは受信信号合成回路51a,51f,51j,51c,51e,51iの出力信号の位相をそれぞれ4π/3進める位相制御を行って出力する。   The phase control circuits 52a to 52c and 52e to 52g perform phase control for advancing the phase of the output signals of the reception signal combining circuits 51c, 51e, 51i, 51a, 51f, and 51j by 2π / 3, respectively, and output the phase control circuits 53a to 53a. 53c, 53e to 53g perform phase control for advancing the phase of the output signals of the received signal synthesis circuits 51a, 51f, 51j, 51c, 51e, 51i by 4π / 3, respectively, and output the result.

受信信号合成回路54aは受信信号合成回路51bの出力信号と位相制御回路52a,53aの出力信号とを合成して受信ビームRxBeam1を出力する。図17(a)はこの状態を平面振動子アレイの各振動子に当て嵌めた図であり、船首方向に受信ビームRxBeam1が形成されている。
受信信号合成回路54bは受信信号合成回路51gの出力信号と位相制御回路52b,53bの出力信号とを合成して受信ビームRxBeam2を出力する。図17(b)はこの状態を平面振動子アレイの各振動子に当て嵌めた図であり、船首方向に対して右舷方向に2π/3rad.回転した方向に受信ビームRxBeam2が形成されている。
受信信号合成回路54cは受信信号合成回路51hの出力信号と位相制御回路52c,53cの出力信号とを合成して受信ビームRxBeam3を出力する。図18(a)はこの状態を平面振動子アレイの各振動子に当て嵌めた図であり、船首方向に対して左舷方向に2π/3rad.回転した方向に受信ビームRxBeam3が形成されている。
受信信号合成回路54eは受信信号合成回路51bの出力信号と位相制御回路52e,53eの出力信号とを合成して受信ビームRxBeam4を出力する。図18(b)はこの状態を平面振動子アレイの各振動子に当て嵌めた図であり、船尾方向に受信ビームRxBeam4が形成されている。
受信信号合成回路54fは受信信号合成回路51gの出力信号と位相制御回路52f,53fの出力信号とを合成して受信ビームRxBeam5を出力する。図19(a)はこの状態を平面振動子アレイの各振動子に当て嵌めた図であり、船尾方向に対して左舷方向に2π/3rad.回転した方向に受信ビームRxBeam5が形成されている。
受信信号合成回路54gは受信信号合成回路51hの出力信号と位相制御回路52g,53gの出力信号とを合成して受信ビームRxBeam6を出力する。図19(b)はこの状態を平面振動子アレイの各振動子に当て嵌めた図であり、船尾方向に対して右舷方向に2π/3rad.回転した方向に受信ビームRxBeam6が形成されている。
受信信号合成回路54hは受信信号合成回路51h,51i,51jの出力信号を合成して受信ビームRxBeam7を出力する。
The reception signal combining circuit 54a combines the output signal of the reception signal combining circuit 51b and the output signals of the phase control circuits 52a and 53a, and outputs a reception beam RxBeam1. FIG. 17A is a diagram in which this state is applied to each transducer of the planar transducer array, and a reception beam RxBeam1 is formed in the bow direction.
The reception signal synthesis circuit 54b synthesizes the output signal of the reception signal synthesis circuit 51g and the output signals of the phase control circuits 52b and 53b, and outputs a reception beam RxBeam2. FIG. 17B is a diagram in which this state is applied to each transducer of the planar transducer array, and 2π / 3 rad. A reception beam RxBeam2 is formed in the rotated direction.
The reception signal combining circuit 54c combines the output signal of the reception signal combining circuit 51h and the output signals of the phase control circuits 52c and 53c, and outputs a reception beam RxBeam3. FIG. 18A is a diagram in which this state is applied to each transducer of the planar transducer array, and 2π / 3 rad. A reception beam RxBeam3 is formed in the rotated direction.
The reception signal combining circuit 54e combines the output signal of the reception signal combining circuit 51b and the output signals of the phase control circuits 52e and 53e and outputs a reception beam RxBeam4. FIG. 18B is a diagram in which this state is applied to each transducer of the planar transducer array, and a reception beam RxBeam4 is formed in the stern direction.
The reception signal combining circuit 54f combines the output signal of the reception signal combining circuit 51g and the output signals of the phase control circuits 52f and 53f, and outputs a reception beam RxBeam5. FIG. 19 (a) is a diagram in which this state is applied to each transducer of the planar transducer array, and 2π / 3 rad. A reception beam RxBeam5 is formed in the rotated direction.
The reception signal synthesis circuit 54g synthesizes the output signal of the reception signal synthesis circuit 51h and the output signals of the phase control circuits 52g and 53g and outputs a reception beam RxBeam6. FIG. 19B is a diagram in which this state is applied to each transducer of the planar transducer array, and 2π / 3 rad. A reception beam RxBeam6 is formed in the rotated direction.
The reception signal combining circuit 54h combines the output signals of the reception signal combining circuits 51h, 51i, 51j and outputs a reception beam RxBeam7.

図17、図18、図19はこれら位相制御および受信信号合成による結果を平面振動子アレイに配置された各振動子に当てはめるとともに受信ビームRxBeam1〜6を示す図である。
これら図17、図18、図19に示すように、受信ビーム形成回路5で前述の制御を行うことにより、同時に、船首方向に受信ビームRxBeam1を形成し(図17(a))、船首方向から右舷に2π/3rad.回転方向に受信ビームRxBeam2を形成し(図17(b))、船首方向から左舷に2π/3rad.回転方向に受信ビームRxBeam3を形成し(図18(a))、船尾方向に受信ビームRxBeam4を形成し(図18(b))、船尾方向から左舷に2π/3rad.回転方向に受信ビームRxBeam5を形成し(図19(a))、船尾方向から右舷に2π/3回転方向に受信ビームRxBeam6を形成することができる(図19(b))。また、図示していないが、前述の受信ビームRxBeam1〜6と同時に、全てのチャンネルの受信信号を同相にすることにより、鉛直下方向に受信ビームRxBeam7を形成することができる。
FIGS. 17, 18 and 19 are views showing the reception beams RxBeam 1 to 6 while applying the results of the phase control and the reception signal synthesis to each transducer arranged in the planar transducer array.
As shown in FIGS. 17, 18, and 19, the reception beam forming circuit 5 performs the above-described control to simultaneously form the reception beam RxBeam1 in the bow direction (FIG. 17A). 2π / 3 rad. A reception beam RxBeam2 is formed in the rotation direction (FIG. 17B), and 2π / 3 rad. A reception beam RxBeam3 is formed in the rotation direction (FIG. 18A), a reception beam RxBeam4 is formed in the stern direction (FIG. 18B), and 2π / 3 rad. The reception beam RxBeam5 can be formed in the rotation direction (FIG. 19A), and the reception beam RxBeam6 can be formed in the 2π / 3 rotation direction from the stern direction to the starboard (FIG. 19B). Although not shown, the reception beam RxBeam7 can be formed vertically downward by making the reception signals of all the channels in phase simultaneously with the reception beams RxBeam 1 to 6 described above.

次に、このような構成の探知装置の受信ビームのシミュレーション結果について説明する。なお、このシミュレーションでは、振動子列間隔dを10mmとし、超音波信号の周波数を100kHzとし、さらに音速を1500m/sに設定している。
図20(a)は受信ビームRxBeam1の水平指向性を示し、図20(b)は受信ビームRxBeam1の垂直指向性を示す。ここで、水平指向性は、鉛直方向から30deg.(π/6rad.)の角度を為す方向を断面とし、0deg.が船首方向、−方向が左舷方向、+方向が右舷方向を示す。また、垂直指向性は、船首−船尾方向を断面とし、0deg.が鉛直真下方向、90deg.(π/2rad.)が船首方向(水平面)、−90deg.(−π/2rad.)が船尾方向(水平面)を示す。
図20に示すように、前述の構成で前述の受信制御を行うことにより水平指向性で0deg.方向、すなわち船首方向に、垂直指向性で30deg.(π/6rad.)方向、すなわち、鉛直下方向と為す角30deg.(π/6rad.)を生じる方向に受信ビームRxBeam1を形成することができる。
Next, the reception beam simulation result of the detection apparatus having such a configuration will be described. In this simulation, the transducer array interval d is set to 10 mm, the frequency of the ultrasonic signal is set to 100 kHz, and the sound velocity is set to 1500 m / s.
FIG. 20A shows the horizontal directivity of the reception beam RxBeam1, and FIG. 20B shows the vertical directivity of the reception beam RxBeam1. Here, the horizontal directivity is 30 deg. The direction that forms an angle of (π / 6 rad.) Is the cross section, and 0 deg. Indicates the bow direction,-direction indicates the port direction, and + direction indicates the starboard direction. The vertical directivity is 0 deg. With the cross section in the bow-stern direction. Is vertically downward, 90 deg. (Π / 2 rad.) Is the bow direction (horizontal plane), −90 deg. (−π / 2 rad.) Indicates the stern direction (horizontal plane).
As shown in FIG. 20, by performing the above reception control with the above configuration, 0 deg. Direction, ie, in the bow direction, 30 deg. (Π / 6 rad.) Direction, that is, an angle of 30 deg. The reception beam RxBeam1 can be formed in a direction that generates (π / 6 rad.).

図21(a)は受信ビームRxBeam4の水平指向性を示し、図21(b)は受信ビームRxBeam4の垂直指向性を示す。ここで、水平指向性は、鉛直方向から30deg.(π/6rad.)の角度を為す方向を断面とし、0deg.が船首方向、−方向が左舷方向、+方向が右舷方向を示す。また、垂直指向性は、船首−船尾方向を断面とし、0deg.が鉛直真下方向、90deg.(π/2rad.)が船首方向(水平面)、−90deg.(−π/2rad.)が船尾方向(水平面)を示す。
図21に示すように、前述の構成で前述の受信制御を行うことにより水平指向性で180deg.(πrad.)方向、すなわち船尾方向に、垂直指向性で30deg.(π/6rad.)方向、すなわち、鉛直下方向と為す角30deg.(π/6rad.)を生じる方向に受信ビームRxBeam4を形成することができる。
FIG. 21A shows the horizontal directivity of the reception beam RxBeam4, and FIG. 21B shows the vertical directivity of the reception beam RxBeam4. Here, the horizontal directivity is 30 deg. The direction that forms an angle of (π / 6 rad.) Is the cross section, and 0 deg. Indicates the bow direction,-direction indicates the port direction, and + direction indicates the starboard direction. The vertical directivity is 0 deg. With the cross section in the bow-stern direction. Is vertically downward, 90 deg. (Π / 2 rad.) Is the bow direction (horizontal plane), −90 deg. (−π / 2 rad.) Indicates the stern direction (horizontal plane).
As shown in FIG. 21, by performing the reception control with the above-described configuration, the horizontal directivity is 180 deg. (Π rad.) Direction, that is, stern direction, 30 deg. (Π / 6 rad.) Direction, that is, an angle of 30 deg. The reception beam RxBeam4 can be formed in a direction that generates (π / 6 rad.).

なお、RxBeam2,RxBeam3,RxBeam5,RxBeam6については、前述の送信ビームTxBeam2,TxBeam3,TxBeam5,TxBeam6と同様の指向性を示すことは、前述の図9、図10と図20、図21とを比較参照することにより容易に推測できるので説明および指向性を示す図は省略する。また、受信ビームRxBeam7についても、送信ビームTxBeam7と同様の指向性を示すことは図9、図10と図20、図21とを比較し、図11を参照することにより容易に推測できるので説明および指向性を示す図は省略する。   For RxBeam2, RxBeam3, RxBeam5, and RxBeam6, the directivity similar to that of the above-described transmission beams TxBeam2, TxBeam3, TxBeam5, TxBeam6 is shown by comparing FIG. 9, FIG. 10, FIG. 20, and FIG. Therefore, the explanation and the illustration showing directivity are omitted. The reception beam RxBeam7 also exhibits directivity similar to that of the transmission beam TxBeam7, since it can be easily estimated by comparing FIG. 9, FIG. 10 with FIG. 20, FIG. 21, and referring to FIG. Illustrations showing directivity are omitted.

以上の構成を用いることで、同時または略同時に、7方向に超音波信号を送信して反射信号を受信する超音波送受波器を、振動子に対して9チャンネルからなる信号伝送回路で形成し、簡素化および小型化することができる。また、この超音波送受波器を用いることで、簡素な構造で制御が容易な探知装置を構成することができる。   By using the above configuration, an ultrasonic transducer that transmits an ultrasonic signal in seven directions and receives a reflected signal at the same time or substantially simultaneously is formed by a signal transmission circuit including nine channels for the transducer. Can be simplified and miniaturized. Further, by using this ultrasonic transducer, a detection device that can be easily controlled with a simple structure can be configured.

なお、前述の説明では、所定の設定周波数の超音波信号で送信ビームを形成する例を示したが、この周波数は探知を行う方向に応じて変化させてもよい。   In the above description, an example in which a transmission beam is formed with an ultrasonic signal having a predetermined set frequency has been described. However, this frequency may be changed according to the direction in which detection is performed.

図22は超音波信号の周波数を70.7kHzに設定した場合の送信ビームTxBeam1〜3の指向性を示す図であり、(a)は送信ビームTxBeam1〜3の水平指向性を示し、(b)は送信ビームTxBeam1の垂直指向性を示す。ここで、水平指向性は、鉛直方向から45deg.(π/4rad.)の角度を為す方向を断面とし、0deg.が船首方向、−方向が左舷方向、+方向が右舷方向を示す。また、垂直指向性は、船首−船尾方向を断面とし、0deg.が鉛直真下方向、90deg.(π/2rad.)が船首方向(水平面)、−90deg.(−π/2rad.)が船尾方向(水平面)を示す。
図22に示すように、前述の構成でこの制御を行うことにより水平指向性で0deg.±120deg.(±2π/3rad.)方向、すなわち、船首方向と、船首方向から右舷方向に120deg.(2π/3rad.)方向(右舷後方)と、船首方向から左舷方向に120deg.(2π/3rad.)方向(左舷後方)とに、垂直指向性で45deg.(π/4rad.)方向、すなわち、鉛直下方向と為す角45deg.(π/4rad.)を生じる方向に送信ビームTxBeam1〜3を形成することができる。
FIG. 22 is a diagram showing the directivity of the transmission beams TxBeam1 to 3 when the frequency of the ultrasonic signal is set to 70.7 kHz, (a) shows the horizontal directivity of the transmission beams TxBeam1 to 3, and (b) Indicates the vertical directivity of the transmission beam TxBeam1. Here, the horizontal directivity is 45 deg. The direction that forms an angle of (π / 4 rad.) Is the cross section, and 0 deg. Indicates the bow direction,-direction indicates the port direction, and + direction indicates the starboard direction. The vertical directivity is 0 deg. With the cross section in the bow-stern direction. Is vertically downward, 90 deg. (Π / 2 rad.) Is the bow direction (horizontal plane), −90 deg. (−π / 2 rad.) Indicates the stern direction (horizontal plane).
As shown in FIG. 22, by performing this control with the above-described configuration, 0 deg. ± 120 deg. (± 2π / 3 rad.) Direction, that is, 120 deg. From the bow direction to the starboard direction from the bow direction. (2π / 3 rad.) Direction (starboard rear) and 120 deg. In the (2π / 3 rad.) Direction (backward port side), 45 deg. (Π / 4 rad.) Direction, that is, an angle of 45 deg. Transmission beams TxBeam1 to 3 can be formed in a direction that generates (π / 4 rad.).

また、図23は、超音波信号の周波数を70.7kHzに設定した場合の受信ビームRxBeam1の指向性を示す図であり、(a)は受信ビームRxBeam1の水平指向性を示し、(b)は受信ビームRxBeam1の垂直指向性を示す。ここで、水平指向性は、鉛直方向から45deg.(π/4rad.)の角度を為す方向を断面とし、0deg.が船首方向、−方向が左舷方向、+方向が右舷方向を示す。また、垂直指向性は、船首−船尾方向を断面とし、0deg.が鉛直真下方向、90deg.(π/2rad.)が船首方向(水平面)、−90deg.(−π/2rad.)が船尾方向(水平面)を示す。
図23に示すように、前述の構成でこの受信制御を行うことにより水平指向性で0deg方向、すなわち船首方向に、垂直指向性で45deg.(π/4rad.)方向、すなわち、鉛直下方向と為す角45deg.(π/4rad.)を生じる方向に受信ビームRxBeam1を形成することができる。
FIG. 23 is a diagram showing the directivity of the reception beam RxBeam1 when the frequency of the ultrasonic signal is set to 70.7 kHz, (a) shows the horizontal directivity of the reception beam RxBeam1, and (b) The vertical directivity of the reception beam RxBeam1 is shown. Here, the horizontal directivity is 45 deg. The direction that forms an angle of (π / 4 rad.) Is the cross section, and 0 deg. Indicates the bow direction,-direction indicates the port direction, and + direction indicates the starboard direction. The vertical directivity is 0 deg. With the cross section in the bow-stern direction. Is vertically downward, 90 deg. (Π / 2 rad.) Is the bow direction (horizontal plane), −90 deg. (−π / 2 rad.) Indicates the stern direction (horizontal plane).
As shown in FIG. 23, by performing this reception control with the above-described configuration, the horizontal directivity is 0 deg direction, that is, the bow direction, and the vertical directivity is 45 deg. (Π / 4 rad.) Direction, that is, an angle of 45 deg. The reception beam RxBeam1 can be formed in a direction that generates (π / 4 rad.).

このように、超音波信号の周波数(送信駆動信号の周波数)を変化させることにより、水平方向に同じ方向で、鉛直下方向に対する角度を変化させることができ、所望の水中方向を探知することが可能となる。   Thus, by changing the frequency of the ultrasonic signal (frequency of the transmission drive signal), the angle with respect to the vertical downward direction can be changed in the same direction in the horizontal direction, and the desired underwater direction can be detected. It becomes possible.

また、前述の説明では、7方向の全てに同じ周波数の超音波信号を送信する構成を示したが、ビーム方位毎に異なる周波数の送信駆動信号を印加させ、異なる周波数の超音波信号を送信させる制御を行ってもよい。例えば、鉛直下方向に送信されるTxBeam7を生成する送信駆動信号と、これ以外の、鉛直方向にティルト角θを為す方向に送信されるTxBeam1〜6を生成する送信駆動信号とを異なる周波数に設定してもよい。そして、このように周波数を異ならせることにより、受信時にTxBeam1〜6に対応する受信ビームRxBeam1〜6におけるTxBeam7による影響を抑制することができる。すなわち、TxBeam7の周波数がTxBeam1〜6の周波数と異なるため、TxBeam7の海底面反射がRxBeam1〜6に影響を与えないようにすることができる。これにより、さらに正確に探知を行うことができる。   In the above description, the configuration in which ultrasonic signals having the same frequency are transmitted in all seven directions has been described. However, a transmission drive signal having a different frequency is applied for each beam direction, and ultrasonic signals having different frequencies are transmitted. Control may be performed. For example, the transmission drive signal for generating TxBeam7 transmitted in the vertically downward direction and the transmission drive signal for generating TxBeams 1 to 6 transmitted in the direction having the tilt angle θ in the vertical direction are set to different frequencies. May be. And by changing the frequency in this way, it is possible to suppress the influence of TxBeam7 on the reception beams RxBeam1 to 6 corresponding to TxBeam1 to 6 at the time of reception. That is, since the frequency of TxBeam7 is different from the frequency of TxBeam1-6, it is possible to prevent the seabed reflection of TxBeam7 from affecting RxBeam1-6. Thereby, detection can be performed more accurately.

また、前述の説明では、7方向同時に受信ビームを形成したが、互いに成す角が2π/3の3方向にのみ受信ビームを形成してもよい。例えば、前述の例によれば、RxBeam1、RxBeam2、RxBeam3のみを形成してもよい。このような構成とすることで、受信ビーム形成処理が簡素化されて高速化される。これにより、前述の同時に7方向を探知する場合よりも探知方向が減少するが、全周に亘り互いに所定角を成す方向に高速に探知を行うことができる。この際、7方向の受信ビームを形成して、所望とする3方向の受信ビームのみを抽出する構成を用いても良く、予め所望とする3方向の受信ビームのみを形成する構成を用いてもよい。このように3方向の受信ビームだけしか形成しない構成を用いることで、超音波送受波器のハード構成を簡素化することができる。   In the above description, the reception beams are formed simultaneously in the seven directions. However, the reception beams may be formed only in the three directions having an angle of 2π / 3. For example, according to the above-described example, only RxBeam1, RxBeam2, and RxBeam3 may be formed. With this configuration, the reception beam forming process is simplified and speeded up. Thereby, the detection direction is reduced as compared with the case of detecting the seven directions at the same time described above, but the detection can be performed at high speed in a direction that forms a predetermined angle with respect to the entire circumference. At this time, a configuration in which reception beams in seven directions are formed and only reception beams in three desired directions may be extracted, or a configuration in which only reception beams in three desired directions are formed in advance may be used. Good. By using a configuration that forms only reception beams in three directions in this way, the hardware configuration of the ultrasonic transducer can be simplified.

本発明の超音波送受波器1を備えた探知装置の概略構成を示すブロック図The block diagram which shows schematic structure of the detection apparatus provided with the ultrasonic transducer 1 of this invention. 平面振動子アレイ2の構成を示す平面図および断面図A plan view and a cross-sectional view showing the configuration of the planar transducer array 2 図2に示した平面振動子アレイ2の各振動子の位置関係を示した図The figure which showed the positional relationship of each vibrator | oscillator of the plane vibrator | oscillator array 2 shown in FIG. 図2に示した平面振動子アレイ2の配線パターンを示した構成図The block diagram which showed the wiring pattern of the plane vibrator array 2 shown in FIG. 平面振動子アレイ2の第1〜第3グループの構成パターンを示す構成図The block diagram which shows the structure pattern of the 1st-3rd group of the plane vibrator array 2 第1の位相制御を示すブロック図、およびこの位相制御での水平方向に射影した送信ビームの進行方向を示す図The block diagram which shows 1st phase control, and the figure which shows the advancing direction of the transmission beam projected in the horizontal direction by this phase control 第2の位相制御を示すブロック図、およびこの位相制御での水平方向に射影した送信ビームの進行方向を示す図The block diagram which shows 2nd phase control, and the figure which shows the advancing direction of the transmission beam projected in the horizontal direction in this phase control 送信ビームの水平指向性、および鉛直指向性を示す図Diagram showing horizontal directivity and vertical directivity of transmission beam 送信ビームTxBeam1〜3の水平指向性、および垂直指向性を示す図The figure which shows the horizontal directivity and vertical directivity of transmission beam TxBeam1-3. 送信ビームTxBeam4〜6の水平指向性、および垂直指向性を示す図The figure which shows the horizontal directivity of transmission beam TxBeam4-6, and vertical directivity 送信ビームTxBeam7の垂直指向性を示す図The figure which shows the vertical directivity of the transmission beam TxBeam7 平面振動子アレイの各振動子に印加される信号の位相関係を示した図The figure which showed the phase relation of the signal applied to each vibrator of a plane vibrator array 位相制御を示すブロック図Block diagram showing phase control 図13に示す位相制御が行われた場合の、各チャンネル振動子と送信ビームとの関係を示す図The figure which shows the relationship between each channel vibrator | oscillator and transmission beam when the phase control shown in FIG. 13 is performed 図13に示す位相制御が行われた場合の、各チャンネル振動子と送信ビームとの関係を示す図The figure which shows the relationship between each channel vibrator | oscillator and transmission beam when the phase control shown in FIG. 13 is performed 受信ビーム形成する位相制御を表したブロック図Block diagram showing phase control to form receive beam 受信信号の位相制御および受信信号合成による結果を平面振動子アレイに配置された各振動子に当てはめるとともに受信ビームRxBeam1,2を示す図The figure which shows receiving beam RxBeam1 and 2 while applying the result by phase control and receiving signal composition of receiving signal to each transducer arranged in a plane transducer array 受信信号の位相制御および受信信号合成による結果を平面振動子アレイに配置された各振動子に当てはめるとともに受信ビームRxBeam3,4を示す図The figure which shows receiving beam RxBeam3 and 4 while applying the result by phase control of a receiving signal and a receiving signal composition to each vibrator arranged in a plane vibrator array 受信信号の位相制御および受信信号合成による結果を平面振動子アレイに配置された各振動子に当てはめるとともに受信ビームRxBeam5,6を示す図The figure which shows receiving beam RxBeam5 and 6 while applying the result by phase control of a receiving signal and a receiving signal composition to each vibrator arranged in a plane vibrator array 受信ビームRxBeam1の水平指向性および垂直指向性を示す図The figure which shows the horizontal directivity and vertical directivity of receiving beam RxBeam1 受信ビームRxBeam4の水平指向性および垂直指向性を示す図The figure which shows the horizontal directivity and vertical directivity of receiving beam RxBeam4 超音波信号の周波数を70.7kHzに設定した場合の送信ビームTxBeam1〜3の水平指向性、および垂直指向性を示す図The figure which shows the horizontal directivity and vertical directivity of transmission beam TxBeam1-3 at the time of setting the frequency of an ultrasonic signal to 70.7 kHz. 超音波信号の周波数を70.7kHzに設定した場合の受信ビームRxBeam1の水平指向性および垂直指向性を示す図The figure which shows the horizontal directivity and vertical directivity of receiving beam RxBeam1 at the time of setting the frequency of an ultrasonic signal to 70.7 kHz 特定方向に配列された振動子に印加される駆動信号の位相と送信ビームとの関係を示した図A diagram showing the relationship between the phase of the drive signal applied to the transducers arranged in a specific direction and the transmission beam

符号の説明Explanation of symbols

1−超音波送受波器
2−平面振動子アレイ
3−送受波切替器
4−送信駆動信号生成回路
40−送信アンプ
5−受信ビーム形成回路
50−受信アンプ
6−制御回路
7−画像処理回路
8−表示器
100,101〜104,100a〜100c,100e〜100j−振動子
110a〜100c−振動子群
51a〜51c,51e〜51j−受信信号合成回路
52a〜52c,52e〜52g,53a〜53c,53e〜53g−位相制御回路
54a〜54c,54e〜51h−受信信号合成回路
DESCRIPTION OF SYMBOLS 1- Ultrasonic wave transmitter / receiver 2-Plane transducer array 3-Transmission / reception wave switch 4-Transmission drive signal generation circuit 40-Transmission amplifier 5-Reception beam forming circuit 50-Reception amplifier 6-Control circuit 7-Image processing circuit 8 -Indicators 100, 101 to 104, 100a to 100c, 100e to 100j-Vibrators 110a to 100c-Vibrator groups 51a to 51c, 51e to 51j-Received signal synthesis circuits 52a to 52c, 52e to 52g, 53a to 53c, 53e to 53g—phase control circuits 54a to 54c, 54e to 51h—received signal synthesis circuits

Claims (8)

それぞれに複数の振動子を配列した9チャンネルの振動子アレイからなり、全ての振動子が正三角形格子状に配列形成されている平面振動子アレイであって、
前記振動子アレイは、隣り合う振動子の中心間距離が長さ(2/3 1/2 )dであり、
第1チャンネルの振動子、第2チャンネルの振動子、および第3チャンネルの振動子を各振動子の中心間距離を長さ(2/3 1/2 )dとした正三角形状に隣接させてなる第1グループと、第4チャンネルの振動子、第5チャンネルの振動子、および第6チャンネルの振動子を各振動子の中心間距離を長さ(2/3 1/2 )dとした正三角形状に隣接させてなる第2グループと、第7チャンネルの振動子、第8チャンネルの振動子、および第9チャンネルの振動子を各振動子の中心間距離を長さ(2/3 1/2 )dとした正三角形状に隣接させてなる第3グループとが構成され、
前記第1チャンネルの振動子に対する前記第2、第3チャンネルの振動子の位置・方位と、前記第4チャンネルの振動子に対する前記第5、第6チャンネルの振動子の位置・方位と、前記第7チャンネルの振動子に対する前記第8、第9チャンネルの振動子の位置・方位とが一致する関係にあり、
前記第1グループ、第2グループ、および第3グループを各グループの中心間距離を長さ2dとした正三角形状で構成するパターンで繰り返してなる平面振動子アレイと、
該平面振動子アレイの各チャンネルの振動子に所定の位相関係を有する送信用駆動信号を与えることで、前記平面振動子アレイの振動子配列面に垂直な方向の送信ビーム、または、該垂直な方向の送信ビームに対して放射状に前記振動子配列面に投射した角がπ/3となる6方向の送信ビーム、または、前記垂直な方向の送信ビームに対して放射状に前記振動子配列面に投影した角が2π/3となる3方向の送信ビームとを形成する送信ビーム形成手段とを備えたことを特徴とする超音波送波器。
A plane transducer array comprising a 9-channel transducer array in which a plurality of transducers are arranged, and all transducers are arranged in an equilateral triangular lattice ,
In the transducer array, the distance between the centers of adjacent transducers is a length (2/3 1/2 ) d,
The first channel vibrator, the second channel vibrator, and the third channel vibrator are adjacent to each other in the shape of an equilateral triangle having a distance (2/3 1/2 ) d between the centers of the vibrators. The first group and the fourth channel vibrator, the fifth channel vibrator, and the sixth channel vibrator are positively set with the distance between the centers of each vibrator being a length (2/3 1/2 ) d. The second group formed adjacent to each other in a triangular shape, the seventh channel vibrator, the eighth channel vibrator, and the ninth channel vibrator are set to have a center-to-center distance of each vibrator (2/3 1 / 2 ) A third group is formed adjacent to the equilateral triangular shape d.
The position and orientation of the second and third channel vibrators with respect to the first channel vibrator, the position and orientation of the fifth and sixth channel vibrators with respect to the fourth channel vibrator, The positions and orientations of the eighth and ninth channel vibrators with respect to the seven channel vibrators are in agreement with each other,
A plane transducer array in which the first group, the second group, and the third group are repeated in a pattern that is formed in a regular triangle shape with the distance between the centers of each group being 2d;
By applying a transmission drive signal having a predetermined phase relationship to the transducer of each channel of the planar transducer array, the transmission beam in a direction perpendicular to the transducer array surface of the planar transducer array, or the vertical 6 directions of transmission beams whose angle projected onto the transducer array surface radially with respect to the transmission beam in the direction is π / 3, or radially on the transducer array surface with respect to the transmission beam in the vertical direction An ultrasonic wave transmitter comprising: a transmission beam forming unit that forms a transmission beam in three directions with a projected angle of 2π / 3.
前記送信ビーム形成手段は、各グループ、位相が2π/3rad.ずつ異なる送信用駆動信号を与える、または全てのグループに同じ位相の送信用駆動信号を与えることを特徴とする請求項1に記載の超音波送波器。 It said transmit beamforming means for each group, phase 2π / 3rad. Ultrasonic wave transmitter according to claim 1, characterized in providing each provide different transmission driving signals, or the transmission driving signal of the same phase in all groups. それぞれに複数の振動子を配列した9チャンネルの振動子アレイからなり、全ての振動子が正三角形格子状に配列形成されている平面振動子アレイであって、
前記振動子アレイは、隣り合う振動子の中心間距離が長さ(2/31/2)dであり、
第1チャンネルの振動子、第2チャンネルの振動子、および第3チャンネルの振動子を各振動子の中心間距離を長さ(2/31/2)dとした正三角形状に隣接させてなる第1グループと、第4チャンネルの振動子、第5チャンネルの振動子、および第6チャンネルの振動子を各振動子の中心間距離を長さ(2/31/2)dとした正三角形状に隣接させてなる第2グループと、第7チャンネルの振動子、第8チャンネルの振動子、および第9チャンネルの振動子を各振動子の中心間距離を長さ(2/31/2)dとした正三角形状に隣接させてなる第3グループとが構成され、
前記第1チャンネルの振動子に対する前記第2、第3チャンネルの振動子の位置・方位と、前記第4チャンネルの振動子に対する前記第5、第6チャンネルの振動子の位置・方位と、前記第7チャンネルの振動子に対する前記第8、第9チャンネルの振動子の位置・方位とが一致する関係にあり、
前記第1グループ、第2グループ、および第3グループを各グループの中心間距離を長さ2dとした正三角形状で構成するパターンで繰り返してなる平面振動子アレイと、
第1チャンネルの振動子、第4チャンネルの振動子、第7チャンネルの振動子に同相の送信用駆動信号を与え、
第2チャンネルの振動子、第5チャンネルの振動子、第8チャンネルの振動子のそれぞれに、この順で2π/3rad.ずつ位相が進む送信用駆動信号を与え、
第3チャンネルの振動子、第9チャンネルの振動子、第6チャンネルの振動子のそれぞれに、この順で2π/3rad.ずつ位相が進む送信用駆動信号を与える送信ビーム形成手段と、を備えたことを特徴とする超音波送波器。
A plane transducer array comprising a 9-channel transducer array in which a plurality of transducers are arranged, and all transducers are arranged in an equilateral triangular lattice,
In the transducer array, the distance between the centers of adjacent transducers is a length (2/3 1/2 ) d,
The first channel vibrator, the second channel vibrator, and the third channel vibrator are adjacent to each other in the shape of an equilateral triangle having a distance (2/3 1/2 ) d between the centers of the vibrators. The first group and the fourth channel vibrator, the fifth channel vibrator, and the sixth channel vibrator are positively set with the distance between the centers of each vibrator being a length (2/3 1/2 ) d. The second group formed adjacent to each other in a triangular shape, the seventh channel vibrator, the eighth channel vibrator, and the ninth channel vibrator are set to have a center-to-center distance of each vibrator (2/3 1 / 2 ) A third group is formed adjacent to the equilateral triangular shape d.
The position and orientation of the second and third channel vibrators with respect to the first channel vibrator, the position and orientation of the fifth and sixth channel vibrators with respect to the fourth channel vibrator, The positions and orientations of the eighth and ninth channel vibrators with respect to the seven channel vibrators are in agreement with each other,
A plane transducer array in which the first group, the second group, and the third group are repeated in a pattern that is formed in a regular triangle shape with the distance between the centers of each group being 2d;
In-phase transmission drive signals are given to the first channel vibrator, the fourth channel vibrator, and the seventh channel vibrator,
Each of the second channel vibrator, the fifth channel vibrator, and the eighth channel vibrator is 2π / 3 rad. Give the drive signal for transmission whose phase advances
In each of the third channel vibrator, the ninth channel vibrator, and the sixth channel vibrator, 2π / 3 rad. By ultrasonic wave transmitter characterized in that the transmission beam forming means for providing a transmit drive signal phase is advanced, with a.
請求項2または3に記載の超音波送波器を備え、
前記平面振動子アレイの第1の特定方向に垂直な方向に並ぶ3つのチャンネルからなる、前記第1の特定方向に平行な方向に隣接する3つのグループに対して、前記第1の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第1の位相制御と、
前記第1の特定方向に対して所定回転方向に2π/3rad.の角度を為す第2の特定方向に垂直な方向に並ぶ3つのチャンネルからなる、前記第2の特定方向に平行な方向に隣接する3つのグループに対して、前記第2の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第2の位相制御と、
前記第1の特定方向と前記第2の特定方向とのそれぞれに対して2π/3rad.の角度を為す第3の特定方向に垂直な方向に並ぶ3つのチャンネルからなる、前記第3の特定方向に平行な方向に隣接する3つのグループに対して、前記第3の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第3の位相制御と、を同時に行う受信ビーム形成手段を備えたことを特徴とする超音波送受波器。
An ultrasonic transmitter according to claim 2 or 3 ,
With respect to three groups adjacent to each other in a direction parallel to the first specific direction, which is composed of three channels arranged in a direction perpendicular to the first specific direction of the planar transducer array, the first specific direction The phase of the received signal of each group is 2π / 3 rad. A first phase control that is advanced step by step;
2π / 3 rad. In a predetermined rotation direction with respect to the first specific direction. For three groups adjacent to each other in a direction parallel to the second specific direction, which is composed of three channels arranged in a direction perpendicular to the second specific direction at an angle of In order, the phase of the received signal of each group is 2π / 3 rad. A second phase control that advances each time,
2π / 3 rad. For each of the first specific direction and the second specific direction. Along the third specific direction with respect to three groups adjacent to each other in a direction parallel to the third specific direction, which is composed of three channels arranged in a direction perpendicular to the third specific direction with an angle of In order, the phase of the received signal of each group is 2π / 3 rad. An ultrasonic wave transmitter / receiver comprising: a reception beam forming means for simultaneously performing third phase control for advancing one by one.
請求項2または3に記載の超音波送波器を備え、
前記平面振動子アレイの第1の特定方向に垂直な方向に並ぶ3つのチャンネルからなる、前記第1の特定方向に平行な方向に隣接する3つのグループに対して、前記第1の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第1の位相制御、および、前記第1の特定方向と逆方向の第4の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第4の位相制御と、
前記第1の特定方向に対して所定回転方向に2π/3rad.の角度を為す第2の特定方向に垂直な方向に並ぶ3つのチャンネルからなる、前記第2の特定方向に平行な方向に隣接する3つのグループに対して、前記第2の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第2の位相制御、および、前記第2の特定方向と逆方向の第5の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第5の位相制御と、
前記第1の特定方向と前記第2の特定方向とのそれぞれに対して2π/3rad.の角度を為す第3の特定方向に垂直な方向に並ぶ3つのチャンネルからなる、前記第3の特定方向に平行な方向に隣接する3つのグループに対して、前記第3の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第3の位相制御、および、前記第3の特定方向と逆方向の第6の特定方向に沿って順にそれぞれのグループの受信信号の位相を2π/3rad.ずつ進ませる第6の位相制御と、を同時に行う受信ビーム形成手段を備えたことを特徴とする超音波送受波器。
An ultrasonic transmitter according to claim 2 or 3 ,
With respect to three groups adjacent to each other in a direction parallel to the first specific direction, which is composed of three channels arranged in a direction perpendicular to the first specific direction of the planar transducer array, the first specific direction The phase of the received signal of each group is 2π / 3 rad. First phase control for advancing step by step, and the phase of the received signal of each group in order along a fourth specific direction opposite to the first specific direction by 2π / 3 rad. 4th phase control to advance step by step,
2π / 3 rad. In a predetermined rotation direction with respect to the first specific direction. For three groups adjacent to each other in a direction parallel to the second specific direction, which is composed of three channels arranged in a direction perpendicular to the second specific direction at an angle of In order, the phase of the received signal of each group is 2π / 3 rad. Second phase control for advancing step by step, and the phase of the received signals of each group in order along a fifth specific direction opposite to the second specific direction by 2π / 3 rad. 5th phase control to advance step by step,
2π / 3 rad. For each of the first specific direction and the second specific direction. Along the third specific direction with respect to three groups adjacent to each other in a direction parallel to the third specific direction, which is composed of three channels arranged in a direction perpendicular to the third specific direction with an angle of In order, the phase of the received signal of each group is 2π / 3 rad. Third phase control for advancing each step, and the phase of the received signal of each group in order along the sixth specific direction opposite to the third specific direction is 2π / 3 rad. An ultrasonic transducer comprising: a reception beam forming means that simultaneously performs sixth phase control that is advanced step by step.
前記受信ビーム形成手段は、全てのチャンネルの受信信号を同位相にする同位相制御を備え、該同位相制御も同時に行う請求項4または請求項5に記載の超音波送受波器。   The ultrasonic transducer according to claim 4 or 5, wherein the reception beam forming means includes in-phase control for setting the reception signals of all channels to the same phase, and also performs the in-phase control at the same time. 前記受信ビーム形成手段は、前記第1の位相制御、前記第2の位相制御、および前記第3の位相制御を同時に行う第1受信制御と、前記第4の位相制御、前記第5の位相制御、および前記第6の位相制御とを同時に行う第2受信制御とを備え、少なくとも前記第1受信制御、第2受信制御のいずれかを実行する請求項5または請求項6に記載の超音波送受波器。   The reception beam forming means includes a first reception control for simultaneously performing the first phase control, the second phase control, and the third phase control, the fourth phase control, and the fifth phase control. And a second reception control that simultaneously performs the sixth phase control, and at least one of the first reception control and the second reception control is executed. Waver. 請求項4〜請求項7のいずれかに記載の超音波送受波器を備え、
前記送信駆動信号を制御するとともに、前記受信信号からなる受信ビームに基づき探知データを生成する探知データ生成手段と、を備えた探知装置。
The ultrasonic transducer according to any one of claims 4 to 7, comprising:
A detection apparatus comprising: detection data generation means for controlling the transmission drive signal and generating detection data based on a reception beam made up of the reception signal.
JP2004197025A 2004-07-02 2004-07-02 Ultrasonic transmitter, ultrasonic transmitter and receiver, and detector using the same Active JP4791011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197025A JP4791011B2 (en) 2004-07-02 2004-07-02 Ultrasonic transmitter, ultrasonic transmitter and receiver, and detector using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197025A JP4791011B2 (en) 2004-07-02 2004-07-02 Ultrasonic transmitter, ultrasonic transmitter and receiver, and detector using the same

Publications (2)

Publication Number Publication Date
JP2006017629A JP2006017629A (en) 2006-01-19
JP4791011B2 true JP4791011B2 (en) 2011-10-12

Family

ID=35792053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197025A Active JP4791011B2 (en) 2004-07-02 2004-07-02 Ultrasonic transmitter, ultrasonic transmitter and receiver, and detector using the same

Country Status (1)

Country Link
JP (1) JP4791011B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803728B2 (en) * 2006-03-13 2011-10-26 Necトーキン株式会社 Ultrasonic phased array transducer
JP5207335B2 (en) * 2006-03-29 2013-06-12 Necトーキン株式会社 Ultrasonic phased array transducer
FR2900474B1 (en) * 2006-04-26 2008-06-13 Ixwaves Sarl Sarl MULTIFACECE SOUNDER
KR100790820B1 (en) 2006-12-06 2008-01-03 한국과학기술연구원 Signal transmitter and localization system including the same
JP4968847B2 (en) * 2008-01-23 2012-07-04 Necトーキン株式会社 Ultrasonic phased array transducer
JP5469996B2 (en) * 2009-10-20 2014-04-16 古野電気株式会社 Ultrasonic wave transmitter and Doppler velocimeter
JP5697863B2 (en) * 2009-10-20 2015-04-08 古野電気株式会社 Doppler speedometer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077053B2 (en) * 1989-01-31 1995-01-30 日本無線株式会社 Transceiver for speed measurement system
JPH1020022A (en) * 1996-07-05 1998-01-23 Kaijo Corp Composite oscillator
JP3748358B2 (en) * 2000-04-27 2006-02-22 Necトーキン株式会社 Ultrasonic phased array transducer
JP3920119B2 (en) * 2002-03-18 2007-05-30 日本無線株式会社 Ultrasonic transducer and apparatus, and fish finder

Also Published As

Publication number Publication date
JP2006017629A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
US8811120B2 (en) Systems and methods implementing frequency-steered acoustic arrays for 2D and 3D imaging
US20220373677A1 (en) Multifan survey system and method
USRE45823E1 (en) System and method of acoustic doppler beamforming
US20050243812A1 (en) Dynamic sub-array mapping systems and methods for ultrasound imaging
US20050228277A1 (en) System and method for 2D partial beamforming arrays with configurable sub-array elements
JP4791011B2 (en) Ultrasonic transmitter, ultrasonic transmitter and receiver, and detector using the same
JP5469996B2 (en) Ultrasonic wave transmitter and Doppler velocimeter
JP4803728B2 (en) Ultrasonic phased array transducer
JP5697863B2 (en) Doppler speedometer
JPS59107285A (en) Display device of submarine topography
JP2004033666A (en) Ultrasonic probe and ultrasonographic apparatus
JP2006102391A (en) Ultrasonic diagnostic equipment
JP4114838B2 (en) Ultrasound imaging system
JP4968847B2 (en) Ultrasonic phased array transducer
JP5628508B2 (en) Underwater detector and its reception characteristic correction method
JP5207335B2 (en) Ultrasonic phased array transducer
JP2004313484A (en) Ultrasonic probe
JP5493821B2 (en) Acoustic wave measurement sensor
JP2008183288A (en) Ultrasonic diagnostic apparatus
JPH0113547B2 (en)
JP3920119B2 (en) Ultrasonic transducer and apparatus, and fish finder
JP5164218B2 (en) Ultrasonic phased array transducer
JP6923884B2 (en) Ultrasonic three-dimensional measuring device
JP5520100B2 (en) Ultrasonic diagnostic equipment
JPS61151487A (en) Sonar apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4791011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250