JP2009173468A - Cement based composition - Google Patents

Cement based composition Download PDF

Info

Publication number
JP2009173468A
JP2009173468A JP2008011071A JP2008011071A JP2009173468A JP 2009173468 A JP2009173468 A JP 2009173468A JP 2008011071 A JP2008011071 A JP 2008011071A JP 2008011071 A JP2008011071 A JP 2008011071A JP 2009173468 A JP2009173468 A JP 2009173468A
Authority
JP
Japan
Prior art keywords
powder
water
amount
cement
usage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008011071A
Other languages
Japanese (ja)
Inventor
Koichi Sato
孝一 佐藤
Seiji Kanamori
誠治 金森
Suguru Nonaka
英 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2008011071A priority Critical patent/JP2009173468A/en
Publication of JP2009173468A publication Critical patent/JP2009173468A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cement based composition in which a pseudo polymer is formed in a homogeneous state, and also, values regarding viscosity, fluidity, underwater non-separability, air quantity and material separation resistance are high. <P>SOLUTION: Disclosed is a cement based composition obtained by mixing: a binder composed of cement and expansion material powder; a thickener composed of first powder consisting of a first water soluble low molecular compound selected from cationic surfactants and second powder consisting of a second water soluble low molecular compound selected from anionic aromatic compounds; a fine aggregate; cement admixture powder; and water, and in which unit water quantity lies in the range of 380 to 440 kg/m<SP>3</SP>, the ratio between the water and binder (W/B) lies in the range of 34.0 to 60.0%, the total of the quantity of the first powder and the quantity of the second powder (Vt using quantity) lies in the range of 2.50 to 4.00 kg/m<SP>3</SP>, and the quantity of the cement admixture powder (SP using quantity) lies in the range of 0.90 to 2.00 kg/m<SP>3</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、擬似ポリマーが均質な状態で形成され、かつ、粘性、流動性、水中不分離性、空気量、材料分離抵抗性に関する評価も高いセメント系組成物に関するものである。   The present invention relates to a cementitious composition in which a pseudo polymer is formed in a homogeneous state, and has high evaluation regarding viscosity, fluidity, in-water separability, air content, and material separation resistance.

従来、カチオン性界面活性剤から選ばれる第1の水溶性低分子化合物を含む液体とアニオン性芳香族化合物から選ばれる第2の水溶性低分子化合物を含む液体との二液からなる液体増粘性混和剤を添加した早強性耐水コンクリート組成物や高流動モルタル組成物などのセメント系組成物が提案されている。
第1の水溶性低分子化合物を含む液体と第2の水溶性低分子化合物を含む液体とがある一定の割合でセメント中に混入されると、第1の水溶性低分子化合物と第2の水溶性低分子化合物とが電気的に配列して擬似ポリマーを形成することにより、適度な粘性を確保することができるだけでなく、粘性がある程度高くなっても流動性を損なうことがないセメント系組成物となる。したがって、上記増粘性混和剤を用いることによって、従来は両立が困難であった流動性とフレッシュコンクリート経時保持性とに優れたコンクリート組成物や流動性とセルフレベリング性とに優れたモルタル組成物などのセメント系組成物を得ることができる。
なお、第1の水溶性低分子化合物と第2の水溶性低分子化合物との配合の割合としては、1:1とした場合に優れた特性が得られる(例えば、特許文献1〜3参照)。
特開2005−281088号公報 特開2005−281089号公報 特開2006−176397号公報
Conventionally, liquid thickening composed of two liquids, a liquid containing a first water-soluble low molecular weight compound selected from cationic surfactants and a liquid containing a second water-soluble low molecular weight compound selected from anionic aromatic compounds Cementitious compositions such as early-strength water-resistant concrete compositions and high-fluidity mortar compositions with admixtures have been proposed.
When the liquid containing the first water-soluble low molecular compound and the liquid containing the second water-soluble low molecular compound are mixed in the cement at a certain ratio, the first water-soluble low molecular compound and the second water Cement-based composition that not only can ensure proper viscosity by electrically arranging with water-soluble low molecular weight compounds to form a pseudo polymer, but also does not impair fluidity even if viscosity increases to some extent It becomes a thing. Therefore, by using the above thickening admixture, a concrete composition excellent in fluidity and fresh concrete retention with time and a mortar composition excellent in fluidity and self-leveling properties, which were difficult to achieve at the same time, etc. A cementitious composition can be obtained.
In addition, as a mixing ratio of the first water-soluble low-molecular compound and the second water-soluble low-molecular compound, excellent characteristics can be obtained when the ratio is 1: 1 (for example, see Patent Documents 1 to 3). .
Japanese Patent Laid-Open No. 2005-281888 JP 2005-28109 A JP 2006-176597 A

ところで、上記第1の水溶性低分子化合物を含む液体と第2の水溶性低分子化合物とを含む液体とを同時に添加すると、第1の水溶性低分子化合物と第2の水溶性低分子化合物とが不均質な状態で擬似ポリマーを形成してしまうので、擬似ポリマーを均質な状態で形成させて所望の特性を得るためには長時間の混練が必要となる。
そこで、早強性耐水コンクリート組成物を製造する際には、はじめに、セメント、水、細骨材に第2の水溶性低分子化合物を含む液体を添加して混練して混練物を作製した後、この混練物に第1の水溶性低分子化合物を含む液体を添加して再度混練し、最後に粗骨材を加えて混練するようにしていた。しかしながら、このように添加作業と混練作業とを何度も繰り返す製造方法では、製造に時間がかかるだけでなく、第1の水溶性低分子化合物と第2の水溶性低分子化合物とは結合し易いので、再混練においてもセメントと十分に混合されない状態でポリマーを形成してしまい、そのため、擬似ポリマーを均質な状態で形成させて所望の特性を得ることができないといった問題点があった。
このような問題は、早強性耐水コンクリート組成物や高流動モルタル組成物の製造に限らず、他のコンクリート組成物やモルタル組成物などの、上記増粘性混和剤を配合したセメント系組成物を製造する場合にも問題となっている。
本発明は、従来の問題点に鑑みてなされたもので、擬似ポリマーが均質な状態で形成され、かつ、粘性、流動性、水中不分離性、空気量、材料分離抵抗性に関する評価も高いセメント系組成物を提供することを目的とする。
By the way, when the liquid containing the first water-soluble low molecular weight compound and the liquid containing the second water-soluble low molecular weight compound are added simultaneously, the first water-soluble low molecular weight compound and the second water-soluble low molecular weight compound are added. Therefore, in order to obtain a desired characteristic by forming the pseudo polymer in a homogeneous state, it is necessary to knead for a long time.
Therefore, when producing an early-strength water-resistant concrete composition, first, after adding a liquid containing the second water-soluble low-molecular compound to cement, water, and fine aggregate, kneaded to produce a kneaded product The liquid containing the first water-soluble low molecular weight compound was added to the kneaded product and kneaded again, and finally the coarse aggregate was added and kneaded. However, in the production method in which the addition operation and the kneading operation are repeated many times as described above, not only the production takes time, but the first water-soluble low-molecular compound and the second water-soluble low-molecular compound are bonded. Therefore, even in re-kneading, the polymer is formed in a state where it is not sufficiently mixed with the cement. Therefore, there has been a problem that the desired properties cannot be obtained by forming the pseudo polymer in a homogeneous state.
Such problems are not limited to the production of early-strength water-resistant concrete compositions and high-fluidity mortar compositions, but cement-based compositions containing the above thickening admixtures such as other concrete compositions and mortar compositions. It is also a problem when manufacturing.
The present invention has been made in view of conventional problems, and is a cement in which a pseudo polymer is formed in a homogeneous state, and has high evaluation regarding viscosity, fluidity, underwater inseparability, air content, and material separation resistance. An object is to provide a system composition.

本発明のセメント系組成物は、セメントと膨張材粉末とから成る結合材と、カチオン性界面活性剤から選ばれる第1の水溶性低分子化合物から成る第1の粉体とアニオン性芳香族化合物から選ばれる第2の水溶性低分子化合物から成る第2の粉体とから成る増粘材と、細骨材と、セメント混和剤粉末と、水とが混ぜ合わされて形成されたセメント系組成物であって、単位水量が380〜440kg/m3、水と結合材との比が34.0〜60.0%、第1の粉体の量と第2の粉体の量との和が2.50〜4.00kg/m3、セメント混和剤粉末の量が0.90〜2.00kg/m3の範囲にあることを特徴とする。 The cement-based composition of the present invention comprises a binder comprising a cement and an expanding material powder, a first powder comprising a first water-soluble low-molecular compound selected from a cationic surfactant, and an anionic aromatic compound. A cement-based composition formed by mixing a thickener comprising a second powder composed of a second water-soluble low-molecular compound selected from: a fine aggregate, a cement admixture powder, and water. The unit water amount is 380 to 440 kg / m 3 , the ratio of water and binder is 34.0 to 60.0%, and the sum of the amount of the first powder and the amount of the second powder is 2.50 to 4.00 kg / m 3 , and the amount of cement admixture powder is in the range of 0.90 to 2.00 kg / m 3 .

本発明のセメント系組成物によれば、セメントと膨張材粉末とから成る結合材と、第1の粉体と第2の粉体とから成る増粘材と、細骨材と、セメント混和剤粉末と、水とが混ぜ合わされて形成されたので、結合材と増粘材と細骨材とセメント混和剤粉末とを混合して混合物を形成した後に、この混合物に水を加えて混練することにより、擬似ポリマーが均質な状態で形成されたセメント系組成物となる。そして、単位水量を380〜440kg/m3、水と結合材との比を34.0〜60.0%、第1の粉体の量と第2の粉体の量との和を2.50〜4.00kg/m3、セメント混和剤粉末の量を0.90〜2.00kg/m3の範囲となるようにしたので、粘性、流動性、水中不分離性、空気量、材料分離抵抗性に関する評価の高いセメント系組成物を得ることができる。 According to the cementitious composition of the present invention, a binder composed of cement and an expansion material powder, a thickener composed of a first powder and a second powder, a fine aggregate, and a cement admixture Since the powder was mixed with water, the binder, thickener, fine aggregate and cement admixture powder were mixed to form a mixture, and then water was added to the mixture and kneaded. Thus, a cement-based composition in which the pseudo polymer is formed in a homogeneous state is obtained. The unit water amount is 380 to 440 kg / m 3 , the ratio of water to the binder is 34.0 to 60.0%, and the sum of the amount of the first powder and the amount of the second powder is 2. 50 ~ 4.00kg / m 3 , cement admixture powder amount is in the range of 0.90 ~ 2.00kg / m 3 , viscosity, fluidity, water inseparability, air quantity, material separation A cement-based composition having a high evaluation regarding resistance can be obtained.

まず、最良の形態に係るセメント系組成物としてのモルタル組成物の構成について説明する。
モルタル組成物は、例えば図3に示す、セメント(C)、膨張材粉末(CSA)、増粘性混和剤粉末(Vt)、細骨材(S)、セメント混和剤粉末(SP)、消泡剤粉末(E)、水(W)が混ぜ合わされて形成される。
セメント(C)、膨張材粉末(CSA)、増粘性混和剤粉末(Vt)、細骨材(S)、セメント混和剤粉末(SP)、消泡剤粉末(E)が混ぜ合わされた混合物によりモルタル混合物粉体が形成される。
セメント(C)と膨張材粉末(CSA)とにより結合材(B)が形成される。
First, the structure of the mortar composition as a cement-type composition which concerns on the best form is demonstrated.
The mortar composition includes, for example, a cement (C), an expanding material powder (CSA), a thickening admixture powder (Vt), a fine aggregate (S), a cement admixture powder (SP), and an antifoaming agent as shown in FIG. It is formed by mixing powder (E) and water (W).
Mortar by a mixture of cement (C), expander powder (CSA), thickener admixture powder (Vt), fine aggregate (S), cement admixture powder (SP), and antifoam powder (E) A mixture powder is formed.
The binder (B) is formed by the cement (C) and the expansion material powder (CSA).

増粘材としての増粘性混和剤粉末(Vt)は、第1の粉体と第2の粉体とからなる。第1の粉体は、カチオン性界面活性剤から選ばれる第1の水溶性低分子化合物の粉体や、第1の水溶性低分子化合物を含む液体を乾燥させたことにより形成された第1の水溶性低分子化合物の粉体を用いた。第2の粉体は、アニオン性芳香族化合物から選ばれる第2の水溶性低分子化合物の粉体や、第2の水溶性低分子化合物を含む液体を乾燥させたことにより形成された第2の水溶性低分子化合物の粉体を用いた。
セメント混和剤粉末(SP)は、増粘性混和剤粉末(Vt)と相溶性に優れたカルボキシル基含有ポリエーテル系減水剤粉末を用いた。
The thickening admixture powder (Vt) as the thickening material is composed of a first powder and a second powder. The first powder is formed by drying a powder of a first water-soluble low-molecular compound selected from cationic surfactants or a liquid containing the first water-soluble low-molecular compound. The water-soluble low molecular weight compound powder was used. The second powder is formed by drying a powder of a second water-soluble low molecular compound selected from anionic aromatic compounds or a liquid containing the second water-soluble low molecular compound. The water-soluble low molecular weight compound powder was used.
As the cement admixture powder (SP), a carboxyl group-containing polyether water reducing agent powder excellent in compatibility with the thickening admixture powder (Vt) was used.

第1の水溶性低分子化合物としては、4級アンモニウム塩型カチオン性界面活性剤が好ましく、特に、アルキルアンモニウム塩を主成分とする添加剤が好ましい。また、第2の水溶性低分子化合物としては、芳香環を有するスルフォン酸塩が好ましく、特に、アルキルアリルスルフォン酸塩を主成分とする添加剤が好ましい。   As the first water-soluble low molecular weight compound, a quaternary ammonium salt type cationic surfactant is preferable, and an additive mainly composed of an alkyl ammonium salt is particularly preferable. The second water-soluble low molecular weight compound is preferably a sulfonate having an aromatic ring, and particularly preferably an additive having an alkylallyl sulfonate as a main component.

セメント(C)は、石灰石・粘土・酸化鉄などを原料とした普通ポルトランドセメント,早強ポルトランドセメント,中庸熱ポルトランドセメント,白色ポルトランドセメントなどのポルトランドセメントや、高炉セメント,フライアッシュセメント,シリカセメントなどの混合セメントを用いる。
細骨材(S)は、川砂から得られた珪砂などを用いる。
膨張材粉末(CSA)は、石灰複合系膨張材粉末を用いる。
消泡剤粉末(E)は、シリコン系の消泡剤粉末を用いる。消泡剤粉末(E)は、混練の際に泡が発生してモルタルの空気量が多くなって強度の低下や比重の減少等が起こることを防止するために、用いる方が好ましい。
Cement (C) includes ordinary Portland cement, early-strength Portland cement, medium heat Portland cement, white Portland cement such as limestone, clay and iron oxide, blast furnace cement, fly ash cement, silica cement, etc. Use mixed cement.
As the fine aggregate (S), silica sand or the like obtained from river sand is used.
The expansion material powder (CSA) uses a lime composite expansion material powder.
As the defoamer powder (E), a silicon-based defoamer powder is used. The defoamer powder (E) is preferably used in order to prevent bubbles from being generated during kneading and an increase in the amount of air in the mortar, resulting in a decrease in strength and a decrease in specific gravity.

次に、モルタル組成物の作り方を説明する。セメント(C)、膨張材粉末(CSA)、増粘性混和剤粉末(Vt)、細骨材(S)、セメント混和剤粉末(SP)、消泡剤粉末(E)を適当な容器内で混合してモルタル混合物粉体を作り、このモルタル混合物粉体に水を加えてよく練り混ぜることによりモルタル組成物を作ることができる。   Next, how to make a mortar composition will be described. Cement (C), expander powder (CSA), thickener admixture powder (Vt), fine aggregate (S), cement admixture powder (SP), and antifoam powder (E) are mixed in a suitable container. Thus, a mortar mixture powder is prepared, and water is added to the mortar mixture powder and kneaded well to prepare a mortar composition.

最良の形態では、図1に示すように、セメント混和剤粉末の量(SP使用量)が適正範囲0.90〜2.00kg/m3であり、第1の粉体の量と第2の粉体の量との和、すなわち、増粘性混和剤粉末の量(Vt使用量)が適正範囲2.50〜4.00kg/m3であり、水と結合材との比(以下、水結合材比(W/B)という)が適正範囲34.0〜60.0%であり、単位体積当たりの水量(以下、単位水量(W)という)が適正範囲380〜440kg/m3となるようなモルタル組成物とした。 In the best mode, as shown in FIG. 1, the amount of the cement admixture powder (SP usage amount) is in the proper range of 0.90 to 2.00 kg / m 3 , and the amount of the first powder and the amount of the second powder The sum of the amount of the powder, that is, the amount of the thickening admixture powder (the amount of Vt used) is in an appropriate range of 2.50 to 4.00 kg / m 3 , and the ratio of water to the binder (hereinafter, water binding) The material ratio (W / B) is an appropriate range of 34.0 to 60.0%, and the amount of water per unit volume (hereinafter referred to as the unit water amount (W)) is an appropriate range of 380 to 440 kg / m 3. A mortar composition was obtained.

SP使用量の適正範囲0.90〜2.00kg/m3、Vt使用量の適正範囲2.50〜4.00kg/m3、水結合材比の適正範囲34.0〜60.0%、単位水量の適正範囲380〜440kg/m3は、以下のように求めた。 An appropriate range of SP usage is 0.90 to 2.00 kg / m 3 , an appropriate range of Vt usage is 2.50 to 4.00 kg / m 3 , an appropriate range of water binder ratio is 34.0 to 60.0%, The appropriate unit water amount range of 380 to 440 kg / m 3 was determined as follows.

すなわち、SP使用量を異ならせた材料配合割合で複数のモルタル組成物の試験体を作製し、作製した試験体毎に、図2に示す評価項目である、粘性、流動性、水中不分離性、空気量、材料分離抵抗性を検証するための評価試験を行い、図2に示す各評価項目毎に目標として設定された評価値を満足するSP使用量の適性範囲を求めた。同様に、Vt使用量を異ならせた材料配合割合で複数のモルタル組成物の試験体を作製し、水結合材比(W/B)を異ならせた材料配合割合で複数のモルタル組成物の試験体を作製し、単位水量(W)を異ならせた材料配合割合で複数のモルタル組成物の試験体を作製し、作製した試験体毎に、図2に示す評価項目である、粘性、流動性、水中不分離性、空気量、材料分離抵抗性を検証するための評価試験を行って、図2に示す各評価項目毎に目標として設定された評価値を満足するVt使用量、水結合材比(W/B)、単位水量(W))の適性範囲をそれぞれ求めた。図2に、評価項目、試験方法、及び、目標とする評価値を示し、図3に、試験体に使用した材料の詳細を示した。   That is, a plurality of mortar composition test specimens were prepared at different material blend ratios with different SP usage, and for each test specimen prepared, the evaluation items shown in FIG. Then, an evaluation test for verifying the air amount and material separation resistance was performed, and an appropriate range of SP usage satisfying the evaluation value set as a target for each evaluation item shown in FIG. 2 was obtained. Similarly, test specimens of a plurality of mortar compositions were prepared at different material blending ratios using different amounts of Vt, and a plurality of mortar compositions were tested at different material blending ratios with different water binder ratios (W / B). A test body of a plurality of mortar compositions was prepared at a material blending ratio in which the unit water amount (W) was varied. Viscosity and fluidity, which are evaluation items shown in FIG. Vt usage amount and water binding material satisfying evaluation values set as targets for each evaluation item shown in FIG. 2 by conducting evaluation tests for verifying underwater inseparability, air amount, and material separation resistance Appropriate ranges of the ratio (W / B) and unit water amount (W) were determined. FIG. 2 shows evaluation items, test methods, and target evaluation values, and FIG. 3 shows details of materials used for the test specimen.

評価試験を行った複数の試験体毎の材料配合割合を図4;9;14:19の(a)図に示し、複数の試験体毎の評価試験結果を図4;9;14:19の(b)図に示した。そして、複数の試験体による評価試験結果に基づいて図5乃至図8、図10乃至図13、図15乃至図18、図20乃至図23のようなグラフを作成した。尚、グラフ中の直線は、評価試験結果(プロットデータ)に基づいて最小2乗法により求め、グラフ中の曲線は、評価試験結果(プロットデータ)に基づいて最小2乗法により求めた。グラフ中にy=で示した式は、直線又は曲線の方程式である。式中のLn(x)は自然対数である。この直線又は曲線に基づいて、SP使用量、Vt使用量、水結合材比(W/B)、単位水量(W)の適性範囲を求めた。グラフ中において、実線で示した横線は評価値の最小値と最大値とを示す補助線、最小2乗法により求めた直線又は曲線と実線で示した横線との交点より垂下させた実線で示した縦線はSP使用量、Vt使用量、水結合材比(W/B)、単位水量(W)の適性範囲を示す補助線である。   The material blending ratio for each of the plurality of test bodies subjected to the evaluation test is shown in FIG. 4; 9; 14:19 (a), and the evaluation test results for each of the plurality of test bodies are shown in FIG. 4; 9; (B) Shown in the figure. Then, graphs as shown in FIG. 5 to FIG. 8, FIG. 10 to FIG. 13, FIG. 15 to FIG. 18, and FIG. The straight line in the graph was obtained by the least square method based on the evaluation test result (plot data), and the curve in the graph was obtained by the least square method based on the evaluation test result (plot data). The equation indicated by y = in the graph is a linear or curved equation. Ln (x) in the equation is a natural logarithm. Based on this straight line or curve, the appropriate ranges of SP usage, Vt usage, water binder ratio (W / B), and unit water volume (W) were determined. In the graph, the horizontal line indicated by the solid line is an auxiliary line indicating the minimum and maximum evaluation values, and is indicated by a solid line suspended from the intersection of the straight line or curve obtained by the least square method and the horizontal line indicated by the solid line. A vertical line is an auxiliary line which shows the suitable range of SP usage-amount, Vt usage-amount, water-binding-material ratio (W / B), and unit water amount (W).

図4(a)はSP使用量を異ならせた複数の試験体(I−1−1乃至I−1−8)毎の材料配合割合を表で示し、図4(b)は複数の試験体毎の評価試験結果を表で示した。尚、SP使用量を多くした試験体では細骨材(S)の量を減らした。
図5乃至図8は、SP使用量を異ならせた複数の試験体による評価試験結果に基づいて形成したグラフを示す。図5はSP使用量と20cmフロー時間との関係を示すグラフ、図6はSP使用量と5分フローとの関係を示すグラフ、図7はSP使用量とpH(水素指数)との関係を示すグラフ、図8はSP使用量と空気量との関係を示すグラフである。
FIG. 4 (a) shows a material blending ratio for each of a plurality of test bodies (I-1-1 to I-1-8) having different SP usage amounts, and FIG. 4 (b) shows a plurality of test bodies. The evaluation test results for each are shown in a table. Note that the amount of fine aggregate (S) was reduced in the specimens with a large amount of SP used.
5 to 8 show graphs formed based on the evaluation test results of a plurality of test bodies with different SP usage. 5 is a graph showing the relationship between SP usage and 20 cm flow time, FIG. 6 is a graph showing the relationship between SP usage and 5-minute flow, and FIG. 7 is the relationship between SP usage and pH (hydrogen index). FIG. 8 is a graph showing the relationship between the SP usage amount and the air amount.

図5のグラフに示された曲線から、粘性を評価する20cmフロー時間の評価値(20秒〜60秒)を満足するSP使用量の適性範囲として0.90〜2.00kg/m3が得られた。図6のグラフに示された曲線から、流動性を評価する5分フローの評価値(250±25mm)を満足するSP使用量の適性範囲として0.90〜3.00kg/m3が得られた。図7のグラフに示された直線から、水中不分離性を評価するpHの評価値(12.0以下)を満足するSP使用量の適性範囲として0.00〜2.20kg/m3が得られた。図8のグラフに示された直線から、空気量の評価値(4.0%以下)を満足するSP使用量の適性範囲として0.65〜3.00kg/m3が得られた。また、材料分離抵抗性を評価するブリーディングが0となるSP使用量の適性範囲は0.00〜2.00kg/m3であった。 From the curve shown in the graph of FIG. 5, 0.90 to 2.00 kg / m 3 is obtained as an appropriate range of the SP usage amount that satisfies the evaluation value (20 to 60 seconds) of the 20 cm flow time for evaluating the viscosity. It was. From the curve shown in the graph of FIG. 6, 0.90 to 3.00 kg / m 3 is obtained as an appropriate range of the SP use amount that satisfies the evaluation value (250 ± 25 mm) of the 5-minute flow for evaluating the fluidity. It was. From the straight line shown in the graph of FIG. 7, 0.00 to 2.20 kg / m 3 is obtained as an appropriate range of the SP usage amount that satisfies the pH evaluation value (12.0 or less) for evaluating the inseparability in water. It was. From the straight line shown in the graph of FIG. 8, 0.65 to 3.00 kg / m 3 was obtained as an appropriate range of the SP usage satisfying the evaluation value (4.0% or less) of the air amount. Moreover, the suitable range of SP usage-amount that the bleeding which evaluates material-separation resistance becomes 0 was 0.00-2.00 kg / m < 3 >.

図4の総合評価の欄で○を付けた材料配合割合で形成された複数の試験体(I−1−3乃至I−1−6)は、目標として設定した評価値の全てを満足するモルタル組成物であることがわかる。
図4の表から、SP使用量が1.00〜2.00kg/m3の範囲で、かつ、セメント(C)が1120kg/m3、膨張材粉末(CSA)が20kg/m3、増粘性混和剤粉末(Vt)が3.25kg/m3、細骨材(S)が613〜610kg/m3の範囲、消泡剤粉末(E)が0.15kg/m3、単位水量(W)が400kg/m3、水結合材比(W/B)が35%の材料配合割合で形成されるモルタル組成物は、目標として設定した評価値の全てを満足するモルタル組成物となることが予想される。
A plurality of test bodies (I-1-3 to I-1-6) formed at the material blending ratios marked with ○ in the column of comprehensive evaluation in FIG. 4 are mortars that satisfy all of the evaluation values set as targets. It turns out that it is a composition.
From the table of FIG. 4, the extent SP usage of 1.00~2.00kg / m 3, and the cement (C) is 1120kg / m 3, the expansion material powder (CSA) is 20 kg / m 3, viscosity increasing admixture powder (Vt) is 3.25 kg / m 3, fine aggregates (S) range of 613~610kg / m 3, antifoam powder (E) is 0.15 kg / m 3, unit water (W) Is expected to be a mortar composition satisfying all of the evaluation values set as targets. The mortar composition formed at a material blending ratio of 400 kg / m 3 and water binder ratio (W / B) of 35%. Is done.

図9(a)はVt使用量を異ならせた複数の試験体(I−2−1乃至I−2−6)毎の材料配合割合を表で示し、図9(b)は複数の試験体毎の評価試験結果を表で示した。尚、Vt使用量を多くした試験体では水結合材比(W/B)を一定にするためセメント(C)の量を減らした。
図10乃至図13は、Vt使用量を異ならせた複数の試験体による評価試験結果に基づいて形成したグラフを示す。図10はVt使用量と20cmフロー時間との関係を示すグラフ、図11はVt使用量と5分フローとの関係を示すグラフ、図12はVt使用量とpH(水素指数)との関係を示すグラフ、図13はVt使用量と空気量との関係を示すグラフである。
FIG. 9 (a) shows a material blending ratio for each of a plurality of test bodies (I-2-1 to I-2-6) with different amounts of Vt used, and FIG. 9 (b) shows a plurality of test bodies. The evaluation test results for each are shown in a table. In addition, the amount of cement (C) was reduced in order to make the water binder ratio (W / B) constant in the test specimen with a large amount of Vt used.
FIG. 10 thru | or FIG. 13 shows the graph formed based on the evaluation test result by the some test body which varied Vt usage-amount. FIG. 10 is a graph showing the relationship between Vt usage and 20 cm flow time, FIG. 11 is a graph showing the relationship between Vt usage and 5-minute flow, and FIG. 12 shows the relationship between Vt usage and pH (hydrogen index). FIG. 13 is a graph showing the relationship between the Vt usage amount and the air amount.

図10のグラフに示された曲線から、粘性を評価する20cmフロー時間の評価値(20秒〜60秒)を満足するVt使用量の適性範囲として2.5〜4.5kg/m3が得られた。図11のグラフに示された直線から、流動性を評価する5分フローの評価値(250±25mm)を満足するVt使用量の適性範囲として2.4〜4.3kg/m3が得られた。図12のグラフに示された直線から、水中不分離性を評価するpHの評価値(12.0以下)を満足するVt使用量の適性範囲として1.8〜6.0kg/m3が得られた。図13のグラフに示された直線から、空気量の評価値(4.0%以下)を満足するVt使用量の適性範囲として0.0〜4.0kg/m3が得られた。また、材料分離抵抗性を評価するブリーディングが0となるVt使用量の適性範囲は2.0〜6.0kg/m3であった。 From the curve shown in the graph of FIG. 10, 2.5 to 4.5 kg / m 3 is obtained as an appropriate range of the Vt usage amount that satisfies the evaluation value (20 seconds to 60 seconds) of the 20 cm flow time for evaluating the viscosity. It was. From the straight line shown in the graph of FIG. 11, 2.4 to 4.3 kg / m 3 is obtained as an appropriate range of the Vt use amount that satisfies the evaluation value (250 ± 25 mm) of the 5-minute flow for evaluating the fluidity. It was. From the straight line shown in the graph of FIG. 12, 1.8 to 6.0 kg / m 3 is obtained as an appropriate range of the Vt use amount that satisfies the pH evaluation value (12.0 or less) for evaluating the inseparability in water. It was. From the straight line shown in the graph of FIG. 13, 0.0 to 4.0 kg / m 3 was obtained as an appropriate range of the Vt use amount that satisfies the evaluation value (4.0% or less) of the air amount. Moreover, the suitable range of the Vt usage amount in which the bleeding for evaluating the material separation resistance becomes 0 was 2.0 to 6.0 kg / m 3 .

図9の総合評価の欄で○を付けた材料配合割合で形成された複数の試験体(I−2−4及びI−2−5)は、目標として設定した評価値の全てを満足するモルタル組成物であることがわかる。
図9の表から、Vt使用量が3.00〜4.00kg/m3の範囲で、かつ、セメント(C)が1120〜1119kg/m3、膨張材粉末(CSA)が20kg/m3、セメント混和剤粉末(SP)が1.25kg/m3、細骨材(S)が612kg/m3、消泡剤粉末(E)が0.15kg/m3、単位水量(W)が400kg/m3、水結合材比(W/B)が35%の材料配合割合で形成されるモルタル組成物は、目標として設定した評価値の全てを満足するモルタル組成物となることが予想される。
A plurality of test bodies (I-2-4 and I-2-5) formed at the material blending ratios marked with ○ in the column of comprehensive evaluation in FIG. 9 are mortars that satisfy all of the evaluation values set as targets. It turns out that it is a composition.
From the table of FIG. 9, the range Vt usage of 3.00~4.00kg / m 3, and the cement (C) is 1120~1119kg / m 3, the expansion material powder (CSA) is 20 kg / m 3, Cement admixture powder (SP) is 1.25 kg / m 3 , fine aggregate (S) is 612 kg / m 3 , antifoam powder (E) is 0.15 kg / m 3 , and unit water amount (W) is 400 kg / m It is expected that a mortar composition formed with a material blending ratio of m 3 and a water binder ratio (W / B) of 35% will be a mortar composition that satisfies all of the evaluation values set as targets.

図14(a)は水結合材比(W/B)を異ならせた複数の試験体(I−3−1乃至I−3−4)毎の材料配合割合を表で示し、図14(b)は複数の試験体毎の評価試験結果を表で示した。尚、W/Bを大きくした試験体ではセメント(C)の量を減らして細骨材(S)の量を増やし、W/Bを小さくした試験体ではセメント(C)の量を増やして細骨材(S)の量を減らした。
図15乃至図18は、W/Bを異ならせた複数の試験体による評価試験結果に基づいて形成したグラフを示す。図15はW/Bと20cmフロー時間との関係を示すグラフ、図16はW/Bと5分フローとの関係を示すグラフ、図17はW/BとpH(水素指数)との関係を示すグラフ、図18はW/Bと空気量との関係を示すグラフである。
FIG. 14 (a) is a table showing the material blending ratio for each of the plurality of test bodies (I-3-1 to I-3-4) with different water binder ratios (W / B), and FIG. ) Shows the evaluation test results for each of the plurality of test specimens in a table. Note that the specimen with the larger W / B reduces the amount of cement (C) to increase the amount of fine aggregate (S), and the specimen with a smaller W / B increases the amount of cement (C) to reduce the amount. The amount of aggregate (S) was reduced.
FIGS. 15 to 18 show graphs formed based on the evaluation test results of a plurality of test bodies with different W / B. 15 is a graph showing the relationship between W / B and 20 cm flow time, FIG. 16 is a graph showing the relationship between W / B and 5-minute flow, and FIG. 17 is a graph showing the relationship between W / B and pH (hydrogen index). FIG. 18 is a graph showing the relationship between W / B and the amount of air.

図15のグラフに示された曲線から、粘性を評価する20cmフロー時間の評価値(20秒〜60秒)を満足するW/Bの適性範囲として33.5〜61.0%が得られた。図16のグラフに示された曲線から、流動性を評価する5分フローの評価値(250±25mm)を満足するW/Bの適性範囲として34.0〜66.0%が得られた。図17のグラフに示された直線から、水中不分離性を評価するpHの評価値(12.0以下)を満足するW/Bの適性範囲として30.0〜56.0%が得られた。図18のグラフに示された曲線から、空気量の評価値(4.0%以下)を満足するW/Bの適性範囲として30.0〜60.0%が得られた。また、材料分離抵抗性を評価するブリーディングが0となるW/Bの適性範囲は30.0〜60.0%であった。   From the curve shown in the graph of FIG. 15, 33.5 to 61.0% was obtained as an appropriate range of W / B satisfying the evaluation value (20 seconds to 60 seconds) of the 20 cm flow time for evaluating the viscosity. . From the curve shown in the graph of FIG. 16, 34.0 to 66.0% was obtained as a suitable range of W / B satisfying the evaluation value (250 ± 25 mm) of the 5-minute flow for evaluating the fluidity. From the straight line shown in the graph of FIG. 17, 30.0 to 56.0% was obtained as an appropriate range of W / B that satisfies the pH evaluation value (12.0 or less) for evaluating the inseparability in water. . From the curve shown in the graph of FIG. 18, 30.0 to 60.0% was obtained as an appropriate range of W / B that satisfies the evaluation value (4.0% or less) of the air amount. Moreover, the suitable range of W / B from which the bleeding which evaluates material separation resistance becomes 0 was 30.0 to 60.0%.

図14の総合評価の欄で○を付けた材料配合割合で形成された複数の試験体(I−3−2及びI−3−3)は、目標として設定した評価値の全てを満足するモルタル組成物であることがわかる。
図14の表から、W/Bが40〜60%の範囲で、かつ、セメント(C)が977〜643kg/m3の範囲、膨張材粉末(CSA)が20kg/m3、細骨材(S)が729〜1003kg/m3、Vt使用量が3.25kg/m3、SP使用量が1.25kg/m3、消泡剤粉末(E)が0.15kg/m3、単位水量(W)が400kg/m3の材料配合割合で形成されるモルタル組成物は、目標として設定した評価値の全てを満足するモルタル組成物となることが予想される。
A plurality of test bodies (I-3-2 and I-3-3) formed at the material blending ratios marked with ○ in the column of comprehensive evaluation in FIG. 14 are mortars that satisfy all of the evaluation values set as targets. It turns out that it is a composition.
From the table of FIG. 14, the range W / B is 40 to 60% and, cement (C) in the range of 977~643kg / m 3, the expansion material powder (CSA) is 20 kg / m 3, fine aggregates ( S) is 729 to 1003 kg / m 3 , Vt usage is 3.25 kg / m 3 , SP usage is 1.25 kg / m 3 , antifoam powder (E) is 0.15 kg / m 3 , unit water volume ( It is expected that a mortar composition formed with a material blending ratio of W) of 400 kg / m 3 will be a mortar composition that satisfies all of the evaluation values set as targets.

図19(a)は単位水量(W)を異ならせた複数の試験体(I−4−1乃至I−4−4)毎の材料配合割合を表で示し、図19(b)は複数の試験体毎の評価試験結果を表で示した。尚、単位水量を多くした試験体では、細骨材(S)の量を減らしてセメント(C)の量を増やし、単位水量を少なくした試験体では、細骨材(S)の量を増やしてセメント(C)の量を減らした。
図20乃至図23は、単位水量を異ならせた複数の試験体による評価試験結果に基づいて形成したグラフを示す。図20は単位水量と20cmフロー時間との関係を示すグラフ、図21は単位水量と5分フローとの関係を示すグラフ、図22は単位水量とpH(水素指数)との関係を示すグラフ、図23は単位水量と空気量との関係を示すグラフである。
FIG. 19 (a) shows a material blending ratio for each of a plurality of test bodies (I-4-1 to I-4-4) with different unit water amounts (W), and FIG. The evaluation test results for each specimen are shown in a table. For specimens with increased unit water volume, the amount of fine aggregate (S) is reduced to increase the amount of cement (C), and for specimens with reduced unit water volume, the amount of fine aggregate (S) is increased. The amount of cement (C) was reduced.
20 to 23 show graphs formed based on the evaluation test results of a plurality of test bodies having different unit water amounts. FIG. 20 is a graph showing the relationship between the unit water amount and the 20 cm flow time, FIG. 21 is a graph showing the relationship between the unit water amount and the 5-minute flow, and FIG. 22 is a graph showing the relationship between the unit water amount and pH (hydrogen index). FIG. 23 is a graph showing the relationship between the unit water amount and the air amount.

図20のグラフに示された曲線から、粘性を評価する20cmフロー時間の評価値(20秒〜60秒)を満足する単位水量の適性範囲として350〜440kg/m3が得られた。図21のグラフに示された直線から、流動性を評価する5分フローの評価値(250±25mm)を満足する単位水量の適性範囲として380〜440kg/m3が得られた。図22のグラフに示された直線から、水中不分離性を評価するpHの評価値(12.0以下)を満足する単位水量の適性範囲として350〜465kg/m3が得られた。図23のグラフに示された直線から、空気量の評価値(4.0%以下)を満足する単位水量の適性範囲として365〜500kg/m3が得られた。また、材料分離抵抗性を評価するブリーディングが0となる単位水量の適性範囲は350〜450kg/m3であった。 From the curve shown in the graph of FIG. 20, 350 to 440 kg / m 3 was obtained as an appropriate range of the unit water amount that satisfies the evaluation value (20 seconds to 60 seconds) of the 20 cm flow time for evaluating the viscosity. From the straight line shown in the graph of FIG. 21, 380 to 440 kg / m 3 was obtained as an appropriate range of the unit water amount that satisfies the evaluation value (250 ± 25 mm) of the 5-minute flow for evaluating the fluidity. From the straight line shown in the graph of FIG. 22, 350 to 465 kg / m 3 was obtained as an appropriate range of the unit water amount that satisfies the pH evaluation value (12.0 or less) for evaluating the inseparability in water. From the straight line shown in the graph of FIG. 23, 365 to 500 kg / m 3 was obtained as an appropriate range of the unit water amount that satisfies the evaluation value (4.0% or less) of the air amount. Moreover, the suitable range of the unit water amount from which the bleeding which evaluates material-separation resistance becomes 0 was 350-450 kg / m < 3 >.

図19の総合評価の欄で○を付けた材料配合割合で形成された試験体(I−4−2)は、目標として設定した評価値の全てを満足するモルタル組成物であることがわかる。即ち、図19の表から、単位水量(W)が400kg/m3、W/Bが35%、セメント(C)が1120kg/m3、膨張材粉末(CSA)が20kg/m3、細骨材(S)が612kg/m3、Vt使用量が3.25kg/m3、SP使用量が1.25kg/m3、消泡剤粉末(E)が0.15kg/m3の材料配合割合で形成されるモルタル組成物は、目標として設定した評価値の全てを満足するモルタル組成物となることがわかった。 It turns out that the test body (I-4-2) formed with the material mixture ratio which gave (circle) in the column of comprehensive evaluation of FIG. 19 is a mortar composition which satisfies all the evaluation values set as the target. That is, from the table of FIG. 19, the unit water amount (W) is 400 kg / m 3 , W / B is 35%, cement (C) is 1120 kg / m 3 , expansion material powder (CSA) is 20 kg / m 3 , fine bone Material mixing ratio of material (S) 612 kg / m 3 , Vt usage 3.25 kg / m 3 , SP usage 1.25 kg / m 3 , antifoam powder (E) 0.15 kg / m 3 It was found that the mortar composition formed in (1) becomes a mortar composition that satisfies all of the evaluation values set as targets.

図5乃至図8のグラフから求めた各評価値に対するSP使用量の適正範囲、図10乃至図13のグラフから求めた各評価値に対するVt使用量の適正範囲、図15乃至図18のグラフから求めた各評価値に対するW/Bの適正範囲、図20乃至図23のグラフから求めた各評価値に対する単位水量の適正範囲を、図24にまとめて示した。   From the graphs of FIGS. 15 to 18, the appropriate range of the SP usage for each evaluation value obtained from the graphs of FIGS. 5 to 8, the appropriate range of the Vt usage for each evaluation value obtained from the graphs of FIGS. The appropriate range of W / B for each obtained evaluation value and the appropriate range of the unit water amount for each evaluation value obtained from the graphs of FIGS. 20 to 23 are collectively shown in FIG.

図1に示したSP使用量の適正範囲は次のように求めた。グラフから求めた一つ一つの評価値に対するSP使用量の適正範囲の最小値の中から最大の値(図24(a)の例えば流動性の適正範囲の最小値=0.90kg/m3)を選んで、その最大の値0.90kg/m3をすべての評価値を満足するSP使用量の適正範囲の最小値と決め、グラフから求めた一つ一つの評価値に対するSP使用量の適正範囲の最大値の中から最小の値(図24(a)の例えば粘性の適正範囲の最大値=2.00kg/m3)を選んで、その最小の値2.00kg/m3をすべての評価値を満足するSP使用量の適正範囲の最大値と決めた。即ち、グラフから求めた一つ一つの評価値に対するSP使用量の適正範囲が重複している範囲の最小値と最大値と決め、この最小値と最大値との間の範囲を、すべての評価値を満足するSP使用量の適正範囲0.90〜2.00kg/m3として設定した。
同様にして、図1に示したすべての評価値を満足するVt使用量の適正範囲2.5〜4.0kg/m3を決め、図1に示したすべての評価値を満足する水結合材比の適正範囲34.0〜60.0%を決め、図1に示したすべての評価値を満足する単位水量の適正範囲380〜440kg/m3を決めた。
The appropriate range of the SP usage shown in FIG. 1 was determined as follows. The maximum value among the minimum values of the appropriate range of SP usage for each evaluation value obtained from the graph (for example, the minimum value of the appropriate range of fluidity in FIG. 24A = 0.90 kg / m 3 ). The maximum value of 0.90 kg / m 3 is determined as the minimum value of the appropriate SP usage range that satisfies all the evaluation values, and the appropriate SP usage for each evaluation value obtained from the graph A minimum value (for example, the maximum value of the appropriate range of viscosity = 2.00 kg / m 3 in FIG. 24A) is selected from the maximum values in the range, and the minimum value of 2.00 kg / m 3 is set to all values. The maximum value of the appropriate range of SP usage satisfying the evaluation value was determined. That is, the minimum value and the maximum value of the ranges where the appropriate ranges of the SP usage for each evaluation value obtained from the graph overlap are determined, and the range between the minimum value and the maximum value is determined for all the evaluation values. It was set as an appropriate range of 0.90 to 2.00 kg / m 3 of the SP usage amount that satisfies the value.
Similarly, an appropriate range of 2.5 to 4.0 kg / m 3 for Vt usage satisfying all the evaluation values shown in FIG. 1 is determined, and the water binder satisfying all the evaluation values shown in FIG. An appropriate range of 34.0 to 60.0% of the ratio was determined, and an appropriate range of 380 to 440 kg / m 3 of the unit water amount satisfying all the evaluation values shown in FIG. 1 was determined.

最良の形態によれば、すべての評価値を満足するSP使用量、Vt使用量、水結合材比、単位水量の適正範囲を決めたので、粘性、流動性、水中不分離性、空気量、材料分離抵抗性について上述した目標とする評価値の全てを満足するモルタル組成物を得ることができる。   According to the best mode, the appropriate range of SP usage, Vt usage, water binder ratio, unit water volume satisfying all evaluation values has been determined, so viscosity, fluidity, inseparability in water, air volume, A mortar composition that satisfies all of the target evaluation values described above for the material separation resistance can be obtained.

最良の形態によれば、第1の水溶性低分子化合物及び第2の水溶性低分子化合物として粉体を用い、更に、セメント混和剤、膨張材、消泡剤も粉末を用いるようにし、これら粉とセメント及び細骨材とを混合した後、加水・混練することで、従来のように第1の水溶性低分子化合物と第2の水溶性低分子化合物とを別個に添加した場合に比較して、上記第1及び第2の水溶性低分子化合物とセメントとが均一に混合された状態で混練を行うことができる。したがって、擬似ポリマーが均質な状態で形成され、増粘性混和剤の増粘効果が十分に発揮させることができるだけでなく、加水・混練作業が一回で済むので、モルタル組成物を効率よく製造することができる。
なお、第1の水溶性低分子化合物と第2の水溶性低分子化合物との比率が1:1となるように、第1の粉体と第2の粉体とを混合することが好ましい。
According to the best mode, powder is used as the first water-soluble low-molecular compound and the second water-soluble low-molecular compound, and the powder is used for the cement admixture, the expansion material, and the antifoaming agent. Compared to the case where the first water-soluble low molecular weight compound and the second water-soluble low molecular weight compound are added separately as in the past by mixing the powder with cement and fine aggregate and then adding water and kneading. Thus, the first and second water-soluble low molecular weight compounds and the cement can be kneaded in a uniformly mixed state. Therefore, the pseudo polymer is formed in a homogeneous state, and not only can the thickening effect of the thickening admixture be fully exerted, but also the mortar composition can be efficiently produced because only one hydration / kneading operation is required. be able to.
Note that it is preferable to mix the first powder and the second powder so that the ratio of the first water-soluble low-molecular compound and the second water-soluble low-molecular compound is 1: 1.

本発明のセメント系組成物は、早強性耐水コンクリート組成物や高流動モルタル組成物などのセメント系組成物として利用できる。   The cement-based composition of the present invention can be used as a cement-based composition such as an early-strength water-resistant concrete composition or a high-fluidity mortar composition.

モルタル組成物を作製する場合のSP使用量、Vt使用量、水結合材比、単位水量の適正範囲を示す表。The table | surface which shows the appropriate range of SP usage-amount, Vt usage-amount, water binder ratio, and unit water amount in the case of producing a mortar composition. モルタル組成物の試験体を用いた評価試験での評価項目、試験方法、評価値を示す表。The table | surface which shows the evaluation item, test method, and evaluation value in the evaluation test using the test body of the mortar composition. モルタル組成物の試験体に用いた使用材料の詳細を示す表。The table | surface which shows the detail of the used material used for the test body of the mortar composition. (a)はSP使用量を異ならせた複数の試験体毎の材料配合割合を示した表、(b)は複数の試験体毎の評価結果を示した表。(A) is the table | surface which showed the material mixture ratio for every some test body which varied SP usage-amount, (b) is the table | surface which showed the evaluation result for every some test body. SP使用量と20cmフロー時間との関係を示すグラフ。The graph which shows the relationship between SP usage-amount and 20 cm flow time. SP使用量と5分フローとの関係を示すグラフ。The graph which shows the relationship between SP usage-amount and a 5-minute flow. SP使用量とpHとの関係を示すグラフ。The graph which shows the relationship between SP usage-amount and pH. SP使用量と空気量との関係を示すグラフ。The graph which shows the relationship between SP usage-amount and the amount of air. (a)はVt使用量を異ならせた複数の試験体毎の材料配合割合を示した表、(b)は複数の試験体毎の評価結果を示した表。(A) is the table | surface which showed the material compounding ratio for every some test body which varied Vt usage-amount, (b) is the table | surface which showed the evaluation result for every some test body. Vt使用量と20cmフロー時間との関係を示すグラフ。The graph which shows the relationship between Vt usage-amount and 20 cm flow time. Vt使用量と5分フローとの関係を示すグラフ。The graph which shows the relationship between Vt usage-amount and a 5-minute flow. Vt使用量とpHとの関係を示すグラフ。The graph which shows the relationship between Vt usage-amount and pH. Vt使用量と空気量との関係を示すグラフ。The graph which shows the relationship between Vt usage-amount and air amount. (a)はW/Bを異ならせた複数の試験体毎の材料配合割合を示した表、(b)は複数の試験体毎の評価結果を示した表。(A) is the table | surface which showed the material compounding ratio for every some test body which varied W / B, (b) is the table | surface which showed the evaluation result for every some test body. W/Bと20cmフロー時間との関係を示すグラフ。The graph which shows the relationship between W / B and 20 cm flow time. W/Bと5分フローとの関係を示すグラフ。The graph which shows the relationship between W / B and a 5-minute flow. W/BとpHとの関係を示すグラフ。The graph which shows the relationship between W / B and pH. W/Bと空気量との関係を示すグラフ。The graph which shows the relationship between W / B and air quantity. (a)は単位水量を異ならせた複数の試験体毎の材料配合割合を示した表、(b)は複数の試験体毎の評価結果を示した表。(A) is the table | surface which showed the material compounding ratio for every some test body which varied the unit water quantity, (b) is the table | surface which showed the evaluation result for every some test body. 単位水量と20cmフロー時間との関係を示すグラフ。The graph which shows the relationship between unit water volume and 20 cm flow time. 単位水量と5分フローとの関係を示すグラフ。The graph which shows the relationship between unit water volume and a 5-minute flow. 単位水量とpHとの関係を示すグラフ。The graph which shows the relationship between unit amount of water and pH. 単位水量と空気量との関係を示すグラフ。The graph which shows the relationship between unit water quantity and air quantity. グラフから求めたSP使用量、Vt使用量、W/B、単位水量の適正範囲をまとめた表。A table summarizing the appropriate ranges of SP usage, Vt usage, W / B, and unit water volume determined from the graph.

符号の説明Explanation of symbols

C セメント、CSA 膨張材粉末、B 結合材、SP セメント混和剤粉末、
Vt 増粘性混和剤粉末(第1の粉末と第2の粉末とから成る増粘材)、S 細骨材。
C cement, CSA expansion material powder, B binder, SP cement admixture powder,
Vt thickening admixture powder (thickening material composed of first powder and second powder), S fine aggregate.

Claims (1)

セメントと膨張材粉末とから成る結合材と、カチオン性界面活性剤から選ばれる第1の水溶性低分子化合物から成る第1の粉体とアニオン性芳香族化合物から選ばれる第2の水溶性低分子化合物から成る第2の粉体とから成る増粘材と、細骨材と、セメント混和剤粉末と、水とが混ぜ合わされて形成されたセメント系組成物であって、単位水量が380〜440kg/m3、水と結合材との比が34.0〜60.0%、第1の粉体の量と第2の粉体の量との和が2.50〜4.00kg/m3、セメント混和剤粉末の量が0.90〜2.00kg/m3の範囲にあることを特徴とするセメント系組成物。 A binder comprising a cement and an expansion material powder; a first powder comprising a first water-soluble low-molecular compound selected from cationic surfactants; and a second water-soluble low water selected from an anionic aromatic compound. A cement-based composition formed by mixing a thickener composed of a second powder composed of a molecular compound, a fine aggregate, a cement admixture powder, and water, and having a unit water amount of 380 to 380. 440 kg / m 3 , the ratio of water to binder is 34.0 to 60.0%, and the sum of the amount of the first powder and the amount of the second powder is 2.50 to 4.00 kg / m 3. A cement-based composition characterized in that the amount of cement admixture powder is in the range of 0.90 to 2.00 kg / m 3 .
JP2008011071A 2008-01-22 2008-01-22 Cement based composition Withdrawn JP2009173468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008011071A JP2009173468A (en) 2008-01-22 2008-01-22 Cement based composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011071A JP2009173468A (en) 2008-01-22 2008-01-22 Cement based composition

Publications (1)

Publication Number Publication Date
JP2009173468A true JP2009173468A (en) 2009-08-06

Family

ID=41029004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011071A Withdrawn JP2009173468A (en) 2008-01-22 2008-01-22 Cement based composition

Country Status (1)

Country Link
JP (1) JP2009173468A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176397A (en) * 2004-11-24 2006-07-06 Kumagai Gumi Co Ltd High-fluidity mortar composition and its manufacturing method
JP2007106641A (en) * 2005-10-14 2007-04-26 Kao Corp Hydraulic composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176397A (en) * 2004-11-24 2006-07-06 Kumagai Gumi Co Ltd High-fluidity mortar composition and its manufacturing method
JP2007106641A (en) * 2005-10-14 2007-04-26 Kao Corp Hydraulic composition

Similar Documents

Publication Publication Date Title
JP5443338B2 (en) Concrete or mortar admixture composition
JP4834574B2 (en) Cement composition for high fluidity concrete and high fluidity concrete composition
JP2006176397A (en) High-fluidity mortar composition and its manufacturing method
JP2008189526A (en) Admixture for grout and cement composition for grout
JP7092459B2 (en) Cement composition
JP5432431B2 (en) High strength grout material
JP6619171B2 (en) Powder shrinkage reducing agent for cement and use thereof
JP5832599B2 (en) Cement composition
TW201934518A (en) High strength grout composition and high strength grout mortar using same
JP7369849B2 (en) cement composition
JP6263404B2 (en) Preparation method of concrete containing blast furnace slag
JP2011201126A (en) Method of manufacturing uncured cement composition
CN113004003B (en) Underwater anti-dispersion mortar and preparation method thereof
JP5014850B2 (en) Cementitious composition
JP2009173471A (en) Cement based composition
JP3806420B2 (en) Low strength mortar filler using shirasu
JP2009173468A (en) Cement based composition
JP2007326727A (en) Dispersant for silica fume slurry, silica fume slurry and concrete production method
JP2018048039A (en) Cement composition, blackening inhibition method of surface of mortar or concrete
JP2009173470A (en) Cement based composition
JP2009173467A (en) Cement based composition
JP6626363B2 (en) Non-shrink grout composition
JP2008297140A (en) High fluidity lightweight mortar
JP2007197287A (en) Cement admixture
JP7456898B2 (en) Quick hardening concrete and method for producing quick hardening concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110113

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A761 Written withdrawal of application

Effective date: 20120604

Free format text: JAPANESE INTERMEDIATE CODE: A761