JP2009170871A - Porous valve metal electrode and method of manufacturing the same - Google Patents
Porous valve metal electrode and method of manufacturing the same Download PDFInfo
- Publication number
- JP2009170871A JP2009170871A JP2008260223A JP2008260223A JP2009170871A JP 2009170871 A JP2009170871 A JP 2009170871A JP 2008260223 A JP2008260223 A JP 2008260223A JP 2008260223 A JP2008260223 A JP 2008260223A JP 2009170871 A JP2009170871 A JP 2009170871A
- Authority
- JP
- Japan
- Prior art keywords
- valve metal
- layer
- porous
- current collector
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明は、多孔質バルブ金属電極およびその製造方法に関し、特に、タンタルまたはニオブからなる多孔質バルブ金属電極に関する。 The present invention relates to a porous valve metal electrode and a method for manufacturing the same, and more particularly to a porous valve metal electrode made of tantalum or niobium.
タンタル電解コンデンサおよびニオブ電解コンデンサは、小型、大容量、および高信頼性という特徴を持ち、携帯電話、ノートパソコンに代表される小型電子機器に必要不可欠な電子部品である。近年の電子機器の低背化、高機能化に伴い、タンタル電解コンデンサおよびニオブ電解コンデンサにも、低背化と高容量化が強く求められている。 A tantalum electrolytic capacitor and a niobium electrolytic capacitor have features of small size, large capacity, and high reliability, and are indispensable electronic components for small electronic devices typified by mobile phones and notebook personal computers. With the recent reduction in height and functionality of electronic devices, tantalum electrolytic capacitors and niobium electrolytic capacitors are also strongly required to have low height and high capacity.
従来のタンタルおよびニオブ電解コンデンサは、タンタルやニオブ粉末を圧粉成型および焼結した多孔質ペレットを陽極体として用いているが、これらの製法における制約により陽極体の低背化には限界があり、得られるタンタル電解コンデンサまたはニオブ電解コンデンサの低背化にも、おのずと限界が生じる。 Conventional tantalum and niobium electrolytic capacitors use porous pellets obtained by compacting and sintering tantalum or niobium powder as the anode body, but there are limits to the reduction in the height of the anode body due to restrictions in these manufacturing methods. However, there is a limit in reducing the height of the obtained tantalum electrolytic capacitor or niobium electrolytic capacitor.
これに対して、バルブ金属集電体となるタンタル箔やニオブ箔などの上に、バルブ金属と、それらと相溶性を持たない異相成分からなる混合膜を、スパッタリングなどで成膜し、真空中または不活性ガス中で熱処理をして、その後、異相成分のみを選択的に除去するという方法で、バルブ金属多孔質層を有する箔状のバルブ金属陽極体を製造する方法が特許文献1および非特許文献1に記載されている。この方法により得られる箔状の多孔質バルブ金属陽極体により、コンデンサのさらなる低背化が可能となり、有効な方法といえる。 On the other hand, a mixed film composed of a valve metal and a different phase component not compatible with the valve metal is formed on a tantalum foil or niobium foil, which is a valve metal current collector, by sputtering or the like. Alternatively, Patent Document 1 and Non-Patent Document 1 disclose a method for producing a foil-like valve metal anode body having a valve metal porous layer by a method of performing heat treatment in an inert gas and then selectively removing only the heterogeneous components. It is described in Patent Document 1. The foil-like porous valve metal anode body obtained by this method enables a further reduction in the height of the capacitor, which can be said to be an effective method.
ところで、電子機器の高容量化の要求はさらに厳しくなってきており、例えば150kCV/g以上の高容量の実現が要求されてきている。この箔状の多孔質バルブ金属陽極体において、150kCV/g以上の高容量を狙う場合、多孔質層がさらに微細な構造となるため、バルブ金属集電体とバルブ金属多孔質層との密着性が不安定になるという問題がある。このような密着性の不安定さは、陽極体特性のバラつきを生じたり、コンデンサ製造工程中に漏れ電流が上昇したり、コンデンサ信頼性を損なうために、好ましくない。
本発明は、かかる問題点に鑑みてなされたものであって、バルブ金属集電体上にバルブ金属多孔質層が形成された多孔質バルブ金属電極において、密着性が安定した多孔質バルブ金属電極およびその製造方法を提供することを目的とする。 The present invention has been made in view of such a problem, and is a porous valve metal electrode in which a valve metal porous layer is formed on a valve metal current collector. And it aims at providing the manufacturing method.
本発明に係る多孔質バルブ金属電極は、バルブ金属集電体と、該バルブ金属集電体の上に形成されたバルブ金属多孔質層とからなり、前記バルブ金属多孔質層には、前記バルブ金属集電体の側に、低空隙率層が形成され、該低空隙率層の空隙率は、前記バルブ金属多孔質層の他の部分の空隙率より低く、かつ、1〜30体積%である。 The porous valve metal electrode according to the present invention comprises a valve metal current collector and a valve metal porous layer formed on the valve metal current collector, and the valve metal porous layer includes the valve metal electrode. A low porosity layer is formed on the metal current collector side, and the porosity of the low porosity layer is lower than the porosity of the other part of the valve metal porous layer and is 1 to 30% by volume. is there.
前記低空隙率層の厚さが、前記バルブ金属多孔質層の厚さに対して、1/100〜1/10であることが好ましい。 The thickness of the low porosity layer is preferably 1/100 to 1/10 with respect to the thickness of the valve metal porous layer.
また、前記バルブ金属多孔質層のバルブ金属が、Nb、Ta、Nb合金、Ta合金から選ばれるいずれか一種であることが好ましい。 In addition, the valve metal of the valve metal porous layer is preferably any one selected from Nb, Ta, Nb alloy, and Ta alloy.
本発明に係る多孔質バルブ金属電極の製造方法は、バルブ金属集電体の上に、バルブ金属と異相成分とからなる混合薄膜を形成し、熱処理をし、その後、異相成分を除去する多孔質バルブ金属電極の製造方法に係り、前記混合薄膜を形成するに際し、前記バルブ金属集電体の側に、前記混合薄膜の他の部分における異相成分の混合割合より低く、かつ、該異相成分の混合割合が1〜30体積%である低異相成分層を形成することを特徴とする。 The method for producing a porous valve metal electrode according to the present invention comprises forming a mixed thin film composed of a valve metal and a heterogeneous component on a valve metal current collector, performing a heat treatment, and then removing the heterogeneous component. According to a method for manufacturing a valve metal electrode, when forming the mixed thin film, the mixing ratio of the different phase components is lower than the mixing ratio of the different phase components in other parts of the mixed thin film on the valve metal current collector side. A low heterogeneous component layer having a ratio of 1 to 30% by volume is formed.
前記低異相成分層の厚さを、前記混合薄膜の厚さに対して、1/100〜1/10とすることが好ましい。 The thickness of the low heterogeneous component layer is preferably 1/100 to 1/10 of the thickness of the mixed thin film.
また、前記混合薄膜を、バルブ金属および異相成分を用いて、同時スパッタリングまたは同時蒸着で形成することが好ましい。 The mixed thin film is preferably formed by co-sputtering or co-evaporation using a valve metal and a heterogeneous component.
さらに、前記混合薄膜に用いるバルブ金属として、Nb、Ta、Nb合金、Ta合金から選ばれるいずれか一種を用い、前記異相成分として、Cuを用いることが好ましい。 Furthermore, it is preferable to use any one selected from Nb, Ta, Nb alloy, and Ta alloy as the valve metal used in the mixed thin film, and Cu as the heterogeneous component.
なお、同様にバルブ金属集電体に用いるバルブ金属としても、Nb、Ta、Nb合金、Ta合金から選ばれるいずれか一種を用いることが好ましいが、前記混合薄膜および異相成分除去後のバルブ金属多孔質層におけるバルブ金属とは種類は異なっていてもよい。 Similarly, as the valve metal used for the valve metal current collector, any one selected from Nb, Ta, Nb alloy, and Ta alloy is preferably used. The type may be different from the valve metal in the quality layer.
本発明により、バルブ金属集電体とバルブ金属多孔質層の接触面積が増加して、安定した密着性が得られる。 According to the present invention, the contact area between the valve metal current collector and the valve metal porous layer is increased, and stable adhesion can be obtained.
また、低空隙率層は、バルブ金属と異相成分からなる混合薄膜の形成時に、容易に形成することができ、さらに、熱処理を行った後に、異相成分の除去を実施できるので、製造工程を増加させることなく、好適な多孔質バルブ金属電極を安価に製造することができる。 In addition, the low porosity layer can be easily formed when forming a mixed thin film composed of a valve metal and a heterogeneous component, and further, the heterophasic component can be removed after heat treatment, increasing the number of manufacturing steps. Therefore, a suitable porous valve metal electrode can be manufactured at low cost.
多孔質バルブ金属電極を電解コンデンサの陽極体として適用するにあたり、バルブ金属からなる集電体と多孔質層との密着性が重要である。かかる密着性を向上させるためには、バルブ金属多孔質層とバルブ金属集電体との接触面積を大きくした構造が理想的である。 In applying the porous valve metal electrode as an anode body of an electrolytic capacitor, the adhesion between the current collector made of the valve metal and the porous layer is important. In order to improve such adhesiveness, a structure in which the contact area between the valve metal porous layer and the valve metal current collector is increased is ideal.
本発明者らは、このような構造の多孔質バルブ金属電極を実現するため、鋭意研究を進めた結果、混合薄膜を形成する際に、バルブ金属集電体の側に、低異相成分層を形成することにより、熱処理および異相成分の除去後に、バルブ金属多孔質層のバルブ金属集電体側に、低空隙率層が形成され、バルブ金属多孔質層とバルブ金属集電体との接触面積を増大させることができ、もって、これらの間に安定した密着性を得ることができるとの知見を得て、本発明を完成した。 The inventors of the present invention have made extensive studies in order to realize a porous valve metal electrode having such a structure. As a result, when forming a mixed thin film, a low heterogeneous component layer is formed on the side of the valve metal current collector. By forming, a low porosity layer is formed on the valve metal current collector side of the valve metal porous layer after heat treatment and removal of heterogeneous components, and the contact area between the valve metal porous layer and the valve metal current collector is increased. The present invention has been completed with the knowledge that a stable adhesion can be obtained between them.
混合薄膜を形成するためのバルブ金属、すなわち、バルブ金属多孔質層を形成するバルブ金属としては、Ti、Ti合金、Al、Al合金、Ta、Ta合金、Nb、およびNb合金など種々のものが考えられる。しかしながら、Tiは、陽極酸化皮膜の絶縁性に問題があり、Alは、陽極酸化皮膜の誘電率が小さく、容量密度が小さいので、電解コンデンサ陽極体としての実用性を考慮すると、Ta、Ta合金、Nb、Nb合金から選ばれるいずれか一種であることが好ましい。 The valve metal for forming the mixed thin film, that is, the valve metal for forming the valve metal porous layer includes various materials such as Ti, Ti alloy, Al, Al alloy, Ta, Ta alloy, Nb, and Nb alloy. Conceivable. However, Ti has a problem in the insulating property of the anodic oxide film, and Al has a small dielectric constant and a small capacity density. Therefore, considering practicality as an electrolytic capacitor anode body, Ta and Ta alloys , Nb, or Nb alloy is preferable.
なお、バルブ金属集電体を形成するバルブ金属についても、Ta、Ta合金、Nb、Nb合金から選択されることが好ましいが、他のバルブ金属でもよく、また、バルブ金属多孔質層のバルブ金属と異なっていてもよい。 The valve metal forming the valve metal current collector is also preferably selected from Ta, Ta alloy, Nb, and Nb alloy, but other valve metals may be used, and the valve metal of the valve metal porous layer may be used. And may be different.
以下、本発明に係る多孔質バルブ金属薄膜を製造する方法について説明する。 Hereinafter, a method for producing a porous valve metal thin film according to the present invention will be described.
本発明に係る多孔質バルブ金属電極の製造方法は、1)バルブ金属集電体の上に、異相成分の混合割合が1〜30体積%である低異相成分層を形成し、その後、異相成分の混合割合が30体積%を超える高異相成分層を形成するする工程、2)熱処理によりバルブ金属と異相成分の粒子径を調整するとともに、バルブ金属粒子/バルブ金属集電体間の焼結を進める工程、3)異相部分を除去する工程からなる。以下、各工程について詳細に説明する。 The method for producing a porous valve metal electrode according to the present invention includes: 1) forming a low heterogeneous component layer in which a mixing ratio of heterogeneous components is 1 to 30% by volume on a valve metal current collector; A step of forming a high-phase component layer in which the mixing ratio exceeds 30% by volume, 2) adjusting the particle diameter of the valve metal and the hetero-phase component by heat treatment, and sintering between the valve metal particle / valve metal current collector And 3) a step of removing a different phase portion. Hereinafter, each step will be described in detail.
1)バルブ金属集電体の上に、異相成分の混合割合が1〜30体積%である低異相成分層を形成し、その後、異相成分の混合割合が30体積%を超える高異相成分層を形成する工程
バルブ金属集電体としては、バルブ金属多孔質層のバルブ金属と同じ材質の圧延箔を基板として用いるのが、工程上、扱いやすく望ましいが、異なる材質の組み合わせ(例えば、Nb箔基板とTa多孔質層)であってもよい。
1) On the valve metal current collector, a low heterogeneous component layer with a heterogeneous component mixing ratio of 1 to 30% by volume is formed, and then a high heterogeneous component layer with a heterogenous component mixing ratio exceeding 30% by volume is formed. Step of forming As the valve metal current collector, it is desirable to use a rolled foil made of the same material as the valve metal of the valve metal porous layer as the substrate because it is easy to handle in the process, but a combination of different materials (for example, Nb foil substrate) And Ta porous layer).
バルブ金属集電体の片面または両面に、バルブ金属と異相成分の混合薄膜を形成する際に、混合薄膜において、バルブ金属集電体の側に、異相成分の混合割合が1〜30体積%の低異相成分層を形成する。低異相成分層の厚さは、混合薄膜の厚さに対して、1/100〜1/10とする。 When forming a mixed thin film of a valve metal and a different phase component on one or both sides of the valve metal current collector, the mixing ratio of the different phase component is 1 to 30% by volume on the valve metal current collector side in the mixed thin film. A low heterogeneous component layer is formed. The thickness of the low heterogeneous component layer is 1/100 to 1/10 with respect to the thickness of the mixed thin film.
低異相成分層において、異相成分の混合割合が30体積%を超えると、最終的に得られる多孔質バルブ金属電極において、低空隙率層の空隙率が30体積%よりも高くなって、バルブ金属集電体とバルブ金属多孔質層との接触面積が小さくなってしまい、安定した密着性が得られない。一方、異相成分の混合割合が、1体積%未満であると、異相部分を除去する工程で、異相成分が残留してしまう。 When the mixing ratio of the different phase components exceeds 30% by volume in the low heterogeneous component layer, the porosity of the low porosity layer becomes higher than 30% by volume in the finally obtained porous valve metal electrode. The contact area between the current collector and the valve metal porous layer becomes small, and stable adhesion cannot be obtained. On the other hand, if the mixing ratio of the different phase component is less than 1% by volume, the different phase component remains in the step of removing the different phase portion.
低異相成分層の厚さが、混合薄膜の厚さに対して、1/100よりも薄いと、バルブ金属集電体とバルブ金属多孔質層との接触面積を十分に増加させることができず、安定した密着性が得られない。一方、低異相成分層の厚さが、混合薄膜の厚さに対して、1/10よりも厚いと、全体として、バルブ金属多孔質層の表面積が著しく減少して、電解コンデンサとしたときの静電容量が不足してしまう。 If the thickness of the low heterogeneous component layer is less than 1/100 of the thickness of the mixed thin film, the contact area between the valve metal current collector and the valve metal porous layer cannot be increased sufficiently. Stable adhesion cannot be obtained. On the other hand, when the thickness of the low heterogeneous component layer is thicker than 1/10 of the thickness of the mixed thin film, the overall surface area of the valve metal porous layer is significantly reduced, resulting in an electrolytic capacitor. Capacitance will be insufficient.
低異相成分層を形成した後は、引き続いて、バルブ金属と異相成分が公知の適切な割合、例えば、混合割合が30体積%を超えて70体積%以下である混合薄膜の残部である高異相成分層を形成する。なお、高異相成分層における混合割合は、得られる電解コンデンサの用途に応じて適宜決定されるが、得られるバルブ金属多孔質層の空隙率が70体積%を超えると、その強度が低下するため、異相成分の混合割合は70体積%以下とする。 After the low heterogeneous component layer is formed, the high heterogeneous phase is the remainder of the mixed thin film in which the valve metal and the heterogeneous component are known in an appropriate ratio, for example, the mixing ratio is more than 30% by volume and not more than 70% by volume. A component layer is formed. The mixing ratio in the high heterogeneous component layer is appropriately determined according to the use of the obtained electrolytic capacitor. However, when the porosity of the obtained valve metal porous layer exceeds 70% by volume, the strength decreases. The mixing ratio of the different phase components is 70% by volume or less.
バルブ金属と異相成分の混合薄膜の製造方法としては、バルブ金属と異相成分の粒子を揮発性のバインダーに分散させ、塗布後にバインダー成分を蒸発させて固着させる印刷法が考えられる。この場合、バルブ金属と異相成分の粒子混合割合を変えて塗布することで、低異相成分層を形成することができる。また、CVD(化学蒸着法)法、スパッタリング法、真空蒸着法などで成膜することが可能である。これらの場合も、成膜条件を途中で変更することで、混合割合を変えることができる。 As a method for producing a mixed thin film of a valve metal and a different phase component, a printing method may be considered in which particles of the valve metal and the different phase component are dispersed in a volatile binder and the binder component is evaporated and fixed after coating. In this case, a low heterogeneous component layer can be formed by changing the particle mixing ratio of the valve metal and the heterophasic component. Further, it is possible to form a film by a CVD (chemical vapor deposition) method, a sputtering method, a vacuum vapor deposition method, or the like. Also in these cases, the mixing ratio can be changed by changing the film forming conditions in the middle.
このように種々の成膜方法から選択可能であるが、本発明においては、バルブ金属と異相成分の同時スパッタリングまたは同時蒸着により混合薄膜を形成することが好ましい。具体的には、バルブ金属と異相成分について、独立したスパッタ(蒸着)源を用意し、これらのスパッタ(蒸着)源の上を、バルブ金属集電体を交互に通過させることで、バルブ金属と異相成分が所定の割合に混合された混合薄膜を作製する。このとき、混合薄膜を形成するバルブ金属と異相成分の混合割合は、それぞれのスパッタ(蒸発)速度を変化させることで調節することができる。 Although various film forming methods can be selected as described above, in the present invention, it is preferable to form a mixed thin film by simultaneous sputtering or simultaneous vapor deposition of a valve metal and a different phase component. Specifically, an independent sputtering (deposition) source is prepared for the valve metal and the heterogeneous component, and the valve metal current collector is alternately passed over these sputtering (deposition) sources. A mixed thin film in which different phase components are mixed at a predetermined ratio is prepared. At this time, the mixing ratio of the valve metal and the heterogeneous component forming the mixed thin film can be adjusted by changing the respective sputtering (evaporation) rates.
多孔質バルブ金属電極を構成するバルブ金属としては、前述のように、実用性を考慮すると、Ta、Ta合金、Nb、Nb合金から選ばれる一種であることが好ましい。この場合の異相成分としては、これらに対して溶解しない金属成分、またはバルブ金属に対して熱力学的に安定な酸化物などから選択できる。具体的には、Ag、Cuなどの金属、MgO、CaOなどの酸化物が使用できるが、経済性、成膜のしやすさ、および除去のしやすさを考慮すると、Cuであることが好ましい。 As described above, the valve metal constituting the porous valve metal electrode is preferably a kind selected from Ta, Ta alloy, Nb, and Nb alloy in consideration of practicality. In this case, the heterophasic component can be selected from a metal component that does not dissolve in these, or an oxide that is thermodynamically stable to the valve metal. Specifically, metals such as Ag and Cu, and oxides such as MgO and CaO can be used, but Cu is preferable in consideration of economy, ease of film formation, and ease of removal. .
低異相成分層の好ましい形態を、図1〜4を用いて説明する。図は、いずれも、混合薄膜の厚み方向に対して、異相成分の混合割合を示すグラフである。横軸の原点がバルブ金属集電体と混合薄膜の境界を示し、図の左がバルブ金属集電体の側となる。図は、バルブ金属集電体の近傍を拡大して表している。低空隙率層の厚さは、バルブ金属多孔質層の厚さに対して、1/100〜1/10である。 The preferable form of a low heterogeneous component layer is demonstrated using FIGS. Each of the figures is a graph showing the mixing ratio of the different phase components with respect to the thickness direction of the mixed thin film. The origin of the horizontal axis indicates the boundary between the valve metal current collector and the mixed thin film, and the left side of the figure is the side of the valve metal current collector. The figure shows an enlarged view of the vicinity of the valve metal current collector. The thickness of the low porosity layer is 1/100 to 1/10 with respect to the thickness of the valve metal porous layer.
図1は、低異相成分層内で混合割合が一定である場合を示す。図2は、低異相成分層内の混合割合を階段状に変化させた場合で、異相成分はバルブ金属集電体の側で少ない。図3は、低異相成分層内の混合割合を連続して変化させた場合で、異相成分はバルブ金属集電体の側から連続して増加し、低異相成分層を越えるところで混合薄膜の残部における混合割合に階段状に変化させた場合である。図4も、低異相成分層内の混合割合を連続して変化させた場合であるが、異相成分の混合割合が30体積%までの部分に続いて、さらに、異相成分の混合割合を連続して変化させ、所定の位置から一定の割合に保持した場合である。 FIG. 1 shows a case where the mixing ratio is constant in the low heterogeneous component layer. FIG. 2 shows a case where the mixing ratio in the low heterogeneous component layer is changed stepwise, and the heterogeneous component is small on the valve metal current collector side. FIG. 3 shows a case where the mixing ratio in the low-phase component layer is continuously changed. The phase-phase component continuously increases from the side of the valve metal current collector, and the remaining portion of the mixed thin film exceeds the low-phase component layer. This is a case where the mixing ratio is changed stepwise. FIG. 4 also shows a case where the mixing ratio in the low-phase component layer is continuously changed. The mixing ratio of the heterophasic component is further continued following the portion where the mixing ratio of the heterophasic component is up to 30% by volume. This is a case where a predetermined ratio is maintained from a predetermined position.
2)熱処理によりバルブ金属と異相成分の粒子径を調整するとともに、バルブ金属粒子/バルブ金属集電体間の焼結を進める工程
前述の工程により得られた混合薄膜を、不活性雰囲気中または真空中で熱処理をし、バルブ金属粒子同士、バルブ金属粒子とバルブ金属集電体の間の焼結を進めるとともに、異相成分の結晶粒も成長させる。バルブ金属粒子同士の焼結を進めることが必要な理由は、バルブ金属からなる構造体の一体性を確保するためであり、バルブ金属粒子とバルブ金属集電体の間の焼結を進めることが必要な理由は、最終的に得られる多孔質バルブ金属電極のバルブ金属多孔質層とバルブ金属集電体とを密着させるためである。高い容量を得るには、微細な多孔質構造とするために、焼結を抑制する必要がある。このとき、バルブ金属粒子とバルブ金属集電体の間の焼結も抑制されてしまうので、密着性が不十分となってしまう。本発明では、低異相成分層中のバルブ金属成分とバルブ金属集電体との接触面積が多いので、安定した密着性が得られる。
2) A process of adjusting the particle diameter of the valve metal and the heterogeneous component by heat treatment and advancing the sintering between the valve metal particle / valve metal current collector. Heat treatment is performed therein, and sintering between the valve metal particles, between the valve metal particles and the valve metal current collector is promoted, and crystal grains of different phase components are also grown. The reason why it is necessary to proceed with the sintering of the valve metal particles is to ensure the integrity of the structure made of the valve metal, and it is possible to proceed with the sintering between the valve metal particles and the valve metal current collector. The necessary reason is that the valve metal porous layer of the finally obtained porous valve metal electrode and the valve metal current collector are brought into close contact with each other. In order to obtain a high capacity, it is necessary to suppress sintering in order to obtain a fine porous structure. At this time, since sintering between the valve metal particles and the valve metal current collector is also suppressed, the adhesion is insufficient. In the present invention, since the contact area between the valve metal component and the valve metal current collector in the low heterogeneous component layer is large, stable adhesion can be obtained.
一方、異相成分の結晶粒を成長させることが必要な理由は、異相成分除去後の空隙の大きさが、ある程度以上の大きさでないと、電解質が充填できなくなってしまうからである。 On the other hand, the reason why it is necessary to grow the crystal grains of the different phase component is that the electrolyte cannot be filled unless the size of the voids after the removal of the different phase component is larger than a certain level.
熱処理雰囲気および温度は、バルブ金属と異相成分の種類、最終的に得られるバルブ金属多孔質層の粒子径によって決定される。熱処理雰囲気は、バルブ金属がTa、Ta合金、Nb、Nb合金から選ばれる一種の場合、酸化することにより漏れ電流特性などが悪化するため、できるだけ酸化が起こらない条件、具体的には高真空中またはMg蒸気などが共存するAr雰囲気中などで、熱処理を行うことができる。 The heat treatment atmosphere and temperature are determined by the type of the valve metal and the different phase component and the particle diameter of the finally obtained valve metal porous layer. When the valve metal is selected from Ta, Ta alloy, Nb, and Nb alloy, the heat treatment atmosphere deteriorates leakage current characteristics and the like due to oxidation. Alternatively, heat treatment can be performed in an Ar atmosphere where Mg vapor or the like coexists.
熱処理温度が高いほど、バルブ金属と異相成分の粒成長が進行し、最終的に得られるバルブ金属多孔質層の粒子径は粗くなる。また、異相成分がCuの場合には、400℃〜1050℃であることが好ましい。400℃未満では、バルブ金属および異相成分の粒成長は起こるものの、バルブ金属粒子とバルブ金属集電体の焼結が十分に進行せず、最終的に得られるバルブ金属多孔質層とバルブ金属集電体の十分な密着性が得られない。1050℃を超えると、異相成分であるCuの融点以上になり、好ましくない。 The higher the heat treatment temperature, the more the grain growth of the valve metal and the different phase component proceeds, and the particle diameter of the finally obtained valve metal porous layer becomes coarse. Moreover, when a heterophasic component is Cu, it is preferable that it is 400 to 1050 degreeC. When the temperature is lower than 400 ° C., valve metal and heterogeneous phase component grain growth occur, but the sintering of the valve metal particles and the valve metal current collector does not proceed sufficiently, and the finally obtained valve metal porous layer and valve metal current collector are obtained. Insufficient adhesion of electrical conductors. If it exceeds 1050 ° C., it becomes higher than the melting point of Cu which is a heterogeneous component, which is not preferable.
3)異相部分を除去する工程
熱処理で粒度を調整した後、異相成分の除去を行う。除去方法として、種々の方法を用いることができるが、操作の簡便さなどから、酸などで溶解除去するのが好ましい。酸の種類は、異相成分のみを選択的に溶解するものを選択する。例えば、バルブ金属としてTa、Ta合金、Nb、Nb合金から選ばれる一種を使用し、異相成分としてCuを使用した場合には、硝酸、または過酸化水素などを使用することができる。これらの溶液で異相成分を溶解除去した後、水洗、乾燥処理を行うことで、バルブ金属多孔質層を得ることができる。低異相成分層は、この工程で低空隙率層となる。
3) Step of removing the heterogeneous portion After adjusting the particle size by heat treatment, the heterogeneous component is removed. Various methods can be used as the removal method, but it is preferable to dissolve and remove with an acid or the like from the viewpoint of ease of operation. As the type of acid, one that selectively dissolves only the heterogeneous component is selected. For example, when one kind selected from Ta, Ta alloy, Nb, and Nb alloy is used as the valve metal and Cu is used as the heterogeneous component, nitric acid, hydrogen peroxide, or the like can be used. A valve metal porous layer can be obtained by dissolving and removing the heterogeneous components with these solutions, followed by washing with water and drying. The low heterogeneous component layer becomes a low porosity layer in this step.
かかる低空隙率層における空隙率は、混合薄膜における低異相成分層の混合割合に応じて、1〜30体積%となっている。また、低空隙率層における空隙率は、低異相成分層の混合割合に応じて、段階的もしくは連続的に変化したものとなっている。なお、高空隙率層においても、バルブ金属集電体の側において空隙率が段階的もしくは連続的に変化している層が存在していてもよい。 The porosity of the low porosity layer is 1 to 30% by volume depending on the mixing ratio of the low-phase component layer in the mixed thin film. In addition, the porosity in the low porosity layer is changed stepwise or continuously depending on the mixing ratio of the low-phase component layer. Even in the high porosity layer, there may be a layer in which the porosity is changed stepwise or continuously on the valve metal current collector side.
本発明の多孔質バルブ金属電極においては、かかる低空隙率層の存在により、バルブ金属多孔質層とバルブ金属集電体との間の接触面積が大きくなり、もって、両者間の密着性に優れる点に特徴がある。 In the porous valve metal electrode of the present invention, the presence of such a low porosity layer increases the contact area between the valve metal porous layer and the valve metal current collector, and thus has excellent adhesion between them. There is a feature in the point.
以下、実施例により本発明を詳細に説明する。なお、実施例では、薄膜コンデンサとして実用性の高いNb、Taをバルブ金属集電体およびバルブ金属多孔質層に用いている。しかし、本発明は、バルブ金属多孔質層とバルブ金属集電体との間の接触面積を大きくすることにより、両者間の密着性を高めている点に特徴があり、他の種類のバルブ金属を集電体および多孔質層に用いた場合にも本発明は好適に適用される。 Hereinafter, the present invention will be described in detail by way of examples. In the examples, Nb and Ta, which are highly practical as thin film capacitors, are used for the valve metal current collector and the valve metal porous layer. However, the present invention is characterized in that the contact area between the valve metal porous layer and the valve metal current collector is increased, thereby improving the adhesion between the two. The present invention is also suitably applied to the case where is used for the current collector and the porous layer.
(実施例1)
ターゲットとして、純度99.99%のTaターゲットおよびCuターゲット(いずれもφ152.4mm、高純度化学研究所製)を用い、スパッタリングにより、混合薄膜を形成した。スパッタ装置として、多元スパッタ装置(株式会社アルバック製、SH−450)を用いた。
Example 1
A mixed thin film was formed by sputtering using a Ta target having a purity of 99.99% and a Cu target (both of which were φ152.4 mm, manufactured by High Purity Chemical Laboratory) as targets. A multi-source sputtering apparatus (manufactured by ULVAC, Inc., SH-450) was used as the sputtering apparatus.
基板ホルダに、基板として厚さ50μmのTa箔およびNb箔(いずれも東京電解株式会社製)を固定し、5×10-5Paまで真空排気し、Arガス圧を1Paとした後、Ta−10体積%Cuとなるように、TaターゲットおよびCuターゲットのそれぞれに対するターゲット投入電力を調整して、基板の上に、低異相成分層を厚さ0.2μm形成した。 A Ta foil and an Nb foil (both made by Tokyo Electrolytic Co., Ltd.) having a thickness of 50 μm are fixed to the substrate holder, both are evacuated to 5 × 10 −5 Pa, the Ar gas pressure is 1 Pa, Ta— The target input power with respect to each of the Ta target and the Cu target was adjusted so as to be 10 vol% Cu, and a low-phase component layer having a thickness of 0.2 μm was formed on the substrate.
続いて、Ta−60体積%Cuとなるように、TaターゲットおよびCuターゲットのそれぞれに対するターゲット投入電力を再調整して、低異相成分層の上にTa−60体積%Cu層を厚さ9.8μm積層して、合計膜厚が10μmの混合薄膜を形成した。 Subsequently, the target input power for each of the Ta target and the Cu target is readjusted so that Ta-60 volume% Cu is obtained, and a Ta-60 volume% Cu layer is formed on the low heterogeneous component layer to a thickness of 9. A mixed thin film having a total film thickness of 10 μm was formed by laminating 8 μm.
次に、基板を裏返し、基板の裏面にも同様に、低異相成分層を厚さ0.2μm形成し、Ta−60体積%Cu層を厚さ9.8μm積層して、合計膜厚が10μmの混合薄膜を形成した。 Next, the substrate is turned over, and the low-phase component layer is similarly formed on the back surface of the substrate to a thickness of 0.2 μm, and a Ta-60 volume% Cu layer is stacked to a thickness of 9.8 μm, for a total film thickness of 10 μm. A mixed thin film was formed.
従って、混合薄膜の厚み方向に対して、異相成分の混合割合は、図1に示したグラフのようになる。 Therefore, the mixing ratio of the heterogeneous component is as shown in the graph of FIG. 1 with respect to the thickness direction of the mixed thin film.
膜の組成およびスパッタで基板に付着したTa質量を求めるため、Nb箔に成膜した試料を2cm2角に切断し、化学分析を行った。その結果、スパッタによるTa付着量は14mg/cm2であった。 In order to determine the composition of the film and the mass of Ta attached to the substrate by sputtering, the sample formed on the Nb foil was cut into 2 cm 2 squares and subjected to chemical analysis. As a result, the amount of Ta deposited by sputtering was 14 mg / cm 2 .
その後、高温真空炉(株式会社東京真空製、turbo−vac)に装入し、真空度5×10-3Pa以上で加熱を開始して、700℃×60minの熱処理を行った後、2.3mol/Lの硝酸に浸漬し、Cuを選択的に溶解した。その後、純水洗浄、真空乾燥を行い、Ta箔およびNb箔を基板(集電体)として用いた2種類の本実施例に係る多孔質バルブ金属電極を得た。 Then, it was charged into a high-temperature vacuum furnace (Tokyo Vacuum Co., Ltd., turbo-vac), started heating at a vacuum degree of 5 × 10 −3 Pa or higher, and subjected to heat treatment at 700 ° C. × 60 min. It was immersed in 3 mol / L nitric acid to selectively dissolve Cu. Thereafter, pure water cleaning and vacuum drying were performed to obtain two types of porous valve metal electrodes according to the present example using Ta foil and Nb foil as substrates (current collectors).
得られた2種類の多孔質バルブ金属電極を10mm角に切断し、スポットウエルダで直径0.2mmのNbワイヤーを取り付け、電気伝導度10mS/cm、80℃のリン酸水溶液中で、初期電流密度0.01mA/μFV、電圧10V、時間6hの定電圧化成を行って誘電体となるTa2O5を形成した。化成処理を施した試料について、40質量%の硫酸中でLCRメータ(Agilent製、4263B)を用い、印加バイアス1.5V、周波数120Hz、実効値1.0Vrmsで静電容量を測定した。測定した静電容量と化成電圧、成膜後に求めたスパッタによるTa付着重量から、容量を求めた結果、Ta箔およびNb箔を用いた多孔質バルブ金属電極サンプルの容量はどちらも220kCV/gであった。 The obtained two types of porous valve metal electrodes were cut into 10 mm squares, Nb wires with a diameter of 0.2 mm were attached with a spot welder, and the initial current density was measured in an aqueous phosphoric acid solution having an electric conductivity of 10 mS / cm and 80 ° C. A constant voltage was formed at 0.01 mA / μFV, a voltage of 10 V, and a time of 6 hours to form Ta 2 O 5 serving as a dielectric. With respect to the sample subjected to the chemical conversion treatment, the capacitance was measured with an applied bias of 1.5 V, a frequency of 120 Hz, and an effective value of 1.0 Vrms using an LCR meter (manufactured by Agilent, 4263B) in 40% by mass of sulfuric acid. As a result of obtaining the capacity from the measured capacitance and formation voltage, and Ta adhesion weight by sputtering obtained after film formation, the capacity of the porous valve metal electrode sample using Ta foil and Nb foil is both 220 kCV / g. there were.
また、得られた2種類の多孔質バルブ金属電極を、CP装置(日本電子株式会社製、SM−09010)で切断した断面を、SEM観察した。 Moreover, the cross section which cut | disconnected the obtained two types of porous valve metal electrodes with CP apparatus (the JEOL Co., Ltd. make, SM-09010) was observed by SEM.
その結果、基板の上に、厚さが0.2μmの低空隙率層と、厚さが9.8μmの高空隙率層が形成されていた。また、低空隙率層のSEM画像から、残留したCu粒子は認められなかった。 As a result, a low porosity layer having a thickness of 0.2 μm and a high porosity layer having a thickness of 9.8 μm were formed on the substrate. Moreover, the remaining Cu particle | grains were not recognized from the SEM image of the low porosity layer.
さらに、画像解析ソフト(ImageJ、フリーソフト)を用いて、SEM画像から空隙率を求めた結果、低空隙率層の空隙率は10体積%であり、高空隙率層の空隙率は60体積%であった。 Furthermore, as a result of obtaining the porosity from the SEM image using image analysis software (ImageJ, free software), the porosity of the low porosity layer is 10% by volume, and the porosity of the high porosity layer is 60% by volume. Met.
また、2種類の多孔質バルブ金属電極の密着性を、次のようにテープ引き剥がし試験で評価した。まず、一方の面に、両面テープ(NW−10、ニチバン株式会社製)を用いて、平らなプラスチック板に貼り付け、他方の面に、幅1cmの粘着テープ(ポリイミドテープKA00H、電子通商株式会社製)を貼り付け、粘着テープの一端を強く引き剥がして、バルブ金属多孔質層が、粘着テープに付着することの有無を調べた。 Moreover, the adhesiveness of two types of porous valve metal electrodes was evaluated by a tape peeling test as follows. First, a double-sided tape (NW-10, manufactured by Nichiban Co., Ltd.) is used on one side and affixed to a flat plastic plate. On the other side, a 1 cm wide adhesive tape (polyimide tape KA00H, Electronic Trading Co., Ltd.). The product was attached, and one end of the pressure-sensitive adhesive tape was strongly peeled off to examine whether or not the valve metal porous layer adhered to the pressure-sensitive adhesive tape.
その結果、2種類の多孔質バルブ金属電極について、それぞれ、100個の両面で、計200面を試験した結果、粘着テープへのバルブ金属多孔質層の付着は見られなかった。 As a result, for two types of porous valve metal electrodes, a total of 200 surfaces were tested on each of 100 surfaces, and as a result, adhesion of the valve metal porous layer to the adhesive tape was not observed.
(実施例2)
混合薄膜の形成に際して、最初に、基板の上に、Ta−2体積%Cuの低異相成分層を厚さ0.4μm形成し、次に、Ta−10体積%Cuの低異相成分層を厚さ0.4μm形成し、その後、Ta−50体積%Cu層を厚さ9.2μm積層して、合計膜厚が10μmの混合薄膜を基板の両面に形成したことを除いて、実施例1と同様に、基板上に混合薄膜を形成した。
(Example 2)
In forming the mixed thin film, first, a Ta-2 volume% Cu low-phase component layer having a thickness of 0.4 μm is formed on the substrate, and then a Ta-10 volume% Cu low-phase component layer is formed. A thickness of 0.4 μm was formed, and then a Ta-50 volume% Cu layer was laminated to a thickness of 9.2 μm, and a mixed thin film having a total film thickness of 10 μm was formed on both sides of the substrate. Similarly, a mixed thin film was formed on the substrate.
従って、混合薄膜の厚み方向に対して、異相成分の混合割合は、低位相成分層が2層である図2に示したグラフのようになる。 Therefore, the mixing ratio of the different phase components with respect to the thickness direction of the mixed thin film is as shown in the graph of FIG.
実施例1と同様に化学分析した結果、スパッタによるTa付着量は18mg/cm2であった。 As a result of chemical analysis in the same manner as in Example 1, the amount of Ta deposited by sputtering was 18 mg / cm 2 .
その後、熱処理の条件を750℃×60minとしたことを除いて、実施例1と同様に、熱処理、Cuの選択的除去、純水洗浄、真空乾燥の各工程を行い、Ta箔およびNb箔を基板(集電体)として用いた2種類の本実施例に係る多孔質バルブ金属電極を得た。 Thereafter, except for the heat treatment conditions of 750 ° C. × 60 min, the heat treatment, selective removal of Cu, pure water cleaning, and vacuum drying were performed in the same manner as in Example 1, and the Ta foil and Nb foil were removed. Two types of porous valve metal electrodes according to this example were used as substrates (current collectors).
実施例1と同様にして、静電容量を測定した結果、Ta箔およびNb箔が基板(集電体)として用いた2種類ともに170kCV/gであった。 As a result of measuring the capacitance in the same manner as in Example 1, the Ta foil and the Nb foil were 170 kCV / g for both of the two types used as the substrate (current collector).
実施例1と同様にして、SEM観察した結果、基板の上に、厚さが0.4μmと0.4μmである2つの低空隙率層と、厚さが9.2μmの高空隙率層が形成されていた。また、低空隙率層のSEM画像から、残留したCu粒子は認められなかった。 As a result of SEM observation as in Example 1, two low porosity layers having a thickness of 0.4 μm and 0.4 μm and a high porosity layer having a thickness of 9.2 μm were formed on the substrate. Was formed. Moreover, the remaining Cu particle | grains were not recognized from the SEM image of the low porosity layer.
また、実施例1と同様にして、SEM画像から空隙率を求めた結果、低空隙率層の空隙率は2体積%と10体積%であり、高空隙率層の空隙率は50体積%であった。 Moreover, as a result of obtaining the porosity from the SEM image in the same manner as in Example 1, the porosity of the low porosity layer is 2% by volume and 10% by volume, and the porosity of the high porosity layer is 50% by volume. there were.
さらに、実施例1と同様にして、テープ引き剥がし試験で評価した結果、粘着テープへのバルブ金属多孔質層の付着は見られなかった。 Furthermore, as in Example 1, as a result of evaluation by a tape peeling test, adhesion of the valve metal porous layer to the adhesive tape was not observed.
(実施例3)
混合薄膜の形成に際して、Ta−2体積%CuからTa−30体積%へ連続的に変化するように、TaターゲットおよびCuターゲットのそれぞれに対するターゲット投入電力を調整して、基板の上に、低異相成分層を厚さ1.0μm形成し、さらに、同様に、Ta−30体積%CuからTa−60体積%へ連続的に変化させて、異相成分の混合割合が傾斜する層を厚さ1.0μm形成した後、Ta−60体積%Cu層を厚さ8.0μm積層して、合計膜厚が10μmの混合薄膜を基板の両面に形成したことを除いて、実施例1と同様に、基板上に混合薄膜を形成した。
(Example 3)
When the mixed thin film is formed, the target input power for each of the Ta target and the Cu target is adjusted so as to continuously change from Ta-2% by volume Cu to Ta-30% by volume. The component layer is formed to a thickness of 1.0 μm, and similarly, the layer in which the mixing ratio of the heterophasic component is inclined by changing continuously from Ta-30% by volume Cu to Ta-60% by volume is 1. After forming 0 μm, the substrate is the same as in Example 1 except that a Ta-60 volume% Cu layer is stacked to 8.0 μm and a mixed thin film having a total thickness of 10 μm is formed on both sides of the substrate. A mixed thin film was formed thereon.
従って、混合薄膜の厚み方向に対して、異相成分の混合割合は、図4に示したグラフのようになる。 Therefore, the mixing ratio of the heterogeneous components with respect to the thickness direction of the mixed thin film is as shown in the graph of FIG.
実施例1と同様に化学分析した結果、スパッタによるTa付着量は15mg/cm2であった。 As a result of chemical analysis in the same manner as in Example 1, the amount of Ta deposited by sputtering was 15 mg / cm 2 .
その後、実施例1と同様に、熱処理、Cuの選択的除去、純水洗浄、真空乾燥の各工程を行い、Ta箔およびNb箔が基板(集電体)として用いた2種類の本実施例に係る多孔質バルブ金属電極を得た。 Thereafter, in the same manner as in Example 1, the heat treatment, selective removal of Cu, pure water cleaning, and vacuum drying were performed, and two types of this example in which Ta foil and Nb foil were used as substrates (current collectors). A porous valve metal electrode was obtained.
実施例1と同様にして、静電容量を測定した結果、Ta箔およびNb箔が基板(集電体)として用いた2種類ともに220kCV/gであった。 As a result of measuring the capacitance in the same manner as in Example 1, the Ta foil and the Nb foil were 220 kCV / g for both of the two types used as the substrate (current collector).
実施例1と同様にして、SEM観察した結果、基板の上に、空隙率が連続的に変化する厚さが1.0μmの低空隙率層と、空隙率が連続的に変化する厚さが1.0μmの層と空隙率が一定である厚さが8.0μmの層とからなる高空隙率層が形成されていた。また、低空隙率層のSEM画像から、残留したCu粒子は認められなかった。 As a result of SEM observation in the same manner as in Example 1, a low porosity layer having a thickness of 1.0 μm with a continuously changing porosity and a thickness with continuously changing the porosity are formed on the substrate. A high porosity layer composed of a 1.0 μm layer and a layer having a constant porosity and a thickness of 8.0 μm was formed. Moreover, the remaining Cu particle | grains were not recognized from the SEM image of the low porosity layer.
また、実施例1と同様にして、SEM画像から空隙率を求めた結果、低空隙率層の空隙率は、基板側より2体積%から30体積%まで連続的に変化しており、高空隙層の空隙率は、基板側で30体積%から60体積%まで連続して変化しているほかは、60体積%であった。 Further, as a result of obtaining the porosity from the SEM image in the same manner as in Example 1, the porosity of the low-porosity layer was continuously changed from 2% by volume to 30% by volume from the substrate side. The porosity of the layer was 60% by volume except that it continuously changed from 30% to 60% by volume on the substrate side.
さらに、実施例1と同様にして、テープ引き剥がし試験で評価した結果、粘着テープへのバルブ金属多孔質層の付着は見られなかった。 Furthermore, as in Example 1, as a result of evaluation by a tape peeling test, adhesion of the valve metal porous layer to the adhesive tape was not observed.
(実施例4)
ターゲットとして、純度99.99%のNbターゲットおよびCuターゲット(いずれもφ152.4mm、高純度化学研究所製)を用いて、混合薄膜の形成に際して、Nb−2体積%CuからNb−30体積%へ連続的に変化するように、NbターゲットおよびCuターゲットのそれぞれに対するターゲット投入電力を調整して、基板の上に、低異相成分層を厚さ1.0μm形成し、さらに、同様に、Nb−30体積%CuからNb−60体積%へ連続的に変化させて、異相成分の混合割合が傾斜する層を厚さ1.0μm形成した後、Nb−60体積%Cu層を厚さ8.0μm積層して、合計膜厚が10μmの混合薄膜を基板の両面に形成したことを除いて、実施例1と同様に、基板上に混合薄膜を形成した。
Example 4
As a target, an Nb target with a purity of 99.99% and a Cu target (both φ152.4 mm, manufactured by High Purity Chemical Research Laboratory) were used to form a mixed thin film, from Nb-2% by volume Cu to Nb-30% by volume. The target input power for each of the Nb target and the Cu target is adjusted so as to continuously change to a thickness of 1.0 μm in thickness on the substrate, and similarly, Nb− After continuously changing from 30% by volume Cu to Nb-60% by volume to form a 1.0 μm thick layer in which the mixing ratio of the different phase components is inclined, the Nb-60% by volume Cu layer is formed to a thickness of 8.0 μm. The mixed thin film was formed on the substrate in the same manner as in Example 1 except that the mixed thin film having a total film thickness of 10 μm was formed on both surfaces of the substrate.
従って、混合薄膜の厚み方向に対して、異相成分の混合割合は、図4に示したグラフのようになる。 Therefore, the mixing ratio of the heterogeneous components with respect to the thickness direction of the mixed thin film is as shown in the graph of FIG.
その後、膜の組成およびスパッタで基板に付着したNb質量を求めるため、Ta箔に成膜した試料を2cm2角に切断し、化学分析を行った。その結果、スパッタによるNb付着量は8mg/cm2であった。 Thereafter, in order to obtain the composition of the film and the mass of Nb adhering to the substrate by sputtering, the sample formed on the Ta foil was cut into 2 cm 2 squares and subjected to chemical analysis. As a result, the amount of Nb deposited by sputtering was 8 mg / cm 2 .
その後、熱処理の条件を850℃×60minとしたことを除いて、実施例1と同様に、熱処理、Cuの選択的除去、純水洗浄、真空乾燥の各工程を行い、Ta箔およびNb箔が基板(集電体)として用いた2種類の本実施例に係る多孔質バルブ金属電極を得た。 Thereafter, except for heat treatment conditions of 850 ° C. × 60 min, heat treatment, selective removal of Cu, pure water cleaning, and vacuum drying were performed in the same manner as in Example 1, and Ta foil and Nb foil were formed. Two types of porous valve metal electrodes according to this example were used as substrates (current collectors).
実施例1と同様にして、静電容量を測定した結果、Ta箔およびNb箔が基板(集電体)として用いた2種類ともに220kCV/gであった。 As a result of measuring the capacitance in the same manner as in Example 1, the Ta foil and the Nb foil were 220 kCV / g for both of the two types used as the substrate (current collector).
実施例1と同様にして、SEM観察した結果、基板の上に、空隙率が連続的に変化する厚さが1.0μmの低空隙率層と、空隙率が連続的に変化する厚さが1.0μmの層と空隙率が一定である厚さが8.0μmの層とからなる高空隙率層が形成されていた。また、低空隙率層のSEM画像から、残留したCu粒子は認められなかった。 As a result of SEM observation in the same manner as in Example 1, a low porosity layer having a thickness of 1.0 μm with a continuously changing porosity and a thickness with continuously changing the porosity are formed on the substrate. A high porosity layer composed of a 1.0 μm layer and a layer having a constant porosity and a thickness of 8.0 μm was formed. Moreover, the remaining Cu particle | grains were not recognized from the SEM image of the low porosity layer.
また、実施例1と同様にして、SEM画像から空隙率を求めた結果、低空隙率層の空隙率は、基板側より2体積%から30体積%まで連続的に変化しており、高空隙層の空隙率は、基板側で30体積%から60体積%まで連続して変化しているほかは、60体積%であった。 Further, as a result of obtaining the porosity from the SEM image in the same manner as in Example 1, the porosity of the low-porosity layer was continuously changed from 2% by volume to 30% by volume from the substrate side. The porosity of the layer was 60% by volume except that it continuously changed from 30% to 60% by volume on the substrate side.
さらに、実施例1と同様にして、テープ引き剥がし試験で評価した結果、粘着テープへのバルブ金属多孔質層の付着は見られなかった。 Furthermore, as in Example 1, as a result of evaluation by a tape peeling test, adhesion of the valve metal porous layer to the adhesive tape was not observed.
(従来例)
低異相成分層を形成しなかったこと以外は、実施例1と同様にして従来例のTa箔およびNb箔の基板上に混合薄膜を形成した。
(Conventional example)
A mixed thin film was formed on a conventional Ta foil and Nb foil substrate in the same manner as in Example 1 except that the low heterogeneous component layer was not formed.
実施例1と同様に化学分析した結果、スパッタによるTa付着量は13mg/cm2であった。 As a result of chemical analysis in the same manner as in Example 1, the amount of Ta deposited by sputtering was 13 mg / cm 2 .
その後、実施例1と同様に、熱処理、Cuの選択的除去、純水洗浄、真空乾燥の各工程を行い、Ta箔およびNb箔が基板(集電体)として用いた2種類の従来例の多孔質バルブ金属電極を得た。 Thereafter, similar to Example 1, heat treatment, selective removal of Cu, pure water cleaning, and vacuum drying were performed, and two types of conventional examples in which Ta foil and Nb foil were used as a substrate (current collector) were used. A porous valve metal electrode was obtained.
実施例1と同様にして、静電容量を測定した結果、Ta箔およびNb箔を基板(集電体)として用いた2種類ともに220kCV/gであった。 The capacitance was measured in the same manner as in Example 1. As a result, the two types using Ta foil and Nb foil as the substrate (current collector) were both 220 kCV / g.
実施例1と同様にして、SEM観察を行い、SEM画像から空隙率を求めた結果、残留したCu粒子は認められず、バルブ金属多孔質層の空隙率は60体積%であった。 As in Example 1, SEM observation was performed and the porosity was determined from the SEM image. As a result, residual Cu particles were not observed, and the porosity of the valve metal porous layer was 60% by volume.
しかしながら、実施例1と同様にして、テープ引き剥がし試験で評価した結果、バルブ金属多孔質層が剥離して、粘着テープに付着したものがあり、密着性は安定していなかった。 However, as in Example 1, as a result of evaluation in a tape peeling test, the porous metal valve layer was peeled off and adhered to the adhesive tape, and the adhesion was not stable.
(比較例1)
低異相成分層の組成を、Ta−40体積%Cuとしたこと以外は、実施例1と同様にして、Ta箔およびNb箔の基板上に混合薄膜を形成した。
(Comparative Example 1)
A mixed thin film was formed on a Ta foil and Nb foil substrate in the same manner as in Example 1 except that the composition of the low heterophase component layer was Ta-40 vol% Cu.
実施例1と同様に化学分析した結果、スパッタによるTa付着量は20mg/cm2であった。 As a result of chemical analysis in the same manner as in Example 1, the amount of Ta deposited by sputtering was 20 mg / cm 2 .
その後、実施例1と同様に、熱処理、Cuの選択的除去、純水洗浄、真空乾燥の各工程を行い、Ta箔およびNb箔を基板(集電体)として用いた2種類の本比較例に係る多孔質バルブ金属電極を得た。 Thereafter, in the same manner as in Example 1, heat treatment, selective removal of Cu, pure water cleaning, and vacuum drying were performed, and two types of this comparative example using Ta foil and Nb foil as a substrate (current collector) A porous valve metal electrode was obtained.
実施例1と同様にして、静電容量を測定した結果、Ta箔およびNb箔を基板(集電体)として用いた2種類ともに210kCV/gであった。 As a result of measuring the capacitance in the same manner as in Example 1, it was 210 kCV / g for both of the two types using Ta foil and Nb foil as the substrate (current collector).
実施例1と同様にして、SEM観察した結果、低空隙率層と高空隙率層との境界が不鮮明であった。基板の近傍における空隙率は、40体積%であり、基板から0.3μmの位置における空隙率は、60体積%であった。また、SEM画像から、残留したCu粒子は認められなかった。 As a result of SEM observation in the same manner as in Example 1, the boundary between the low porosity layer and the high porosity layer was unclear. The porosity in the vicinity of the substrate was 40% by volume, and the porosity at a position 0.3 μm from the substrate was 60% by volume. Moreover, the remaining Cu particle | grains were not recognized from a SEM image.
実施例1と同様にして、テープ引き剥がし試験で評価した結果、バルブ金属多孔質層が剥離して、粘着テープに付着したものがあり、密着性は安定していなかった。 In the same manner as in Example 1, as a result of evaluation by a tape peeling test, the valve metal porous layer was peeled off and adhered to the adhesive tape, and the adhesion was not stable.
(比較例2)
低異相成分層の組成を、Ta−0.5体積%Cuとしたこと以外は、実施例1と同様にして、Ta箔およびNb箔の基板上に混合薄膜を形成した。
(Comparative Example 2)
A mixed thin film was formed on a Ta foil and Nb foil substrate in the same manner as in Example 1 except that the composition of the low heterophase component layer was Ta-0.5 volume% Cu.
実施例1と同様に化学分析した結果、スパッタによるTa付着量は14mg/cm2であった。 As a result of chemical analysis in the same manner as in Example 1, the amount of Ta deposited by sputtering was 14 mg / cm 2 .
その後、熱処理の条件を750℃×60minとしたことを除いて、実施例1と同様に、熱処理、Cuの選択的除去、純水洗浄、真空乾燥の各工程を行い、Ta箔およびNb箔を基板(集電体)として用いた2種類の本比較例に係る多孔質バルブ金属電極を得た。 Thereafter, except for the heat treatment conditions of 750 ° C. × 60 min, the heat treatment, selective removal of Cu, pure water cleaning, and vacuum drying were performed in the same manner as in Example 1, and the Ta foil and Nb foil were removed. Two types of porous valve metal electrodes according to this comparative example used as a substrate (current collector) were obtained.
実施例1と同様にして、静電容量を測定した結果、Ta箔およびNb箔を基板(集電体)として用いた2種類ともに180kCV/gであった。 The capacitance was measured in the same manner as in Example 1. As a result, the two types using Ta foil and Nb foil as the substrate (current collector) were 180 kCV / g.
実施例1と同様にして、SEM観察した結果、基板の上に、厚さが0.2μmの低空隙率層と、厚さが9.8μmの高空隙率層が形成されていたが、SEM画像から低空隙率層にCu粒子が多量に残留していることが観察された。このため、空隙率の解析とテープ引き剥がし試験は行わなかった。 As a result of SEM observation in the same manner as in Example 1, a low porosity layer having a thickness of 0.2 μm and a high porosity layer having a thickness of 9.8 μm were formed on the substrate. From the image, it was observed that a large amount of Cu particles remained in the low porosity layer. For this reason, porosity analysis and tape peeling test were not performed.
(比較例3)
低異相成分層の厚さを、0.05μmとしたこと以外は、実施例1と同様にして、Ta箔およびNb箔の基板上に混合薄膜を形成した。
(Comparative Example 3)
A mixed thin film was formed on a Ta foil and Nb foil substrate in the same manner as in Example 1 except that the thickness of the low heterogeneous component layer was 0.05 μm.
実施例1と同様に化学分析した結果、スパッタによるTa付着量は13mg/cm2であった。 As a result of chemical analysis in the same manner as in Example 1, the amount of Ta deposited by sputtering was 13 mg / cm 2 .
その後、実施例1と同様に、熱処理、Cuの選択的除去、純水洗浄、真空乾燥の各工程を行い、Ta箔およびNb箔を基板(集電体)として用いた2種類の本比較例に係る多孔質バルブ金属電極を得た。 Thereafter, in the same manner as in Example 1, heat treatment, selective removal of Cu, pure water cleaning, and vacuum drying were performed, and two types of this comparative example using Ta foil and Nb foil as a substrate (current collector) A porous valve metal electrode was obtained.
実施例1と同様にして、静電容量を測定した結果、Ta箔およびNb箔が基板(集電体)として用いた2種類ともに210kCV/gであった。 The capacitance was measured in the same manner as in Example 1. As a result, the two types of Ta foil and Nb foil used as the substrate (current collector) were 210 kCV / g.
実施例1と同様にして、SEM観察した結果、低空隙率層の存在が認められなかった。低異相成分層は、極めて薄いので、熱処理工程で消滅したと考えられる。 As a result of SEM observation as in Example 1, the presence of a low porosity layer was not observed. Since the low heterogeneous component layer is extremely thin, it is considered that it disappeared in the heat treatment step.
実施例1と同様にして、SEM観察を行い、SEM画像から空隙率を求めた結果、残留したCu粒子は認められなかったものの、基板の近傍における空隙率は60体積%であった。 SEM observation was performed in the same manner as in Example 1, and the porosity was determined from the SEM image. As a result, the remaining Cu particles were not observed, but the porosity in the vicinity of the substrate was 60% by volume.
実施例1と同様にして、テープ引き剥がし試験で評価した結果、バルブ金属多孔質層が剥離して、粘着テープに付着したものがあり、密着性は安定していなかった。 In the same manner as in Example 1, as a result of evaluation by a tape peeling test, the valve metal porous layer was peeled off and adhered to the adhesive tape, and the adhesion was not stable.
表1に示すように、本発明の実施例1〜3には、バルブ金属多孔質層のバルブ金属集電体からの剥離が生じておらず、安定した密着性が得られている。このため、本発明に係る多孔質バルブ金属電極は、薄型の電解コンデンサの陽極体として好適であることが理解される。 As shown in Table 1, in Examples 1 to 3 of the present invention, peeling of the valve metal porous layer from the valve metal current collector did not occur, and stable adhesion was obtained. For this reason, it is understood that the porous valve metal electrode according to the present invention is suitable as an anode body of a thin electrolytic capacitor.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008260223A JP2009170871A (en) | 2007-12-21 | 2008-10-07 | Porous valve metal electrode and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007330083 | 2007-12-21 | ||
JP2008260223A JP2009170871A (en) | 2007-12-21 | 2008-10-07 | Porous valve metal electrode and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009170871A true JP2009170871A (en) | 2009-07-30 |
Family
ID=40971679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008260223A Withdrawn JP2009170871A (en) | 2007-12-21 | 2008-10-07 | Porous valve metal electrode and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009170871A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017026207A1 (en) * | 2015-08-11 | 2017-02-16 | 株式会社村田製作所 | Capacitor-mounted film |
-
2008
- 2008-10-07 JP JP2008260223A patent/JP2009170871A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017026207A1 (en) * | 2015-08-11 | 2017-02-16 | 株式会社村田製作所 | Capacitor-mounted film |
JPWO2017026207A1 (en) * | 2015-08-11 | 2018-05-10 | 株式会社村田製作所 | Capacitor mounted film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2016277576B2 (en) | Electrode foil, current collector, electrode, and energy storage element using same | |
JP4561428B2 (en) | Porous valve metal thin film, manufacturing method thereof, and thin film capacitor | |
CN102714098B (en) | Electrode material for aluminum electrolytic capacitor and production method therefor | |
Klankowski et al. | Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers | |
TWI493581B (en) | Electrode material for electrolytic capacitor and its manufacturing method | |
JP4940362B1 (en) | Electrode foil for solid electrolytic capacitors | |
US8597376B2 (en) | Method of producing porous valve metal thin film and thin film produced thereby | |
JP4555204B2 (en) | Aluminum cathode foil for electrolytic capacitors | |
JP4665866B2 (en) | Manufacturing method of valve metal composite electrode foil | |
TW201011794A (en) | Process for producing electrolytic capacitors having a low leakage current | |
JP4665889B2 (en) | Manufacturing method of valve metal composite electrode foil | |
JP2008047755A (en) | Manufacturing method of valve metal composite electrode foil | |
JP2009170871A (en) | Porous valve metal electrode and method of manufacturing the same | |
Chen et al. | Tuning the structures and conductivity of nanoporous TiO2―TiO films through anodizing electrolytes as LIB anodes with ultra-high capacity and excellent cycling performance | |
JP2007095772A (en) | Electric double-layer capacitor | |
JP5097260B2 (en) | Method for producing positive electrode for lithium ion secondary battery and positive electrode current collector for lithium ion secondary battery | |
EP2109124A1 (en) | Capacitor material, method for manufacturing the capacitor material, capacitor containing the capacitor material, wiring board and electronic device | |
JP5223517B2 (en) | Foil-like porous valve metal anode body and method for producing the same | |
JP2007305780A (en) | Metallic porous-foil anode body and its manufacturing method | |
JP2009032429A (en) | Lithium reaction electrode | |
JP2008252019A (en) | Method for manufacturing thin-film capacitor | |
JP5573362B2 (en) | Electrode foil, capacitor using this electrode foil, and method for producing electrode foil | |
JP5053702B2 (en) | Capacitor electrode sheet and manufacturing method thereof | |
JP2008021761A (en) | Bulb metal composite electrode foil and its manufacturing method | |
JP2011198873A (en) | Method of manufacturing porous valve metal electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110329 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20120406 |