JPWO2017026207A1 - Capacitor mounted film - Google Patents

Capacitor mounted film Download PDF

Info

Publication number
JPWO2017026207A1
JPWO2017026207A1 JP2017534137A JP2017534137A JPWO2017026207A1 JP WO2017026207 A1 JPWO2017026207 A1 JP WO2017026207A1 JP 2017534137 A JP2017534137 A JP 2017534137A JP 2017534137 A JP2017534137 A JP 2017534137A JP WO2017026207 A1 JPWO2017026207 A1 JP WO2017026207A1
Authority
JP
Japan
Prior art keywords
capacitor
porous substrate
conductive porous
substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017534137A
Other languages
Japanese (ja)
Inventor
康一 神凉
康一 神凉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2017026207A1 publication Critical patent/JPWO2017026207A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 

Abstract

本発明は、キャリアシート上にコンデンサが配置されているコンデンサ搭載フィルムであって、上記コンデンサが、導電性多孔基材と、導電性多孔基材上に位置する誘電体層と、誘電体層上に位置する上部電極とを有して成るコンデンサであることを特徴とする、コンデンサ搭載フィルム。The present invention is a capacitor-mounted film in which a capacitor is disposed on a carrier sheet, wherein the capacitor includes a conductive porous substrate, a dielectric layer positioned on the conductive porous substrate, and a dielectric layer A capacitor-mounted film, characterized by being a capacitor having an upper electrode located on the capacitor.

Description

本発明は、コンデンサ搭載フィルムに関する。   The present invention relates to a capacitor-mounted film.

近年、電子機器の高密度実装化に伴って、より小型で高静電容量を有するコンデンサが求められている。また、電子機器の電源動作周波数の高周波数化に伴う高周波リップルノイズの抑制のために、より等価直列抵抗(ESR:Equivalent Series Resistance)が低いコンデンサが求められている。従って、小型で静電容量が大きく、かつ、ESRが小さいコンデンサに対する要求が高まってきている。このような低ESRかつ小型高容量を有するコンデンサとして、特許文献1に記載のチップ型固体電解コンデンサが知られている。   In recent years, with the mounting of electronic devices at a high density, a capacitor having a smaller size and a higher capacitance has been demanded. In addition, in order to suppress high-frequency ripple noise that accompanies an increase in the power supply operating frequency of electronic devices, a capacitor having a lower equivalent series resistance (ESR) is required. Accordingly, there is an increasing demand for a small capacitor having a large capacitance and a low ESR. A chip-type solid electrolytic capacitor described in Patent Document 1 is known as a capacitor having such a low ESR and a small size and a high capacity.

特許文献1では、弁作用金属からなる陽極の表面に酸化皮膜を形成し、陰極側に導電性高分子を用いることにより、高静電容量かつ低ESRを達成している。しかしながら、このような構成を有する特許文献1のコンデンサは極性を有しており、逆電圧が印加される回路では、短絡を生じる可能性がある。小型高静電容量および低ESRを両立しながら、極性のないコンデンサを得ることは困難である。   In Patent Document 1, an oxide film is formed on the surface of an anode made of a valve metal and a conductive polymer is used on the cathode side, thereby achieving high capacitance and low ESR. However, the capacitor of Patent Document 1 having such a configuration has a polarity, and a short circuit may occur in a circuit to which a reverse voltage is applied. It is difficult to obtain a capacitor having no polarity while achieving both a small high capacitance and low ESR.

特開2005−57105号公報JP 2005-57105 A

本発明者は、小型高静電容量および低ESRを両立しながら、極性のないコンデンサについて検討した結果、導電性多孔基材と、導電性多孔基材上に位置する誘電体層と、誘電体層上に位置する上部電極とを有して成るコンデンサに着目した。このようなコンデンサは、導電性基材が多孔部を有しているので、非常に大きな表面積を有し、高い静電容量を得ることができる。また、このようなコンデンサは、酸化皮膜と固体電解質層との組み合わせを有しないことから、極性を有しない。   As a result of studying a nonpolar capacitor while achieving both a small high capacitance and low ESR, the present inventor has found that a conductive porous substrate, a dielectric layer positioned on the conductive porous substrate, and a dielectric Attention was focused on a capacitor having an upper electrode located on the layer. In such a capacitor, since the conductive substrate has a porous portion, it has a very large surface area, and a high capacitance can be obtained. Moreover, since such a capacitor does not have a combination of an oxide film and a solid electrolyte layer, it has no polarity.

しかしながら、上記のコンデンサは、応力が働いた場合に、誘電体層が脆性破壊を起こしやすいという問題がある。特許文献1のコンデンサは、誘電体層の自己修復機能があるので、誘電体層にクラックが生じた場合であっても、電極間のショートには至らないが、導電性多孔基材と、導電性多孔基材上に位置する誘電体層と、誘電体層上に位置する上部電極とを有して成るコンデンサは、誘電体層の自己修復機能がないので、クラックの発生が電極間のショートを引き起こす可能性が高い。このような問題に加えて、上記のコンデンサは非常に小型であり得るので、運搬、基板への実装時の取り扱いが非常に難しい。   However, the above capacitor has a problem that the dielectric layer is liable to cause brittle fracture when stress is applied. Since the capacitor of Patent Document 1 has a self-healing function of the dielectric layer, even if a crack occurs in the dielectric layer, it does not lead to a short circuit between the electrodes. Since a capacitor having a dielectric layer located on a porous porous substrate and an upper electrode located on the dielectric layer does not have a self-healing function of the dielectric layer, the occurrence of cracks is short-circuited between the electrodes. Is likely to cause. In addition to such problems, the above capacitor can be very small, so it is very difficult to transport and handle on the board.

本発明の目的は、導電性多孔基材と、導電性多孔基材上に位置する誘電体層と、誘電体層上に位置する上部電極とを有して成るコンデンサの取り扱いを容易にする製品を提供することにある。   An object of the present invention is a product that facilitates handling of a capacitor comprising a conductive porous substrate, a dielectric layer located on the conductive porous substrate, and an upper electrode located on the dielectric layer. Is to provide.

本発明者は、上記問題を解消すべく鋭意検討した結果、上記のコンデンサをキャリアシート上に搭載し、コンデンサ搭載フィルムとして取り扱うことにより、運搬時にコンデンサにかかる応力が低減され、クラックの発生を抑制することができることを見出した。さらに、キャリアシート上のコンデンサの配置を、基板等への実装時の配置とすることにより、コンデンサ搭載フィルムは、ウエハレベルパッケージ技術にそのまま用いることができるので、実装時にかかる応力が低減され、さらに製造工程が簡易化されることを見出した。   As a result of intensive studies to solve the above problems, the present inventor has mounted the above capacitor on a carrier sheet and handled it as a capacitor mounting film, thereby reducing the stress applied to the capacitor during transportation and suppressing the occurrence of cracks. Found that you can. Furthermore, by placing the capacitor on the carrier sheet at the time of mounting on a substrate or the like, the capacitor mounting film can be used as it is for wafer level package technology, so the stress applied during mounting is reduced, It has been found that the manufacturing process is simplified.

本発明の要旨によれば、キャリアシート上にコンデンサが配置されているコンデンサ搭載フィルムであって、
上記コンデンサの少なくとも一つが、導電性多孔基材と、導電性多孔基材上に位置する誘電体層と、誘電体層上に位置する上部電極とを有して成るコンデンサであることを特徴とする、コンデンサ搭載フィルムが提供される。
According to the gist of the present invention, a capacitor-mounted film in which a capacitor is disposed on a carrier sheet,
At least one of the capacitors is a capacitor having a conductive porous substrate, a dielectric layer located on the conductive porous substrate, and an upper electrode located on the dielectric layer. A capacitor-mounted film is provided.

導電性多孔基材と、導電性多孔基材上に位置する誘電体層と、誘電体層上に位置する上部電極とを有して成るコンデンサを、キャリアシート上に搭載して、コンデンサ搭載フィルムとして取り扱うことにより、運搬時および実装時にコンデンサにかかる応力が低減され、クラックの発生を抑制することができる。また、本発明のコンデンサ搭載フィルムは、ウエハレベルパッケージ技術にそのまま用いることができ、製造工程を簡易することができる。   Capacitor having a conductive porous substrate, a dielectric layer positioned on the conductive porous substrate, and an upper electrode positioned on the dielectric layer is mounted on a carrier sheet, and a capacitor mounting film As a result, the stress applied to the capacitor during transportation and mounting can be reduced, and the generation of cracks can be suppressed. Further, the capacitor-mounted film of the present invention can be used as it is in the wafer level package technology, and the manufacturing process can be simplified.

図1は、本発明の一の実施形態におけるコンデンサ搭載フィルム1の概略平面図である。FIG. 1 is a schematic plan view of a capacitor-mounted film 1 in one embodiment of the present invention. 図2は、図1に示すコンデンサ搭載フィルム1のx−x線に沿った概略断面図である。FIG. 2 is a schematic sectional view taken along line xx of the capacitor-mounted film 1 shown in FIG. 図3は、本発明において用いられるコンデンサ51の概略断面図である。FIG. 3 is a schematic sectional view of the capacitor 51 used in the present invention. 図4は、図3のコンデンサ51の高空隙率部の拡大図を模式的に示す図である。FIG. 4 is a diagram schematically showing an enlarged view of the high porosity portion of the capacitor 51 of FIG. 図5は、本発明において用いられるコンデンサ71の概略断面図である。FIG. 5 is a schematic sectional view of a capacitor 71 used in the present invention. 図6は、図5のコンデンサ71の高空隙率部の拡大図を模式的に示す図である。FIG. 6 is a diagram schematically showing an enlarged view of the high porosity portion of the capacitor 71 of FIG. 図7は、本発明のコンデンサ搭載フィルムに搭載されるコンデンサの一態様を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing one embodiment of a capacitor mounted on the capacitor mounting film of the present invention. 図8は、図7のコンデンサの概略平面図である。FIG. 8 is a schematic plan view of the capacitor of FIG. 図9は、本発明のコンデンサ搭載フィルムに搭載されるコンデンサの別の態様を示す概略断面図である。FIG. 9 is a schematic cross-sectional view showing another aspect of the capacitor mounted on the capacitor mounting film of the present invention. 図10は、図9のコンデンサの概略平面図である。FIG. 10 is a schematic plan view of the capacitor of FIG. 図11は、図9のコンデンサを搭載した本発明のコンデンサ搭載フィルムの概略断面図である。FIG. 11 is a schematic sectional view of a capacitor-mounted film of the present invention on which the capacitor of FIG. 9 is mounted. 図12(a)〜(c)は、本発明のコンデンサ搭載フィルムに搭載されるコンデンサ内蔵基板の態様を示す概略断面図である。12A to 12C are schematic cross-sectional views showing aspects of a capacitor built-in substrate mounted on the capacitor mounting film of the present invention. 図13は、本発明の一の態様のコンデンサ搭載フィルムの概略平面図である。FIG. 13 is a schematic plan view of a capacitor-mounted film according to one embodiment of the present invention. 図14は、本発明の別の態様のコンデンサ搭載フィルムの概略平面図である。FIG. 14 is a schematic plan view of a capacitor-mounted film according to another embodiment of the present invention. 図15は、本発明の別の態様のコンデンサ搭載フィルムの概略平面図である。FIG. 15 is a schematic plan view of a capacitor-mounted film according to another aspect of the present invention. 図16(a)〜(f)は、本発明のコンデンサ搭載フィルムを用いたファンアウトウエハレベルパッケージングを説明するための図である。FIGS. 16A to 16F are views for explaining fan-out wafer level packaging using the capacitor-mounted film of the present invention.

以下、本発明のコンデンサ搭載フィルムについて、図面を参照しながら詳細に説明する。但し、本実施形態のコンデンサ搭載フィルムの各構成要素の形状および配置等は、図示する例に限定されない。   Hereinafter, the capacitor mounting film of the present invention will be described in detail with reference to the drawings. However, the shape and arrangement of each component of the capacitor-mounted film of the present embodiment are not limited to the illustrated example.

本発明のコンデンサ搭載フィルムにおいて、キャリアシート上に複数のコンデンサが配置されている。   In the capacitor-mounted film of the present invention, a plurality of capacitors are arranged on the carrier sheet.

本発明の一の実施形態のコンデンサ搭載フィルム1の概略平面図を図1に、概略断面図を図2に示す。図1および図2に示されるように、本実施形態に用いられるコンデンサ搭載フィルム1は、概略的には、キャリアシート2と、コンデンサ3とを有してなる。コンデンサ3は、キャリアシート2上に配置され、固定されている。   A schematic plan view of a capacitor-mounted film 1 according to one embodiment of the present invention is shown in FIG. 1, and a schematic cross-sectional view is shown in FIG. As shown in FIGS. 1 and 2, the capacitor-mounted film 1 used in the present embodiment schematically includes a carrier sheet 2 and a capacitor 3. The capacitor 3 is disposed on the carrier sheet 2 and fixed.

上記キャリアシート2の材料、形状、大きさ等は特に限定されないが、フィルム形状であることが好ましい。   The material, shape, size, and the like of the carrier sheet 2 are not particularly limited, but are preferably a film shape.

キャリアシート2を構成する材料は、好ましくは樹脂であり、より好ましくは耐熱性樹脂であり、具体的には、ポリイミド、ポリエチレンテレフタラート(PET)等が挙げられる。   The material constituting the carrier sheet 2 is preferably a resin, more preferably a heat-resistant resin, and specific examples include polyimide and polyethylene terephthalate (PET).

キャリアシートの厚みは、用途に応じて適宜選択することができ、例えば、1μm以上2.0mm以下であり、好ましくは10μm以上200μm以下、例えば20μm以上80μm以下であり得る。   The thickness of a carrier sheet can be suitably selected according to a use, for example, is 1 micrometer or more and 2.0 mm or less, Preferably it is 10 micrometers or more and 200 micrometers or less, for example, 20 micrometers or more and 80 micrometers or less.

キャリアシートは、1つの層から成っていても複数の層から成っていてもよい。一の態様において、キャリアシートは、支持体としてのシート上に粘着層が形成されたものであり得る。   The carrier sheet may consist of one layer or a plurality of layers. In one embodiment, the carrier sheet may be one in which an adhesive layer is formed on a sheet as a support.

上記粘着層を構成する粘着剤は、特に限定されないが、例えばウレタン系粘着剤、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤等が好ましい。後に、キャリアシートからコンデンサ等を剥がしやすくするため、感温性粘着材(例えば、インテリマー(登録商標)テープ)が好適に用いられる。   Although the adhesive which comprises the said adhesion layer is not specifically limited, For example, a urethane type adhesive, a rubber-type adhesive, an acrylic adhesive, a silicone type adhesive etc. are preferable. Later, a temperature-sensitive adhesive material (for example, Intellimer (registered trademark) tape) is preferably used to facilitate peeling of the capacitor and the like from the carrier sheet.

上記コンデンサ3は、特に限定されず、種々のタイプのコンデンサを用いることができる。   The capacitor 3 is not particularly limited, and various types of capacitors can be used.

好ましい態様において、コンデンサは、導電性多孔基材と、導電性多孔基材上に位置する誘電体層と、誘電体層上に位置する上部電極とを有して成るコンデンサである。このようなコンデンサは、基材の表面積が大きく、大きな静電容量を得ることができる点で有利である。   In a preferred embodiment, the capacitor is a capacitor comprising a conductive porous substrate, a dielectric layer located on the conductive porous substrate, and an upper electrode located on the dielectric layer. Such a capacitor is advantageous in that the substrate has a large surface area and a large capacitance can be obtained.

一の態様において、上記コンデンサは、図3および図4に示されるコンデンサ51であり得る。図3は、コンデンサ51の概略断面図(ただし、簡単のために、誘電体層55および上部電極56は図示していない)を示し、図4は、コンデンサ51の高空隙率部の拡大図を模式的に示す。図3および図4に示されるように、コンデンサ51は、略直方体形状を有している。概略的には、コンデンサ51は、中央部に高空隙率部52を有し、側面部に低空隙率部53を有して成る導電性多孔基材54と、この上に形成された誘電体層55と、誘電体層55上に形成された上部電極56と、これらの上に、上部電極56と電気的に接続するように形成された配線電極57と、さらにこれらの上に形成された保護層58とを有して成る。導電性多孔基材54の側面には、対向するように第1コンデンサ電極59および第2コンデンサ電極60が設けられている。第1コンデンサ電極59は導電性多孔基材54に電気的に接続されており、第2コンデンサ電極60は、配線電極57を介して上部電極56に電気的に接続されている。上部電極56と、導電性多孔基材54の高空隙率部52とは、誘電体層55を介して向かい合っている。それぞれ、第1コンデンサ電極59および第2コンデンサ電極60を介して、導電性多孔基材54および上部電極56に通電すると、誘電体層55に電荷を蓄積することができる。   In one aspect, the capacitor may be the capacitor 51 shown in FIGS. 3 shows a schematic cross-sectional view of capacitor 51 (however, for simplicity, dielectric layer 55 and upper electrode 56 are not shown), and FIG. 4 is an enlarged view of a high porosity portion of capacitor 51. This is shown schematically. As shown in FIGS. 3 and 4, the capacitor 51 has a substantially rectangular parallelepiped shape. Schematically, the capacitor 51 includes a conductive porous substrate 54 having a high porosity portion 52 in the central portion and a low porosity portion 53 in a side surface portion, and a dielectric formed thereon. A layer 55; an upper electrode 56 formed on the dielectric layer 55; a wiring electrode 57 formed on the upper electrode 56 so as to be electrically connected to the upper electrode 56; and an upper electrode 56 formed thereon. And a protective layer 58. A first capacitor electrode 59 and a second capacitor electrode 60 are provided on the side surface of the conductive porous substrate 54 so as to face each other. The first capacitor electrode 59 is electrically connected to the conductive porous substrate 54, and the second capacitor electrode 60 is electrically connected to the upper electrode 56 via the wiring electrode 57. The upper electrode 56 and the high porosity portion 52 of the conductive porous substrate 54 face each other through the dielectric layer 55. When the conductive porous substrate 54 and the upper electrode 56 are energized through the first capacitor electrode 59 and the second capacitor electrode 60, respectively, charges can be accumulated in the dielectric layer 55.

このようなコンデンサは、図4に示すように導電性多孔基材の両主面に多孔部(高空隙率部)を有し得るので、より大きな静電容量を得ることができる。また、同一平面に2つの電極が存在し得るので、キャリアシート2の表面に両方の電極を接するように配置することができ、本発明のコンデンサ搭載フィルムを、ウエハレベルパッケージに用いる際等に有利である。   Such a capacitor can have a porous portion (high porosity portion) on both main surfaces of the conductive porous substrate as shown in FIG. 4, so that a larger capacitance can be obtained. In addition, since two electrodes can exist on the same plane, both the electrodes can be arranged in contact with the surface of the carrier sheet 2, which is advantageous when the capacitor-mounted film of the present invention is used for a wafer level package. It is.

別の態様において、上記コンデンサは、図5および図6に示されるコンデンサ71であり得る。図5は、コンデンサ71の概略断面図(ただし、簡単のために、細孔は図示していない)を示し、図6は、コンデンサ71の高空隙率部の拡大図を模式的に示す。図5および図6に示されるように、コンデンサ71は、略直方体形状を有しており、概略的には、導電性多孔基材74と、導電性多孔基材74上に形成された誘電体層75と、誘電体層75上に形成された上部電極76とを有して成る。導電性多孔基材74は、一方の主面側に相対的に空隙率が高い高空隙率部72と、相対的に空隙率が低い低空隙率部73を有する。高空隙率部72は、導電性多孔基材74の第1主面(図面上側の主面)の中央部に位置し、その周囲には、低空隙率部73が位置している。つまり、低空隙率部73は、高空隙率部72を囲んでいる。高空隙率部72は、多孔構造を有しており、即ち、多孔部である。また、導電性多孔基材74は、他方の主面(第2主面;図面下側の主面)側に支持部77を有する。即ち、高空隙率部72および低空隙率部73は導電性多孔基材74の第1主面を構成し、支持部77は導電性多孔基材74の第2主面を構成する。図5において、第1主面は、導電性多孔基材74の上面であり、第2主面は、導電性多孔基材74の下面である。コンデンサ71の末端部において、誘電体層75と上部電極76の間には絶縁部82が存在する。コンデンサ71は、上部電極76上に第1コンデンサ電極79、および導電性多孔基材74の支持部77側の主面上に第2コンデンサ電極80を備える。コンデンサ71において、第1コンデンサ電極79と上部電極76とは電気的に接続されており、第2コンデンサ電極80は、導電性多孔基材74の第2主面に電気的に接続されている。上部電極76と、導電性多孔基材74の高空隙率部72は、誘電体層75を介して向かい合っており、上部電極76と導電性多孔基材74に通電すると、誘電体層75に電荷を蓄積することができる。   In another aspect, the capacitor may be the capacitor 71 shown in FIGS. FIG. 5 is a schematic cross-sectional view of the capacitor 71 (for the sake of simplicity, the pores are not shown), and FIG. 6 schematically shows an enlarged view of the high porosity portion of the capacitor 71. As shown in FIGS. 5 and 6, the capacitor 71 has a substantially rectangular parallelepiped shape. In general, the capacitor 71 has a conductive porous substrate 74 and a dielectric formed on the conductive porous substrate 74. It has a layer 75 and an upper electrode 76 formed on the dielectric layer 75. The conductive porous substrate 74 has a high porosity portion 72 having a relatively high porosity and a low porosity portion 73 having a relatively low porosity on one main surface side. The high porosity portion 72 is located at the center of the first main surface (main surface on the upper side of the drawing) of the conductive porous substrate 74, and the low porosity portion 73 is located around it. That is, the low porosity portion 73 surrounds the high porosity portion 72. The high porosity portion 72 has a porous structure, that is, a porous portion. The conductive porous substrate 74 has a support portion 77 on the other main surface (second main surface; main surface on the lower side of the drawing). That is, the high porosity portion 72 and the low porosity portion 73 constitute the first main surface of the conductive porous substrate 74, and the support portion 77 constitutes the second main surface of the conductive porous substrate 74. In FIG. 5, the first main surface is the upper surface of the conductive porous substrate 74, and the second main surface is the lower surface of the conductive porous substrate 74. An insulating portion 82 exists between the dielectric layer 75 and the upper electrode 76 at the end portion of the capacitor 71. The capacitor 71 includes a first capacitor electrode 79 on the upper electrode 76 and a second capacitor electrode 80 on the main surface of the conductive porous substrate 74 on the support portion 77 side. In the capacitor 71, the first capacitor electrode 79 and the upper electrode 76 are electrically connected, and the second capacitor electrode 80 is electrically connected to the second main surface of the conductive porous substrate 74. The upper electrode 76 and the high porosity portion 72 of the conductive porous substrate 74 face each other through the dielectric layer 75, and when the upper electrode 76 and the conductive porous substrate 74 are energized, the dielectric layer 75 is charged. Can be accumulated.

このようなコンデンサは、図6に示すように導電性多孔基材の一方の主面にのみ多孔部(高空隙率部)を有するので、低背化の観点から有利である。   Since such a capacitor has a porous portion (high porosity portion) only on one main surface of the conductive porous substrate as shown in FIG. 6, it is advantageous from the viewpoint of reducing the height.

上記導電性多孔基材は、多孔構造を有し、表面が導電性であれば、その材料および構成は限定されない。例えば、導電性多孔基材としては、多孔質金属基材、または、多孔質シリカ材料、多孔質炭素材料もしくは多孔質セラミック焼結体の表面に導電性の層を形成した基材等が挙げられる。好ましい態様において、導電性多孔基材は、多孔質金属基材である。   If the said electroconductive porous base material has a porous structure and the surface is electroconductive, the material and structure will not be limited. For example, examples of the conductive porous substrate include a porous metal substrate, a substrate in which a conductive layer is formed on the surface of a porous silica material, a porous carbon material, or a porous ceramic sintered body. . In a preferred embodiment, the conductive porous substrate is a porous metal substrate.

上記多孔質金属基材を構成する金属としては、例えば、アルミニウム、タンタル、ニッケル、銅、チタン、ニオブおよび鉄の金属、ならびにステンレス、ジュラルミン等の合金等が挙げられる。好ましくは、多孔質金属基材は、アルミニウム多孔基材である。   Examples of the metal constituting the porous metal substrate include metals such as aluminum, tantalum, nickel, copper, titanium, niobium and iron, and alloys such as stainless steel and duralumin. Preferably, the porous metal substrate is an aluminum porous substrate.

上記導電性多孔基材は、高空隙率部(即ち、多孔部)を有し、さらに低空隙率部および支持部を有していてもよい。   The conductive porous substrate has a high porosity portion (that is, a porous portion), and may further have a low porosity portion and a support portion.

本明細書において、「空隙率」とは、導電性多孔基材において空隙が占める割合を言う。当該空隙率は、下記のようにして測定することができる。尚、上記多孔部の空隙は、コンデンサを作製するプロセスにおいて、最終的に誘電体層および上部電極などで充填され得るが、上記「空隙率」は、このように充填された物質は考慮せず、充填された箇所も空隙とみなして算出する。   In the present specification, the “porosity” refers to the proportion of voids in the conductive porous substrate. The porosity can be measured as follows. The voids in the porous portion can be finally filled with a dielectric layer and an upper electrode in the process of manufacturing a capacitor. However, the “porosity” does not take into account the material filled in this way. In addition, the filled portion is also calculated as a void.

まず、多孔金属基材を、FIB(収束イオンビーム:Focused Ion Beam)マイクロサンプリング法で加工し60nm以下の厚みの薄片試料に加工する。この薄片試料の所定の領域(3μm×3μm)を、STEM(走査透過型電子顕微鏡:Scanning Transmission Electron Microscope)−EDS(エネルギー分散型X線分析:Energy dispersive X-ray spectrometry)マッピング分析で測定する。マッピング測定視野内において、多孔金属基材の金属が存在する面積を求める。そして、下記等式から空隙率を計算することができる。この測定を任意の場所3箇所で行い、測定値の平均値を空隙率とする。
空隙率(%)=((測定面積−基材の金属が存在する面積)/測定面積)×100
First, the porous metal substrate is processed by FIB (Focused Ion Beam) microsampling method into a thin sample having a thickness of 60 nm or less. A predetermined region (3 μm × 3 μm) of the thin sample is measured by STEM (Scanning Transmission Electron Microscope) -EDS (Energy dispersive X-ray spectrometry) mapping analysis. Within the mapping measurement field of view, the area where the metal of the porous metal substrate exists is determined. And the porosity can be calculated from the following equation. This measurement is performed at three arbitrary locations, and the average value of the measured values is taken as the porosity.
Porosity (%) = ((measurement area−area where metal of base material exists) / measurement area) × 100

本明細書において、「高空隙率部」とは、導電性多孔基材の支持部および低空隙率部よりも空隙率が高い部分を意味する。   In the present specification, the “high porosity portion” means a portion having a higher porosity than the support portion and the low porosity portion of the conductive porous substrate.

上記高空隙率部は、多孔構造を有する。多孔構造を有する高空隙率部は、導電性多孔基材の比表面積を大きくし、コンデンサの静電容量をより大きくする。   The high porosity portion has a porous structure. The high porosity portion having a porous structure increases the specific surface area of the conductive porous substrate and increases the capacitance of the capacitor.

高空隙率部の空隙率は、比表面積を大きくして、コンデンサの静電容量をより大きくする観点から、好ましくは20%以上、より好ましくは30%以上、さらにより好ましくは35%以上であり得る。また、機械的強度を確保する観点から、90%以下が好ましく、80%以下がより好ましい。   The porosity of the high porosity part is preferably 20% or more, more preferably 30% or more, and even more preferably 35% or more, from the viewpoint of increasing the specific surface area and increasing the capacitance of the capacitor. obtain. Moreover, from a viewpoint of ensuring mechanical strength, 90% or less is preferable and 80% or less is more preferable.

高空隙率部は、特に限定されないが、好ましくは30倍以上10,000倍以下、より好ましくは50倍以上5,000倍以下、例えば200倍以上600倍以下の拡面率を有する。ここに、拡面率とは、単位投影面積あたりの表面積を意味する。単位投影面積あたりの表面積は、BET比表面積測定装置を用いて、液体窒素温度における窒素の吸着量から求めることができる。   The high porosity portion is not particularly limited, but preferably has a surface expansion ratio of 30 to 10,000 times, more preferably 50 to 5,000 times, for example 200 to 600 times. Here, the area expansion ratio means a surface area per unit projected area. The surface area per unit projected area can be determined from the amount of nitrogen adsorbed at the liquid nitrogen temperature using a BET specific surface area measuring device.

また、拡面率は、次の方法でも求めることができる。上記の試料の断面(厚み方向にカットして得られる断面)のSTEM(走査透過型電子顕微鏡)画像を、幅Xで厚み(高さ)T方向全体にわたって撮影する(一度に撮影できない場合は、複数の画像を連結してもよい)。得られた幅X高さTの断面の細孔表面の総経路長L(細孔表面の合計の長さ)を測定する。ここで、上記幅X高さTの断面を一の側面とし、多孔基材表面を一の底面とする正四角柱領域における細孔表面の総経路長は、LXとなる。また、この正四角柱の底面積はXとなる。従って、拡面率は、LX/X=L/Xとして求めることができる。The area expansion ratio can also be obtained by the following method. STEM (scanning transmission electron microscope) image of the cross section (cross section obtained by cutting in the thickness direction) of the above sample is taken over the entire thickness (height) T direction with a width X (if it cannot be taken at once, Multiple images may be connected). The total path length L (total length of the pore surface) of the pore surface of the obtained cross section of width X height T is measured. Here, the total path length of the pore surface in the regular quadrangular prism region with the cross section having the width X height T as one side surface and the porous substrate surface as one bottom surface is LX. Further, the bottom area of the square prism becomes X 2. Therefore, the area expansion ratio can be obtained as LX / X 2 = L / X.

本明細書において、「低空隙率部」とは、高空隙率部と比較して、空隙率が低い部分を意味する。好ましくは、低空隙率部の空隙率は、高空隙率部の空隙率よりも低く、支持部の空隙率以上である。   In this specification, the “low porosity portion” means a portion having a lower porosity than the high porosity portion. Preferably, the porosity of the low porosity portion is lower than the porosity of the high porosity portion and is equal to or greater than the porosity of the support portion.

低空隙率部の空隙率は、好ましくは20%以下、より好ましくは10%以下である。また、低空隙率部は、空隙率が0%であってもよい。即ち、低空隙率部は、多孔構造を有していても、有していなくてもよい。低空隙率部の空隙率が低いほど、コンデンサの機械的強度が向上する。   The porosity of the low porosity portion is preferably 20% or less, more preferably 10% or less. Further, the low porosity portion may have a porosity of 0%. That is, the low porosity portion may or may not have a porous structure. The lower the porosity of the low porosity portion, the better the mechanical strength of the capacitor.

尚、低空隙率部は、本発明において必須の構成要素ではなく、存在しなくてもよい。   Note that the low porosity portion is not an essential component in the present invention and may not exist.

本発明において、導電性多孔基材の高空隙率部および低空隙率部の存在位置、設置数、大きさ、形状、両者の比率等は、特に限定されない。例えば、導電性多孔基材の一方の主面は、高空隙率部のみからなってもよい。また、高空隙率部と低空隙率部の比率を調整することにより、コンデンサの静電容量を制御することができる。   In the present invention, the position of the high porosity portion and the low porosity portion of the conductive porous substrate, the number of installed portions, the size, the shape, the ratio of the two, etc. are not particularly limited. For example, one main surface of the conductive porous substrate may consist of only a high porosity portion. Further, the capacitance of the capacitor can be controlled by adjusting the ratio of the high porosity portion and the low porosity portion.

上記高空隙率部の厚みは、特に限定されず、目的に応じて適宜選択することができ、例えば3μm以上、好ましくは10μm以上であり、好ましくは1000μm以下、より好ましくは300μm以下、さらに好ましくは50μm以下であってもよい。   The thickness of the high porosity portion is not particularly limited and can be appropriately selected according to the purpose. For example, the thickness is 3 μm or more, preferably 10 μm or more, preferably 1000 μm or less, more preferably 300 μm or less, and still more preferably. It may be 50 μm or less.

導電性多孔基材の支持部の空隙率は、支持体としての機能を発揮するためにより小さいことが好ましく、具体的には10%以下であることが好ましく、実質的に空隙が存在しないことがより好ましい。   The porosity of the support portion of the conductive porous base material is preferably smaller in order to exhibit the function as a support, specifically 10% or less, and there is substantially no void. More preferred.

上記支持部の厚みは、特に限定されないが、コンデンサの機械的強度を高めるために、1μm以上であることが好ましく、例えば3μm以上、5μm以上または10μm以上であり得る。また、コンデンサの低背化の観点からは、100μm以下であることが好ましく、例えば50μm以下または30μm以下であり得る。   The thickness of the support part is not particularly limited, but is preferably 1 μm or more, for example, 3 μm or more, 5 μm or more, or 10 μm or more in order to increase the mechanical strength of the capacitor. Further, from the viewpoint of reducing the height of the capacitor, the thickness is preferably 100 μm or less, and may be, for example, 50 μm or less or 30 μm or less.

上記導電性多孔基材の厚みは、特に限定されず、目的に応じて適宜選択することができ、例えば5μm以上、好ましくは10μm以上であり、例えば1000μm以下、好ましくは100μm以下、より好ましくは70μm以下、さらに好ましくは50μm以下であってもよい。   The thickness of the conductive porous substrate is not particularly limited and can be appropriately selected according to the purpose. For example, the thickness is 5 μm or more, preferably 10 μm or more, for example, 1000 μm or less, preferably 100 μm or less, more preferably 70 μm. Hereinafter, it may be 50 μm or less.

導電性多孔基材の製造方法は、特に限定されない。例えば、導電性多孔基材は、適当な金属材料を、多孔構造を形成する方法、多孔構造を潰す(埋める)方法、または多孔構造部分を除去する方法、あるいはこれらを組み合わせた方法で処理することにより製造することができる。   The method for producing the conductive porous substrate is not particularly limited. For example, a conductive porous substrate is treated with an appropriate metal material by a method of forming a porous structure, a method of crushing (filling) the porous structure, a method of removing a porous structure portion, or a combination of these. Can be manufactured.

導電性多孔基材を製造するための金属材料は、多孔質金属材料(例えば、エッチド箔)、または多孔構造を有しない金属材料(例えば、金属箔)、あるいはこれらの材料を組み合わせた材料であり得る。組み合わせる方法は、特に限定されず、例えば、溶接、圧着または導電性接着剤等により貼り合わせる方法が挙げられる。   The metal material for producing the conductive porous substrate is a porous metal material (for example, etched foil), a metal material having no porous structure (for example, metal foil), or a material combining these materials. obtain. The method of combining is not particularly limited, and examples thereof include a method of bonding by welding, pressure bonding, or a conductive adhesive.

多孔構造を形成する方法としては、特に限定されないが、好ましくはエッチング処理、例えば直流または交流エッチング処理が挙げられる。   The method for forming the porous structure is not particularly limited, but preferably includes an etching treatment such as direct current or alternating current etching treatment.

多孔構造を潰す(埋める)方法としては、特に限定されないが、例えば、レーザー照射等により金属を溶融させて孔を潰す方法、あるいは、金型加工、プレス加工により圧縮して孔を潰す方法が挙げられる。上記レーザーとしては、特に限定されないが、COレーザー、YAGレーザー、エキシマレーザー、ならびにフェムト秒レーザー、ピコ秒レーザーおよびナノ秒レーザー等の全固体パルスレーザーが挙げられる。より精細に形状および空隙率を制御できることから、フェムト秒レーザー、ピコ秒レーザーおよびナノ秒レーザー等の全固体パルスレーザーが好ましい。The method for crushing (filling) the porous structure is not particularly limited. For example, a method of crushing the hole by melting a metal by laser irradiation or the like, or a method of crushing the hole by compressing by mold processing or press processing can be given. It is done. The laser is not particularly limited, and examples thereof include CO 2 laser, YAG laser, excimer laser, and all solid-state pulse laser such as femtosecond laser, picosecond laser, and nanosecond laser. All-solid pulse lasers such as femtosecond lasers, picosecond lasers, and nanosecond lasers are preferred because the shape and porosity can be controlled more precisely.

多孔構造部分を除去する方法としては、特に限定されないが、例えば、ダイサー加工や、レーザーのアブレーション加工が挙げられる。   The method for removing the porous structure portion is not particularly limited, and examples thereof include dicer processing and laser ablation processing.

一の方法において、導電性多孔基材は、多孔質金属材料を準備し、この多孔質金属基材の支持部および低空隙率部に対応する箇所の孔を潰す(埋める)ことによって製造することができる。   In one method, the conductive porous substrate is produced by preparing a porous metal material and crushing (filling) the holes corresponding to the support portion and the low porosity portion of the porous metal substrate. Can do.

支持部および低空隙率部は、同時に形成する必要はなく、別個に形成してもよい。例えば、まず、多孔金属基材の支持部に対応する箇所を処理して、支持部を形成し、次いで、低空隙率部に対応する箇所を処理して、低空隙率部を形成してもよい。   The support portion and the low porosity portion need not be formed at the same time, and may be formed separately. For example, the portion corresponding to the support portion of the porous metal substrate is first processed to form the support portion, and then the portion corresponding to the low porosity portion is processed to form the low porosity portion. Good.

別の方法において、導電性多孔基材は、多孔構造を有しない金属基材(例えば、金属箔)の高空隙率部に対応する箇所を処理して、多孔構造を形成することにより製造することができる。   In another method, the conductive porous substrate is manufactured by processing a portion corresponding to a high porosity portion of a metal substrate (for example, metal foil) having no porous structure to form a porous structure. Can do.

さらに別の方法において、低空隙率部を有しない導電性多孔基材は、多孔質金属材料の支持部に対応する箇所の孔を潰し、次いで、低空隙率部に対応する箇所を除去することにより製造することができる。   In yet another method, the conductive porous base material having no low porosity portion is to crush the holes corresponding to the support portion of the porous metal material, and then remove the locations corresponding to the low porosity portion. Can be manufactured.

本発明で用いられるコンデンサにおいて、高空隙率部上には、誘電体層が形成されている。   In the capacitor used in the present invention, a dielectric layer is formed on the high porosity portion.

上記誘電体層を形成する材料は、絶縁性であれば特に限定されないが、好ましくは、AlO(例えば、Al)、SiO(例えば、SiO)、AlTiO、SiTiO、HfO、TaO、ZrO、HfSiO、ZrSiO、TiZrO、TiZrWO、TiO、SrTiO、PbTiO、BaTiO、BaSrTiO、BaCaTiO、SiAlO等の金属酸化物;AlN、SiN、AlScN等の金属窒化物;またはAlO、SiO、HfSiO、SiCNz等の金属酸窒化物が挙げられ、AlO、SiO、SiO、HfSiOが好ましい。なお、上記の式は、単に材料の構成を表現するものであり、組成を限定するものではない。即ち、OおよびNに付されたx、yおよびzは0より大きい任意の値であってもよく、金属元素を含む各元素の存在比率は任意である。The material for forming the dielectric layer is not particularly limited as long as it is insulative, but preferably, AlO x (for example, Al 2 O 3 ), SiO x (for example, SiO 2 ), AlTiO x , SiTiO x , HfO. x, TaO x, ZrO x, HfSiO x, ZrSiO x, TiZrO x, TiZrWO x, TiO x, SrTiO x, PbTiO x, BaTiO x, BaSrTiO x, BaCaTiO x, metal oxides such as SiAlO x; AlN x, SiN metal nitrides such as x and AlScN x ; or metal oxynitrides such as AlO x N y , SiO x N y , HfSiO x N y , and SiC x O y Nz, and AlO x , SiO x , and SiO x N y and HfSiO x are preferred. Note that the above formula merely represents the structure of the material and does not limit the composition. That is, x, y, and z attached to O and N may be any value greater than 0, and the abundance ratio of each element including a metal element is arbitrary.

誘電体層の厚みは、特に限定されないが、例えば5nm以上100nm以下が好ましく、10nm以上50nm以下がより好ましい。誘電体層の厚みを5nm以上とすることにより、絶縁性を高めることができ、漏れ電流を小さくすることが可能になる。また、誘電体層の厚みを100nm以下とすることにより、より大きな静電容量を得ることが可能になる。   Although the thickness of a dielectric material layer is not specifically limited, For example, 5 nm or more and 100 nm or less are preferable, and 10 nm or more and 50 nm or less are more preferable. By setting the thickness of the dielectric layer to 5 nm or more, it is possible to improve the insulation and to reduce the leakage current. Further, by setting the thickness of the dielectric layer to 100 nm or less, it is possible to obtain a larger capacitance.

上記誘電体層は、好ましくは、気相法、例えば真空蒸着法、化学蒸着(CVD:Chemical Vapor Deposition)法、スパッタ法、原子層堆積(ALD:Atomic Layer Deposition)法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法等により形成される。多孔部材の細孔の細部にまでより均質で緻密な膜を形成できることから、ALD法がより好ましい。   The dielectric layer is preferably formed by a vapor phase method such as a vacuum vapor deposition method, a chemical vapor deposition (CVD) method, a sputtering method, an atomic layer deposition (ALD) method, or a pulsed laser deposition (PLD). It is formed by the Pulsed Laser Deposition) method or the like. The ALD method is more preferable because a more uniform and dense film can be formed in the fine pores of the porous member.

一の態様において(例えば、コンデンサ71において)、誘電体層の末端部には、絶縁部82が設けられている。絶縁部を設置することにより、その上に設置される上部電極と導電性多孔基材間での短絡(ショート)を防止することができる。   In one embodiment (for example, in the capacitor 71), an insulating portion 82 is provided at the end of the dielectric layer. By installing the insulating portion, it is possible to prevent a short circuit (short circuit) between the upper electrode and the conductive porous base material installed thereon.

尚、コンデンサ71においては、絶縁部は、低空隙率部上の全体に存在するが、これに限定されず、低空隙率部の一部のみに存在してもよく、また、低空隙率部を超えて、高空隙率部上にまで存在してもよい。   In the capacitor 71, the insulating portion is present on the entire low porosity portion, but is not limited thereto, and may be present only in a part of the low porosity portion. Over the high porosity part.

また、コンデンサ71においては、絶縁部は、誘電体層と上部電極の間に位置しているが、これに限定されない。絶縁部は、導電性多孔基材と上部電極の間に位置していればよく、例えば低空隙率部と誘電体層の間に位置していてもよい。   Further, in the capacitor 71, the insulating portion is located between the dielectric layer and the upper electrode, but is not limited thereto. The insulation part should just be located between a conductive porous base material and an upper electrode, for example, may be located between the low porosity part and a dielectric material layer.

絶縁部を形成する材料は、絶縁性であれば特に限定されないが、後に原子層堆積法を利用する場合、耐熱性を有する樹脂が好ましい。絶縁部を形成する絶縁性材料としては、各種ガラス材料、セラミック材料、ポリイミド系樹脂、フッ素系樹脂が好ましい。   The material for forming the insulating portion is not particularly limited as long as it is insulative, but a resin having heat resistance is preferable when an atomic layer deposition method is used later. As the insulating material forming the insulating portion, various glass materials, ceramic materials, polyimide resins, and fluorine resins are preferable.

絶縁部の厚みは、特に限定されないが、端面放電をより確実に防止することと、各部品に個片化加工する際に電極間が短絡することを防止する観点から、1μm以上であることが好ましく、例えば5μm以上または10μm以上であり得る。また、コンデンサの低背化の観点からは、100μm以下であることが好ましく、例えば50μm以下または20μm以下であり得る。   The thickness of the insulating part is not particularly limited, but it may be 1 μm or more from the viewpoint of more reliably preventing end face discharge and short-circuiting between the electrodes when individualizing each part. For example, it may be 5 μm or more or 10 μm or more. Further, from the viewpoint of reducing the height of the capacitor, the thickness is preferably 100 μm or less, and may be, for example, 50 μm or less or 20 μm or less.

尚、本発明に用いられるコンデンサにおいて、絶縁部は必須の要素ではなく、存在しなくてもよい。   In addition, in the capacitor | condenser used for this invention, an insulation part is not an essential element and does not need to exist.

上記誘電体層上には、上部電極が形成されている。   An upper electrode is formed on the dielectric layer.

上記上部電極を構成する材料は、導電性であれば特に限定されないが、Ni、Cu、Al、W、Ti、Ag、Au、Pt、Zn、Sn、Pb、Fe、Cr、Mo、Ru、Pd、Taおよびそれらの合金、例えばCuNi、AuNi、AuSn、ならびにTiN、TiAlN、TiON、TiAlON、TaN等の金属窒化物、金属酸窒化物、導電性高分子(例えば、PEDOT(ポリ(3,4−エチレンジオキシチオフェン))、ポリピロール、ポリアニリン)などが挙げられ、TiN、TiONが好ましい。   The material constituting the upper electrode is not particularly limited as long as it is conductive, but Ni, Cu, Al, W, Ti, Ag, Au, Pt, Zn, Sn, Pb, Fe, Cr, Mo, Ru, Pd , Ta and alloys thereof such as CuNi, AuNi, AuSn, and metal nitrides such as TiN, TiAlN, TiON, TiAlON, and TaN, metal oxynitrides, conductive polymers (eg, PEDOT (poly (3,4- Ethylenedioxythiophene)), polypyrrole, polyaniline) and the like, and TiN and TiON are preferred.

上部電極の厚みは、特に限定されないが、例えば3nm以上が好ましく、10nm以上がより好ましい。上部電極の厚みを3nm以上とすることにより、上部電極自体の抵抗を小さくすることができる。   Although the thickness of an upper electrode is not specifically limited, For example, 3 nm or more is preferable and 10 nm or more is more preferable. By setting the thickness of the upper electrode to 3 nm or more, the resistance of the upper electrode itself can be reduced.

上部電極は、ALD法により形成してもよい。ALD法を用いることにより、コンデンサの静電容量をより大きくすることができる。別法として、誘電体層を被覆し、多孔金属基材の細孔を実質的に埋めることのできる、化学蒸着(CVD:Chemical Vapor Deposition)法、めっき、バイアススパッタ、Sol−Gel法、導電性高分子充填などの方法で、上部電極を形成してもよい。好ましくは、誘電体層上にALD法で導電性膜を形成し、その上から他の手法により、導電性材料、好ましくはより電気抵抗の小さな物質で細孔を充填して上部電極を形成してもよい。このような構成とすることにより、効率的により高い容量密度および低い等価直列抵抗(ESR:Equivalent Series Resistance)を得ることができる。   The upper electrode may be formed by an ALD method. By using the ALD method, the capacitance of the capacitor can be increased. Alternatively, the dielectric layer can be coated to substantially fill the pores of the porous metal substrate, chemical vapor deposition (CVD) method, plating, bias sputtering, Sol-Gel method, conductivity The upper electrode may be formed by a method such as polymer filling. Preferably, a conductive film is formed on the dielectric layer by the ALD method, and the upper electrode is formed by filling the pores with a conductive material, preferably a substance having a lower electrical resistance, by another method. May be. With such a configuration, a higher capacity density and a lower equivalent series resistance (ESR) can be obtained efficiently.

なお、上部電極を形成後、上部電極がコンデンサ電極としての十分な導電性を有していない場合には、スパッタ、蒸着、めっき等の方法で、上部電極の表面に追加でAl、Cu、Ni等からなる引き出し電極層を形成してもよい。   In addition, after forming the upper electrode, if the upper electrode does not have sufficient conductivity as a capacitor electrode, the surface of the upper electrode is additionally added to the surface of the upper electrode by a method such as sputtering, vapor deposition, or plating. A lead electrode layer made of, for example, may be formed.

一の態様において、上部電極と電気的に接続するように、第1コンデンサ電極が形成され、導電性多孔基材と電気的に接続するように第2コンデンサ電極が形成されていてもよい。   In one aspect, the first capacitor electrode may be formed so as to be electrically connected to the upper electrode, and the second capacitor electrode may be formed so as to be electrically connected to the conductive porous substrate.

上記コンデンサ電極を構成する材料は、特に限定されないが、例えば、Au、Pb、Pd、Ag、Sn、Ni、Cu等の金属および合金、ならびに導電性高分子などが挙げられる。第1コンデンサ電極の形成方法は、特に限定されず、例えばCVD法、電解めっき、無電解めっき、蒸着、スパッタ、導電性ペーストの焼き付け等を用いることができ、電解めっき、無電解めっき、蒸着、スパッタ等が好ましい。   Although the material which comprises the said capacitor electrode is not specifically limited, For example, metals and alloys, such as Au, Pb, Pd, Ag, Sn, Ni, Cu, and a conductive polymer are mentioned. The method of forming the first capacitor electrode is not particularly limited, and for example, CVD method, electrolytic plating, electroless plating, vapor deposition, sputtering, baking of conductive paste, etc. can be used, and electrolytic plating, electroless plating, vapor deposition, Sputtering is preferred.

尚、上記コンデンサ電極は、設置箇所、大きさ等は特に限定されず、各面の一部のみに、任意の形状および大きさで設置することができる。また、上記第1コンデンサ電極および第2コンデンサ電極は、必須の要素ではなく、存在しなくてもよい。この場合、上部電極が第1コンデンサ電極としても機能し、導電性基材が第2コンデンサとして機能してもよい。つまり、上部電極と導電性多孔基材とが一対の電極として機能してもよい。この場合、上部電極がアノードとして機能し、導電性多孔基材がカソードとして機能してもよい。あるいは、上部電極がカソードとして機能し、導電性多孔基材がアノードとして機能してもよい。   The capacitor electrode is not particularly limited in installation location, size, etc., and can be installed in any shape and size only on a part of each surface. The first capacitor electrode and the second capacitor electrode are not essential elements and may not exist. In this case, the upper electrode may function as the first capacitor electrode, and the conductive base material may function as the second capacitor. That is, the upper electrode and the conductive porous substrate may function as a pair of electrodes. In this case, the upper electrode may function as an anode, and the conductive porous substrate may function as a cathode. Alternatively, the upper electrode may function as a cathode and the conductive porous substrate may function as an anode.

上記したコンデンサ51およびコンデンサ71は、略直方体形状であるが、本発明に用いられるコンデンサはこれに限定されない。コンデンサは、任意の形状とすることができ、例えば、平面形状が円状、楕円状、また角が丸い四角形等であってもよい。   The capacitor 51 and the capacitor 71 described above have a substantially rectangular parallelepiped shape, but the capacitor used in the present invention is not limited to this. The capacitor can have any shape, and for example, the planar shape may be a circle, an ellipse, or a square with rounded corners.

また、本発明に用いられるコンデンサは、種々の改変が可能である。   In addition, the capacitor used in the present invention can be variously modified.

例えば、各層の間に、層間の密着性を高める為の層、または、各層間の成分の拡散を防止するためのバッファー層等を有していてもよい。また、コンデンサの側面等に、保護層を有していてもよい。   For example, a layer for improving adhesion between layers or a buffer layer for preventing diffusion of components between the layers may be provided between the layers. Moreover, you may have a protective layer in the side surface etc. of a capacitor | condenser.

一の態様において、搭載されるコンデンサは、配線用電極を有し得る。例えば、図7および図8に示されるように、上記コンデンサ21の一方のコンデンサ電極22上に、配線用電極23を有し得る。また、図9および図10に記載されるように、コンデンサ25の電極を延在させて、配線用電極26としてもよい。   In one aspect, the mounted capacitor may have a wiring electrode. For example, as shown in FIGS. 7 and 8, a wiring electrode 23 may be provided on one capacitor electrode 22 of the capacitor 21. Further, as described in FIGS. 9 and 10, the electrode of the capacitor 25 may be extended to serve as the wiring electrode 26.

好ましい態様において、上記配線用電極の一部は、別のコンデンサ電極と同一平面上に存在する。このような配線用電極を備えることにより、主面の両平面にそれぞれの電極を有する構造のコンデンサであっても、両電極をキャリアシート上に引き出すことができ(図11参照)、ウエハレベルパッケージにおいて好適に用いることが可能になる。   In a preferred embodiment, a part of the wiring electrode is present on the same plane as another capacitor electrode. By providing such wiring electrodes, it is possible to draw both electrodes on the carrier sheet even if the capacitor has a structure having the electrodes on both main surfaces (see FIG. 11). Can be suitably used.

一の態様において、コンデンサ3は、少なくとも一方の電極がキャリアシート2の表面に接するように配置される。このように配置することにより、本発明のコンデンサ搭載フィルムを、ウエハレベルパッケージに用いることができる。   In one embodiment, the capacitor 3 is arranged such that at least one electrode is in contact with the surface of the carrier sheet 2. With this arrangement, the capacitor-mounted film of the present invention can be used for a wafer level package.

キャリアシート2上に搭載されるコンデンサ3の数は、特に限定されず、1個またはそれ以上であってもよいが、好ましくは2個以上であり、例えば10個以上、20個以上、50個以上であり得る。   The number of capacitors 3 mounted on the carrier sheet 2 is not particularly limited, and may be one or more, but is preferably two or more, for example, 10 or more, 20 or more, 50 That can be the case.

コンデンサをキャリアシートに固定する方法は、特に限定されないが、後にコンデンサをキャリアシートから容易に剥がすことができる方法が好ましい。例えば、上記したような粘着剤、例えばウレタン系粘着剤、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤等、中でも、感温性粘着剤(例えば、インテリマー(登録商標)テープ)を用いる方法が好ましい。コンプレッションモールドまたはトランスファーモールドで樹脂層を形成する場合には耐熱性を有することが好ましく、樹脂層形成後においては樹脂層や各種部品からキャリアシートが容易に剥がしやすいことが好ましい。また、コンプレッションモールドまたはトランスファーモールドにおいて、基板またはリードフレーム等へ樹脂が回り込むのを防止するためにフィルムを用いることがあるが、本発明のフィルムは、上記フィルムを兼ねることができる。   The method for fixing the capacitor to the carrier sheet is not particularly limited, but a method that can easily peel the capacitor from the carrier sheet later is preferable. For example, the above-mentioned pressure sensitive adhesive, such as urethane pressure sensitive adhesive, rubber pressure sensitive adhesive, acrylic pressure sensitive adhesive, silicone pressure sensitive adhesive, among others, temperature sensitive pressure sensitive adhesive (for example, Intellimer (registered trademark) tape). The method used is preferred. When the resin layer is formed by a compression mold or a transfer mold, it is preferable to have heat resistance, and after the resin layer is formed, the carrier sheet is preferably easily peeled off from the resin layer and various parts. Further, in the compression mold or transfer mold, a film may be used to prevent the resin from wrapping around the substrate or the lead frame, but the film of the present invention can also serve as the film.

一の態様において、コンデンサは、複数のコンデンサが内蔵されたコンデンサ内蔵フィルムまたは基板として、キャリアシート上に搭載されてもよい。   In one aspect, the capacitor may be mounted on the carrier sheet as a capacitor built-in film or substrate in which a plurality of capacitors are built.

コンデンサ内蔵フィルムまたは基板は、特に限定されず、種々の形態を有するものを用いることができ、例えば、それぞれ図12(a)〜(c)に記載のような、コンデンサ31が基板32中に内蔵され、さらに配線33が内蔵され両主面に引き出された内蔵基板34、一方の主面にのみ引き出された内蔵基板35、またはコンデンサの電極が露出した内蔵基板36等を用いることができる。   The film or substrate with a built-in capacitor is not particularly limited, and films having various forms can be used. For example, the capacitor 31 is built in the substrate 32 as shown in FIGS. Further, the built-in substrate 34 in which the wiring 33 is embedded and drawn out on both main surfaces, the built-in substrate 35 drawn only on one main surface, or the built-in substrate 36 in which the electrode of the capacitor is exposed can be used.

キャリアシート2上に搭載されたコンデンサ3の配置は、目的に応じて適宜設定することができ特に限定されないが、好ましくは所望の回路構成に対応する位置に配置される。   The arrangement of the capacitors 3 mounted on the carrier sheet 2 can be appropriately set according to the purpose and is not particularly limited, but is preferably arranged at a position corresponding to a desired circuit configuration.

上記キャリアシート2上には、コンデンサ3に加え、他の電子部品、例えばインダクタ、半導体部品、配線等、および電子部品を内蔵したフィルムまたは基板を搭載することができる。これらの電子部品は、好ましくは所望の回路構成に対応する位置に配置される。   On the carrier sheet 2, in addition to the capacitor 3, other electronic components such as inductors, semiconductor components, wirings, etc., and a film or substrate incorporating the electronic components can be mounted. These electronic components are preferably arranged at positions corresponding to a desired circuit configuration.

一の態様において、電子部品が所定のパターンで搭載された区画が、複数形成されるように、各種電子部品を搭載することができる。例えば、図13に示されるように、コンデンサ3に加え、インダクタ4、半導体部品5を所定のパターンで配置してもよい。また、図14に示されるように、さらに内蔵基板7を所定のパターンで配置してもよい。また、図15に示されるに、コンデンサ3を内蔵した内蔵基板8および半導体部品5を、所定のパターンで配置してもよい。このように搭載することにより、本発明のコンデンサ搭載フィルムは、例えばウエハレベルパッケージの製造における一部品として、より好適に用いることができる。   In one aspect, various electronic components can be mounted such that a plurality of sections on which electronic components are mounted in a predetermined pattern are formed. For example, as shown in FIG. 13, in addition to the capacitor 3, the inductor 4 and the semiconductor component 5 may be arranged in a predetermined pattern. Further, as shown in FIG. 14, the built-in substrate 7 may be further arranged in a predetermined pattern. Further, as shown in FIG. 15, the built-in substrate 8 and the semiconductor component 5 in which the capacitor 3 is built may be arranged in a predetermined pattern. By mounting in this way, the capacitor mounting film of the present invention can be used more suitably as, for example, one component in the manufacture of a wafer level package.

本発明のコンデンサ搭載フィルムに搭載されたコンデンサは、コンデンサにかかる応力が抑制されているので、脆性破壊を受けにくい。このような効果は、導電性多孔基材を用いたコンデンサにおいて、特に、薄型のコンデンサにおいて、より顕著である。また、本発明のコンデンサ搭載フィルムは、ファンアウトウエハレベルパッケージにおいて好適に用いられる。   The capacitor mounted on the capacitor mounting film of the present invention is less susceptible to brittle fracture because the stress applied to the capacitor is suppressed. Such an effect is more remarkable in a capacitor using a conductive porous substrate, particularly in a thin capacitor. Further, the capacitor-mounted film of the present invention is suitably used in a fan-out wafer level package.

例えば、本発明のコンデンサ搭載フィルムは、以下のようにしてファンアウトウエハレベルパッケージングに用いられる。   For example, the capacitor-mounted film of the present invention is used for fan-out wafer level packaging as follows.

まず、キャリアシート12上に所定のパターンでコンデンサ13が配置された本発明のコンデンサ搭載フィルム11を準備する(図16(a))。次、キャリアシート12上に、他の電子部品、例えば半導体部品14を配置し(図16(b))、コンデンサ13および半導体部品14の上に、コンプレッションモールドまたはトランスファーモールド、あるいは液状樹脂のディスペンサー塗布、スクリーン印刷等により、樹脂層15を形成する(図16(c))。次いで、キャリアシート12を除去して、コンデンサ13および半導体部品14の底部を露出させ(図16(d))、露出した電極部と電気的に接続した配線層16を形成する(図16(e))。最後に個片化して、パッケージを製造することができる(図16(f))。   First, the capacitor mounting film 11 of the present invention in which the capacitors 13 are arranged in a predetermined pattern on the carrier sheet 12 is prepared (FIG. 16A). Next, another electronic component such as a semiconductor component 14 is disposed on the carrier sheet 12 (FIG. 16B), and a compression mold or a transfer mold or a liquid resin dispenser is applied on the capacitor 13 and the semiconductor component 14. Then, the resin layer 15 is formed by screen printing or the like (FIG. 16C). Next, the carrier sheet 12 is removed to expose the bottoms of the capacitor 13 and the semiconductor component 14 (FIG. 16D), and the wiring layer 16 electrically connected to the exposed electrode portions is formed (FIG. 16E). )). Finally, it can be separated into individual pieces to produce a package (FIG. 16F).

本発明のコンデンサ搭載フィルムは、取り扱いが容易であり、種々の電子機器または電子部品の製造に用いることができる。本発明のコンデンサ搭載フィルム、特に、ウエハレベルパッケージングにおいて、好適に用いることができる。   The capacitor-mounted film of the present invention is easy to handle and can be used for manufacturing various electronic devices or electronic components. The capacitor-mounted film of the present invention, particularly in wafer level packaging, can be suitably used.

1…コンデンサ搭載フィルム;2…キャリアシート;3…コンデンサ;
4…インダクタ;5…半導体部品;7…内蔵基板;8…内蔵基板;
11…コンデンサ搭載フィルム;12…キャリアシート;
13…コンデンサ;14…半導体部品;15…樹脂層;16…配線層;
21…コンデンサ;22…コンデンサ電極;23…配線用電極;
25…コンデンサ;26…配線用電極;
31…コンデンサ;32…基板;33…配線;34…内蔵基板;
35…内蔵基板;36…内蔵基板;
51…コンデンサ;52…高空隙率部;53…低空隙率部;
54…導電性多孔基材;55…誘電体層;56…上部電極;
57…配線電極;58…保護層;59…第1コンデンサ電極;
60…第2コンデンサ電極;
71…コンデンサ;72…高空隙率部;73…低空隙率部;
74…導電性多孔基材;75…誘電体層;76…上部電極;
77…支持部;79…第1コンデンサ電極;
80…第2コンデンサ電極;82…絶縁部
1 ... Capacitor mounted film; 2 ... Carrier sheet; 3 ... Capacitor;
4 ... Inductor; 5 ... Semiconductor component; 7 ... Built-in substrate; 8 ... Built-in substrate;
11 ... Capacitor-mounted film; 12 ... Carrier sheet;
13: Capacitor; 14 ... Semiconductor component; 15 ... Resin layer; 16 ... Wiring layer;
21 ... Capacitor; 22 ... Capacitor electrode; 23 ... Wiring electrode;
25 ... Capacitor; 26 ... Wiring electrode;
31 ... Capacitor; 32 ... Substrate; 33 ... Wiring; 34 ... Built-in substrate;
35 ... Built-in substrate; 36 ... Built-in substrate;
51: Capacitor; 52 ... High porosity portion; 53 ... Low porosity portion;
54 ... conductive porous substrate; 55 ... dielectric layer; 56 ... top electrode;
57 ... wiring electrode; 58 ... protective layer; 59 ... first capacitor electrode;
60 ... second capacitor electrode;
71: capacitor; 72 ... high porosity portion; 73 ... low porosity portion;
74 ... conductive porous substrate; 75 ... dielectric layer; 76 ... upper electrode;
77 ... support part; 79 ... first capacitor electrode;
80 ... second capacitor electrode; 82 ... insulating portion

Claims (4)

キャリアシート上にコンデンサが配置されているコンデンサ搭載フィルムであって、
上記コンデンサの少なくとも一つが、導電性多孔基材と、導電性多孔基材上に位置する誘電体層と、誘電体層上に位置する上部電極とを有して成るコンデンサであることを特徴とする、コンデンサ搭載フィルム。
A capacitor-mounted film in which capacitors are placed on a carrier sheet,
At least one of the capacitors is a capacitor having a conductive porous substrate, a dielectric layer located on the conductive porous substrate, and an upper electrode located on the dielectric layer. Capacitor-equipped film.
上記コンデンサの導電性多孔基材が、一方の主面にのみ多孔部を有することを特徴とする、請求項1に記載のコンデンサ搭載フィルム。   2. The capacitor-mounted film according to claim 1, wherein the conductive porous substrate of the capacitor has a porous portion only on one main surface. 上記コンデンサの誘電体層および/または上部電極が、原子層堆積法により形成されていることを特徴とする、請求項1または2に記載のコンデンサ搭載フィルム。   The capacitor mounting film according to claim 1 or 2, wherein the dielectric layer and / or the upper electrode of the capacitor is formed by an atomic layer deposition method. 上記コンデンサが、配線用電極を有することを特徴とする、請求項1〜3のいずれか1項に記載のコンデンサ搭載フィルム。   The said capacitor | condenser has an electrode for wiring, The capacitor | condenser mounting film of any one of Claims 1-3 characterized by the above-mentioned.
JP2017534137A 2015-08-11 2016-07-06 Capacitor mounted film Pending JPWO2017026207A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015159162 2015-08-11
JP2015159162 2015-08-11
PCT/JP2016/069987 WO2017026207A1 (en) 2015-08-11 2016-07-06 Capacitor-mounted film

Publications (1)

Publication Number Publication Date
JPWO2017026207A1 true JPWO2017026207A1 (en) 2018-05-10

Family

ID=57983150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017534137A Pending JPWO2017026207A1 (en) 2015-08-11 2016-07-06 Capacitor mounted film

Country Status (4)

Country Link
JP (1) JPWO2017026207A1 (en)
KR (1) KR20180022987A (en)
TW (1) TWI621222B (en)
WO (1) WO2017026207A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314768A (en) * 1992-06-08 1994-11-08 Nec Corp Thin-film capacitor and integrated circuit
JP2004134430A (en) * 2002-10-08 2004-04-30 Tdk Corp Electronic component
JP2005175356A (en) * 2003-12-15 2005-06-30 Matsushita Electric Ind Co Ltd Apparatus and method for picking up electronic component
JP2006049816A (en) * 2004-07-05 2006-02-16 Sumitomo Metal Mining Co Ltd Porous bulb metal film
JP2009170871A (en) * 2007-12-21 2009-07-30 Sumitomo Metal Mining Co Ltd Porous valve metal electrode and method of manufacturing the same
JP2010074172A (en) * 2008-09-22 2010-04-02 Imec Method of forming memory cell including capacitor that includes strontium titanate based dielectric layer, and device obtained therefrom
JP2010269901A (en) * 2009-05-22 2010-12-02 Alpha- Design Kk Transfer device
JP2011165683A (en) * 2008-04-16 2011-08-25 Nec Corp Capacitor
JP2014207422A (en) * 2013-03-19 2014-10-30 株式会社村田製作所 Electronic component and electronic component series

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314768A (en) * 1992-06-08 1994-11-08 Nec Corp Thin-film capacitor and integrated circuit
JP2004134430A (en) * 2002-10-08 2004-04-30 Tdk Corp Electronic component
JP2005175356A (en) * 2003-12-15 2005-06-30 Matsushita Electric Ind Co Ltd Apparatus and method for picking up electronic component
JP2006049816A (en) * 2004-07-05 2006-02-16 Sumitomo Metal Mining Co Ltd Porous bulb metal film
JP2009170871A (en) * 2007-12-21 2009-07-30 Sumitomo Metal Mining Co Ltd Porous valve metal electrode and method of manufacturing the same
JP2011165683A (en) * 2008-04-16 2011-08-25 Nec Corp Capacitor
JP2010074172A (en) * 2008-09-22 2010-04-02 Imec Method of forming memory cell including capacitor that includes strontium titanate based dielectric layer, and device obtained therefrom
JP2010269901A (en) * 2009-05-22 2010-12-02 Alpha- Design Kk Transfer device
JP2014207422A (en) * 2013-03-19 2014-10-30 株式会社村田製作所 Electronic component and electronic component series

Also Published As

Publication number Publication date
KR20180022987A (en) 2018-03-06
WO2017026207A1 (en) 2017-02-16
TW201717331A (en) 2017-05-16
TWI621222B (en) 2018-04-11

Similar Documents

Publication Publication Date Title
TWI646564B (en) Capacitor
TWI616912B (en) Capacitor and method of manufacturing same
US10734164B2 (en) Capacitor and method for manufacturing capacitor
JP6558439B2 (en) Capacitor and manufacturing method thereof
WO2017014020A1 (en) Capacitor and method for manufacturing same
US10546691B2 (en) Capacitor and method for manufacturing the same
US9865400B2 (en) Capacitor
JP6432685B2 (en) Capacitor
WO2017026207A1 (en) Capacitor-mounted film
WO2017026195A1 (en) Method for manufacturing embedded capacitor substrate
JPWO2017026295A1 (en) Capacitor
WO2018174132A1 (en) Capacitor
WO2018151028A1 (en) Capacitor
US20170040114A1 (en) Capacitor and manufacturing method therefor
JP6769480B2 (en) Wafer level packages and capacitors
TW201711069A (en) Capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190917