JP4555204B2 - Aluminum cathode foil for electrolytic capacitors - Google Patents

Aluminum cathode foil for electrolytic capacitors Download PDF

Info

Publication number
JP4555204B2
JP4555204B2 JP2005281252A JP2005281252A JP4555204B2 JP 4555204 B2 JP4555204 B2 JP 4555204B2 JP 2005281252 A JP2005281252 A JP 2005281252A JP 2005281252 A JP2005281252 A JP 2005281252A JP 4555204 B2 JP4555204 B2 JP 4555204B2
Authority
JP
Japan
Prior art keywords
carbon
aluminum
film
foil
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005281252A
Other languages
Japanese (ja)
Other versions
JP2007095865A (en
Inventor
昌人 赤尾
勝 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2005281252A priority Critical patent/JP4555204B2/en
Publication of JP2007095865A publication Critical patent/JP2007095865A/en
Application granted granted Critical
Publication of JP4555204B2 publication Critical patent/JP4555204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、電解コンデンサ用アルミニウム陰極箔に関するものである。 The present invention relates to an aluminum cathode foil for electrolytic capacitor.

高い静電容量を得る電解コンデンサ用アルミニウム陰極箔の製造方法としては、アルミニウム基材にTiを蒸着処理する手法が知られている(例えば、非特許文献1参照)。
その代表的な製造方法としては、アルゴンなどの不活性ガス雰囲気中で、粗面化したアルミニウム基材上に、Tiの微粒子を蒸着する方法(例えば、特許文献1、2、3参照)、雰囲気ガスとして窒素を使用し、陽極アーク蒸着法によりイオン化し、TiN皮膜を得る方法(例えば、特許文献4、5参照)、Tiを蒸着する際、基材への入射角度を変化させて、多孔質のTiやTiN膜を生成させる方法(例えば、特許文献6、7参照)が開示されている。
As a method for producing an aluminum cathode foil for an electrolytic capacitor that obtains a high capacitance, a technique of depositing Ti on an aluminum substrate is known (for example, see Non-Patent Document 1).
As a typical manufacturing method thereof, a method of depositing fine particles of Ti on a roughened aluminum substrate in an inert gas atmosphere such as argon (for example, see Patent Documents 1, 2, and 3), an atmosphere A method of obtaining a TiN film by using nitrogen as a gas and ionizing by an anodic arc vapor deposition method (see, for example, Patent Documents 4 and 5). When depositing Ti, the incident angle on the base material is changed to make it porous. A method for generating a Ti or TiN film (see, for example, Patent Documents 6 and 7) is disclosed.

しかしながら、これらのTiやTiNをアルミニウム基材に蒸着処理した陰極箔(以下、Ti蒸着箔という)は、高い静電容量が得られるにもかかわらず、Tiの表面に酸化皮膜が徐々に成長するため、静電容量の低下(経時変化)が大きいという問題点を有している(例えば、非特許文献1参照)。
一方、電気二重層コンデンサには、カーボン微粒子や活性炭をアルミニウム基材に塗布した、極めて実表面積の(静電容量の)大きな電極箔(以下、カーボン塗布箔と呼ぶ)が使用されている(例えば、非特許文献1参照)。
However, the cathode foil (hereinafter referred to as Ti vapor-deposited foil) obtained by vapor-depositing Ti or TiN on an aluminum base material has an oxide film that gradually grows on the surface of Ti even though high capacitance is obtained. For this reason, there is a problem in that the decrease in capacitance (change over time) is large (see, for example, Non-Patent Document 1).
On the other hand, an electric double layer capacitor uses an electrode foil (hereinafter referred to as a carbon coated foil) having a very large real surface area (hereinafter referred to as a carbon coated foil) in which carbon fine particles and activated carbon are coated on an aluminum substrate (for example, referred to as carbon coated foil). Non-Patent Document 1).

カーボンそのものは、化学的に安定で酸化皮膜を生成しないため、電解コンデンサ用の陰極材料としては理想的な材料であり、塗布による製造方法は、安価で生産性も高く、工業的にも優れている。
特許第1674572号公報 特許第1636763号公報 特許第1631296号公報 特許第2687299号公報 特許第2864477号公報 特許第3168587号公報 特許第3475193号公報 永田伊佐也著,「電解液陰極アルミニウム電解コンデンサ」,日本蓄電器工業株式会社,平成9年2月24日,P344〜345,P20〜23
Since carbon itself is chemically stable and does not produce an oxide film, it is an ideal material as a cathode material for electrolytic capacitors, and the manufacturing method by coating is inexpensive, has high productivity, and is industrially superior. Yes.
Japanese Patent No. 1674572 Japanese Patent No. 1636763 Japanese Patent No. 1631296 Japanese Patent No. 2687299 Japanese Patent No. 2864477 Japanese Patent No. 3168588 Japanese Patent No. 3475193 By Isaya Nagata, “Electrolytic Cathode Aluminum Electrolytic Capacitor”, Nippon Electric Storage Co., Ltd., February 24, 1997, P344-345, P20-23

しかしながら、通常、電解コンデンサの駆動用電解液には、水分が含まれるため、充放電等により、わずかでも逆電圧が印加された場合、カーボン塗布箔の場合、カーボン塗布材とアルミニウム基材との間に、アルミニウムの酸化皮膜が生成して絶縁状態となり、電解コンデンサ用アルミニウム陰極箔としては使用できないという問題点を有する。   However, since the electrolytic solution for driving the electrolytic capacitor usually contains moisture, when a slight reverse voltage is applied by charging / discharging or the like, in the case of a carbon coating foil, the carbon coating material and the aluminum base material In the meantime, an oxide film of aluminum is generated to be in an insulating state, and there is a problem that it cannot be used as an aluminum cathode foil for electrolytic capacitors.

このように、Ti蒸着箔、カーボン塗布箔共に、高い静電容量が得られるにもかかわらず、電解コンデンサ用アルミニウム陰極箔としては、特性的に不十分である。   As described above, both the Ti vapor-deposited foil and the carbon-coated foil are insufficient in terms of characteristics as an aluminum cathode foil for electrolytic capacitors, although a high capacitance can be obtained.

以上の問題点に鑑みて、本発明の課題は、静電容量が高く、かつ、静電容量の経時変化の少ない電解コンデンサ用アルミニウム陰極箔を提供することにある。 In view of the above problems, an object of the present invention is to provide an aluminum cathode foil for an electrolytic capacitor that has a high capacitance and has little change with time in capacitance.

上記課題を解決するために、本発明に係る電解コンデンサ用アルミニウム陰極箔では、粗面化したアルミニウム材の表面にTi、Zr、Hf、V、Nb、Ta、Mo、またはWのうち、いずれかの金属膜が形成され、前記金属膜の表面にカーボン皮膜が形成され、該カーボン皮膜の表面にカーボン微粒子が定着されていることを特徴とする。 In order to solve the above problems, in the aluminum cathode foil for an electrolytic capacitor according to the present invention, any one of Ti, Zr, Hf, V, Nb, Ta, Mo, or W is formed on the surface of the roughened aluminum material. The metal film is formed , a carbon film is formed on the surface of the metal film, and carbon fine particles are fixed on the surface of the carbon film .

本発明において、金属膜としては、Ti、Zr、Hf、V、Nb、Ta、Mo、Wを用いることができるが、上記金属のうち、Ti以外のZr、Hf、V、Nb、Ta、Mo、Wはいずれも、融点が高く、比較的高価であるため、Tiが工業的にもっとも取り扱いやすいという利点がある。   In the present invention, Ti, Zr, Hf, V, Nb, Ta, Mo, and W can be used as the metal film. Among these metals, Zr, Hf, V, Nb, Ta, and Mo other than Ti are used. , W has a high melting point and is relatively expensive, so that Ti has the advantage that it is most easily handled industrially.

本発明によれば、高い静電容量が得られると共に、静電容量の経時変化を抑制することができ、電解コンデンサ用アルミニウム陰極箔として極めて有益なものである。 According to the present invention, the high capacitance can be obtained, it is possible to suppress the change with time in electrostatic capacity is extremely valuable as an aluminum cathode foil for electrolytic capacitor.

以下、本発明を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

参考例]金属膜にカーボン微粒子定着
図1は、カーボン塗布箔でのカーボン微粒子とアルミニウム基材との接触状況、および、化成処理を行った場合に生成する絶縁性の酸化皮膜を示す模式図である。
図2は、本発明に係る陰極箔で、粗面化したアルミニウム基材、Ti皮膜、およびカーボン微粒子の接合状況を示す模式図である。
[ Reference Example ] Fixing of carbon fine particles on a metal film FIG. 1 is a schematic diagram showing a contact state between carbon fine particles and an aluminum substrate in a carbon coating foil, and an insulating oxide film generated when a chemical conversion treatment is performed. It is.
FIG. 2 is a schematic view showing a bonding state of a roughened aluminum base material, a Ti film, and carbon fine particles in the cathode foil according to the present invention.

本発明の参考例に係る電解コンデンサ用アルミニウム陰極箔では、粗面化したアルミニウム材の表面にTi、Zr、Hf、V、Nb、Ta、Mo、またはWのうち、いずれかの金属膜が形成され、この金属膜の上層側には、多数のカーボン微粒子が定着されている。 In the aluminum cathode foil for electrolytic capacitors according to the reference example of the present invention, any metal film of Ti, Zr, Hf, V, Nb, Ta, Mo, or W is formed on the surface of the roughened aluminum material. A large number of carbon fine particles are fixed on the upper layer side of the metal film.

このような電解コンデンサ用アルミニウム陰極箔の製造工程では、粗面化したアルミニウム材の表面にTi、Zr、Hf、V、Nb、Ta、Mo、またはWのうちいずれかの金属膜を蒸着等により形成する金属膜形成工程と、金属膜の上層側に、カーボン微粒子を有機系のバインダーに分散したものを塗布した後、加熱処理を行うカーボン微粒子定着工程とを行う。   In the manufacturing process of such an aluminum cathode foil for electrolytic capacitors, a metal film of Ti, Zr, Hf, V, Nb, Ta, Mo, or W is deposited on the surface of the roughened aluminum material by vapor deposition or the like. A metal film forming process to be formed, and a carbon fine particle fixing process in which carbon fine particles dispersed in an organic binder are applied to the upper layer side of the metal film and then heat treatment is performed.

本発明の参考例では、まず、基材にアルミニウムを使用するが、この目的は、電解コンデンサの陰極箔の基材として、駆動用電解液と反応しないという点と、電解コンデンサの組立や使用において豊富な実績を有する点にある。基材のアルミニウムには、粗面化したアルミニウム材を使用した方が、後述するように、Tiとカーボンの接合強度の面から優れている。 In the reference example of the present invention, first, aluminum is used as a base material, but this purpose is that the base material of the cathode foil of the electrolytic capacitor does not react with the driving electrolyte, and in the assembly and use of the electrolytic capacitor. It has a rich track record. As described later, the aluminum used as the base material is superior in terms of the bonding strength between Ti and carbon, as will be described later.

次に、本発明の参考例では、最初にTi皮膜等の金属膜を蒸着等により形成し、次に、カーボン微粒子を有機系のバインダーに分散したものを塗布するが、この目的は、Ti皮膜を介して、アルミニウムとカーボン微粒子とを化学的に接合することにある。 Next, in the reference example of the present invention, first, a metal film such as a Ti film is formed by vapor deposition or the like, and then, a carbon fine particle dispersed in an organic binder is applied. The purpose is to chemically join aluminum and carbon fine particles through the metal.

アルミニウムを基材としたカーボン塗布箔の問題点は、アルミニウムとカーボンとの接着が、塗布材に含まれるバインダーによるファンデルワールス力によるもので、アルミニウムを酸化した場合に生成する酸化皮膜の生成力、つまりイオン結合力より弱いことにある。また、カーボン塗布材(カーボン微粒子+バインダー)は、アルミニウム基材を完全には覆っておらず、駆動用電解液は、アルミニウム基材とカーボン塗布材との界面に一部浸透する。   The problem with carbon-coated foils based on aluminum is that the adhesion between aluminum and carbon is due to the van der Waals force caused by the binder contained in the coating material, and the ability to produce an oxide film produced when aluminum is oxidized. In other words, it is weaker than the ion binding force. Further, the carbon coating material (carbon fine particles + binder) does not completely cover the aluminum base material, and the driving electrolyte solution partially permeates the interface between the aluminum base material and the carbon coating material.

このため、図1に示すように、アルミニウム基材1の表面にカーボン微粒子2およびバインダー3を備えたカーボン塗布箔では、水分を含む駆動用電解液中で電圧が印加されると、アルミニウム基材の表面に絶縁性の酸化皮膜4が生成して膨張する。その際、膨張による応力が、塗布材に含まれるバインダーによるファンデルワールス結合力を上回るため、剥離したバインダーを図1に符号5で示すように、カーボン塗布材の剥離が起って、駆動用電解液の浸透、酸化皮膜の生成と新たな応力の発生が連鎖的にくり返し発生し、最終的に電気的な接触が絶たれてしまう。   For this reason, as shown in FIG. 1, in the carbon coating foil provided with the carbon fine particles 2 and the binder 3 on the surface of the aluminum substrate 1, when a voltage is applied in a driving electrolyte containing moisture, the aluminum substrate An insulating oxide film 4 is generated and expanded on the surface. At this time, since the stress due to expansion exceeds the van der Waals binding force by the binder contained in the coating material, the carbon coating material is peeled off as shown in FIG. Electrolyte permeation, generation of an oxide film, and generation of new stress occur repeatedly in a chain, and the electrical contact is eventually cut off.

しかるに本形態では、図2に示すように、粗面化したアルミニウム基材6の表面にTi膜7等の金属膜を蒸着しているため、Ti原子等の金属原子と基材のアルミニウムとが反応する。その界面には、Tiとアルミニウムとの合金層(図2、符号10)で示すように、合金接合が生じ、また、後述するとおり、金属皮膜上に塗布された有機系のバインダーは加熱処理すると、炭化してカーボン8に変化し、金属と導電性の炭化物(Tiと炭化したバインダーとの導電性の化合物層9)を生成して化学的に接合する。   However, in this embodiment, as shown in FIG. 2, a metal film such as a Ti film 7 is deposited on the surface of the roughened aluminum base 6, so that metal atoms such as Ti atoms and the base aluminum are react. At the interface, as shown by an alloy layer of Ti and aluminum (FIG. 2, reference numeral 10), alloy bonding occurs, and as described later, when the organic binder applied on the metal film is heat-treated. , Carbonized to change to carbon 8 to form a metal and a conductive carbide (conductive compound layer 9 of Ti and carbonized binder) to be chemically bonded.

この場合、Ti皮膜とカーボンとの接合面積はなるべく大きい方が、駆動用電解液による酸化の影響が小さくできるので、アルミニウム基材は、化学的、電気化学的に粗面化したエッチング箔や、機械的に粗面化したアルミニウム材を用いることが好ましい。   In this case, the larger the bonding area between the Ti film and the carbon, the smaller the influence of oxidation by the driving electrolyte solution, so the aluminum base material is an etching foil that has been chemically and electrochemically roughened, It is preferable to use a mechanically roughened aluminum material.

また、図2に示すように、Ti膜等の金属膜も、蒸着の際の真空度を高めたり、電場をかけてイオン化するなどの方法により、均一な膜状のものとすることが望ましく、特に、粗面化したアルミニウム材への付き回りを改善すると良い結果が得られる。   In addition, as shown in FIG. 2, it is desirable that the metal film such as a Ti film also has a uniform film shape by a method such as increasing the degree of vacuum at the time of vapor deposition or ionizing by applying an electric field. In particular, good results can be obtained by improving the contact with the roughened aluminum material.

さらに、本発明の参考例では、加熱処理を行うが、その目的は、図2に示すカーボン微粒子2とTi膜7との化学的な接合にある。 Furthermore, in the reference example of the present invention, the heat treatment is performed, and the object is to chemically bond the carbon fine particles 2 and the Ti film 7 shown in FIG.

カーボン塗布材に使用される有機系のバインダーには、例えば、フェノール系の樹脂を有機溶媒で希釈したものが使用されている。   As the organic binder used for the carbon coating material, for example, a phenolic resin diluted with an organic solvent is used.

電気二重層コンデンサ用の電極を作成する場合、加熱処理は、バインダーが若干炭化し、導電性を有すると共に、バインダーそのものが持つアルミニウムとの接着性が保持できる温度、より具体的には200〜300℃程度の比較的低い温度で行われる。   When preparing an electrode for an electric double layer capacitor, the heat treatment is performed at a temperature at which the binder is slightly carbonized and conductive, and the binder itself can maintain adhesion with aluminum, more specifically, 200 to 300. It is carried out at a relatively low temperature of about ° C.

しかしながら、本形態の場合、有機系バインダーを完全に炭化させ、生成した炭素とTi等の金属との化学反応による接合を目的とするので、カーボン塗布材の酸化反応や、Ti膜等の金属膜の酸化や窒化が起こらない範囲で、高温で加熱処理した方が良く、具体的には、300〜450℃の範囲で、最適な条件を見いだせばよい。   However, in the case of this embodiment, the organic binder is completely carbonized, and the purpose is to bond by a chemical reaction between the generated carbon and a metal such as Ti. Therefore, an oxidation reaction of the carbon coating material or a metal film such as a Ti film It is better to perform the heat treatment at a high temperature within a range where no oxidation or nitridation occurs. Specifically, an optimum condition may be found within a range of 300 to 450 ° C.

[実施の形態]金属膜上にカーボン皮膜を形成し、カーボン微粒子定着
本発明の実施の形態では、参考例の金属膜の表面にカーボン皮膜が形成され、当該カーボン皮膜の表面に前記多数のカーボン微粒子が定着されている。すなわち、本発明の実施の形態に係る電解コンデンサ用アルミニウム陰極箔では、粗面化したアルミニウム材の表面にTi、Zr、Hf、V、Nb、Ta、Mo、またはWのうち、いずれかの金属膜が形成されているとともに、前記金属膜の表面にカーボン皮膜が形成され、該カーボン皮膜の表面に前記多数のカーボン微粒子が定着されている。
Forming a carbon film on Embodiment] metal film, in the form status of implementation of the fine carbon particles fixing invention, carbon coating is formed on the surface of the metal film of Reference Example, the number on the surface of the carbon film Carbon fine particles are fixed. That is, in the aluminum cathode foil for electrolytic capacitor according to the shape condition of the present invention, Ti the roughened surface of the aluminum material, Zr, Hf, V, Nb , Ta, Mo or of W,, any A metal film is formed, a carbon film is formed on the surface of the metal film, and the carbon fine particles are fixed on the surface of the carbon film.

このような電解コンデンサ用アルミニウム陰極箔の製造方法では、参考例に係る製造方法において、前記金属膜形成工程の後、前記カーボン微粒子定着工程の前に、前記金属膜の上層側にカーボン皮膜を形成するカーボン層形成工程を行う。
すなわち、電解コンデンサ用アルミニウム陰極箔の製造工程において、粗面化したアルミニウム材の表面にTi、Zr、Hf、V、Nb、Ta、Mo、またはWのうち、いずれかの金属膜を蒸着等により形成する金属膜形成工程と、前記金属膜の上層側にカーボン皮膜を形成するカーボン層形成工程と、該カーボン皮膜の表面に、カーボン微粒子を有機系のバインダーに分散したものを塗布した後、加熱処理を行うカーボン微粒子定着工程とを行う。
In such a method for producing an aluminum cathode foil for electrolytic capacitors, in the production method according to the reference example , a carbon film is formed on the upper layer side of the metal film after the metal film forming step and before the carbon fine particle fixing step. A carbon layer forming step is performed.
That is, in the manufacturing process of the aluminum cathode foil for electrolytic capacitors, any metal film of Ti, Zr, Hf, V, Nb, Ta, Mo, or W is deposited on the surface of the roughened aluminum material by vapor deposition or the like. A metal film forming step to be formed; a carbon layer forming step for forming a carbon film on the upper layer side of the metal film; and a coating of carbon fine particles dispersed in an organic binder on the surface of the carbon film, followed by heating. And a carbon fine particle fixing step for performing the treatment.

このように本形態では、最初にTi皮膜等の金属膜を蒸着したのち、カーボン皮膜を蒸着した上、カーボン微粒子を有機系のバインダーに分散したものを塗布し加熱処理するため、カーボン蒸着の際、カーボン原子とTi蒸着皮膜などの金属膜との反応を促進でき、化学的な接合をより完全なものとすることができる。   As described above, in this embodiment, after a metal film such as a Ti film is first deposited, a carbon film is deposited, and a carbon fine particle dispersed in an organic binder is applied and heat-treated. The reaction between carbon atoms and a metal film such as a Ti deposited film can be promoted, and chemical bonding can be made more complete.

以下、実施例に基づいて、本発明をより詳細に説明する。   Hereinafter, based on an Example, this invention is demonstrated in detail.

参考例1−1〜1−10]Ti真空蒸着とカーボン微粒子定着の検討
まず、金属膜形成工程において、市販の陰極用エッチング箔を10cm幅にスリットしたコイルを、真空蒸着装置にセットし、真空度5×10-4Torr(0.065Pa)まで真空引きした後、表1に示す条件で、Tiを片面蒸着する。
次に、カーボン微粒子定着工程においては、Tiを蒸着した面に、市販のフェノール樹脂系バインダーを使用したカーボン塗布材を約10μm厚で塗布した後、加熱処理し、電解コンデンサ用アルミニウム陰極箔を作製した。
[ Reference Examples 1-1 to 1-10] Examination of Ti vacuum deposition and carbon fine particle fixing First, in the metal film forming step, a coil obtained by slitting a commercially available cathode etching foil to a width of 10 cm was set in a vacuum deposition apparatus, After vacuuming to a vacuum degree of 5 × 10 −4 Torr (0.065 Pa), Ti is deposited on one side under the conditions shown in Table 1.
Next, in the carbon fine particle fixing step, a carbon coating material using a commercially available phenol resin binder is applied to the surface on which Ti is vapor-deposited to a thickness of about 10 μm, and then heat-treated to produce an aluminum cathode foil for an electrolytic capacitor. did.

(比較例1)
上記のエッチング箔の代わりに0.5mm厚の平滑箔を用いた以外は、実施例1−1と同様にして、電解コンデンサ用アルミニウム陰極箔を作製した。
(Comparative Example 1)
An aluminum cathode foil for electrolytic capacitors was produced in the same manner as in Example 1-1 except that a smooth foil having a thickness of 0.5 mm was used instead of the etching foil.

(従来例1)
実施例1−1と同じエッチング箔を用い、真空度5×10-4Torr中でTiを2g/m蒸着し、カーボン塗布および加熱処理は行わず、電解コンデンサ用アルミニウム陰極箔を作製した。
(Conventional example 1)
Using the same etching foil as in Example 1-1, Ti was evaporated at 2 g / m 2 in a vacuum degree of 5 × 10 −4 Torr, and carbon coating and heat treatment were not performed, and an aluminum cathode foil for an electrolytic capacitor was produced.

(従来例2)
比較例1と同じ0.5μm厚の平滑箔を用い、蒸着は行わず、カーボン塗布は実施例1−1と同様にし、加熱処理は200℃30分として電解コンデンサ用アルミニウム陰極箔を作製した。
(Conventional example 2)
The same 0.5 μm-thick smooth foil as in Comparative Example 1 was used, vapor deposition was not performed, carbon coating was performed in the same manner as in Example 1-1, and heat treatment was performed at 200 ° C. for 30 minutes to produce an aluminum cathode foil for electrolytic capacitors.

(従来例3)
実施例1−1と同じエッチング箔を用い、蒸着は行わず、カーボン塗布は実施例1−1と同様にし、加熱処理は200℃30分として電解コンデンサ用アルミニウム陰極箔を作製した。
(Conventional example 3)
The same etching foil as in Example 1-1 was used, vapor deposition was not performed, carbon coating was performed in the same manner as in Example 1-1, and heat treatment was performed at 200 ° C. for 30 minutes to produce an aluminum cathode foil for an electrolytic capacitor.

このようにして製造した電解コンデンサ用アルミニウム陰極箔についての評価は、次の2項目について行った。   Evaluation of the aluminum cathode foil for electrolytic capacitors thus manufactured was performed for the following two items.

評価の第1項目は、作製後湿度35%の常温大気中で、1日放置した陰極箔と、3ヶ月放置した陰極箔のセンター部分の静電容量をJEITA法に準じて測定すると共に、その容量変化率A(1日放置後の静電容量値から、3ヶ月放置後の静電容量値を引いた値を、1日放置後の静電容量値で除した値、以下同じ。)から評価を行った。   The first item of evaluation is to measure the capacitance of the center part of the cathode foil left for 1 day and the cathode foil left for 3 months in a room temperature atmosphere with a humidity of 35% according to the JEITA method. From the capacitance change rate A (the value obtained by subtracting the capacitance value after standing for 3 months from the capacitance value after standing for 1 day, divided by the capacitance value after standing for 1 day, and so on). Evaluation was performed.

評価の第2項目は、作製後湿度35%の常温大気中で、1日放置した陰極箔をアジピン酸アンモニウム20g/dm、65℃中で、0.5V5分間印加して化成を行い、作製後湿度35%の常温大気中で、1日放置した陰極箔と、0.5V5分間印加して化成を行った陰極箔のセンター部分の静電容量をJEITA法に準じて測定すると共に、その容量変化率B(1日放置後の静電容量値から、0.5V5分印加後の静電容量値を引いた値を、1日放置後の静電容量値で除した値、以下同じ。)から評価を行った。 The second item of evaluation is chemical formation by applying a cathode foil left at room temperature in a normal atmosphere of 35% humidity after production for 1 day in ammonium adipate at 20 g / dm 2 at 65 ° C. for 0.5 V for 5 minutes. The capacitance of the center portion of the cathode foil left to stand for 1 day in a normal humidity of 35% post-humidity and the cathode foil formed by applying 0.5 V for 5 minutes was measured according to the JEITA method, and the capacitance Rate of change B (a value obtained by subtracting a capacitance value after application of 0.5 V for 5 minutes from a capacitance value after being left for 1 day divided by a capacitance value after being left for 1 day, and so on) Was evaluated.

なお、市販の陰極用エッチング箔には、製造後3ヶ月放置し、容量の安定したものを用い、その静電容量は、約80μF/cmであった。 In addition, the commercially available etching foil for cathodes was used for 3 months after the production and had a stable capacity, and the capacitance was about 80 μF / cm 2 .

上記の容量変化率A、Bについて算出した結果を表1に示す。   Table 1 shows the results calculated for the capacity change rates A and B.

Figure 0004555204
Figure 0004555204

表1に示すとおり、従来例1のTi蒸着箔(陰極用エッチング箔にTi微粒子を蒸着したもの)は、静電容量の経時変化(容量変化率A)が大きく、一方、従来例2、3のカーボン塗布箔は、化成後の容量変化(容量変化率B)が大きい。これに対して、参考例1−1〜1−10は、カーボン塗布箔に近い静電容量の経時変化(容量変化率A)を示し、かつ、化成後の容量変化(容量変化率B)も大幅に改善されている。 As shown in Table 1, the Ti-deposited foil of Conventional Example 1 (deposited Ti fine particles on the cathode etching foil) has a large capacitance change with time (capacitance change rate A), while Conventional Examples 2, 3 The carbon coated foil has a large capacity change (capacity change rate B) after chemical conversion. On the other hand, Reference Examples 1-1 to 1-10 show a change with time in capacitance (capacitance change rate A) close to that of the carbon coated foil, and a change in capacitance after formation (capacitance change rate B) is also shown. Greatly improved.

Tiの蒸着皮膜厚は、厚い方が、容量変化率が小さくなる傾向を示すが、2μm以上では静電容量が下がっており(参考例1−5)、参考例1−1〜1−10で使用した陰極用エッチング箔では、エッチングされた面が平滑化するためと推定され、使用する基材により適宜最適値を設定すればよい。 As the thickness of the deposited Ti film increases, the capacitance change rate tends to decrease, but the capacitance decreases at 2 μm or more ( Reference Example 1-5). In Reference Examples 1-1 to 1-10 In the used etching foil for cathodes, it is estimated that the etched surface is smoothed, and an optimum value may be set as appropriate depending on the substrate to be used.

同様に、参考例1−1〜1−10で使用したカーボン塗布材では、炭化が始まると思われる300℃以上で、化成後の容量変化(容量変化率B)が小さくなっているが、400℃以上では、静電容量が低下してきており、カーボン塗布材の酸化等が起こっていると考えられ、この傾向は、使用するカーボン塗布材の性質により変化すると推定される。 Similarly, in the carbon coating materials used in Reference Examples 1-1 to 1-10, the capacity change (capacitance change rate B) after chemical conversion is small at 300 ° C. or more at which carbonization is considered to start. When the temperature is higher than or equal to ° C., the electrostatic capacity is decreasing, and it is considered that the carbon coating material is oxidized, and this tendency is presumed to change depending on the properties of the carbon coating material used.

参考例2−1〜2−10]アルゴン中でのTiスパッタリングとカーボン微粒子定着の検討
まず、金属膜形成工程において、市販の陰極用エッチング箔を10cm幅にスリットしたコイルを、直流スパッタリング装置にセットし、真空度5×10-4Torr(0.065Pa)まで真空引きした後、アルゴンを5×10-2Torr(6.5Pa)となるように導入し、表2に示す条件で、Tiを片面スパッタリングする。
次に、カーボン微粒子定着工程においては、Tiをスパッタリングした面に、市販のフェノール樹脂系バインダーを使用したカーボン塗布材を約10μm厚で塗布した後、加熱処理し、電解コンデンサ用アルミニウム陰極箔を作製した。
[ Reference Examples 2-1 to 2-10] Examination of Ti Sputtering and Carbon Fine Particle Fixation in Argon First, in the metal film forming step, a coil obtained by slitting a commercially available cathode etching foil into a width of 10 cm was used as a DC sputtering apparatus. After setting and evacuating to a vacuum degree of 5 × 10 −4 Torr (0.065 Pa), argon was introduced so as to be 5 × 10 −2 Torr (6.5 Pa), and Ti was formed on one side under the conditions shown in Table 2. Sputter.
Next, in the carbon fine particle fixing step, a carbon coating material using a commercially available phenol resin binder is applied to the surface on which Ti is sputtered to a thickness of about 10 μm, and then heat-treated to produce an aluminum cathode foil for an electrolytic capacitor. did.

(従来例4)
参考例2−1と同じエッチング箔を用い、真空度5×10−4Torrまで真空引きした後、アルゴンを5×10−2Torrとなるように導入し、Tiを2g/m2蒸着し、カーボン塗布および加熱処理は行わず、電解コンデンサ用アルミニウム陰極箔を作製した。
(Conventional example 4)
Using the same etching foil as in Reference Example 2-1, after evacuating to a vacuum degree of 5 × 10 −4 Torr, argon was introduced so as to be 5 × 10 −2 Torr, Ti was deposited at 2 g / m 2, carbon coating and The aluminum cathode foil for electrolytic capacitors was produced without performing heat treatment.

Figure 0004555204
Figure 0004555204

表2に示すとおり、参考例2−1〜2−9についても、カーボン塗布箔に近い、静電容量の経時変化(容量変化率A)を示し、化成後の容量変化(容量変化率B)も改善されている。 As shown in Table 2, also in Reference Examples 2-1 to 2-9, the capacitance change with time (capacity change rate A), which is close to the carbon coated foil, is shown, and the capacity change after formation (capacitance change rate B). Has also been improved.

参考例1−1と参考例2−4とを比較すると、同一Ti皮膜厚では、スパッタリングの方が、静電容量変化率Bは小さく、Tiの付き回りがよいためと判断されるが、スパッタリングでは、Ti皮膜厚を厚くすることが難しいため、更に、Ti皮膜を厚手化するためには、イオンプレーティング等の方法を取るとよい。 Comparing Reference Example 1-1 and Reference Example 2-4, with the same Ti film thickness, it is determined that sputtering has a smaller capacitance change rate B and better Ti coverage. Then, since it is difficult to increase the thickness of the Ti film, a method such as ion plating may be used to increase the thickness of the Ti film.

[実施例3−1〜3−10]Ti蒸着とカーボン蒸着、カーボン微粒子定着の検討
まず、金属膜形成工程において、市販の陰極用エッチング箔を10cm幅にスリットしたコイルを、真空蒸着装置にセットし、真空度5×10-4Torr(0.065Pa)まで真空引きした後、表3に示す条件で、Tiを片面蒸着する。
次に、カーボン層形成工程では、真空度5×10-4Torr(0.065Pa)の条件下で、Ti蒸着面にカーボンを片面蒸着した。
次に、カーボン微粒子定着工程においては、Tiとカーボンを蒸着した面に、市販のフェノール樹脂系バインダーを使用したカーボン塗布材を約10μm厚で塗布した後、加熱処理を行って、電解コンデンサ用アルミニウム陰極箔を作成し、静電容量と容量変化率を評価した。
[Examples 3-1 to 3-10] Examination of Ti vapor deposition, carbon vapor deposition, and carbon fine particle fixing First, in the metal film forming step, a coil obtained by slitting a commercially available cathode etching foil into a width of 10 cm is set in a vacuum vapor deposition apparatus. After vacuuming to a vacuum degree of 5 × 10 −4 Torr (0.065 Pa), Ti is deposited on one side under the conditions shown in Table 3.
Next, in the carbon layer forming step, carbon was vapor-deposited on one side of the Ti vapor deposition surface under the condition of a degree of vacuum of 5 × 10 −4 Torr (0.065 Pa).
Next, in the carbon fine particle fixing step, a carbon coating material using a commercially available phenolic resin binder is applied to the surface on which Ti and carbon are vapor-deposited to a thickness of about 10 μm, and then heat treatment is performed to obtain an aluminum for electrolytic capacitors. A cathode foil was prepared, and the capacitance and the rate of change in capacity were evaluated.

Figure 0004555204
Figure 0004555204

表3に示すとおり、実施例3−1〜3−10についても、カーボン塗布箔に近い、静電容量の経時変化(容量変化率A)を示し、化成後の容量変化(容量変化率B)も大幅に改善されている。   As shown in Table 3, also in Examples 3-1 to 3-10, the capacitance change with time (capacity change rate A), which is close to the carbon coated foil, is shown, and the capacitance change after formation (capacitance change rate B). There have also been significant improvements.

また、カーボン蒸着を行った場合は、行わない場合と比較して、化成時の容量変化(容量変化率B)が改善される傾向が見られている。   In addition, when carbon deposition is performed, there is a tendency that the capacity change (capacity change rate B) at the time of chemical conversion is improved as compared with the case where carbon deposition is not performed.

[実施例4−1〜4−17、3−1、3−4、3−6]金属蒸着とカーボン蒸着、カーボン微粒子定着の検討
まず、金属膜形成工程において、市販の陰極用エッチング箔を10cm幅にスリットしたコイルを、真空蒸着装置にセットし、真空度5×10-4Torr(0.065Pa)まで真空引きした後、表4に示す条件で、Ti等の金属膜を片面蒸着する。
次に、カーボン層形成工程では、金属膜上にカーボンを片面蒸着した。
次に、カーボン微粒子定着工程においては、各金属膜、およびカーボン膜を蒸着した面に、市販のフェノール樹脂系バインダーを使用したカーボン塗布材を約10μm厚で塗布した後、加熱処理を行って、電解コンデンサ用アルミニウム陰極箔を作成し、静電容量と容量変化率を評価した。
[Examples 4-1 to 4-17, 3-1, 3-4, 3-6] Examination of metal vapor deposition, carbon vapor deposition, and carbon fine particle fixing First, in the metal film forming step, a commercially available etching foil for cathode is 10 cm. The coil slitted to the width is set in a vacuum vapor deposition apparatus, vacuumed to a vacuum degree of 5 × 10 −4 Torr (0.065 Pa), and then a metal film such as Ti is vapor-deposited on one side under the conditions shown in Table 4.
Next, in the carbon layer forming step, carbon was vapor-deposited on one side on the metal film.
Next, in the carbon fine particle fixing step, a carbon coating material using a commercially available phenol resin binder is applied to a thickness of about 10 μm on each metal film and the surface on which the carbon film is deposited, and then heat treatment is performed. An aluminum cathode foil for electrolytic capacitors was prepared and the capacitance and the rate of change in capacitance were evaluated.

Figure 0004555204
Figure 0004555204

表4に示すとおり、実施例4−1〜4−17、3−1、3−4、3−6についても、カーボン塗布箔に近い、静電容量の経時変化(容量変化率A)を示し、化成後の容量変化(容量変化率B)も改善されている。   As shown in Table 4, Examples 4-1 to 4-17, 3-1, 3-4, and 3-6 also show a change with time in capacitance (capacitance change rate A) that is close to the carbon coated foil. Also, the capacity change (capacitance change rate B) after chemical conversion is improved.

なお、上記実施例では、Ta、Mo、Wの容量変化率Bが全体的にやや悪めの傾向を示すが、これらの金属の融点が非常に高いため、蒸着皮膜の均一性が悪く粒子化していることによると思われ、蒸着皮膜の均一性を改善すれば、Ti皮膜を蒸着した場合と大差ない結果が得られると推定される。   In the above examples, the capacity change rate B of Ta, Mo, and W shows a slightly worse overall trend, but the melting point of these metals is very high, so the uniformity of the deposited film is poor and the particles are formed into particles. If the uniformity of the vapor-deposited film is improved, it is presumed that a result that is not much different from the case where the Ti film is vapor-deposited can be obtained.

カーボン塗布箔でのカーボン微粒子とアルミニウム基材との接触状況、および、化成処理を行った場合に生成する絶縁性の酸化皮膜を示す模式図である。It is a schematic diagram which shows the insulating oxide film produced | generated when the contact condition of the carbon microparticles | fine-particles and aluminum base material in a carbon application | coating foil and a chemical conversion treatment are performed. 本発明に係る陰極箔で、粗面化したアルミニウム基材、Ti皮膜、およびカーボン微粒子の接合状況を示す模式図である。It is a schematic diagram which shows the joining condition of the roughened aluminum base material, Ti film | membrane, and carbon microparticles | fine-particles with the cathode foil which concerns on this invention.

符号の説明Explanation of symbols

1 アルミニウム基材
2 カーボン微粒子
3 バインダー
4 絶縁性の酸化皮膜
5 剥離したバインダー
6 粗面化したアルミニウム基材
7 Ti蒸着皮膜
8 炭化したバインダー
9 Tiと炭化したバインダーとの導電性の化合物層
10 Tiとアルミニウムとの合金層
DESCRIPTION OF SYMBOLS 1 Aluminum base material 2 Carbon fine particle 3 Binder 4 Insulating oxide film 5 Peeled binder 6 Roughened aluminum base material 7 Ti vapor deposition film 8 Carbonized binder 9 Conductive compound layer 10 of Ti and carbonized binder 10 Ti And aluminum alloy layer

Claims (1)

粗面化したアルミニウム材の表面にTi、Zr、Hf、V、Nb、Ta、Mo、またはWのうち、いずれかの金属膜が形成され、
前記金属膜の表面にカーボン皮膜が形成され、該カーボン皮膜の表面にカーボン微粒子が定着されていることを特徴とする電解コンデンサ用アルミニウム陰極箔。
A metal film of Ti, Zr, Hf, V, Nb, Ta, Mo, or W is formed on the surface of the roughened aluminum material,
An aluminum cathode foil for electrolytic capacitors , wherein a carbon film is formed on the surface of the metal film, and carbon fine particles are fixed on the surface of the carbon film .
JP2005281252A 2005-09-28 2005-09-28 Aluminum cathode foil for electrolytic capacitors Active JP4555204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281252A JP4555204B2 (en) 2005-09-28 2005-09-28 Aluminum cathode foil for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281252A JP4555204B2 (en) 2005-09-28 2005-09-28 Aluminum cathode foil for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2007095865A JP2007095865A (en) 2007-04-12
JP4555204B2 true JP4555204B2 (en) 2010-09-29

Family

ID=37981218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281252A Active JP4555204B2 (en) 2005-09-28 2005-09-28 Aluminum cathode foil for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP4555204B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107403697B (en) * 2011-02-21 2018-11-09 日本蓄电器工业株式会社 Electrode foil, collector, electrode and the storage assembly using these objects
DE112016001994T5 (en) 2015-04-28 2018-01-04 Panasonic Intellectual Property Management Co., Ltd. electrolytic capacitor
WO2016189779A1 (en) * 2015-05-28 2016-12-01 パナソニックIpマネジメント株式会社 Electrolytic capacitor
CN108461294B (en) * 2017-02-17 2021-05-11 宜都东阳光化成箔有限公司 Preparation method of carbon-coated foil for solid aluminum electrolytic capacitor
WO2021125182A1 (en) 2019-12-17 2021-06-24 日本ケミコン株式会社 Hybrid electrolytic capacitor and method for manufacturing same
KR20220110507A (en) 2019-12-17 2022-08-08 니폰 케미콘 가부시키가이샤 Solid electrolytic capacitor and manufacturing method thereof
US20220415582A1 (en) * 2019-12-18 2022-12-29 Nippon Chemi-Con Corporation Electrolytic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277389A (en) * 1999-03-29 2000-10-06 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
JP2001297952A (en) * 2000-04-14 2001-10-26 Matsushita Electric Ind Co Ltd Manufacturing method of electrode metal material and manufacturing method of capacitor using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277389A (en) * 1999-03-29 2000-10-06 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
JP2001297952A (en) * 2000-04-14 2001-10-26 Matsushita Electric Ind Co Ltd Manufacturing method of electrode metal material and manufacturing method of capacitor using the same

Also Published As

Publication number Publication date
JP2007095865A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4555204B2 (en) Aluminum cathode foil for electrolytic capacitors
JP5769528B2 (en) Electrode material for aluminum electrolytic capacitor and method for producing the same
JP4532262B2 (en) Electrode and method for producing the electrode
EP2680286B1 (en) Electrode foil, current collector, electrode, and electric energy storage element using same
JP4940362B1 (en) Electrode foil for solid electrolytic capacitors
WO2000019468A1 (en) Solid electrolyte capacitor and its manufacturing method
US10829860B2 (en) Nickel electrode, self-supporting nickel layer, method for production thereof, and use thereof
JP6058017B2 (en) Strain-free anode stencil-printed on Ta / Nb sheets
JPS61180420A (en) Cathode material for electrolytic capacitor
JP4992522B2 (en) Capacitor electrode foil and capacitor using the same
JP4553770B2 (en) Solid electrolytic capacitor and manufacturing method thereof
EP1808876B1 (en) Electrodes, membranes, printing plate precursors and other articles including multi-strata porous coatings, and method for their manufacture
JP4665866B2 (en) Manufacturing method of valve metal composite electrode foil
WO2023190657A1 (en) Electrode, and electrochemical measuring system
JP4665854B2 (en) Valve metal composite electrode foil and manufacturing method thereof
JP2008047755A (en) Manufacturing method of valve metal composite electrode foil
JP2003109582A (en) Laminated strip material, laminated strip material for battery using the same, and manufacturing method of the same
JP5573362B2 (en) Electrode foil, capacitor using this electrode foil, and method for producing electrode foil
JP2687299B2 (en) Method for manufacturing aluminum electrode for electrolytic capacitor
JP2009049376A (en) Electrode foil for capacitor
JP2011211028A (en) Electrode foil and capacitor
US8462483B2 (en) Multilayer anode
JP5440290B2 (en) Electrode foil and capacitor
JP2009170871A (en) Porous valve metal electrode and method of manufacturing the same
JPH0330409A (en) Manufacture of aluminum electrode for electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4555204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250