JP2009171679A - Method of manufacturing segment magnets and method of manufacturing electric power steering devices - Google Patents

Method of manufacturing segment magnets and method of manufacturing electric power steering devices Download PDF

Info

Publication number
JP2009171679A
JP2009171679A JP2008004395A JP2008004395A JP2009171679A JP 2009171679 A JP2009171679 A JP 2009171679A JP 2008004395 A JP2008004395 A JP 2008004395A JP 2008004395 A JP2008004395 A JP 2008004395A JP 2009171679 A JP2009171679 A JP 2009171679A
Authority
JP
Japan
Prior art keywords
magnetic
manufacturing
segment
magnetic flux
sectional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008004395A
Other languages
Japanese (ja)
Other versions
JP5310986B2 (en
Inventor
Yuichi Toyama
祐一 外山
Tomohiro Niwa
智宏 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2008004395A priority Critical patent/JP5310986B2/en
Publication of JP2009171679A publication Critical patent/JP2009171679A/en
Application granted granted Critical
Publication of JP5310986B2 publication Critical patent/JP5310986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)
  • Powder Metallurgy (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a segment magnet that reduces cogging torque of a motor, and to prvide a method of manufacturing an electric power steering device that improves steering feeling. <P>SOLUTION: In the method of manufacturing segment magnets 52, magnetic powder is molded into a prism 50 having a rectangular sectional shape and is sintered; the sintered prism 50 is longitudinally cut into three or more magnetic plates 51 in the direction X of the long sides of the rectangle as its sectional shape; and magnetic flux is applied to these magnetic plates 51 in the direction of plate thickness to magnetize them. Thus multiple segment magnets 52 that can be used for the rotor 22 of a motor 20 are manufactured. In the process of molding the magnetic powder into the prism 50, pressure is applied to the prism 50 in the direction Z of its long axis and at the same time magnetic flux is applied to the prism 50 in the direction X of the long sides of the rectagule as its sectional shape. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、モータのロータに取り付け可能な複数のセグメント磁石を製造する方法及びそれらセグメント磁石を有するモータを駆動源とした電動パワーステアリング装置の製造方法に関する。   The present invention relates to a method for manufacturing a plurality of segment magnets that can be attached to a rotor of a motor, and a method for manufacturing an electric power steering apparatus using a motor having these segment magnets as a drive source.

従来、この種のセグメント磁石の製造方法として、セグメント磁石と同形状の磁性体プレートを磁性粉体から成形した後、焼結し、さらに着磁してセグメント磁石を完成させる製造方法が知られている(例えば、特許文献1参照)。また、別の従来のセグメント磁石の製造方法として、図11に示した角柱体1を磁性粉体から成形した後、焼結し、その角柱体1を複数の磁性体プレート2に縦割り分割してからその板厚方向の一方の面を曲面形状に加工し、さらに、着磁させてセグメント磁石3を完成させる方法が知られている。また、この製造方法では、セグメント磁石を容易に着磁させるために、成形時の角柱体1に圧力と共に磁束を付与して配向(磁気配向)させていた。その配向方向が図11の矢印として示されている。
特開2003−230239号公報(段落[0005]、第5図(b))
Conventionally, as a manufacturing method of this kind of segment magnet, there is known a manufacturing method in which a magnetic plate having the same shape as a segment magnet is formed from a magnetic powder, then sintered and further magnetized to complete a segment magnet. (For example, refer to Patent Document 1). As another conventional segment magnet manufacturing method, the prism 1 shown in FIG. 11 is formed from magnetic powder and then sintered, and the prism 1 is divided into a plurality of magnetic plates 2. A method is known in which one segment in the thickness direction is processed into a curved shape and then magnetized to complete the segment magnet 3. Further, in this manufacturing method, in order to easily magnetize the segment magnet, a magnetic flux is applied to the prism 1 at the time of molding together with pressure so as to be oriented (magnetic orientation). The orientation direction is shown as an arrow in FIG.
JP 2003-230239 A (paragraph [0005], FIG. 5 (b))

ところで、上記した従来の製造方法では、角柱体1の成形工程において、角柱体1の断面形状である長方形の長辺方向H1に磁束を付与する一方、短辺方向H2に圧力を付与していた。このため、角柱体1のうち加圧方向(短辺方向H2)と直交する外側面が、成形金型の内面から摩擦力を受け、角柱体1のうち外側面寄りの部位の配向方向(図11の矢印の方向)が磁束付与方向(長辺方向H1)に対して斜めになるという現象が起こり得た。そして、焼結後の角柱体1を、磁束付与方向(長辺方向H1)で複数の磁性体プレート2に分割していたので、角柱体1のうち磁束付与方向の両端部に位置した1対の磁性体プレート2A,2Aを着磁してなるセグメント磁石3A,3Aが、幅方向に対して傾斜した方向の磁束を発生させるように着磁し、それら以外の磁性体プレート2B,2B,・・を着磁してなるセグメント磁石3B,3B,・・が、幅方向に対して直交した方向の磁束を発生させるように着磁していた。このため、従来の製造方法で製造されたセグメント磁石3A,3B,・・でモータ(図示せず)を製造した場合、1つのロータに取り付けられた複数のセグメント磁石3A,3B同士の間で、ステータのティース(図示せず)に対して最も磁気吸引力が大きくなる電気角が相違し、コギングトルクが大きくなっていた。また、そのモータを駆動源とした電動パワーステアリング装置(図示せず)では、操舵フィーリングが悪化するといる問題が生じていた。   By the way, in the conventional manufacturing method described above, in the step of forming the prism 1, the magnetic flux is applied to the long side direction H1 of the rectangle which is the cross-sectional shape of the prism 1, while the pressure is applied to the short side H2. . For this reason, the outer surface orthogonal to the pressurizing direction (short side direction H2) of the prism 1 receives the frictional force from the inner surface of the molding die, and the orientation direction of the portion closer to the outer surface of the prism 1 (FIG. 11 (the direction of the arrow 11) may be inclined with respect to the magnetic flux application direction (long side direction H1). And since the sintered prismatic body 1 was divided | segmented into the some magnetic body plate 2 by the magnetic flux provision direction (long side direction H1), one pair located in the both ends of the magnetic flux provision direction among the prismatic bodies 1 The segment magnets 3A, 3A formed by magnetizing the magnetic plates 2A, 2A are magnetized so as to generate a magnetic flux in a direction inclined with respect to the width direction, and the other magnetic plates 2B, 2B,. The segment magnets 3B, 3B,... That are magnetized are magnetized so as to generate a magnetic flux in a direction orthogonal to the width direction. Therefore, when a motor (not shown) is manufactured with segment magnets 3A, 3B,... Manufactured by a conventional manufacturing method, between a plurality of segment magnets 3A, 3B attached to one rotor, The electrical angle at which the magnetic attraction force is greatest differs from the stator teeth (not shown), and the cogging torque is large. Further, in an electric power steering apparatus (not shown) using the motor as a drive source, there has been a problem that steering feeling is deteriorated.

本発明は、上記事情に鑑みてなされたもので、モータのコギングトルクを低減可能なセグメント磁石の製造方法の提供と、操舵フィーリングを向上させることが可能な電動パワーステアリング装置の製造方法の提供とを目的とする。   The present invention has been made in view of the above circumstances, and provides a method of manufacturing a segment magnet capable of reducing the cogging torque of a motor and a method of manufacturing an electric power steering device capable of improving steering feeling. aimed to.

上記目的を達成するためになされた請求項1の発明に係るセグメント磁石(52)の製造方法は、磁性粉体を成形金型(60)にて断面長方形の角柱体(50)に成形した後、焼結し、焼結後の角柱体(50)をその断面形状である長方形の長辺方向(X)で3枚以上の磁性体プレート(51)に縦割り分割し、さらに、それら磁性体プレート(51)の板厚方向に磁束を付与して着磁させ、モータ(20)のロータ(22)に使用可能な複数のセグメント磁石(52)を製造する方法において、磁性粉体を角柱体(50)に成形する成形工程で、角柱体(50)の長軸方向(Z)に圧力を付与すると共に、角柱体(50)の断面形状である長方形の長辺方向(X)に磁束を付与するところに特徴を有する。   The method of manufacturing the segment magnet (52) according to the invention of claim 1 made to achieve the above object is to form a magnetic powder into a rectangular column (50) having a rectangular cross section by a molding die (60). The sintered prisms (50) are vertically divided into three or more magnetic plates (51) in the long side direction (X) of the rectangular shape which is the cross-sectional shape, and the magnetic materials are further divided. In a method for producing a plurality of segment magnets (52) usable for a rotor (22) of a motor (20) by applying a magnetic flux in the thickness direction of the plate (51) and magnetizing the magnetic powder, In the forming step of forming (50), pressure is applied to the long axis direction (Z) of the prismatic body (50), and magnetic flux is applied to the long side direction (X) of the rectangle which is the cross-sectional shape of the prismatic body (50). It has a feature in the place of giving.

請求項2の発明に係るセグメント磁石(52)の製造方法は、磁性粉体を成形金型(60)にて断面長方形の角柱体(50)に成形した後、焼結し、焼結後の角柱体(50)をその断面形状である長方形の長辺方向(X)で3枚以上の磁性体プレート(51)に縦割り分割し、さらに、それら磁性体プレート(51)の板厚方向に磁束を付与して着磁させ、モータ(20)のロータ(22)に使用可能な複数のセグメント磁石(52)を製造する方法において、磁性粉体を角柱体(50)に成形する成形工程で、角柱体(50)の断面形状である長方形の長辺方向(X)に磁束と圧力との両方を付与するところに特徴を有する。   The method of manufacturing the segment magnet (52) according to the invention of claim 2 is to form a magnetic powder into a prismatic body (50) having a rectangular cross section with a molding die (60), and then sinter the sintered powder. The prismatic body (50) is vertically divided into three or more magnetic plates (51) in the long side direction (X) of the rectangle which is the cross-sectional shape, and further in the thickness direction of the magnetic plates (51). In a method for producing a plurality of segment magnets (52) usable for the rotor (22) of the motor (20) by applying a magnetic flux and magnetizing the magnetic powder into a prismatic body (50). It is characterized in that both magnetic flux and pressure are applied in the long side direction (X) of the rectangle which is the cross-sectional shape of the prismatic body (50).

請求項3の発明に係る電動パワーステアリング装置(10)の製造方法は、請求項1又は2のセグメント磁石(52)の製造方法で製造したセグメント磁石(52)を備えたモータ(20)を電動パワーステアリング装置(10)の駆動源として組み付けるところに特徴を有する。   According to a third aspect of the present invention, there is provided a method of manufacturing the electric power steering apparatus (10), wherein the motor (20) including the segment magnet (52) manufactured by the method of manufacturing the segment magnet (52) according to the first or second aspect is electrically driven. It is characterized in that it is assembled as a drive source for the power steering device (10).

なお、請求項1又は2に記載のセグメント磁石(52)の製造方法において、磁性体プレート(51)を着磁する着磁工程の前に、磁性体プレート(51)のうち板厚方向の一方の面を幅方向で湾曲した湾曲面(51W)に加工すると共に、断面多角形のロータ(22)の外面に、磁性体プレート(51)のうち湾曲面(51W)と反対側の平坦面(51S)を固定しておき、着磁工程では、そのロータ(22)に固定された状態の磁性体プレート(51)に磁束を付与してもよい。   In addition, in the manufacturing method of the segment magnet (52) of Claim 1 or 2, before the magnetization process which magnetizes a magnetic body plate (51), one side of a plate | board thickness direction is taken out of a magnetic body plate (51). Are processed into a curved surface (51W) that is curved in the width direction, and on the outer surface of the rotor (22) having a polygonal cross section, a flat surface on the opposite side of the curved surface (51W) of the magnetic plate (51) ( 51S) may be fixed, and a magnetic flux may be applied to the magnetic plate (51) fixed to the rotor (22) in the magnetizing step.

[請求項1の発明]
請求項1の発明に係るセグメント磁石の製造方法では、磁性粉体の成形工程において、角柱体の長軸方向に圧力を付与すると共に、角柱体の断面形状である長方形の長辺方向に磁束を付与するので、角柱体の外側面が成形金型の内面から摩擦力を受けて、その外側面寄りの部位の配向方向が磁束付与方向に対して傾斜角を有しても、その傾斜角は角柱体から分割された磁性体プレートの長手方向に対する傾斜角としては出現し得るが、幅方向に対する傾斜角として出現することはない。よって、角柱体から縦割り分割された複数の磁性体プレートが、磁束付与方向の両端に位置した磁性体プレートであるか否かに拘わらず、それら磁性体プレートを着磁してなるセグメント磁石は、幅方向に対して直交した方向の磁束を発生させるように着磁する。従って、本発明の製造方法で製造された複数のセグメント磁石が組み付けられたロータでは、それら複数のセグメント磁石同士の間で、ステータのティースに対して最も磁気吸引力が大きくなる電気角が同じになり、コギングトルクを抑えることができる。
[Invention of Claim 1]
In the method of manufacturing a segment magnet according to the first aspect of the present invention, in the magnetic powder forming step, pressure is applied in the major axis direction of the prismatic body and magnetic flux is applied in the long side direction of the rectangle which is the cross-sectional shape of the prismatic body. Since the outer surface of the prismatic body receives frictional force from the inner surface of the molding die and the orientation direction of the portion near the outer surface has an inclination angle with respect to the magnetic flux application direction, the inclination angle is Although it may appear as an inclination angle with respect to the longitudinal direction of the magnetic material plate divided from the prism, it does not appear as an inclination angle with respect to the width direction. Therefore, regardless of whether or not the plurality of magnetic plates vertically divided from the prismatic body are magnetic plates located at both ends in the magnetic flux application direction, the segment magnet formed by magnetizing these magnetic plates is The magnet is magnetized so as to generate a magnetic flux in a direction orthogonal to the width direction. Therefore, in a rotor in which a plurality of segment magnets manufactured by the manufacturing method of the present invention are assembled, the electrical angle at which the magnetic attraction force is the greatest with respect to the teeth of the stator is the same between the segment magnets. Thus, the cogging torque can be suppressed.

[請求項2の発明]
請求項2の発明に係るセグメント磁石の製造方法では、角柱体の成形工程において、角柱体を断面形状である長方形の長辺方向に磁束と圧力との両方を付与するので、角柱体の外側面が成形金型の内面から摩擦力を受けても、その外側面寄りの部位の配向方向が、磁束付与方向に対して斜めになることはない。これにより、角柱体から縦割り分割された複数の磁性体プレートが、磁束付与方向の両端に位置した磁性体プレートであるか否かに拘わらず、それら磁性体プレートを着磁してなるセグメント磁石は、幅方向に対して直交した方向の磁束を発生させるように着磁する。従って、本発明の製造方法で製造された複数のセグメント磁石が組み付けられたロータでは、それら複数のセグメント磁石同士の間で、ステータのティースに対して最も磁気吸引力が大きくなる電気角が同じになり、コギングトルクを抑えることができる。
[Invention of claim 2]
In the segment magnet manufacturing method according to the invention of claim 2, in the step of forming the prismatic body, both the magnetic flux and the pressure are applied in the long side direction of the rectangular shape having a cross-sectional shape. However, even if the frictional force is received from the inner surface of the molding die, the orientation direction of the portion near the outer surface is not inclined with respect to the magnetic flux application direction. Accordingly, regardless of whether or not the plurality of magnetic plates divided vertically from the prismatic body are magnetic plates positioned at both ends in the magnetic flux application direction, the segment magnet is formed by magnetizing the magnetic plates. Is magnetized so as to generate a magnetic flux in a direction orthogonal to the width direction. Therefore, in a rotor in which a plurality of segment magnets manufactured by the manufacturing method of the present invention are assembled, the electrical angle at which the magnetic attraction force is the greatest with respect to the teeth of the stator is the same between the segment magnets. Thus, the cogging torque can be suppressed.

[請求項3の発明]
請求項3の発明に係る電動パワーステアリング装置の製造方法によれば、電動パワーステアリング装置の操舵フィーリングを向上させることができる。
[Invention of claim 3]
According to the method of manufacturing the electric power steering apparatus according to the invention of claim 3, the steering feeling of the electric power steering apparatus can be improved.

[第1実施形態]
以下、本発明の一実施形態を図1〜図8に基づいて説明する。図1には、本実施形態のセグメント磁石の製造方法で用いる成形金型60が示されている。この成形金型60は、ベース金型61と可動金型62とからなり、ベース金型61には角柱状の成形部屋63が形成されている。成形部屋63は、ベース金型61のうち可動金型62との対向面に開放した上面開口63Aを有しており、可動金型62に備えた角柱状の押圧突部64が上面開口63Aから成形部屋63内の嵌合挿入されて、成形部屋63内の磁性粉体を角柱体50に成形する。ここで、本実施形態では、成形部屋63のうち上面開口63Aから奥側に向かう方向が角柱体50の長軸方向Zになっている。
[First Embodiment]
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a molding die 60 used in the segment magnet manufacturing method of the present embodiment. The molding die 60 includes a base die 61 and a movable die 62, and a prismatic molding chamber 63 is formed in the base die 61. The molding chamber 63 has an upper surface opening 63A that is open on the surface of the base mold 61 facing the movable mold 62, and the prismatic pressing protrusions 64 provided on the movable mold 62 extend from the upper surface opening 63A. The magnetic powder in the molding chamber 63 is molded into the prism body 50 by being inserted into the molding chamber 63. Here, in this embodiment, the direction from the upper surface opening 63 </ b> A to the back side in the molding chamber 63 is the major axis direction Z of the prismatic body 50.

図2に示すように、成形部屋63のうち長軸方向Zと直交する断面の形状は、長方形になっている。また、ベース金型61には電磁コイル65が備えられ、成形部屋63の断面形状である長方形の長辺方向Xを向いた磁束を成形部屋63内の磁性粉体に付与することができる。具体的には、ベース金型61のうち成形部屋63の断面形状の長辺方向Xで対向した対向壁63X,63Xは、磁性体で構成される一方、短辺方向Yで対向した対向壁63Y,63Y及び成形部屋63の底壁63S(図1参照)さらには可動金型62の押圧突部64(図1参照)は、非磁性体で構成されている。そして、磁性体の対向壁63X,63X同士が、非磁性体の一方の対向壁63Yの外側で連絡されてC字形の磁路61Jが構成されている。電磁コイル65は、その磁路61Jの一部に巻回されている。   As shown in FIG. 2, the shape of the cross section orthogonal to the long-axis direction Z in the molding chamber 63 is a rectangle. Further, the base mold 61 is provided with an electromagnetic coil 65, and a magnetic flux directed in the long side direction X of a rectangle that is a cross-sectional shape of the molding chamber 63 can be applied to the magnetic powder in the molding chamber 63. Specifically, the opposing walls 63X and 63X of the base mold 61 that face each other in the long side direction X of the cross-sectional shape of the molding chamber 63 are made of a magnetic material, and the opposing walls 63Y that face each other in the short side direction Y. 63Y and the bottom wall 63S of the molding chamber 63 (see FIG. 1) and the pressing protrusion 64 (see FIG. 1) of the movable mold 62 are made of a non-magnetic material. The opposing walls 63X, 63X of the magnetic material are connected to each other outside the opposing wall 63Y of the non-magnetic material, thereby forming a C-shaped magnetic path 61J. The electromagnetic coil 65 is wound around a part of the magnetic path 61J.

以下、この成形金型60を用いて図6に示したセグメント磁石52を製造する方法を説明する。まず、成形工程として図1に示したベース金型61の成形部屋63に所定量の磁性粉体を収容し、図示しない油圧プレスによって可動金型62の押圧突部64を成形部屋63内に押し込むと共に、電磁コイル65に直流電流を通電する。すると、成形部屋63内の磁性粉体は、断面長方形の角柱体50に成形される。このとき角柱体50は、長軸方向Z(図3参照)を向いた圧力を受けて成形されると共に、角柱体50の断面形状である長方形の長辺方向X(図3参照)を向いた磁束を受けて配向(磁気配向)される。   Hereinafter, a method for manufacturing the segment magnet 52 shown in FIG. 6 using the molding die 60 will be described. First, as a molding process, a predetermined amount of magnetic powder is stored in the molding chamber 63 of the base mold 61 shown in FIG. 1, and the pressing protrusion 64 of the movable mold 62 is pushed into the molding chamber 63 by a hydraulic press (not shown). At the same time, a direct current is applied to the electromagnetic coil 65. Then, the magnetic powder in the molding chamber 63 is molded into a prismatic body 50 having a rectangular cross section. At this time, the prismatic body 50 is shaped by receiving pressure directed in the long axis direction Z (see FIG. 3), and is oriented in the long side direction X (see FIG. 3) of the rectangle which is the cross-sectional shape of the prismatic body 50. Orientation (magnetic orientation) is performed by receiving magnetic flux.

次いで、成形金型60から取り出した角柱体50を図示しない加熱炉で焼結させる焼結工程を行う。そして、焼結炉から取り出した角柱体50(図3参照)を、図4に示すように、磁束付与方向で3枚以上(例えば、5枚)の磁性体プレート51に縦割り分割する加工工程を行う。この加工工程では、磁性体プレート51のうち板厚方向の一方の面を幅方向で湾曲した湾曲面51Wに加工する。   Next, a sintering process is performed in which the prismatic body 50 taken out from the molding die 60 is sintered in a heating furnace (not shown). Then, as shown in FIG. 4, the prismatic body 50 (see FIG. 3) taken out from the sintering furnace is divided into three or more (for example, five) magnetic plates 51 in the magnetic flux application direction. I do. In this processing step, one surface in the thickness direction of the magnetic plate 51 is processed into a curved surface 51W curved in the width direction.

なお、焼結磁性体51のうち角柱体50のうち磁束付与方向の両端部に位置した焼結磁性体と中間部に位置した焼結磁性体とを区別する場合には、両端部に位置した焼結磁性体に符号「51A」を付し、中間部に位置した焼結磁性体に符号「51B」を付し、それらを区別しない場合には、符号「51」を付すことにする。   In the case of distinguishing the sintered magnetic body located at both ends in the magnetic flux application direction of the prismatic body 50 of the sintered magnetic body 51 from the sintered magnetic body located at the intermediate portion, it was located at both ends. The reference numeral “51A” is attached to the sintered magnetic body, the reference numeral “51B” is attached to the sintered magnetic body located in the middle portion, and the reference numeral “51” is attached when they are not distinguished.

次いで、磁性体プレート51を図5に示したロータ22の外面に固定する組付工程を行う。ここで、ロータ22は、円筒体の外周面を多角形に平面加工した構造にしておく。また、磁性体プレート51のうち湾曲面51Wと反対側を平坦面51Sとし、その平坦面51Sに接着剤を塗布しておく。そして、図5に示した治具シャフト31の外側にロータ22を取り付け、サーボモータ32によってロータ22の回転位置を制御し、ロボット(図示せず)のハンド35にて磁性体プレート51を把持してロータ22の各平坦面に、順次、磁性体プレート51の平坦面51Sを接着固定していく。   Next, an assembling step for fixing the magnetic material plate 51 to the outer surface of the rotor 22 shown in FIG. 5 is performed. Here, the rotor 22 has a structure in which the outer peripheral surface of the cylindrical body is planarized into a polygonal shape. In addition, the opposite side of the magnetic plate 51 to the curved surface 51W is a flat surface 51S, and an adhesive is applied to the flat surface 51S. Then, the rotor 22 is attached to the outside of the jig shaft 31 shown in FIG. 5, the rotational position of the rotor 22 is controlled by the servo motor 32, and the magnetic plate 51 is gripped by the hand 35 of a robot (not shown). Then, the flat surface 51S of the magnetic plate 51 is sequentially bonded and fixed to each flat surface of the rotor 22.

次いで、着磁工程を行う。この着磁工程では、ロータ22に固定された状態の磁性体プレート51に図6に示すように電磁コイル69を対向配置して磁束を付与する。これにより、磁性体プレート51の配向方向(磁気配向方向)にN極とS極とが分極した状態に着磁し、磁性体プレート51がセグメント磁石52になる。また、隣り合った電磁コイル69,69の間では磁束の向きを異ならせておく。これにより、ロータ22の外面で隣り合ったセグメント磁石52,52同士の間では、N極とS極の配置が相互に逆向きになるように着磁される。   Next, a magnetization process is performed. In this magnetizing step, an electromagnetic coil 69 is disposed oppositely to the magnetic plate 51 fixed to the rotor 22 as shown in FIG. As a result, the magnetic plate 51 is magnetized so that the N pole and the S pole are polarized in the orientation direction (magnetic orientation direction) of the magnetic plate 51, and the magnetic plate 51 becomes the segment magnet 52. Further, the direction of the magnetic flux is made different between the adjacent electromagnetic coils 69 and 69. Thereby, between the segment magnets 52 and 52 adjacent to each other on the outer surface of the rotor 22, the N pole and the S pole are magnetized so as to be opposite to each other.

ここで、本実施形態では、上記したように角柱体50の成形工程において、角柱体50の長軸方向Z(図3参照)に圧力を付与すると共に、角柱体50の断面形状である長方形の長辺方向X(図3参照)に磁束を付与するので、角柱体50の外側面が、成形金型60の内面から摩擦力を受けて、その外側面寄りの部位の配向方向が磁束付与方向(長辺方向X)に対して傾斜角α(図3参照)を有しても、その傾斜角αは角柱体50から分割された磁性体プレート51の長手方向(ロータ22の軸方向)に対する傾斜角としては出現し得るが、幅方向に対する傾斜角として出現することはない(図4参照)。よって、角柱体50から縦割り分割された複数の磁性体プレート51が、磁束付与方向の両端に位置した磁性体プレート51Aであるかそれら以外の磁性体プレート51Bであるかに拘わらず、それら磁性体プレート51を着磁してなるセグメント磁石52は、幅方向に対して直交した方向の磁束を発生させるように着磁される。これにより、本実施形態の製造方法で製造された複数のセグメント磁石52が組み付けられたロータ22(図8)では、それら複数のセグメント磁石52,52同士の間で、後述するステータ21のティース21Tに対して最も磁気吸引力が大きくなる電気角が同じになり、コギングトルクを抑えることができる。   Here, in the present embodiment, as described above, in the step of forming the prismatic body 50, pressure is applied to the long axis direction Z (see FIG. 3) of the prismatic body 50, and a rectangular shape that is a cross-sectional shape of the prismatic body 50 is formed. Since the magnetic flux is applied in the long side direction X (see FIG. 3), the outer surface of the prismatic body 50 receives frictional force from the inner surface of the molding die 60, and the orientation direction of the portion closer to the outer surface is the magnetic flux applying direction. Even if it has an inclination angle α (see FIG. 3) with respect to (long-side direction X), the inclination angle α is relative to the longitudinal direction of the magnetic plate 51 divided from the prism body 50 (the axial direction of the rotor 22). Although it may appear as an inclination angle, it does not appear as an inclination angle with respect to the width direction (see FIG. 4). Therefore, regardless of whether the plurality of magnetic plates 51 divided vertically from the prism body 50 are the magnetic plates 51A positioned at both ends in the magnetic flux application direction or the other magnetic plates 51B. The segment magnet 52 formed by magnetizing the body plate 51 is magnetized so as to generate a magnetic flux in a direction orthogonal to the width direction. Thereby, in the rotor 22 (FIG. 8) in which the plurality of segment magnets 52 manufactured by the manufacturing method of the present embodiment is assembled, the teeth 21 </ b> T of the stator 21, which will be described later, between the plurality of segment magnets 52, 52. In contrast, the electric angle at which the magnetic attraction force is maximized is the same, and the cogging torque can be suppressed.

以上が、本実施形態のセグメント磁石52の製造方法の説明である。次に、セグメント磁石52を有してなるモータ20を駆動源とした電動パワーステアリング装置10(図7参照)の製造方法について説明する。この電動パワーステアリング装置10は、図7に示すように、シャフトケース11の内部に直動シャフト12を直動可能に収容して備えている。シャフトケース11の長手方向の中間部には、ステータ21が嵌合されている。図8に示すように、ステータ21は、シャフトケース11の内面に圧入固定された円筒体の内面から複数のティース21Tを突出させた構造をなしている。また、各ティース21Tにはコイル21Cが巻回されている。さらに、図7に示すように、ステータ21と直動シャフト12との間の円筒空間にロータ22が遊嵌され、シャフトケース11に両端部を回転可能に支持されている。そして、これらステータ21とロータ22とからモータ20が構成され、図8に示すように、ロータ22のセグメント磁石52とステータ21のティース21Tとがステータ21の径方向で対向している。   The above is description of the manufacturing method of the segment magnet 52 of this embodiment. Next, a method for manufacturing the electric power steering apparatus 10 (see FIG. 7) using the motor 20 having the segment magnets 52 as a drive source will be described. As shown in FIG. 7, the electric power steering apparatus 10 includes a linear motion shaft 12 accommodated in a shaft case 11 so as to be linearly movable. A stator 21 is fitted in an intermediate portion in the longitudinal direction of the shaft case 11. As shown in FIG. 8, the stator 21 has a structure in which a plurality of teeth 21 </ b> T are projected from the inner surface of a cylindrical body that is press-fitted and fixed to the inner surface of the shaft case 11. A coil 21C is wound around each tooth 21T. Further, as shown in FIG. 7, a rotor 22 is loosely fitted in a cylindrical space between the stator 21 and the linear motion shaft 12, and both end portions are rotatably supported by the shaft case 11. Then, the motor 20 is constituted by the stator 21 and the rotor 22, and the segment magnet 52 of the rotor 22 and the teeth 21T of the stator 21 are opposed to each other in the radial direction of the stator 21, as shown in FIG.

図7に示すように、直動シャフト12の軸方向の中間部には、ボールネジ24が形成され、そのボールネジ24に螺合したボールナット23がロータ22の内側に嵌合固定されている。また、直動シャフト12における一端寄り位置には、ラック30が形成され、そのラック30に噛合したピニオン34にステアリングシャフト29を介してハンドル28が連結されている。この電動パワーステアリング装置10は、直動シャフト12の両端部が車両(図示せず)の1対の転舵輪13,13に連結される一方、シャフトケース11が車両本体(図示せず)に固定されて車両に組み付けられる。そして、ハンドル28を操舵した際の操舵トルクによって直動シャフト12が直動すると共に、その操舵トルクに応じてモータ20が駆動される。そのモータ20の回転出力は、ボールネジ24とボールネジ24とからなるボールネジ機構25により直動シャフト12の軸力に変換されて、ハンドル28の操舵が補助される。   As shown in FIG. 7, a ball screw 24 is formed in an intermediate portion in the axial direction of the linear motion shaft 12, and a ball nut 23 screwed into the ball screw 24 is fitted and fixed inside the rotor 22. Further, a rack 30 is formed at a position near one end of the linear motion shaft 12, and a handle 28 is connected to a pinion 34 meshing with the rack 30 via a steering shaft 29. In the electric power steering apparatus 10, both ends of the linear motion shaft 12 are connected to a pair of steered wheels 13 and 13 of a vehicle (not shown), while the shaft case 11 is fixed to a vehicle body (not shown). And assembled into the vehicle. The linear motion shaft 12 is linearly moved by the steering torque when the handle 28 is steered, and the motor 20 is driven in accordance with the steering torque. The rotation output of the motor 20 is converted into an axial force of the linear motion shaft 12 by a ball screw mechanism 25 including a ball screw 24 and a ball screw 24, and steering of the handle 28 is assisted.

ここで、本実施形態の電動パワーステアリング装置10は、上記した製造方法にて製造されたセグメント磁石52を有するモータ20を駆動源としているので、従来より操舵フィーリングを向上させることができる。   Here, since the electric power steering device 10 of the present embodiment uses the motor 20 having the segment magnet 52 manufactured by the above-described manufacturing method as a drive source, the steering feeling can be improved as compared with the related art.

[第2実施形態]
図9及び図10には、本実施形態のセグメント磁石の製造方法で用いる成形金型70が示されている。この成形金型70のベース金型71に形成された成形部屋73は、前記第1実施形態で説明した角柱体50(図3参照)に対応した形状をなし、上面開口73Aから奥側に向かう方向が角柱体50の断面形状における長辺方向X(図3参照)に相当している。また、成形部屋73の底壁73Sと可動金型72における押圧突部74は磁性体で構成され、成形部屋73を囲む側壁部73Zは非磁性体で構成されている。そして、図10に示すように、底壁73Sを側壁部73Zの外側で屈曲させて上方に延ばした起立連絡壁78を備えると共に、その起立連絡壁78に摺接可能に接合される摺動連絡壁79が押圧突部74から張り出している。これにより、成形部屋73内の磁性粉体を一部に含んだ環状磁路71Jが構成され、その環状磁路71Jの途中に電磁コイル75が巻回されている。
[Second Embodiment]
9 and 10 show a molding die 70 used in the segment magnet manufacturing method of the present embodiment. A molding chamber 73 formed in the base mold 71 of the molding mold 70 has a shape corresponding to the prismatic body 50 (see FIG. 3) described in the first embodiment, and goes from the upper surface opening 73A to the back side. The direction corresponds to the long side direction X (see FIG. 3) in the cross-sectional shape of the prismatic body 50. Further, the bottom wall 73S of the molding chamber 73 and the pressing protrusion 74 in the movable mold 72 are made of a magnetic material, and the side wall portion 73Z surrounding the molding chamber 73 is made of a non-magnetic material. As shown in FIG. 10, a sliding communication is provided that includes a standing communication wall 78 that is bent upward outside the side wall portion 73 </ b> Z and extends upward, and is slidably joined to the standing communication wall 78. A wall 79 projects from the pressing protrusion 74. Thereby, the annular magnetic path 71J partially including the magnetic powder in the molding chamber 73 is configured, and the electromagnetic coil 75 is wound in the middle of the annular magnetic path 71J.

本実施形態では、この成形金型70の成形部屋73に磁性粉体を収容して押圧突部74を成形部屋73内に押し込むと共に、電磁コイル75に直流電流を通電して角柱体50(図3参照)を製造する。これにより、角柱体50は、その断面形状である長方形の長辺方向X(図3参照)に磁束と圧力との両方を受けて成形されることになる。従って、角柱体50の外側面が、成形金型70の内面から摩擦力を受けても、その外側面寄りの部位の配向方向が磁束付与方向に対して斜めになることはない。従って、角柱体50から縦割り分割された複数の磁性体プレート51を着磁してなるセグメント磁石52は、全て幅方向に対して直交した方向の磁束を発生させるように着磁する。よって、本実施形態の製造方法で製造された複数のセグメント磁石52を用いても、第1実施形態と同様にモータのコギングトルクを抑えることができる。   In the present embodiment, the magnetic powder is accommodated in the molding chamber 73 of the molding die 70 and the pressing protrusion 74 is pushed into the molding chamber 73, and a DC current is applied to the electromagnetic coil 75 to cause the prismatic body 50 (FIG. 3). Thereby, the prismatic body 50 is shaped by receiving both magnetic flux and pressure in the long side direction X (see FIG. 3) of the rectangle which is the cross-sectional shape. Therefore, even if the outer surface of the prismatic body 50 receives a frictional force from the inner surface of the molding die 70, the orientation direction of the portion near the outer surface is not inclined with respect to the magnetic flux application direction. Therefore, all the segment magnets 52 formed by magnetizing the plurality of magnetic plates 51 divided vertically from the prismatic body 50 are magnetized so as to generate a magnetic flux in a direction orthogonal to the width direction. Therefore, even if the several segment magnet 52 manufactured with the manufacturing method of this embodiment is used, the cogging torque of a motor can be suppressed similarly to 1st Embodiment.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)前記実施形態では、セグメント磁石52がロータ22の外面に固定されていたが、セグメント磁石をロータの内部に埋め込んだ構成にしてもよい。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.
(1) Although the segment magnet 52 is fixed to the outer surface of the rotor 22 in the embodiment, the segment magnet may be embedded in the rotor.

(2)前記第1実施形態では、磁性体プレート51をロータ22に組み付けてから着磁してセグメント磁石52にしていたが、磁性体プレート51をロータ22に組み付ける前に着磁してセグメント磁石52にしてもよい。   (2) In the first embodiment, the magnetic material plate 51 is magnetized after being assembled to the rotor 22 to be magnetized into the segment magnet 52. However, the magnetic material plate 51 is magnetized before being assembled to the rotor 22, and the segment magnet is magnetized. It may be 52.

(3)前記第1実施形態では、所謂、ボールネジ機構でモータを直動シャフト12に連結したラック電動パワーステアリング装置に本発明を適用した例を示したが、ラックアンドピニオン機構でモータを直動シャフト12に連結したピニオン電動パワーステアリング装置に本発明を適用してもよいし、ステアリングシャフトの途中にモータをギヤ連結したコラム電動パワーステアリング装置に本発明を適用してもよい。   (3) In the first embodiment, the example in which the present invention is applied to a rack electric power steering apparatus in which a motor is connected to the linear motion shaft 12 by a so-called ball screw mechanism is shown. However, the motor is linearly moved by a rack and pinion mechanism. The present invention may be applied to a pinion electric power steering device connected to the shaft 12, or may be applied to a column electric power steering device in which a motor is gear-connected to the middle of the steering shaft.

本発明の第1実施形態に係るセグメント磁石の製造方法で用いる成型金型の側断面図Side sectional view of a molding die used in the method for manufacturing a segment magnet according to the first embodiment of the present invention. その成型金型の平断面図Plan sectional view of the mold 角柱体の斜視図Perspective view of prismatic body 磁性体プレートの斜視図Perspective view of magnetic plate 磁性体プレートをロータに組み付ける装置の斜視図Perspective view of device for assembling magnetic plate to rotor ロータを軸方向から見た正面図Front view of the rotor viewed from the axial direction 電動パワーステアリング装置の側断面図Side sectional view of electric power steering device モータの断面図Cross section of motor 第2実施形態に係るセグメント磁石の製造方法で用いる成型金型の正断面図Front sectional view of a molding die used in the method for manufacturing a segment magnet according to the second embodiment その成型金型の側断面図Side sectional view of the mold 従来のセグメント磁石の製造方法で用いた角柱体の斜視図Perspective view of a prismatic body used in a conventional method of manufacturing a segment magnet

符号の説明Explanation of symbols

10 電動パワーステアリング装置
20 モータ
22 ロータ
50 角柱体
51 磁性体プレート
51S 平坦面
51W 湾曲面
52 セグメント磁石
X 長辺方向
Z 長軸方向
DESCRIPTION OF SYMBOLS 10 Electric power steering apparatus 20 Motor 22 Rotor 50 Square column body 51 Magnetic body plate 51S Flat surface 51W Curved surface 52 Segment magnet X Long side direction Z Long axis direction

Claims (3)

磁性粉体を成形金型にて断面長方形の角柱体に成形した後、焼結し、焼結後の前記角柱体をその断面形状である長方形の長辺方向で3枚以上の磁性体プレートに縦割り分割し、さらに、それら磁性体プレートの板厚方向に磁束を付与して着磁させ、モータのロータに使用可能な複数のセグメント磁石を製造する方法において、
前記磁性粉体を前記角柱体に成形する成形工程で、前記角柱体の長軸方向に圧力を付与すると共に、前記角柱体の断面形状である長方形の長辺方向に磁束を付与することを特徴とするセグメント磁石の製造方法。
The magnetic powder is molded into a rectangular column having a rectangular cross section by a molding die and then sintered, and the sintered rectangular column is formed into three or more magnetic plates in the direction of the long side of the rectangle which is the cross sectional shape. In the method of manufacturing a plurality of segment magnets that can be used for a rotor of a motor by vertically dividing and further magnetizing by applying a magnetic flux in the thickness direction of the magnetic plates,
In the forming step of forming the magnetic powder into the prismatic body, pressure is applied in the major axis direction of the prismatic body, and magnetic flux is applied in the long side direction of the rectangle that is the cross-sectional shape of the prismatic body. A method for manufacturing a segment magnet.
磁性粉体を成形金型にて断面長方形の角柱体に成形した後、焼結し、焼結後の前記角柱体をその断面形状である長方形の長辺方向で3枚以上の磁性体プレートに縦割り分割し、さらに、それら磁性体プレートの板厚方向に磁束を付与して着磁させ、モータのロータに使用可能な複数のセグメント磁石を製造する方法において、
前記磁性粉体を前記角柱体に成形する成形工程で、前記角柱体の断面形状である長方形の長辺方向に磁束と圧力との両方を付与することを特徴とするセグメント磁石の製造方法。
The magnetic powder is molded into a rectangular column having a rectangular cross section by a molding die and then sintered, and the sintered rectangular column is formed into three or more magnetic plates in the direction of the long side of the rectangle which is the cross sectional shape. In the method of manufacturing a plurality of segment magnets that can be used for a rotor of a motor by vertically dividing and further magnetizing by applying a magnetic flux in the thickness direction of the magnetic plates,
A method of manufacturing a segment magnet, wherein in the forming step of forming the magnetic powder into the prismatic body, both magnetic flux and pressure are applied in a long side direction of a rectangle which is a cross-sectional shape of the prismatic body.
請求項1又は2のセグメント磁石の製造方法で製造したセグメント磁石を備えたモータを電動パワーステアリング装置の駆動源として組み付けることを特徴とする電動パワーステアリング装置の製造方法。   A method for manufacturing an electric power steering apparatus, comprising assembling a motor including the segment magnet manufactured by the method for manufacturing a segment magnet according to claim 1 or 2 as a drive source of the electric power steering apparatus.
JP2008004395A 2008-01-11 2008-01-11 Manufacturing method of segment magnet and manufacturing method of electric power steering device Expired - Fee Related JP5310986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008004395A JP5310986B2 (en) 2008-01-11 2008-01-11 Manufacturing method of segment magnet and manufacturing method of electric power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008004395A JP5310986B2 (en) 2008-01-11 2008-01-11 Manufacturing method of segment magnet and manufacturing method of electric power steering device

Publications (2)

Publication Number Publication Date
JP2009171679A true JP2009171679A (en) 2009-07-30
JP5310986B2 JP5310986B2 (en) 2013-10-09

Family

ID=40972237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008004395A Expired - Fee Related JP5310986B2 (en) 2008-01-11 2008-01-11 Manufacturing method of segment magnet and manufacturing method of electric power steering device

Country Status (1)

Country Link
JP (1) JP5310986B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782143A (en) * 2010-03-04 2010-07-21 扬州保来得科技实业有限公司 Ceramimetallurgical automobile steering gear face cam and preparation method thereof
US9214846B2 (en) 2011-02-02 2015-12-15 Toyota Jidosha Kabushiki Kaisha Permanent magnet, motor rotor or stator, rotary electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309207A (en) * 1991-04-08 1992-10-30 Tokin Corp Manufacture of bonded magnet
JP2001028309A (en) * 1999-07-14 2001-01-30 Mitsubishi Electric Corp Magnet and magnetic field molding apparatus
JP2001218403A (en) * 1999-11-26 2001-08-10 Asmo Co Ltd Rotating magnetic field motor
JP2006042414A (en) * 2004-07-22 2006-02-09 Mitsubishi Electric Corp Brushless motor
JP2007311667A (en) * 2006-05-22 2007-11-29 Nec Tokin Corp Anisotropic sintered permanent magnet and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04309207A (en) * 1991-04-08 1992-10-30 Tokin Corp Manufacture of bonded magnet
JP2001028309A (en) * 1999-07-14 2001-01-30 Mitsubishi Electric Corp Magnet and magnetic field molding apparatus
JP2001218403A (en) * 1999-11-26 2001-08-10 Asmo Co Ltd Rotating magnetic field motor
JP2006042414A (en) * 2004-07-22 2006-02-09 Mitsubishi Electric Corp Brushless motor
JP2007311667A (en) * 2006-05-22 2007-11-29 Nec Tokin Corp Anisotropic sintered permanent magnet and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782143A (en) * 2010-03-04 2010-07-21 扬州保来得科技实业有限公司 Ceramimetallurgical automobile steering gear face cam and preparation method thereof
US9214846B2 (en) 2011-02-02 2015-12-15 Toyota Jidosha Kabushiki Kaisha Permanent magnet, motor rotor or stator, rotary electric machine

Also Published As

Publication number Publication date
JP5310986B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
US9985506B2 (en) Manufacturing method and magnetizing device for interior permanent magnet rotor unit
EP2680403A2 (en) Electric Motor and Production Method for the Electric Motor
WO2005124979A1 (en) Linear motor and method of producing linear motor
JP2005304286A (en) Rotor unit for motor and permanent magnet type motor
JP2007068330A (en) Three-phase permanent magnet brushless motor
JP2007037243A5 (en)
US7939984B2 (en) Lamination having tapered tooth geometry which is suitable for use in electric motor
EP1953901A1 (en) Motor and device using the same
JP5310986B2 (en) Manufacturing method of segment magnet and manufacturing method of electric power steering device
JP5766134B2 (en) Shaft type linear motor mover, permanent magnet, linear motor
JP5995057B2 (en) Rotor of embedded magnet permanent magnet rotating electric machine and method of assembling the same
WO2005124980A1 (en) Method of producing linear motor
JP2004222356A (en) Rotating electric equipment
JP5487020B2 (en) Rotating electric machine
JP4694253B2 (en) Permanent magnet rotating electric machine
JP4974482B2 (en) Flat coreless motor, armature in flat coreless motor, and manufacturing method thereof
EP3324526A1 (en) Magnetic field generating member and motor including same
WO2018016067A1 (en) Electric motor, air conditioner, rotor, and method of manufacturing electric motor
JP2009124007A (en) Method and apparatus for magnetizing permanent magnet
JP2006149200A (en) Manufacturing method of dc brushless electric motor
JP2007104795A (en) Axial gap motor
JP5304982B2 (en) Manufacturing method of rotor
WO2005124981A1 (en) Linear motor and method of producing linear motor
JP2001052921A (en) Magnet for permanent magnet motor and molding device
JP5707831B2 (en) Powder core and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees