JP4974482B2 - Flat coreless motor, armature in flat coreless motor, and manufacturing method thereof - Google Patents

Flat coreless motor, armature in flat coreless motor, and manufacturing method thereof Download PDF

Info

Publication number
JP4974482B2
JP4974482B2 JP2005172368A JP2005172368A JP4974482B2 JP 4974482 B2 JP4974482 B2 JP 4974482B2 JP 2005172368 A JP2005172368 A JP 2005172368A JP 2005172368 A JP2005172368 A JP 2005172368A JP 4974482 B2 JP4974482 B2 JP 4974482B2
Authority
JP
Japan
Prior art keywords
armature
magnet
coreless motor
flat
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005172368A
Other languages
Japanese (ja)
Other versions
JP2006025594A (en
Inventor
浩 吉田
和司 南條
真一 柳沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Electric Corp
Original Assignee
Yamamoto Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Electric Corp filed Critical Yamamoto Electric Corp
Priority to JP2005172368A priority Critical patent/JP4974482B2/en
Publication of JP2006025594A publication Critical patent/JP2006025594A/en
Application granted granted Critical
Publication of JP4974482B2 publication Critical patent/JP4974482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は一般産業機器、家電機器、電装用等に用いて好適な偏平型コアレスモータ、所謂フラットモータに関し、特に、モールド用樹脂に磁性粉を混入して成形するようにした電機子を用いた偏平型コアレスモータ、偏平型コアレスモータにおける電機子及びその製造方法に関し、更にはその出力軸を外部の被駆動体に容易に接続可能とした偏平型コアレスモータに関する。   The present invention relates to a flat coreless motor suitable for use in general industrial equipment, home appliances, electrical equipment, etc., so-called flat motors, and in particular, using an armature that is formed by mixing magnetic powder into a molding resin. The present invention relates to a flat coreless motor, an armature in a flat coreless motor, and a method for manufacturing the same, and further relates to a flat coreless motor whose output shaft can be easily connected to an external driven body.

近年、偏平型コアレスモータは一般産業機器、家電機器から電装用(自動車用)に至るまで、その薄型・小型、軽量の利点を生かし、各種駆動源として多用されている。最近では省エネへの傾向から装置の高効率化が切望され、駆動源としてのモータも小型化が益々要求され、同時に高効率、高トルクへの要求も高まっている。特にコアレスモータは鉄心がない分、トルクリップル等には優れているが、反面、磁気的飽和が早く出力特性に劣るため高トルク化には限界があった。   In recent years, flat coreless motors have been widely used as various drive sources, taking advantage of their thinness, small size, and light weight, from general industrial equipment and home appliances to electrical equipment (for automobiles). Recently, there has been a strong demand for higher efficiency of devices due to the trend toward energy saving, and miniaturization of motors as drive sources has been increasingly demanded. At the same time, demand for high efficiency and high torque has been increasing. In particular, the coreless motor is excellent in torque ripple because it has no iron core, but on the other hand, there is a limit to the increase in torque because of its fast magnetic saturation and poor output characteristics.

従来の偏平型コアレスモータとしては例えば、特許文献1、特許文献2等に開示されているものがある。特許文献1には、偏平コイルを磁性粉末(軟鉄粉)を混合した樹脂モールド材で円板状に一体的にモールドして形成したフラットモータが開示されている。これにより回転子の単コイル群に電機子電流が流れた場合、界磁部、空隙、回転子円板、空隙、固定子枠からなる磁気回路抵抗が減少し出力特性が改善されるようになっている。
特許文献2には電機子コイルに平角銅線を巻線して構成し、隣接するコイル間の隙間をなくしコイルの占積率を向上させる技術が開示されている。
特開昭61−46879号 特開昭60−96985号
Examples of conventional flat coreless motors are disclosed in Patent Document 1, Patent Document 2, and the like. Patent Document 1 discloses a flat motor formed by integrally molding a flat coil into a disk shape with a resin molding material mixed with magnetic powder (soft iron powder). As a result, when an armature current flows through the single coil group of the rotor, the magnetic circuit resistance composed of the field part, the air gap, the rotor disk, the air gap, and the stator frame is reduced, and the output characteristics are improved. ing.
Patent Document 2 discloses a technique in which a rectangular copper wire is wound around an armature coil to eliminate a gap between adjacent coils and improve the coil space factor.
JP 61-46879 JP 60-96985

しかしながら磁性粉末を樹脂モールド材に混合したものは、電機子の内部に磁路を形成させることはできるものの、電機子とマグネット間の磁束増幅は期待できず出力特性の向上には寄与できない。同様に電機子コイルを平角銅線で巻回して構成しても占積率の向上には繋がるが、出力特性の顕著な効果は期待できない。
また、従来の偏平型コアレスモータにおいては、その出力を外部の被駆動体(負荷)に伝達するためには出力軸にカップリング部材等の結合部材を介する必要があり、そのために構造が複雑になると共にモータの出力軸をモータ本体から突出させる必要があり、モータの小型化が制限され、従って被駆動体(負荷手段)の設計の自由度が制限されるという問題点があった。
However, when magnetic powder is mixed with a resin mold material, a magnetic path can be formed inside the armature, but magnetic flux amplification between the armature and the magnet cannot be expected, and it cannot contribute to improvement of output characteristics. Similarly, even if the armature coil is formed by winding a rectangular copper wire, the space factor is improved, but a remarkable effect of output characteristics cannot be expected.
In addition, in a conventional flat coreless motor, in order to transmit the output to an external driven body (load), it is necessary to connect a coupling member such as a coupling member to the output shaft, which makes the structure complicated. At the same time, it is necessary to cause the motor output shaft to protrude from the motor body, which limits the miniaturization of the motor, and thus limits the degree of freedom in designing the driven body (loading means).

本発明は上記従来の問題点に顧みてなされたもので、モータの体格を増やすことなく、簡単な構成で出力特性を大幅に向上させることができる偏平型コアレスモータ、該偏平型コアレスモータにおける電機子及びその製造方法を提供することを目的とする。
本発明は、簡単な構成で出力軸を負荷手段に容易に接続することができ、且つ偏平形状のメリットを生かし各種用途に適用することができる偏平型コアレスモータを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional problems. A flat coreless motor capable of greatly improving output characteristics with a simple configuration without increasing the size of the motor, and an electric machine in the flat coreless motor. It aims at providing a child and its manufacturing method.
It is an object of the present invention to provide a flat coreless motor that can easily connect an output shaft to a load means with a simple configuration and that can be applied to various applications by taking advantage of the flat shape.

上記課題を解決するために、本発明の請求項1に係わる偏平型コアレスモータは、各々が丸形もしくは多角形状に巻回された複数の単コイルを回転軸の周囲に該回転軸の軸方向に垂直な平面上に環状に配設して樹脂でモールドされた平面状の電機子と、前記電機子の前記平面のうちの少なくとも一方の面側に前記回転軸の軸方向に空隙を介して環状に該一方の面に対向配置されたマグネットとを有し、前記電機子もしくは前記マグネットのうちの一方を他方に対して回転自在に軸承してなる偏平型コアレスモータにおいて、
前記電機子をモールド成形する前記樹脂には磁性粉が混入され、該磁性粉は前記回転軸の軸方向に磁化配列され、それにより前記電機子コイルに電流を流すことにより生じる電磁力と、一定方向に磁化配列された該磁性粉による磁束と前記マグネットの磁束とが重畳されることにより駆動されることを特徴とする。
また、本発明の請求項6に係わる偏平型コアレスモータにおける電機子の製造方法は、平面状の電機子と、前記電機子の前記平面のうちの少なくとも一方の面側に回転軸の軸方向に空隙を介して環状に該一方の面に対向配置されたマグネットとを有し、前記電機子もしくは前記マグネットのうちの一方を他方に対して回転自在に軸承してなる偏平型コアレスモータにおける電機子の製造方法であって、
各々が丸形もしくは多角形状に巻回された複数の単コイルを前記回転軸の周囲に該回転軸の軸方向に垂直な平面上に環状に配設して平面状の電機子を作成し、
モールド成形用の樹脂に予め磁性粉を混入し、
磁場を前記回転軸の軸方向に沿った方向に前記樹脂に印加した状態で前記電機子を前記樹脂によりモールド成形し、それにより該磁性粉を前記回転軸の軸方向に磁化配列させることを特徴とする。
In order to solve the above-mentioned problems, a flat coreless motor according to claim 1 of the present invention has a plurality of single coils each wound in a round shape or a polygonal shape around the rotating shaft in the axial direction of the rotating shaft. A planar armature that is annularly disposed on a plane perpendicular to the surface and molded with a resin, and at least one surface side of the plane of the armature via a gap in the axial direction of the rotary shaft A flat coreless motor having a ring-shaped magnet disposed opposite to the one surface and rotatably supporting one of the armature or the magnet with respect to the other;
The resin for molding the armature is mixed with magnetic powder, and the magnetic powder is magnetized in the axial direction of the rotary shaft, thereby generating an electromagnetic force generated by passing a current through the armature coil, and a constant It is driven by superimposing the magnetic flux of the magnetic powder magnetized in the direction and the magnetic flux of the magnet.
According to a sixth aspect of the present invention, there is provided a method for manufacturing an armature in a flat type coreless motor, wherein a planar armature and at least one of the planes of the armature are arranged in the axial direction of a rotating shaft. An armature in a flat type coreless motor having a magnet annularly arranged on one surface through a gap and having one of the armature or the magnet rotatably supported with respect to the other A manufacturing method of
A plurality of single coils each wound in a round shape or a polygonal shape are annularly arranged on a plane perpendicular to the axial direction of the rotating shaft around the rotating shaft to create a planar armature,
Magnetic powder is mixed with resin for molding in advance.
The armature is molded with the resin in a state where a magnetic field is applied to the resin in a direction along the axial direction of the rotation axis, and thereby the magnetic powder is magnetized in the axial direction of the rotation axis. And

好ましくは、前記複数の単コイルの各々は、平形銅線を巻回して形成されていることを特徴とする。
好ましくは、前記電機子は、前記回転軸より外側で且つ前記マグネットの内方側で該マグネットと対向しない位置より、前記回転軸の軸方向に折り曲げられた折り曲げ部を有していることを特徴とする。
好ましくは、前記磁性粉の粉末表面には絶縁処理により形成された絶縁被膜が設けられ、前記樹脂中における前記磁性粉の混入割合は約40〜60重量%であることを特徴とする。
Preferably, each of the plurality of single coils is formed by winding a flat copper wire.
Preferably, the armature has a bent portion bent in the axial direction of the rotary shaft from a position outside the rotary shaft and on the inner side of the magnet not facing the magnet. And
Preferably, the surface of the magnetic powder powder is provided with an insulating film formed by an insulating treatment, and the mixing ratio of the magnetic powder in the resin is about 40 to 60% by weight.

上記他の課題を解決するために、本発明の請求項9に係わる偏平型コアレスモータは、各々が丸形もしくは多角形状に巻回された複数の単コイルを回転軸の周囲に該回転軸の軸方向に垂直な平面上に環状に配設して樹脂でモールドされた平面状の電機子と、前記電機子の前記平面のうちの少なくとも一方の面側に前記回転軸の軸方向に空隙を介して環状に該一方の面に対向配置されたマグネットとを有し、前記電機子もしくは前記マグネットのうちの一方を他方に対して回転自在に軸承してなる偏平型コアレスモータにおいて、
前記電機子をモールド成形する前記樹脂には磁性粉が混入され、該磁性粉は前記回転軸の軸方向に磁化配列され、それにより前記電機子コイルに電流を流すことにより生じる電磁力と、一定方向に磁化配列された該磁性粉による磁束と前記マグネットの磁束とが重畳されることにより駆動され、前記回転軸には、その軸心と同心状に孔が配設され、該孔に外部よりネジ部材の一端側を嵌合可能としたことを特徴とする。
In order to solve the above-mentioned other problems, a flat coreless motor according to claim 9 of the present invention has a plurality of single coils wound in a round shape or a polygonal shape around the rotation shaft. A planar armature that is annularly disposed on a plane perpendicular to the axial direction and molded with resin, and a gap is formed in the axial direction of the rotary shaft on at least one surface side of the plane of the armature. A flat coreless motor having a magnet annularly disposed on one surface of the armature and having one of the armature or the magnet rotatably supported with respect to the other,
The resin for molding the armature is mixed with magnetic powder, and the magnetic powder is magnetized in the axial direction of the rotary shaft, thereby generating an electromagnetic force generated by passing a current through the armature coil, and a constant Driven by superposition of the magnetic flux of the magnetic powder magnetized in the direction and the magnetic flux of the magnet, a hole is disposed on the rotating shaft concentrically with the axis, and the hole is provided from the outside. One end side of the screw member can be fitted.

好ましくは、前記回転軸には前記ネジ部材を介して例えば自動車のアクチュエーターが結合または連結または当接され、自動車のアクチュエーター用駆動源として用いられることを特徴とする。
好ましくは、前記ネジ孔は前記回転軸の軸心部にナット状にネジ切りされた有底開孔であることを特徴とする。
好ましくは、更に、前記電機子の前記平面のうちの他方の面側に、前記回転軸の軸方向に空隙を介して環状に該他方の面に対向し、かつ前記マグネットに前記電機子を介して対向するように配置された別のマグネットを有することを特徴とする。
Preferably, an actuator of an automobile, for example, is coupled to, connected to or abutted with the rotating shaft via the screw member, and is used as a drive source for the actuator of the automobile.
Preferably, the screw hole is a bottomed hole that is screwed into a nut shape at an axial center portion of the rotating shaft.
Preferably, further, on the other surface side of the plane of the armature, the other surface is annularly opposed to the other surface through a gap in the axial direction of the rotation shaft, and the armature is interposed between the armature and the armature. And having another magnet arranged so as to face each other.

請求項1及び請求項6の発明によれば、電機子のモールド樹脂に磁性粉が混入され、モールド時に該樹脂に磁場を印加した状態で成形を行うようにしたため、磁性粉は磁場により一定方向に磁化配列され、電機子自体に磁石作用を生じさせることができる。従って、電機子コイルに電流を流すことで生じる電磁力と、一定方向に磁化配列された磁性粉により発生する磁束とマグネットの磁束とが重畳され、より強いトルクの回転力が生じるので、出力特性を大幅に向上させることができる。   According to the first and sixth aspects of the present invention, magnetic powder is mixed into the armature mold resin, and molding is performed in a state where a magnetic field is applied to the resin during molding. The magnetism can be generated in the armature itself. Therefore, the electromagnetic force generated by passing an electric current through the armature coil, the magnetic flux generated by the magnetic powder magnetized in a certain direction, and the magnetic flux of the magnet are superposed to generate a stronger torque rotational force. Can be greatly improved.

更に、電機子の単コイルを平形銅線で巻回するのが好ましい。平形銅線の場合には丸形銅線に比して占積率が向上するので効率が良くなると共に、薄型・軽量化に寄与できる。
更に、前記電機子は、回転軸より外側で且つ前記マグネットの内方側で該マグネットと対向していない位置より、前記回転軸の軸方向に折り曲げられた折り曲げ部を有するように構成するのが好ましい。電機子コイルの回転軸近傍部分はマグネットの磁束の影響を受けない(マグネットの磁束密度が低い)のでトルク特性に寄与しない部分であり、この部分を折り曲げることで電機子径を小さくすることができ、ひいてはイナーシャを小さく抑えることができる。特に、単コイルとして平形銅線を使用した場合には薄型になるので曲げやすく、曲げた後の電機子の平面度に優れ樹脂モールドに支障は生じない。
Furthermore, it is preferable to wind a single coil of the armature with a flat copper wire. In the case of a flat copper wire, the space factor is improved as compared to a round copper wire, so that the efficiency is improved and it is possible to contribute to a reduction in thickness and weight.
Further, the armature is configured to have a bent portion that is bent in the axial direction of the rotating shaft from a position that is outside the rotating shaft and not facing the magnet on the inner side of the magnet. preferable. The portion near the rotation axis of the armature coil is not affected by the magnetic flux of the magnet (the magnetic flux density of the magnet is low), so it does not contribute to the torque characteristics. By bending this portion, the armature diameter can be reduced. As a result, the inertia can be kept small. In particular, when a flat copper wire is used as a single coil, it becomes thin and easy to bend, and the flatness of the armature after bending is excellent, and there is no problem in the resin mold.

請求項9の発明によれば、回転軸をネジ部材の固定用部材して機能させることができるため、簡単な構成で出力軸を負荷手段に容易に接続することができ、且つ偏平形状のメリットを生かし各種用途に適用することができる。即ち、回転軸がモータ本体から突出していないため、モータの製作効率を向上でき、該回転軸に結合(螺合)される例えばボールネジ等の結合手段の長さや径等の設計の自由度を増すことができる。しかも薄型で場所をとらず、小型・高トルクのモータとすることができるため自動車用等各種アクチュエーターの駆動源として好適である。   According to the ninth aspect of the invention, since the rotating shaft can function as a fixing member for the screw member, the output shaft can be easily connected to the load means with a simple configuration, and the merit of the flat shape is achieved. It can be applied to various uses by utilizing That is, since the rotating shaft does not protrude from the motor body, the manufacturing efficiency of the motor can be improved, and the degree of freedom of design such as the length and diameter of a coupling means such as a ball screw that is coupled (screwed) to the rotating shaft is increased. be able to. In addition, since it is thin and does not take up space, it can be a small and high torque motor, so it is suitable as a drive source for various actuators for automobiles and the like.

更に、好ましくは、前記回転軸には前記ネジ部材を介して自動車のアクチュエーターが結合または連結または当接され、自動車のアクチュエーター用駆動源として用いられる。従って、例えば、自動車の内燃機関のバルブタイミング開閉用アクチュエーター用として、薄型、軽量で載置性の高い且つ高効率の駆動源として機能させることができる。
好ましくは、前記ネジ孔は前記回転軸の軸心部にナット状にネジ切りされた有底開孔である。従って、例えばボールネジ等の結合手段を容易に回転軸に結合(螺合)可能となる。
好ましくは、更に、前記電機子の前記平面のうちの他方の面側に、前記回転軸の軸方向に空隙を介して環状に該他方の面に対向し、かつ前記マグネットに前記電機子を介して対向するように配置された別のマグネットを有する。従って、このように所謂ダブルマグネットとして構成することにより、マグネットより発生される磁束をより強くすることができるので、出力特性をより向上させることができる。
Further preferably, an automobile actuator is coupled to, connected to or abutted with the rotating shaft via the screw member, and is used as a drive source for the automobile actuator. Therefore, for example, it is possible to function as a thin, lightweight, highly mountable and highly efficient drive source for a valve timing opening / closing actuator of an internal combustion engine of an automobile.
Preferably, the screw hole is a bottomed hole that is threaded into a nut shape at the axial center of the rotating shaft. Accordingly, it is possible to easily couple (screw) the coupling means such as a ball screw to the rotating shaft.
Preferably, further, on the other surface side of the plane of the armature, the other surface is annularly opposed to the other surface through a gap in the axial direction of the rotation shaft, and the armature is interposed between the armature and the armature. And another magnet arranged to face each other. Therefore, by configuring as a so-called double magnet in this way, the magnetic flux generated from the magnet can be made stronger, so that the output characteristics can be further improved.

以下本発明の実施例について図面を参照しながら説明する。
図1は本発明の偏平型コアレスモータの実施例を示す要部断面図であり、1は偏平状の複数の単コイルを回転軸10の周囲に回転軸10の軸方向に垂直な平面上に環状に配設して熱硬化性樹脂(例えば、フェノール樹脂)でモールド成形(固化)した電機子、2は電機子1の平面のうちの少なくとも一方の面側に回転軸10の軸方向に空隙を介して電機子1に対向するように環状に配置されているマグネットで、例えばN、S極交互に4極あるいはそれ以上の偶数極からなる。各マグネットは扇形もしくは円環状等の何れの形状でも良い。3は鋼板から成るカバーAでマグネット2が接着等で固着されている。4は同じく鋼板から成り電機子1及びマグネット2の磁路を形成するカバーBで、整流子5に当接する複数のブラシ6が取付けられている。7及び8は電機子1の回転軸10を回転自在に軸承する軸受で、カバーA 3及びカバーC 9にそれぞれ固着されている。10aは回転軸10の出力軸端で図示しないファンやプーリー等の負荷手段に接続される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view of an essential part showing an embodiment of a flat coreless motor according to the present invention. FIG. 1 shows a plurality of flat single coils around a rotary shaft 10 on a plane perpendicular to the axial direction of the rotary shaft 10. An armature that is annularly arranged and molded (solidified) with a thermosetting resin (for example, phenol resin), 2 is a gap in the axial direction of the rotary shaft 10 on at least one of the planes of the armature 1. The magnet is arranged in an annular shape so as to face the armature 1 via, and is composed of, for example, four or more even poles alternately with N and S poles. Each magnet may have any shape such as a sector shape or an annular shape. Reference numeral 3 denotes a cover A made of a steel plate, to which a magnet 2 is fixed by adhesion or the like. 4 is a cover B which is also made of a steel plate and forms a magnetic path of the armature 1 and the magnet 2, and a plurality of brushes 6 which are in contact with the commutator 5 are attached thereto. Reference numerals 7 and 8 denote bearings for rotatably supporting the rotary shaft 10 of the armature 1, and are fixed to the cover A3 and the cover C9, respectively. Reference numeral 10a denotes an output shaft end of the rotary shaft 10, which is connected to load means such as a fan and a pulley (not shown).

図2は樹脂モールド成形される前の電機子1を示す斜視図で、各単コイルが整流子5に接続されている状態を示す。図3は、樹脂モールド成形された後の電機子1を示す斜視図である。
図4は本発明の偏平型コアレスモータの電機子巻線を構成する単コイルの形状例を表す模式図で、(A)は略五角形の多角形状に巻いたもの、(B)は略四角形に巻いたもの、(C)は略円形に巻いたもので、それぞれ巻始め線と巻終わり線が延出した状態を示す。なお、(B)は平形銅線で巻回した例で、(A)及び(C)は丸形銅線で巻回した例である。単コイルの巻回形状は略六角形等でも良く界磁マグネットの有効磁界を受ける範囲で丸形もしくは多角形に構成して良い。平形銅線は隣接する銅線間の隙間をなくし、コイルの占積率を向上させるものであり、例えば円形断面を持つコイルを圧延し平角にした銅線を使用しても良い。また、平形銅線の巻方向は幅の広い面を軸方向に重ねてより偏平度を増すようにすると良い。即ち、銅線の巻方向は幅の広い面を軸方向に重ねて旋回させる、所謂、エッジワイズ(縦巻)と呼ばれている手法により構成しても良い。図4、(D)にエッジワイズ(縦巻)式に巻回した単コイルの例を示す。なお、図2は単コイルとして略五角形のものを用いた例である。
FIG. 2 is a perspective view showing the armature 1 before resin molding, and shows a state in which each single coil is connected to the commutator 5. FIG. 3 is a perspective view showing the armature 1 after being resin-molded.
FIG. 4 is a schematic diagram showing an example of the shape of a single coil constituting the armature winding of the flat coreless motor of the present invention, where (A) is a substantially pentagonal polygonal shape, and (B) is a substantially square shape. Wound, (C) is wound in a substantially circular shape, and shows a state in which the winding start line and winding end line are extended. In addition, (B) is an example wound with a flat copper wire, and (A) and (C) are examples wound with a round copper wire. The winding shape of the single coil may be a substantially hexagonal shape or the like, and may be formed in a round shape or a polygon shape within a range that receives the effective magnetic field of the field magnet. The flat copper wire eliminates the gap between adjacent copper wires and improves the space factor of the coil. For example, a copper wire rolled into a flat angle by rolling a coil having a circular cross section may be used. The winding direction of the flat copper wire is preferably such that the flatness is increased by overlapping a wide surface in the axial direction. In other words, the winding direction of the copper wire may be configured by a so-called edgewise (vertical winding) method in which a wide surface is turned in an axial direction so as to turn. FIG. 4D shows an example of a single coil wound in an edgewise (vertically wound) manner. FIG. 2 shows an example in which a substantially pentagonal single coil is used.

図5は、単コイル1aと界磁マグネット2との位置関係を模式的に示す平面図であり、上記したように単コイルが界磁マグネットの有効磁界を受ける範囲に位置するよう、回転軸の軸方向に垂直な方向(図の矢印方向)において、界磁マグネット2が単コイル1aの内周面内に位置するように配置するのが好ましい。   FIG. 5 is a plan view schematically showing the positional relationship between the single coil 1a and the field magnet 2, and as described above, the rotation axis of the rotary shaft is set so that the single coil is positioned within the range receiving the effective magnetic field of the field magnet. It is preferable to arrange the field magnet 2 so as to be located in the inner peripheral surface of the single coil 1a in the direction perpendicular to the axial direction (the arrow direction in the figure).

次ぎに、電機子コイルを樹脂モールドする方法及び装置について図6−図8等を参照して説明する。図6は樹脂モールドを行うための装置の一例の断面図、図7はその分解斜視図である。これらの図において、1は整流子5に複数の単コイルの各々が環状に配され、各単コイルの巻始め線と巻終わり線がそれぞれ所定の整流子片に接続された電機子である。12は樹脂モールドを行うための下型、13は同じく上型である。14aは下型12と上型13の何れか一方を可動として型締めしキャビティ11を形成するため上型の下部に設けられたガイドピン(誘いピン)、14bは下型の上部に設けられたガイドピンを受け入れる孔である。21は複数のノズル17(ここでは3つのノズル)から樹脂を型内に案内するスプルー16と溶融樹脂材料をキャビティ11内に射出するゲート15が形成された交換自在のスプルーブッシュである。スプルー16はノズル17に対応して複数(例えば3本)設けられて良く、スプルーブッシュ21は上型13もしくは下型12のサイド(側壁)に脱着自在に設けても良い。   Next, a method and apparatus for resin molding an armature coil will be described with reference to FIGS. FIG. 6 is a sectional view of an example of an apparatus for performing resin molding, and FIG. 7 is an exploded perspective view thereof. In these figures, reference numeral 1 denotes an armature in which each of a plurality of single coils is arranged in a ring shape on a commutator 5 and a winding start line and a winding end line of each single coil are respectively connected to predetermined commutator pieces. 12 is a lower mold for performing resin molding, and 13 is an upper mold. 14a is a guide pin (invitation pin) provided at the lower part of the upper mold in order to form the cavity 11 by clamping either one of the lower mold 12 and the upper mold 13 to be movable, and 14b is provided at the upper part of the lower mold. It is a hole for receiving a guide pin. Reference numeral 21 denotes a replaceable sprue bush in which a sprue 16 for guiding resin into a mold from a plurality of nozzles 17 (here, three nozzles) and a gate 15 for injecting a molten resin material into the cavity 11 are formed. A plurality (for example, three) of the sprue 16 may be provided corresponding to the nozzle 17, and the sprue bush 21 may be provided detachably on the side (side wall) of the upper mold 13 or the lower mold 12.

18は図示しない成形機のノズル17より射出される熱硬化性樹脂(例えばフェノール等)であり予め所定割合の軟磁性粉末が混入されている。軟磁性粉末としては異方性に磁化し易い、例えばソフトフェライト系粉末を用い且つ粉末間の電気抵抗を大きくして渦電流損を低減するため、好ましくは、粉末表面に絶縁処理を施して絶縁被膜を形成したものを用いる。軟磁性粉の樹脂に対する混入割合は約40〜90重量%、好ましくは約40〜60重量%とする。図13に軟磁性粉の樹脂に対する混入割合とモータトルク及び電機子破壊強度の相関を示す。磁性粉の混入割合が高いほどトルク特性は大きくできるが、モールド成形時におけるモールド材料の流れが悪くなり成形性が劣ると共に、電機子樹脂成形後の樹脂部の破壊強度は徐々に小さくなり90重量%を超えると、樹脂による磁性粉のバインド強度が小さくなり脆さを増す。40重量%未満だと電機子破壊強度への影響は小さいがトルク特性に寄与できないため、磁性粉の樹脂に対する混入割合は約40〜60重量%が好ましい。   Reference numeral 18 denotes a thermosetting resin (for example, phenol or the like) injected from a nozzle 17 of a molding machine (not shown), in which a predetermined ratio of soft magnetic powder is mixed. The soft magnetic powder is easily anisotropically magnetized. For example, soft ferrite powder is used, and the electric resistance between the powders is increased to reduce eddy current loss. What formed the film is used. The mixing ratio of the soft magnetic powder to the resin is about 40 to 90% by weight, preferably about 40 to 60% by weight. FIG. 13 shows the correlation between the mixing ratio of the soft magnetic powder to the resin, the motor torque, and the armature breaking strength. The higher the mixing ratio of magnetic powder, the greater the torque characteristics, but the mold material flow at the time of molding becomes worse and the moldability becomes inferior, and the fracture strength of the resin part after the armature resin molding gradually decreases to 90 weight. If it exceeds 50%, the binding strength of the magnetic powder by the resin is reduced and the brittleness is increased. If it is less than 40% by weight, the influence on the armature fracture strength is small, but it cannot contribute to the torque characteristics. Therefore, the mixing ratio of the magnetic powder to the resin is preferably about 40 to 60% by weight.

本発明では樹脂による成形時に電機子1に磁場を印加して樹脂中の磁性粉の配向を制御する、所謂、磁場中での成形を行うようにしている。このため、磁場発生用コイル19及び20が、それぞれ図示しない外囲体の中に収納され、上型13及び下型12に予め設置されている。磁場発生用コイル19,20はそれぞれその内周面が電機子1の外縁部(外周面)の略外側に位置するように配置される。更に、磁場発生用コイル19,20はそれぞれ通電可能なように図示しない外部電源に電気的に接続されている。   In the present invention, a so-called molding is performed in a magnetic field in which a magnetic field is applied to the armature 1 during molding with a resin to control the orientation of the magnetic powder in the resin. For this reason, the magnetic field generating coils 19 and 20 are housed in enclosures (not shown), respectively, and are installed in the upper mold 13 and the lower mold 12 in advance. The magnetic field generating coils 19 and 20 are arranged so that their inner peripheral surfaces are positioned substantially outside the outer edge (outer peripheral surface) of the armature 1. Furthermore, the magnetic field generating coils 19 and 20 are electrically connected to an external power source (not shown) so that they can be energized.

電機子を樹脂モールド成形する場合、先ず巻線が完了し単コイルが所定数装着された状態の電機子1をその整流子5を下向きにして下型12の受け孔に載置し、上型13をそのピン14aが孔14bに嵌合するように下降させ型締めしキャビティ11を形成する。次に成形機のノズル17を予め上型13にセットされたスプルーブッシュ21のスプルー16注入口に当接させる。そして熱硬化性樹脂で形成された溶融状態の樹脂18をノズル17,スプルー16を通ってゲート15よりキャビティ11内に充填し、電機子1を樹脂で固着させる。   When the armature is resin-molded, first, the armature 1 in a state where the winding is completed and a predetermined number of single coils are mounted is placed in the receiving hole of the lower die 12 with the commutator 5 facing downward, and the upper die 13 is lowered so that the pin 14a fits into the hole 14b, and the cavity 11 is formed. Next, the nozzle 17 of the molding machine is brought into contact with the sprue 16 inlet of the sprue bush 21 set in the upper mold 13 in advance. The molten resin 18 formed of a thermosetting resin is filled into the cavity 11 from the gate 15 through the nozzle 17 and the sprue 16, and the armature 1 is fixed with the resin.

ここで、上記の磁場中での成形を行うようにするため、樹脂の射出前に、上型13、下型12に装着された磁場発生用コイル19、20に予め所定電流を通電させ、磁場を生成するようにしている。図8は、磁場発生用コイル19、20に流す電流とコイル19,20から発生される磁束の流れを示す模式図である。なお、コイル19,20の電流の向きもそれぞれ記号で示している。ここで、○の中に×(クロス)の符号は紙面の表から裏に電流が向かうことを、○の中に・(ドット)の符号は裏から表に電流が向かうことを表す。そしてこのように電機子1に磁場を印加しながらモールド成形を行うことで、コイル19,20で発生された磁束は図8に示す様に電機子1の面に対して、同一方向からほぼ垂直に印加されることとなり、従って、樹脂中の磁性粉が磁化され図9(C)に矢印で示すように軸方向に沿って配向された磁束を持つ電機子1を完成させることができる。図9は樹脂成形後の電機子を示す図で(A)は電機子コイルを一部露出させた状態の平面図、(B)は側面図であり、(C)は図9(B)の丸で囲った部分の拡大図であり、電機子の配向方向(着磁方向)を一部詳細図として示す。   Here, in order to perform the molding in the above-described magnetic field, a predetermined current is applied in advance to the magnetic field generating coils 19 and 20 mounted on the upper mold 13 and the lower mold 12 before the resin is injected, and the magnetic field Is generated. FIG. 8 is a schematic diagram showing the current flowing through the magnetic field generating coils 19 and 20 and the flow of magnetic flux generated from the coils 19 and 20. In addition, the direction of the current of the coils 19 and 20 is also indicated by symbols. Here, the symbol x (cross) in the circle indicates that the current flows from the front to the back of the paper, and the symbol (dot) in the circle indicates that the current flows from the back to the front. By performing molding while applying a magnetic field to the armature 1 in this way, the magnetic flux generated by the coils 19 and 20 is almost perpendicular to the surface of the armature 1 from the same direction as shown in FIG. Therefore, the magnetic powder in the resin is magnetized, and the armature 1 having a magnetic flux oriented along the axial direction as shown by an arrow in FIG. 9C can be completed. 9A and 9B are diagrams showing the armature after resin molding, FIG. 9A is a plan view of a state in which the armature coil is partially exposed, FIG. 9B is a side view, and FIG. 9C is a view in FIG. It is an enlarged view of the part enclosed with a circle, and shows the orientation direction (magnetization direction) of the armature as a partial detailed view.

図10はフェライト系磁性粉末の結晶配列を説明する模式図であり、(D)は磁性粉30の磁化容易方向、磁化困難方向を示し、(A)は樹脂充填初期において樹脂18内の各磁性粉30の磁化容易方向がランダムに向いた状態を示し、(B)は磁場印加後に樹脂18内の各磁性粉30が一定方向に磁化配列された状態を示し、(C)は磁場印加後の磁性粉の配向方向を示す。このように、比較的微量且つ微小の粉末であっても磁化容易方向を1方向に整列させることができるため簡単な構成で電機子に磁化を与えられ、且つ磁力を大きくできる。
尚、界磁マグネット2の配置位置によっては、各磁性粉30の配向方向を逆にしても良く、例えば第1図のマグネット2が電機子1の紙面向かって左側に配置されている場合、第9図(C)の配向方向は逆になるようにして良い。
FIG. 10 is a schematic diagram for explaining the crystal arrangement of the ferrite-based magnetic powder. (D) shows the easy magnetization direction and the hard magnetization direction of the magnetic powder 30. The easy magnetization direction of the powder 30 is shown randomly, (B) shows the state in which the magnetic powders 30 in the resin 18 are magnetized in a certain direction after application of the magnetic field, and (C) shows the state after application of the magnetic field. The orientation direction of magnetic powder is shown. Thus, even with a relatively small amount of fine powder, the easy magnetization direction can be aligned in one direction, so that the armature can be magnetized with a simple configuration and the magnetic force can be increased.
Depending on the arrangement position of the field magnet 2, the orientation direction of each magnetic powder 30 may be reversed. For example, when the magnet 2 of FIG. 1 is arranged on the left side of the armature 1, The orientation direction of FIG. 9 (C) may be reversed.

なお、図11の(A)の断面図及び(B)の電機子コイル1aの部分斜視図に示す様に、電機子1の電機子コイル1aは整流子5の外周近傍、好ましくは界磁マグネット2に対向していない部分より折り曲げ成形された折り曲げ部40を有するように構成しても良い。この折り曲げ部40はマグネット2に対向して無く、従って、出力特性に寄与しない部分であるため、折り曲げることにより電機子外径を小さくしている。尚折り曲げはコイル銅線の巻線後、磁場中成形前にコイル成形機で行う。このように折り曲げ部を設けることにより、電機子径を小さくすることができ、ひいてはイナーシャを小さく抑えることができる。特に、単コイルとして平形銅線を使用した場合には薄型になるので曲げやすく、曲げた後の電機子の平面度に優れ樹脂モールドに支障は生じない。   As shown in the sectional view of FIG. 11A and the partial perspective view of the armature coil 1a in FIG. 11B, the armature coil 1a of the armature 1 is near the outer periphery of the commutator 5, preferably a field magnet. You may comprise so that it may have the bending part 40 bent and formed from the part which is not opposite to 2. Since the bent portion 40 is not opposed to the magnet 2 and therefore does not contribute to the output characteristics, the outer diameter of the armature is reduced by bending. Bending is performed by a coil forming machine after winding the coil copper wire and before forming in a magnetic field. By providing the bent portion in this manner, the armature diameter can be reduced, and consequently, the inertia can be suppressed to be small. In particular, when a flat copper wire is used as a single coil, it becomes thin and easy to bend, and the flatness of the armature after bending is excellent, and there is no problem in the resin mold.

次に上記のように構成された、偏平型コアレスモータの動作を説明する。先ず図示しない直流電源より電流が供給されるとブラシ(正極ブラシ)6,ブラシが当接している整流子5の整流子片を通って電機子コイル1aに通電される。電機子コイル1aを通過した電流は順次、同一整流子片に接続された複数の電機子コイル1aを通り、整流子5、もう一方のブラシ(負極ブラシ)6を通って再び直流電源に戻る。この時、図12の本発明の偏平型コアレスモータの部分断面図に示すように、マグネット2からカバーB4側へ形成されている磁路と電機子コイルに電流が流れることにより発生する電磁力による所謂左手の法則により電機子1は所定方向に回転するが、電機子1自体が磁束を持っているので電機子円板からの磁束がマグネット2の磁束に重畳されて、より強い磁束を磁路中に生じせしめ電機子1を押し出そうとする。このようにしてモータ体格を大きくすることなく、出力特性を大幅に向上させることができる。尚軟磁性粉は個々に絶縁されている(図10(C)参照)ため、電機子に発生する渦電流は粉末内部で閉じられ粉末自体も微粒径(数μm〜数十μm)であるため個々の渦電流は小さく出力特性に影響はほとんどない。   Next, the operation of the flat coreless motor configured as described above will be described. First, when a current is supplied from a DC power source (not shown), the armature coil 1a is energized through the brush (positive electrode brush) 6 and the commutator piece of the commutator 5 with which the brush is in contact. The current that has passed through the armature coil 1a sequentially passes through the plurality of armature coils 1a connected to the same commutator piece, returns to the DC power source again through the commutator 5 and the other brush (negative electrode brush) 6. At this time, as shown in the partial cross-sectional view of the flat coreless motor of the present invention in FIG. 12, the electromagnetic force generated by the current flowing from the magnet 2 to the magnetic path formed on the cover B4 side and the armature coil. The armature 1 rotates in a predetermined direction according to the so-called left-hand rule, but since the armature 1 itself has a magnetic flux, the magnetic flux from the armature disk is superimposed on the magnetic flux of the magnet 2, and a stronger magnetic flux is passed through the magnetic path An attempt is made to push out the armature 1 generated inside. In this way, the output characteristics can be greatly improved without increasing the motor size. Since the soft magnetic powder is individually insulated (see FIG. 10C), the eddy current generated in the armature is closed inside the powder, and the powder itself has a fine particle size (several μm to several tens μm). Therefore, the individual eddy current is small and the output characteristics are hardly affected.

尚、前記実施例はブラシ付の偏平型コアレスモータとして説明したが、電機子巻線を3相結線し界磁マグネットの位置に応じて巻線への通電方向を切り換え、界磁マグネット側を回転させる例えば回転ヨーク型等のブラシレスモータにも適宜応用可能である。   Although the above embodiment has been described as a flat coreless motor with a brush, the armature windings are connected in three phases, the energization direction of the windings is switched according to the position of the field magnet, and the field magnet side is rotated. For example, the present invention can be appropriately applied to a brushless motor such as a rotary yoke type.

以上のように構成された偏平型コアレスモータによれば、各々が丸形もしくは多角形状に巻回された複数の単コイルを回転軸の周囲に該回転軸の軸方向に垂直な平面上に環状に配設して樹脂でモールドされた平面状の電機子と、前記電機子の前記平面のうちの少なくとも一方の面側に前記回転軸の軸方向に空隙を介して環状に該一方の面に対向配置されたマグネットとを有し、前記電機子もしくは前記マグネットのうちの一方を他方に対して回転自在に軸承してなる偏平型コアレスモータにおいて、前記樹脂には磁性粉が混入され、前記電機子を前記樹脂によりモールド成形する際には、磁場を前記樹脂に印加した状態で行うようにされているため、電機子自体に磁束配向が生じ、電機子コイルに電流を流すことにより生じる電磁力と、一定方向に磁化配列された磁性粉により発生する磁束と界磁マグネットの磁束が重畳された合成磁束により、より強いトルクで回転させようとするので出力特性を大幅に向上させることができる。   According to the flat type coreless motor configured as described above, a plurality of single coils each wound in a round shape or a polygonal shape are annularly arranged around a rotation axis on a plane perpendicular to the axial direction of the rotation axis. A planar armature that is disposed on and molded with resin, and at least one of the planes of the armature is annularly formed on the one surface through a gap in the axial direction of the rotating shaft. A flat coreless motor having one of the armature and the magnet rotatably supported with respect to the other, wherein magnetic powder is mixed in the resin, When the child is molded with the resin, since the magnetic field is applied to the resin, the magnetic force is generated in the armature itself, and the electromagnetic force generated by passing a current through the armature coil. And constant A synthetic magnetic flux magnetic flux of the magnetic flux of the field magnet generated by the magnetization array of the magnetic powder is superimposed on the direction, it is possible to greatly improve the output characteristics because it tends to rotate with a stronger torque.

更に電機子コイルを平形銅線で巻回したので、丸形銅線に比して占積率が良くなり効率向上に寄与できると共に薄型・軽量化できる。
更に電機子巻線の界磁マグネットに対向しない部分を折り曲げて構成したので、電機子径を小さくすることができひいてはイナーシャを小さくできる。この場合平形銅線を使用することでより薄型になるので曲げやすく、曲げた後の電機子の平面度に優れているのでバランスを損なうことはない。
Furthermore, since the armature coil is wound with a flat copper wire, the space factor is improved as compared with a round copper wire, which can contribute to an improvement in efficiency and can be reduced in thickness and weight.
Furthermore, since the portion of the armature winding that does not face the field magnet is bent, the armature diameter can be reduced, and the inertia can be reduced. In this case, the use of a flat copper wire makes it thinner so that it is easy to bend, and the flatness of the armature after bending is excellent, so that the balance is not lost.

図14は本発明の偏平型コアレスモータの第2の実施例を示す要部断面図である。本実施例は、例えば、自動車の内燃機関のシリンダーヘッドバルブ駆動(開閉)やウインドウ開閉等のアクチュエーター用途に好適である。図14において、28はマグネット33及びヨーク34を固定支持するカバーA、31はブラシホルダ37及び上ヨーク34を固定支持するカバーBでブラシホルダ37には整流子35aに当接する複数のブラシ36が設けられている。カバーA28とヨーク34はスポット溶接等で固着され、マグネット33はヨーク34に接着等で固定されている。32はカバーCでヨーク34、カバーB31と共に周方向に略等間隔に配設された複数のネジ42で一体に固定されている。尚図6では便宜上1つのネジ42のみを示す。43,44は軸受でそれぞれカバーC32,カバーA28に固着され、電機子35の回転軸45を回転自在に軸承している。尚、ヨーク34はカバーA28,カバーB31の厚みを増して必要磁束を確保できる場合は必ずしも設ける必要はない。   FIG. 14 is a cross-sectional view of an essential part showing a second embodiment of the flat coreless motor of the present invention. The present embodiment is suitable for actuator applications such as cylinder head valve driving (opening / closing) and window opening / closing of an internal combustion engine of an automobile. In FIG. 14, 28 is a cover A for fixing and supporting the magnet 33 and the yoke 34, 31 is a cover B for fixing and supporting the brush holder 37 and the upper yoke 34, and the brush holder 37 has a plurality of brushes 36 in contact with the commutator 35a. Is provided. The cover A28 and the yoke 34 are fixed by spot welding or the like, and the magnet 33 is fixed to the yoke 34 by adhesion or the like. Reference numeral 32 denotes a cover C which is integrally fixed together with a yoke 34 and a cover B31 by means of a plurality of screws 42 arranged at substantially equal intervals in the circumferential direction. In FIG. 6, only one screw 42 is shown for convenience. Reference numerals 43 and 44 denote bearings, which are fixed to the cover C32 and the cover A28, respectively, and rotatably support the rotary shaft 45 of the armature 35. The yoke 34 is not necessarily provided when the thickness of the cover A28 and the cover B31 can be increased to ensure the necessary magnetic flux.

38は回転軸45に対して同心円状に配置された環状のセンサマグネットであり、交互に異なる磁極が隣り合うように複数極のマグネット(磁極片)が環状に配置されたものである。該センサマグネット38は、回転軸45に固着されたセンサマグネットカバー29に接着等で固定され、図示しないコントロール基板に接続されたセンサIC39により電機子35の回転量(回転角)がモニターされる。即ち、電機子35の回転に伴ってセンサマグネット38が回転すると、順次センサマグネット38の各磁極片がセンサIC39を通過し、それにより例えばホールICから構成されるセンサIC39よりパルス信号が発生されて、電機子35の回転量(回転角)が検知される。41はセンサマグネット38とセンサIC39の対向位置を適正に位置決めすると共にスラストを調整するスペーサである。   Reference numeral 38 denotes an annular sensor magnet arranged concentrically with respect to the rotating shaft 45, and a plurality of magnets (pole pieces) are arranged annularly so that different magnetic poles are alternately adjacent to each other. The sensor magnet 38 is fixed to the sensor magnet cover 29 fixed to the rotation shaft 45 by adhesion or the like, and the rotation amount (rotation angle) of the armature 35 is monitored by a sensor IC 39 connected to a control board (not shown). That is, when the sensor magnet 38 rotates with the rotation of the armature 35, the magnetic pole pieces of the sensor magnet 38 sequentially pass through the sensor IC 39, and thereby, a pulse signal is generated from the sensor IC 39 constituted by, for example, a Hall IC. The rotation amount (rotation angle) of the armature 35 is detected. Reference numeral 41 denotes a spacer for properly positioning the opposing position of the sensor magnet 38 and the sensor IC 39 and adjusting the thrust.

電機子35の電機子コイルは整流子35aの外周近傍、好ましくは界磁マグネット33に対向していない部分より折り曲げ成形された折り曲げ部49(図11(A)の折り曲げ部40に対応)を有している。図11(A)の折り曲げ部40と同様に、この折り曲げ部49はマグネット33に対向して無く出力特性に寄与しない部分であるため、折り曲げることにより電機子外径を小さくしている。尚折り曲げは、コイル銅線の巻線後、磁場中でのモールド成形前にコイル成形機で行なわれる。   The armature coil of the armature 35 has a bent portion 49 (corresponding to the bent portion 40 in FIG. 11A) formed by bending from the vicinity of the outer periphery of the commutator 35a, preferably from the portion not facing the field magnet 33. is doing. Similar to the bent portion 40 in FIG. 11A, the bent portion 49 is a portion that does not face the magnet 33 and does not contribute to the output characteristics, so that the outer diameter of the armature is reduced by bending. Bending is performed by a coil molding machine after coil copper wire is wound and before molding in a magnetic field.

この実施例で一つの特徴とするところは回転軸45の構成にある。即ち、回転軸45の軸心部に例えば方形または円筒状の有底開孔45aが設けられ、例えばボールネジ等からなる結合(または連結または当接)手段であるネジ部材、例えばピニオンシャフト46の軸部(例えば方形または円筒状の軸部)46bが有底開孔45a内に嵌合されている。これにより、電機子35による回転運動を負荷手段(自動車のアクチュエータ)に伝達して駆動するようにしている。46aはピニオンシャフト46用の回転軸45への固定部材でありネジ等で回転軸45に固定され回転軸45と一体的に回転するものである。   One feature of this embodiment is the configuration of the rotating shaft 45. That is, for example, a square or cylindrical bottomed opening 45a is provided at the axial center of the rotating shaft 45, and a screw member, for example, a pinion shaft 46 shaft, which is a coupling (or connection or abutment) means composed of a ball screw or the like A portion (for example, a square or cylindrical shaft portion) 46b is fitted into the bottomed opening 45a. Thereby, the rotational movement by the armature 35 is transmitted to the load means (the actuator of the automobile) to be driven. Reference numeral 46 a denotes a fixing member for the rotation shaft 45 for the pinion shaft 46, which is fixed to the rotation shaft 45 with a screw or the like and rotates integrally with the rotation shaft 45.

例えば、本実施例を自動車のインジェクションバルブ用アクチュエーター駆動用として適用した場合を説明する。自動車の図示しないスロットル(アクセル)ペダルが踏み込まれると図示しないコントロール基板から踏み込み量に応じた値のモータ駆動電流が本実施例のモータに供給される。すると回転軸45が該モータ駆動電流に応じた角度だけ回転し、回転軸45に固定されたピニオンシャフト46が回転してウオームギヤとして作用し、ピニオンギヤ(ウオームホイール)47にモータの回転を減速して伝達する。そしてピニオンギヤ47の軸に設けられたカム48に支持された図示しない内燃機関の負荷手段としてのカムシャフトを駆動させインジェクションバルブを開閉させるようにしている。この時センサマグネット38,センサIC39からなるモニター手段でモータの回転角、即ちバルブの開閉量が読み込まれてコントロール基板に与えられ、コントロール基板よりモータ駆動電流が制御され、スロットルペダル踏み込み量に応じた適正なバルブの開閉量が制御される。このような構成により、自動車の内燃機関のバルブタイミング開閉用アクチュエーターとして、薄型、軽量で載置性の高い且つ高効率の駆動源として機能させることができる。   For example, the case where the present embodiment is applied for driving an actuator for an injection valve of an automobile will be described. When a throttle (accelerator) pedal (not shown) of the automobile is depressed, a motor drive current having a value corresponding to the depression amount is supplied from a control board (not shown) to the motor of this embodiment. Then, the rotation shaft 45 rotates by an angle corresponding to the motor drive current, the pinion shaft 46 fixed to the rotation shaft 45 rotates and acts as a worm gear, and the rotation of the motor is reduced on the pinion gear (worm wheel) 47. introduce. Then, a camshaft as load means of an internal combustion engine (not shown) supported by a cam 48 provided on the shaft of the pinion gear 47 is driven to open and close the injection valve. At this time, the rotation angle of the motor, that is, the opening / closing amount of the valve is read by the monitoring means comprising the sensor magnet 38 and the sensor IC 39 and given to the control board, and the motor driving current is controlled from the control board, and the throttle pedal is depressed. Appropriate valve opening / closing amount is controlled. With such a configuration, it is possible to function as a thin, lightweight, highly mountable and highly efficient drive source as an actuator for opening and closing a valve timing of an internal combustion engine of an automobile.

このように、回転軸45をネジ部材の固定用部材として機能させることができるため、簡単な構成で出力軸を負荷手段に容易に接続することができ、且つ偏平形状のメリットを生かし各種用途に適用することができる。即ち、回転軸がモータ本体から突出していないため、モータの製作効率を向上でき、例えばボールネジ等の結合手段の長さや径等の設計の自由度を増すことができる。しかも薄型で場所をとらず、小型・高トルクのモータとすることができるため自動車用等各種アクチュエーターの駆動源として好適である。 As described above, since the rotary shaft 45 can function as a fixing member for the screw member, the output shaft can be easily connected to the load means with a simple configuration, and the advantages of the flat shape can be utilized for various applications. Can be applied. That is, since the rotating shaft does not protrude from the motor body, the production efficiency of the motor can be improved, and the degree of freedom in designing the length and diameter of the coupling means such as a ball screw can be increased. In addition, since it is thin and does not take up space, it can be a small and high torque motor, so it is suitable as a drive source for various actuators for automobiles and the like.

図15は上記第2実施例の変形例であり、該変形例においては図14と同様の構成については同一符号を付してその説明を省略する。図示するように、回転軸45の軸心部にはナット状にねじ切りされた有底開孔45a’が設けられ、ここに例えばボールネジ等からなる結合(または連結または当接)手段であるネジ部材53の一方側端部53bが螺合される。ネジ部材53は更にネジ部材53用の、内面がネジ切りされたカバー(ナット)53aの内面と螺合され、カバー53aは回転軸45にネジ等で固定され回転軸45と一体に回転する。なお、カバー53aは設けなくても良い。ネジ部材53の他端側には例えばカバー(ナット)54が設けられ、ネジ部材53は該カバー54の内面と螺合され、該カバー54は被駆動部材50側のハウジング(カバー)52に固定されている。また、ネジ部材53の軸方向の図中下方(ネジ部材の他端側の延長方向)には負荷手段(自動車のアクチュエータ)である被駆動部材50(例えば、偏心カム)が設けられている。
このような構成により、電機子35が回転すると、ネジ部材53は有底開孔45a’内で回転すると共に、回転方向に従って図中矢印で示す上または下方向(ネジ部材の軸に沿った方向)に直線運動を行う。従って、電機子35の回転に従ってネジ部材53の他方側先端部が負荷手段50に当接され、負荷手段は電機子35の回転方向に従って図中上または下方向に駆動される。即ち、負荷手段50がカムの場合には軸51を中心として回転する。
FIG. 15 shows a modification of the second embodiment. In the modification, the same components as those in FIG. As shown in the drawing, a bottomed opening 45a ′ threaded into a nut shape is provided in the axial center portion of the rotating shaft 45, and a screw member which is a coupling (or connecting or abutting) means made of, for example, a ball screw or the like. One end 53b of 53 is screwed together. The screw member 53 is further screwed into an inner surface of a cover (nut) 53a whose inner surface is threaded for the screw member 53, and the cover 53a is fixed to the rotating shaft 45 with a screw or the like and rotates integrally with the rotating shaft 45. The cover 53a may not be provided. For example, a cover (nut) 54 is provided on the other end side of the screw member 53. The screw member 53 is screwed to the inner surface of the cover 54, and the cover 54 is fixed to the housing (cover) 52 on the driven member 50 side. Has been. In addition, a driven member 50 (for example, an eccentric cam) is provided as a load means (an actuator of an automobile) below the screw member 53 in the axial direction of the screw member 53 (extension direction on the other end side of the screw member).
With such a configuration, when the armature 35 rotates, the screw member 53 rotates in the bottomed opening 45a ′, and according to the rotation direction, the upward or downward direction indicated by the arrow in the drawing (the direction along the axis of the screw member). ) Perform a linear motion. Therefore, the other end portion of the screw member 53 is brought into contact with the load means 50 according to the rotation of the armature 35, and the load means is driven upward or downward in the drawing according to the rotation direction of the armature 35. That is, when the load means 50 is a cam, it rotates about the shaft 51.

図16は図14の偏平型コアレスモータの変形例を示す要部断面図で、第2の実施例との違いは界磁マグネット33を電機子の両側に配置した点である。即ち、電機子の両面側に、回転軸の軸方向に空隙及び電機子35を介して環状に互いに対向するように界磁マグネット33を配置したものである。このように所謂ダブルマグネットとして構成することにより、マグネットより発生される磁束を第2の実施例に比べてより強くすることができるので、出力特性をより向上させることができる。この場合第2の実施例と同じように電機子巻線を整流子外周近傍より折り曲げているので、第2の実施例における片面マグネット(シングルマグネット)と同じ軸方向高さhでもってダブルマグネット化に構成できる。   FIG. 16 is a cross-sectional view of an essential part showing a modification of the flat coreless motor of FIG. 14, and the difference from the second embodiment is that the field magnets 33 are arranged on both sides of the armature. That is, the field magnets 33 are arranged on both sides of the armature so as to face each other in a ring shape with a gap and the armature 35 in the axial direction of the rotating shaft. By configuring as a so-called double magnet in this way, the magnetic flux generated from the magnet can be made stronger than that in the second embodiment, so that the output characteristics can be further improved. In this case, since the armature winding is bent from the vicinity of the outer periphery of the commutator as in the second embodiment, a double magnet is formed with the same axial height h as the single-sided magnet (single magnet) in the second embodiment. Can be configured.

図17は本発明の偏平型コアレスモータの一例を示す外観斜視図であり、コントロール基板からの駆動電流を電機子に給電するための電源用コネクタ72と,センサICの出力をコントロール基板に伝送するためのセンサ用コネクタ71がカバー(C)32に設けられている。これらコネクタは特に定位置はなく、用途に応じて例えば軸方向側面に設けても良い。センサ用コネクタ71の出力は上記コントロール基板に接続される。   FIG. 17 is an external perspective view showing an example of a flat coreless motor according to the present invention. The power connector 72 for supplying the drive current from the control board to the armature and the output of the sensor IC are transmitted to the control board. A sensor connector 71 is provided on the cover (C) 32. These connectors are not particularly fixed, and may be provided, for example, on the side surfaces in the axial direction depending on the application. The output of the sensor connector 71 is connected to the control board.

尚、上記の実施例はブラシ付の偏平型コアレスモータとして説明したが、巻線を3相とし界磁マグネットの位置に応じて通電方向を切り換え界磁マグネット側を回転させる所謂回転ヨーク型のブラシレスモータに適用しても良く、この場合でも小型、軽量、高トルクのモータに構成できる。   Although the above embodiment has been described as a flat coreless motor with brushes, a so-called rotary yoke type brushless in which the winding is three-phased and the energizing direction is switched according to the position of the field magnet to rotate the field magnet side. The present invention may be applied to a motor, and even in this case, it can be configured as a small, light, and high torque motor.

本発明の偏平型コアレスモータの第1の実施例を示す要部断面図である。It is principal part sectional drawing which shows the 1st Example of the flat type coreless motor of this invention. 図1の偏平型コアレスモータにおける、樹脂モールド成形される前の電機子を示す斜視図である。It is a perspective view which shows the armature before resin mold shaping | molding in the flat type coreless motor of FIG. 図1の偏平型コアレスモータにおける、樹脂モールド成形後の電機子を示す斜視図である。FIG. 2 is a perspective view showing an armature after resin molding in the flat coreless motor of FIG. 1. 本発明の偏平型コアレスモータの電機子巻線を構成する単コイルの形状例を表す模式図で、(A)は略五角形の多角形状に巻いたもの、(B)は略四角形に巻いたもの、(C)は略円形に巻いたもの、(D)は平形銅線をエッジワイズ式(縦巻)に巻いたものを示す。FIG. 4 is a schematic diagram showing an example of the shape of a single coil constituting the armature winding of the flat coreless motor of the present invention, where (A) is wound in a substantially pentagonal polygon, and (B) is wound in a substantially square. , (C) shows a substantially circular winding, and (D) shows a flat copper wire wound in an edgewise manner (vertical winding). 本発明において、単コイルと界磁マグネットとの位置関係を模式的に示す平面図である。In this invention, it is a top view which shows typically the positional relationship of a single coil and a field magnet. 本発明において、電機子を樹脂モールドするための装置の一例の断面図である。In this invention, it is sectional drawing of an example of the apparatus for resin-molding an armature. 図6に示す装置の分解斜視図である。It is a disassembled perspective view of the apparatus shown in FIG. 図6,7に示す装置において、磁場発生用コイルに流す電流と該コイルから発生される磁束の流れを示す模式図である。FIG. 8 is a schematic diagram showing a current flowing through a magnetic field generating coil and a flow of magnetic flux generated from the coil in the apparatus shown in FIGS. 樹脂成形後の電機子を示す図で(A)は電機子コイルを一部露出させた状態の平面図、(B)は側面図であり、(C)は(B)の丸で囲った部分の拡大図であり、電機子の配向方向(着磁方向)を一部詳細図として示す。It is a figure which shows the armature after resin molding, (A) is a top view of the state which exposed a part of armature coil, (B) is a side view, (C) is the part enclosed by the circle of (B) FIG. 2 is an enlarged view of the armature, in which the armature orientation direction (magnetization direction) is partially shown in detail. フェライト系磁性粉末の結晶配列を説明する模式図であり、(A)は樹脂充填初期における樹脂内の各磁性粉の状態を示し、(B)は磁場印加後に樹脂内の各磁性粉が一定方向に磁化配列された状態を示し、(C)は磁場印加後の磁性粉の配向方向を示し、(D)は磁性粉の磁化容易方向、磁化困難方向を示す。It is a schematic diagram explaining the crystal arrangement of the ferrite magnetic powder, (A) shows the state of each magnetic powder in the resin in the initial stage of resin filling, (B) is a direction in which each magnetic powder in the resin after a magnetic field application in a certain direction (C) shows the orientation direction of the magnetic powder after application of the magnetic field, and (D) shows the easy magnetization direction and the hard magnetization direction of the magnetic powder. 本発明において電機子の変形例を示す図で、(A)はその電機子の断面図及び(B)は電機子コイルの部分斜視図である。It is a figure which shows the modification of an armature in this invention, (A) is sectional drawing of the armature, (B) is the fragmentary perspective view of an armature coil. 本発明の動作を説明するための偏平型コアレスモータの部分断面図である。It is a fragmentary sectional view of a flat type coreless motor for explaining operation of the present invention. 磁性粉末の樹脂に対する混合割合とモータトルク及び電機子破壊強度の相関を示す図である。It is a figure which shows the correlation of the mixing ratio with respect to resin of magnetic powder, motor torque, and armature fracture strength. 本発明の偏平型コアレスモータの第2の実施例を示す要部断面図である。It is principal part sectional drawing which shows the 2nd Example of the flat type coreless motor of this invention. 本発明の偏平型コアレスモータの第2の実施例の変形例を示す要部断面図である。It is principal part sectional drawing which shows the modification of the 2nd Example of the flat type coreless motor of this invention. 図14に示す偏平型コアレスモータの変形例を示す要部断面図である。It is principal part sectional drawing which shows the modification of the flat type coreless motor shown in FIG. 本発明の偏平型コアレスモータの一例を示す外観斜視図である。It is an external appearance perspective view which shows an example of the flat type coreless motor of this invention.

符号の説明Explanation of symbols

1 電機子
1a 単コイル
2 マグネット
5 整流子
10 回転軸
11 キャビティ
12 下型
13 上型
17 ノズル
18 樹脂
19、20 磁場発生用コイル
30 磁性粉
40 折り曲げ部
38 センサマグネット
39 センサIC
40、49 折り曲げ部
45a、45a’ 有底開孔
46、53 ネジ部材
47 ピニオンギヤ
48、50 カム
54 ナット
DESCRIPTION OF SYMBOLS 1 Armature 1a Single coil 2 Magnet 5 Commutator 10 Rotating shaft 11 Cavity 12 Lower mold 13 Upper mold 17 Nozzle 18 Resin 19, 20 Coil for magnetic field generation 30 Magnetic powder
40 Bending part 38 Sensor magnet
39 Sensor IC
40, 49 Bent part 45a, 45a 'Open hole with bottom 46, 53 Screw member 47 Pinion gear 48, 50 Cam 54 Nut

Claims (10)

各々が丸形もしくは多角形状に巻回された複数の単コイルを回転軸の周囲に該回転軸の軸方向に垂直な平面上に環状に配設して樹脂でモールド成形された平面状の電機子と、前記電機子の前記平面のうちの少なくとも一方の面側に前記回転軸の軸方向に空隙を介して環状に該一方の面に対向配置されたマグネットとを有し、前記電機子もしくは前記マグネットのうちの一方を他方に対して回転自在に軸承してなる偏平型コアレスモータにおいて、
前記樹脂でモールド成形された平面状の電機子は、前記回転軸の外周面より外側で且つ前記マグネットの内周面より内方側で該マグネットの内周面と対向しない位置より、前記回転軸の軸方向に折り曲げられた折り曲げ部を有し、
前記電機子をモールド成形する前記樹脂には磁性粉が混入され、該磁性粉は前記回転軸の軸方向に磁化配列され、それにより前記電機子コイルに電流を流すことにより生じる電磁力と、一定方向に磁化配列された該磁性粉による磁束と前記マグネットの磁束とが重畳されることにより駆動されることを特徴とする、偏平型コアレスモータ。
Each round or polygonal shape and arranged in an annular a plurality of single coils wound on axially perpendicular plane of the rotary shaft around the axis of rotation to molded resin was planar Electric A magnet and a magnet disposed on the one surface of at least one of the planes of the armature so as to face the one surface annularly through a gap in the axial direction of the rotating shaft, In a flat coreless motor in which one of the magnets is rotatably supported with respect to the other,
The planar armature molded with the resin is formed on the rotating shaft from a position outside the outer peripheral surface of the rotating shaft and on the inner side of the inner peripheral surface of the magnet and not facing the inner peripheral surface of the magnet. Having a bent portion bent in the axial direction of
The resin for molding the armature is mixed with magnetic powder, and the magnetic powder is magnetized in the axial direction of the rotary shaft, thereby generating an electromagnetic force generated by passing a current through the armature coil, and a constant A flat coreless motor, which is driven by superimposing the magnetic flux of the magnetic powder magnetized in the direction and the magnetic flux of the magnet.
前記複数の単コイルの各々は、平形銅線を巻回して形成されていることを特徴とする、請求項1に記載の偏平型コアレスモータ。   2. The flat coreless motor according to claim 1, wherein each of the plurality of single coils is formed by winding a flat copper wire. 3. 各々が丸形もしくは多角形状に巻回された複数の単コイルを回転軸の周囲に該回転軸の軸方向に垂直な平面上に環状に配設して樹脂でモールド成形された平面状の電機子と、前記電機子の前記平面のうちの少なくとも一方の面側に前記回転軸の軸方向に空隙を介して環状に該一方の面に対向配置されたマグネットとを有し、前記電機子もしくは前記マグネットのうちの一方を他方に対して回転自在に軸承してなる偏平型コアレスモータにおいて、
前記樹脂でモールド成形された平面状の電機子は、前記回転軸の外周面より外側で且つ前記マグネットの内周面より内方側で該マグネットの内周面と対向しない位置より、前記回転軸の軸方向に折り曲げられた折り曲げ部を有し、
前記電機子をモールド成形する前記樹脂には磁性粉が混入され、該磁性粉は前記回転軸の軸方向に磁化配列され、それにより前記電機子コイルに電流を流すことにより生じる電磁力と、一定方向に磁化配列された該磁性粉による磁束と前記マグネットの磁束とが重畳されることにより駆動され、
前記回転軸には、その軸心と同心状に孔が配設され、該孔に外部よりネジ部材の一端側を嵌合可能としたことを特徴とする、偏平型コアレスモータ。
Each round or polygonal shape and arranged in an annular a plurality of single coils wound on axially perpendicular plane of the rotary shaft around the axis of rotation to molded resin was planar Electric A magnet and a magnet disposed on the one surface of at least one of the planes of the armature so as to face the one surface annularly through a gap in the axial direction of the rotating shaft, In a flat coreless motor in which one of the magnets is rotatably supported with respect to the other,
The planar armature molded with the resin is formed on the rotating shaft from a position outside the outer peripheral surface of the rotating shaft and on the inner side of the inner peripheral surface of the magnet and not facing the inner peripheral surface of the magnet. Having a bent portion bent in the axial direction of
The resin for molding the armature is mixed with magnetic powder, and the magnetic powder is magnetized in the axial direction of the rotary shaft, thereby generating an electromagnetic force generated by passing a current through the armature coil, and a constant Driven by superimposing the magnetic flux of the magnetic powder magnetized in the direction and the magnetic flux of the magnet,
A flat-type coreless motor, wherein a hole is disposed concentrically with the axis of the rotary shaft, and one end of a screw member can be fitted into the hole from the outside.
前記複数の単コイルの各々は、平形銅線を巻回して形成されていることを特徴とする、請求項3に記載の偏平型コアレスモータ。   The flat coreless motor according to claim 3, wherein each of the plurality of single coils is formed by winding a flat copper wire. 前記回転軸には前記ネジ部材を介して自動車のアクチュエーターが結合または連結または当接され、自動車のアクチュエーター用駆動源として用いられることを特徴とする、請求項3に記載の偏平型コアレスモータ。   4. The flat coreless motor according to claim 3, wherein an actuator of an automobile is coupled to, connected to, or abutted with the rotating shaft via the screw member, and is used as a drive source for the actuator of the automobile. 更に、前記電機子の前記平面のうちの他方の面側に、前記回転軸の軸方向に空隙を介して環状に該他方の面に対向し、かつ前記マグネットに前記電機子を介して対向するように配置された別のマグネットを有することを特徴とする、請求項3に記載の偏平型コアレスモータ。   Furthermore, on the other surface side of the plane of the armature, it is opposed to the other surface in a ring shape through a gap in the axial direction of the rotation shaft, and is opposed to the magnet via the armature. The flat coreless motor according to claim 3, further comprising another magnet arranged as described above. 前記ネジ孔には前記ネジ部材の一端側が嵌合されて固定されることを特徴とする、請求項3に記載の偏平型コアレスモータ。   The flat coreless motor according to claim 3, wherein one end side of the screw member is fitted and fixed in the screw hole. 前記ネジ部材は前記回転軸の回転に伴い該回転軸と共に回転され、該ネジ部材の他端側に設けられた被駆動部材を駆動可能とすることを特徴とする、請求項3に記載の偏平型コアレスモータ。   The flat member according to claim 3, wherein the screw member is rotated together with the rotation shaft along with the rotation of the rotation shaft so that a driven member provided on the other end side of the screw member can be driven. Type coreless motor. 前記ネジ孔は前記回転軸の軸心部にナット状にネジ切りされた有底開孔であり、該開孔に前記ネジ部材の一端側が螺合されることを特徴とする、請求項3に記載の偏平型コアレスモータ。   The screw hole is a bottomed opening threaded in a nut shape at an axial center portion of the rotating shaft, and one end side of the screw member is screwed into the opening. The flat coreless motor described. 前記ネジ部材の他端側には内面がネジ切りされたカバーが設けられ、前記ネジ部材は該カバーの内面と螺合され、該カバーは被駆動部材側のハウジングに固定され、それにより該ネジ部材は前記回転軸の回転に伴い該ネジ部の軸に沿った方向に直線運動され、該ネジ部材の他端側の延長方向に設けられた被駆動部材を駆動可能とされることを特徴とする、請求項9に記載の偏平型コアレスモータ。   The other end side of the screw member is provided with a cover whose inner surface is threaded. The screw member is screwed with the inner surface of the cover, and the cover is fixed to the housing on the driven member side, whereby the screw The member is linearly moved in the direction along the axis of the screw portion with the rotation of the rotating shaft, and the driven member provided in the extending direction on the other end side of the screw member can be driven. The flat coreless motor according to claim 9.
JP2005172368A 2004-06-11 2005-06-13 Flat coreless motor, armature in flat coreless motor, and manufacturing method thereof Active JP4974482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172368A JP4974482B2 (en) 2004-06-11 2005-06-13 Flat coreless motor, armature in flat coreless motor, and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004174169 2004-06-11
JP2004174169 2004-06-11
JP2005172368A JP4974482B2 (en) 2004-06-11 2005-06-13 Flat coreless motor, armature in flat coreless motor, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006025594A JP2006025594A (en) 2006-01-26
JP4974482B2 true JP4974482B2 (en) 2012-07-11

Family

ID=35798421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172368A Active JP4974482B2 (en) 2004-06-11 2005-06-13 Flat coreless motor, armature in flat coreless motor, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4974482B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252408A (en) * 2009-04-10 2010-11-04 Masaaki Iwatani Coil component
JP6225022B2 (en) * 2013-12-27 2017-11-01 東洋機械金属株式会社 Molding machine
CN107659004A (en) * 2016-07-25 2018-02-02 台达电子工业股份有限公司 Mini-fan

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213407Y2 (en) * 1980-09-08 1987-04-07
JPS6196772U (en) * 1984-11-30 1986-06-21
JPS61165081U (en) * 1985-03-30 1986-10-13
JPH0378453A (en) * 1989-08-18 1991-04-03 Calsonic Corp Manufacture of armature for flat motor and device employing flat motor
JPH09163703A (en) * 1995-11-30 1997-06-20 Sanden Corp Rotor for flat motor
JPH10341546A (en) * 1997-06-05 1998-12-22 Masato Sagawa Driving device equipped with mover
JP4437857B2 (en) * 2000-03-27 2010-03-24 本田技研工業株式会社 Coreless motor for electric power steering
JP2003153468A (en) * 2001-11-06 2003-05-23 Kawasaki Steel Corp Ferromagnetic material for stator of motor or generator and stator of motor or generator utilizing it

Also Published As

Publication number Publication date
JP2006025594A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US4891567A (en) Brushless DC motor having an outer rotor
JP3134160B2 (en) Low cost stepper or synchro motor
US8680736B2 (en) Armature core, motor using same, and axial gap electrical rotating machine using same
EP2497185B1 (en) Rotary single-phase electromagnetic actuator
JP5398512B2 (en) Axial gap type permanent magnet motor, rotor used therefor, and method for manufacturing the rotor
JP4586717B2 (en) motor
WO2010098425A1 (en) Turntable for permanent magnet rotating machine and permanent magnet rotating machine fabrication method
KR20140005169A (en) Electric disk rotor motor and electric bicycle or pedelec comprising a disk rotor motor
JP4728765B2 (en) Rotating machine
WO2019077983A1 (en) Axial gap-type dynamo-electric machine
JP4780103B2 (en) DC motor
JP4974482B2 (en) Flat coreless motor, armature in flat coreless motor, and manufacturing method thereof
JP2939725B2 (en) Linear actuator
US20210384783A1 (en) Rotor, motor and brushless motor
JP2018078674A (en) Brushless motor
JP2011211825A (en) Dc motor and valve opening/closing device
JP5310986B2 (en) Manufacturing method of segment magnet and manufacturing method of electric power steering device
JPS63277455A (en) Hybrid motor
JP4771278B2 (en) Permanent magnet type motor and method for manufacturing the same
JP2016034229A (en) Motor and generator
JP2004289961A (en) Stepping motor
JP2004056884A (en) Activity converter
JP4959389B2 (en) motor
JP2018182084A (en) Ring-shaped bond magnet, voice coil motor, and manufacturing method of voice coil motor
JP2008211890A (en) Manufacturing method of rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4974482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250