JP2009172766A - Method for duplicating molecular pattern - Google Patents

Method for duplicating molecular pattern Download PDF

Info

Publication number
JP2009172766A
JP2009172766A JP2009102327A JP2009102327A JP2009172766A JP 2009172766 A JP2009172766 A JP 2009172766A JP 2009102327 A JP2009102327 A JP 2009102327A JP 2009102327 A JP2009102327 A JP 2009102327A JP 2009172766 A JP2009172766 A JP 2009172766A
Authority
JP
Japan
Prior art keywords
pattern
hydrophilic
substrate
molecular
lipophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009102327A
Other languages
Japanese (ja)
Inventor
Masamichi Fujihira
平 正 道 藤
Masaaki Kurihara
原 正 彰 栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2009102327A priority Critical patent/JP2009172766A/en
Publication of JP2009172766A publication Critical patent/JP2009172766A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for duplicating a molecular pattern, by which duplicated products with a hyperfine line width can be mass-produced in a short time. <P>SOLUTION: The method for duplicating a molecular pattern includes steps of: forming a resist pattern on a surface of a substrate 1 where a hydrophilic silicon oxide film or a metal oxide film is formed, and chemically modifying the substrate surface with a hydrophilic silane coupling agent so as to form a hydrophilic pattern having a hydrophilic surface; removing the resist pattern; consecutively, chemically modifying the substrate surface with a lipophilic silane coupling agent to form a lipophilic surface so as to form the substrate surface having a surface where single molecules in a predetermined polarity are arranged in a pattern and a surface having a different polarity in a similar molecular level, in accordance with the lipophilic surface and the hydrophilic surface; mounting a transfer layer 5 comprising polar molecules having the same polarity as a predetermined polarity on the substrate surface so as to form a predetermined pattern only in a part where the polarities are the same; and bringing a transfer object into contact with the substrate surface to transfer the predetermined pattern comprising the transfer layer 5 onto the transfer object. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、分子デバイス等における超微細な分子パターンを複製する方法に関する。   The present invention relates to a method for replicating an ultrafine molecular pattern in a molecular device or the like.

1982年に分子素子という概念がF.L.Carterによって提案されて以来、この分野の研究開発はますます活発になってきている。有機分子1個1個に機能を与えその集合体を形成させれば、たとえばこれまでの集積度とは比べものにならないくらいの超高密度の半導体素子が形成できる。   In 1982, the concept of molecular devices was L. Since it was proposed by Carter, research and development in this field has become increasingly active. If a function is given to each organic molecule and its aggregate is formed, for example, an ultra-high density semiconductor device that is not comparable to the degree of integration so far can be formed.

この分子素子の作成技術の一つとしてLB(ラングミュア−ブロジェット)法が有望である。このLB法は親水基と疎水基からなる両親媒性化合物を水面上に展開し単分子膜を形成し、支持体上にこの単分子膜をそのまま写し取る方法である。このように作成した膜は2次元平面内で配列制御されているので、各々の分子には見られない機能を発現できる。   The LB (Langmuir-Blodget) method is promising as one technique for producing this molecular device. This LB method is a method in which an amphiphilic compound composed of a hydrophilic group and a hydrophobic group is developed on a water surface to form a monomolecular film, and the monomolecular film is directly copied onto a support. Since the film thus prepared is array-controlled in a two-dimensional plane, a function not found in each molecule can be expressed.

一方、従来の代表的な原版パターンの複製技術には、印刷法とリソグラフィーの手法がある。前者は版の上にインクを載せ紙等にインクを写す方法である。後者は一般に半導体デバイス製造等に用いられ、光源から出た光をマスクと呼ばれる原版を通して被加工基板に照射することにより感光性高分子(レジスト)を感光させエッチング等を施して原版パターンを有する基板を大量複製するものである。   On the other hand, there are a printing method and a lithography method as a conventional representative pattern copying technique. The former is a method of placing ink on a plate and copying the ink on paper or the like. The latter is generally used for manufacturing semiconductor devices, etc., and a substrate having an original pattern by exposing a processed substrate through a master called a mask and exposing a photosensitive polymer (resist) to the substrate to be processed by etching. Is mass-replicated.

特に、微細なパターンを複製する場合に、リソグラフィー法による最小加工線幅は照射した電離放射線の波長に依存する。すなわち、電離放射線の波長を短くすれば加工線幅は小さくなる。   In particular, when replicating a fine pattern, the minimum processing line width by the lithography method depends on the wavelength of the irradiated ionizing radiation. That is, if the wavelength of ionizing radiation is shortened, the processing line width is reduced.

現在、半導体の製造にはステッパーと呼ばれる縮小投影露光装置が用いられ、これによりマスクのパターンが大量複製される。ここで用いられる光源は水銀灯の紫外線であり最小加工線幅は0.3μm程度である。さらにそれよりも微細な加工が必要な場合には電子線を用いて数十nm程度の加工が可能である。   At present, a reduction projection exposure apparatus called a stepper is used for manufacturing a semiconductor, whereby a mask pattern is reproduced in large quantities. The light source used here is an ultraviolet ray of a mercury lamp, and the minimum processing line width is about 0.3 μm. Furthermore, when finer processing is required, processing of about several tens of nanometers can be performed using an electron beam.

しかしながら、リソグラフィー法は1枚ごとに数工程を踏んで所定パターンの基板を複製する関係上、大量の複製品を短時間に製造するという面では限界があった。   However, the lithography method has a limit in terms of manufacturing a large number of replicated products in a short time because a substrate having a predetermined pattern is replicated by taking several steps for each sheet.

また、リソグラフィー工程は露光、現像、エッチング等の複雑な工程(設備)を要するという課題を有していた。   Further, the lithography process has a problem that a complicated process (equipment) such as exposure, development, and etching is required.

本発明は上記の課題に鑑みてなされたものであり、所定極性の単分子がパターン状に配列形成された基板表面に該極性と一致(親和性)または不一致(非親和性)の極性分子からなる転写層を載置して所定パターンを形成し、次いでこの基板表面に被転写体を接触させることにより転写層からなるパターンを被転写体に転写することを特徴とする分子パターン複製方法である。   The present invention has been made in view of the above-described problems. From a polar molecule that matches (affinity) or does not match (non-affinity) the polarity to a substrate surface on which single molecules of a predetermined polarity are arranged in a pattern. A transfer method comprising: forming a predetermined pattern by placing a transfer layer on the substrate, and then transferring the pattern made of the transfer layer to the transfer target by bringing the transfer target into contact with the surface of the substrate. .

すなわち、本発明はまずはじめに所望のパターンを有する版を作成し、その上に転写すべき分子膜(転写層)を載せる。この際、版の表面は異なる極性であるので結合分子の極性と一致した部分(すなわち、相互に親和性の部分)にのみ分子膜(インク成分、導電性分子等)が付着する。これを別の被転写体に圧接し、この分子が別の被転写体に付着する(転写される)ことにより分子レベルのパターンを有する基板等の製品を複製する方法である。本発明により、重合官能基がない分子パターンを転写することが可能であり、光の解像限界以下の超微細な線幅のパターンも大量複製可能となる。   That is, in the present invention, first, a plate having a desired pattern is prepared, and a molecular film (transfer layer) to be transferred is placed thereon. At this time, since the surface of the plate has a different polarity, a molecular film (an ink component, a conductive molecule, etc.) is attached only to a portion that matches the polarity of the binding molecule (that is, a portion having an affinity for each other). This is a method in which a product such as a substrate having a molecular level pattern is duplicated by pressing this onto another transferred material and the molecules adhering (transferred) to the other transferred material. According to the present invention, it is possible to transfer a molecular pattern having no polymerization functional group, and it is possible to replicate a pattern with an ultrafine line width below the resolution limit of light in large quantities.

本発明の分子パターン複製方法の一実施例を示す工程断面図である。It is process sectional drawing which shows one Example of the molecular pattern replication method of this invention. 本発明の分子パターン複製方法に用いられる版の表面の化学修飾処理を示す説明図である。It is explanatory drawing which shows the chemical modification process of the surface of the plate used for the molecular pattern replication method of this invention.

以下、本発明を添付図面を用いて説明する。
まずはじめに極性の異なる表面を有する版を作成する。版の作り方としては、親水面を有する金属酸化物層2を最上表面に有する基板1上に、通常のリソグラフィー工程により金属あるいはレジストパターンを形成する。次いでシランカップリング剤溶液中にパターン形成した基板を浸漬し、温度40〜100度で加熱乾燥する。次いで溶剤で余分なシランカップリング剤を洗い流し乾燥させる。最後に金属のエッチャントまたはレジスト剥離液により金属またはレジストパターンを除去することにより、親水性の酸化物表面3と親油性のシランカップリングした表面4から成るPS版が得られる。
Hereinafter, the present invention will be described with reference to the accompanying drawings.
First, plates having surfaces with different polarities are prepared. As a method of making a plate, a metal or resist pattern is formed by a normal lithography process on a substrate 1 having a metal oxide layer 2 having a hydrophilic surface on the uppermost surface. Next, the patterned substrate is immersed in the silane coupling agent solution and dried by heating at a temperature of 40 to 100 degrees. The excess silane coupling agent is then washed away with a solvent and dried. Finally, by removing the metal or resist pattern with a metal etchant or resist stripping solution, a PS plate comprising a hydrophilic oxide surface 3 and a lipophilic silane-coupled surface 4 is obtained.

さらに、親水性表面を極性の異なる(親水性の)シランカップリング剤で化学修飾すれば、ほぼ同一のレベルにおける極性の異なる表面を有する基板が得られる(図1(a)に示される)。これとは逆に、初めに親水性のカップリング剤でレジストパターンを除く基板表面を化学修飾した後レジストパターンを除去し親油性のカップリング剤で化学修飾することも勿論可能である。   Furthermore, if the hydrophilic surface is chemically modified with a silane coupling agent having a different polarity (hydrophilic), a substrate having a surface with a different polarity at almost the same level can be obtained (shown in FIG. 1A). On the contrary, it is of course possible to first chemically modify the substrate surface excluding the resist pattern with a hydrophilic coupling agent, and then remove the resist pattern and chemically modify with a lipophilic coupling agent.

上述した化学修飾剤はシランカップリング剤に限定せず、表面に化学修飾部位を有する基板上に、化学修飾部位と反応して結合を生じさせ得る化学修飾分子を結合させることによって表面エネルギーの異なる表面を形成できるものであればよい。   The above-mentioned chemical modifiers are not limited to silane coupling agents, but differ in surface energy by bonding chemically modified molecules that can react with the chemical modification sites to form bonds on a substrate having a chemical modification site on the surface. Any material that can form a surface may be used.

また、従来の印刷に用いられているジアゾナフトキノン系の感光剤を有するPS版を用いてもよいが、好ましくは解像力の優れる上述の化学修飾を用いて作成した版がよい。   Further, a PS plate having a diazonaphthoquinone photosensitizer used in conventional printing may be used, but a plate prepared by using the above-described chemical modification having excellent resolution is preferable.

本発明で用いられるシランカップリング剤としては、分子中に、O(CH3 (n=1〜3)、OCl、OBr、Oを有するものが好ましい。このシランカップリング剤は図2に示されるように基板表面に化学修飾される。このシランカップリング剤に高分子を用いればさらに基板との結合は強固なものとなる。 As the silane coupling agent used in the present invention, those having O (CH 3 ) n (n = 1 to 3), OCl, OBr, and O in the molecule are preferable. This silane coupling agent is chemically modified on the substrate surface as shown in FIG. If a polymer is used for the silane coupling agent, the bond with the substrate becomes stronger.

次いで、このようにして作成された版に予め調製した転写すべき分子膜(インク成分、導電性分子等)5を基板表面に載せる。この際、版の表面は異なる極性面を有するので極性が一致する部分(転写パターン面)にのみ分子膜が付着する(図1(b))。次いで、これを被転写体6に圧接することにより分子膜5が転写パターン状に被転写体に付着し転写が完了する(図1(c)、(d))。   Next, a molecular film (ink component, conductive molecule, etc.) 5 to be transferred prepared in advance on the plate thus prepared is placed on the substrate surface. At this time, since the surface of the plate has different polar surfaces, the molecular film adheres only to a portion (transfer pattern surface) having the same polarity (FIG. 1B). Next, the molecular film 5 adheres to the transfer body in the form of a transfer pattern by pressing it against the transfer body 6 to complete the transfer (FIGS. 1C and 1D).

本発明で用いられる分子膜5(転写層)はいかなる極性分子から成っていてもよいが、LB(ラングミュア−ブロジェット)膜のような規則正しく配列した膜が分子素子を作成する上で望ましい。版の上に分子膜5を載せる方法としては、上述のように水面上の単分子膜を写し取るLB法または水平付着法がある。その他にスピンコート法、浸漬法、OMBE(有機分子線エピタキシー)法、蒸着法、CVD法がある。   The molecular film 5 (transfer layer) used in the present invention may be composed of any polar molecule, but a regularly arranged film such as an LB (Langmuir-Blodget) film is desirable for producing a molecular device. As a method of placing the molecular film 5 on the plate, there is an LB method or a horizontal adhesion method in which a monomolecular film on the water surface is copied as described above. In addition, there are a spin coating method, an immersion method, an OMBE (organic molecular beam epitaxy) method, a vapor deposition method, and a CVD method.

以下、本発明の分子パターン複製方法の一実施例を挙げて本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to an example of the molecular pattern replication method of the present invention.

石英基板上にクロムを30nmスパッタリング法で成膜し、EBレジストを塗布し、電子線を照射し、現像工程およびエッチング工程を経て0.1μmのライン&スペースのクロムパターンを形成した。次に親油性のシランカップリング剤(オクタデシルトリメトキシシラン:溶媒トルエン)に基板を5分間室温で浸漬した。次に温度70度で15分間加熱乾燥した。次にクロムのエッチャントでクロムパターンを剥離し、次に溌油性のシランカップリング剤(溶媒1,3-ビストリフルオロメチルベンゼン)に基板を5分間室温で浸漬した。次に温度70度で15分間加熱乾燥した。これにより溌油面と親油面を有する版が完成した。この版をFFM(摩擦力顕微鏡)で摩擦力の差を測定することによりパターンを確認した。   A chromium film was formed on a quartz substrate by a 30 nm sputtering method, an EB resist was applied, irradiated with an electron beam, and a 0.1 μm line & space chromium pattern was formed through a development process and an etching process. Next, the substrate was immersed in a lipophilic silane coupling agent (octadecyltrimethoxysilane: solvent toluene) for 5 minutes at room temperature. Next, it was dried by heating at a temperature of 70 degrees for 15 minutes. Next, the chromium pattern was peeled off with a chromium etchant, and then the substrate was immersed in a oleaginous silane coupling agent (solvent 1,3-bistrifluoromethylbenzene) at room temperature for 5 minutes. Next, it was dried by heating at a temperature of 70 degrees for 15 minutes. As a result, a plate having an oil surface and a lipophilic surface was completed. The pattern was confirmed by measuring the difference in friction force of this plate with FFM (friction force microscope).

次いで、クロロホルム溶液に溶かしたステアリン酸を水面上に展開、圧縮し単分子膜を作成し、この単分子膜を表面圧30mN/cmで上記の版にLB法を用いて2層累積した。次に単分子膜が形成された版に対してカーボンの支持体を圧着し、この支持体に単分子膜を転写してパターンを複製した。このパターンをAFM(原子間力顕微鏡)で確認した。 Subsequently, stearic acid dissolved in a chloroform solution was spread on the water surface and compressed to prepare a monomolecular film, and this monomolecular film was accumulated in two layers on the plate using the LB method at a surface pressure of 30 mN / cm 2 . Next, a carbon support was pressed against the plate on which the monomolecular film was formed, and the pattern was replicated by transferring the monomolecular film to the support. This pattern was confirmed by AFM (atomic force microscope).

本実施例により最小線幅が約90nmの微細なパターンを有する複製物を大量に製造することができた。これにより、ナノメーターオーダの大量複製が可能となり、高集積度のメモリー、デバイス等の作製が可能となる。   In this example, a large number of replicas having a fine pattern with a minimum line width of about 90 nm could be produced. As a result, mass replication on the order of nanometers becomes possible, making it possible to manufacture highly integrated memories, devices, and the like.

1 基板
2 酸化物層
3 親油性分子(表面)
4 親水性分子(表面)
5 分子膜
6 被転写体
1 Substrate 2 Oxide layer 3 Lipophilic molecule (surface)
4 Hydrophilic molecules (surface)
5 Molecular film 6 Transferee

Claims (5)

親水性のシリコン酸化膜または金属酸化物層を形成した基板表面にレジストパターンを形成し親水性のシランカップリング剤を前記基板表面に化学修飾して親水面の表面を有する親水性パターンを形成する工程と、次いで前記レジストパターンを除去する工程と、次いで前記基板表面に親油性のシランカップリング剤を化学修飾して親油面を形成し、前記親油面及び前記親水面により、所定極性の単分子がパターン状に配列形成された表面及びこれとほぼ同一のレベルにおける極性の異なる表面を有する前記基板表面を形成する工程と、次いで前記基板表面に前記所定極性と一致する極性分子からなる転写層を載置して極性が一致する部分にのみ所定パターンを形成する工程と、次いで前記基板表面に被転写体を接触させることにより前記転写層からなる前記所定パターンを前記被転写体に転写する工程からなることを特徴とする、分子パターン複製方法。   A resist pattern is formed on the substrate surface on which a hydrophilic silicon oxide film or a metal oxide layer is formed, and a hydrophilic pattern having a hydrophilic surface is formed by chemically modifying the substrate surface with a hydrophilic silane coupling agent. A step of removing the resist pattern, and then chemically modifying a lipophilic silane coupling agent on the surface of the substrate to form a lipophilic surface, and the lipophilic surface and the hydrophilic surface have a predetermined polarity. A step of forming the surface of the substrate having a surface on which single molecules are arranged in a pattern and a surface having different polarities at substantially the same level as the surface, and then transferring the polar molecule that matches the predetermined polarity on the substrate surface A step of forming a predetermined pattern only on a portion where the layers have the same polarity by placing the layer, and then bringing the transferred body into contact with the substrate surface Characterized by comprising the step of transferring the predetermined pattern of layers to the transfer object, molecular patterns replication method. 前記転写層をLB法または水平付着法により調製する、請求項1記載の分子パターン複製方法。   The molecular pattern replication method according to claim 1, wherein the transfer layer is prepared by an LB method or a horizontal adhesion method. 前記転写層をスピンコート法により調製する、請求項1記載の分子パターン複製方法。   The molecular pattern replication method according to claim 1, wherein the transfer layer is prepared by a spin coating method. 前記転写層を浸漬法により調製する、請求項1記載の分子パターン複製方法。   The molecular pattern replication method according to claim 1, wherein the transfer layer is prepared by an immersion method. 前記転写されるパターンの最小線幅が約90nmであることを特徴とする、請求項1に記載の分子パターン複製方法。   The molecular pattern replication method according to claim 1, wherein a minimum line width of the transferred pattern is about 90 nm.
JP2009102327A 2009-04-20 2009-04-20 Method for duplicating molecular pattern Pending JP2009172766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102327A JP2009172766A (en) 2009-04-20 2009-04-20 Method for duplicating molecular pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102327A JP2009172766A (en) 2009-04-20 2009-04-20 Method for duplicating molecular pattern

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP00208794A Division JP4312841B2 (en) 1994-01-13 1994-01-13 Molecular pattern replication method

Publications (1)

Publication Number Publication Date
JP2009172766A true JP2009172766A (en) 2009-08-06

Family

ID=41028442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102327A Pending JP2009172766A (en) 2009-04-20 2009-04-20 Method for duplicating molecular pattern

Country Status (1)

Country Link
JP (1) JP2009172766A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161626A (en) * 1986-12-25 1988-07-05 Toshiba Corp Substrate
JPS63249105A (en) * 1987-04-06 1988-10-17 Canon Inc Production of color filter
JPH01231937A (en) * 1988-03-11 1989-09-18 Komatsu Ltd Formation of monomolecular film
JPH04100568A (en) * 1990-08-16 1992-04-02 Casio Comput Co Ltd Formation of monomolecular film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161626A (en) * 1986-12-25 1988-07-05 Toshiba Corp Substrate
JPS63249105A (en) * 1987-04-06 1988-10-17 Canon Inc Production of color filter
JPH01231937A (en) * 1988-03-11 1989-09-18 Komatsu Ltd Formation of monomolecular film
JPH04100568A (en) * 1990-08-16 1992-04-02 Casio Comput Co Ltd Formation of monomolecular film

Similar Documents

Publication Publication Date Title
TWI279830B (en) Compliant template for UV imprinting
KR100590727B1 (en) Microcontact printing methods using imprinted nanostructure and Nanostructure thereof
US7922960B2 (en) Fine resist pattern forming method and nanoimprint mold structure
Vigneswaran et al. Recent advances in nano patterning and nano imprint lithography for biological applications
US20080299467A1 (en) Mask mold, manufacturing method thereof, and method for forming large-sized micro pattern using mask mold
US7419764B2 (en) Method of fabricating nanoimprint mold
JP2005508075A (en) Lithographic template
JP2022548863A (en) Method for forming a narrow trench
CA2518642A1 (en) Nanoimprint lithograph for fabricating nanoadhesive
JP2009010188A5 (en)
JP3506248B2 (en) Manufacturing method of microstructure
US20100266965A1 (en) Etch-Enhanced Technique for Lift-Off Patterning
KR100956409B1 (en) Method for manufacturing hybrid nano-imprint mask and method for manufacturing electro-device using the same
CN106168737B (en) Chemically amplified resist material, copolymer and photolithography method
KR100543130B1 (en) Hybrid microcontact printing method using imprinted silicon substrate
KR20100050699A (en) Patterning method of metal line on flexible substrate using nanoimprint lithography
JP4312841B2 (en) Molecular pattern replication method
Junarsa et al. Fabrication of masters for nanoimprint, step and flash, and soft lithography using hydrogen silsesquioxane and x-ray lithography
CN110658677B (en) Imprinting method, imprinting structure and display substrate
JP2009172766A (en) Method for duplicating molecular pattern
JP2022522424A (en) Methods and equipment for stamp generation and curing
KR100685900B1 (en) method for forming pattern of semiconductor device
JP4716395B2 (en) Method for producing fine pattern replica and replica
JP2013251431A (en) Nano-imprint mold and manufacturing method of the same
KR101984054B1 (en) Method for controlling the shape of nanoscale and microscale patterns

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110408