JP2009170354A - Laser ionization mass spectrometer and laser ionization mass spectrometry - Google Patents

Laser ionization mass spectrometer and laser ionization mass spectrometry Download PDF

Info

Publication number
JP2009170354A
JP2009170354A JP2008009363A JP2008009363A JP2009170354A JP 2009170354 A JP2009170354 A JP 2009170354A JP 2008009363 A JP2008009363 A JP 2008009363A JP 2008009363 A JP2008009363 A JP 2008009363A JP 2009170354 A JP2009170354 A JP 2009170354A
Authority
JP
Japan
Prior art keywords
laser
vacuum chamber
ionization mass
pair
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008009363A
Other languages
Japanese (ja)
Other versions
JP4845051B2 (en
Inventor
Hidekazu Nagai
秀和 永井
Taisuke Nakanaga
泰介 中永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008009363A priority Critical patent/JP4845051B2/en
Publication of JP2009170354A publication Critical patent/JP2009170354A/en
Application granted granted Critical
Publication of JP4845051B2 publication Critical patent/JP4845051B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser ionization mass spectrometer and a laser ionization mass spectrometry wherein detection sensitivity is improved. <P>SOLUTION: This is the laser ionization mass spectrometer equipped with a vacuum chamber 2, a molecular beam generator 1 to irradiate a molecular beam of a sample into the vacuum chamber 2, a pair of flat mirrors 4, 5 arranged in the vacuum chamber 2, a laser light generator 7 to make laser light 6 incident into the vacuum chamber 2, a pair of electrodes 8, 9 arranged in the vacuum chamber 2 and to accelerate ionized ions, and an ion detector 12 to detect the accelerated ions. In an optical path in which the laser light 6 moves on reflecting positions in the flat mirrors 4, 5 while repeating reflections between the flat mirrors 4, 5, the molecular beam of the sample is laser-ionized. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザーイオン化質量分析装置およびレーザーイオン化質量分析方法に係わり、特に、環境計測、大気中の微量物質(揮発性芳香族化合物)等をその場で観測することのできるレーザーイオン化質量分析装置およびレーザーイオン化質量分析方法に関する。   The present invention relates to a laser ionization mass spectrometer and a laser ionization mass spectrometry method, and in particular, a laser ionization mass spectrometer capable of observing environmental measurements, trace substances (volatile aromatic compounds) in the atmosphere, etc. in situ. And a laser ionization mass spectrometry method.

特許文献1には、キャリヤーガス中のサンプル分子の検出方法と装置について記載されている。また、特許文献2には、多面鏡システムについて記載されている。
特許第2807201号 特許第3252125号
Patent Document 1 describes a method and apparatus for detecting sample molecules in a carrier gas. Patent Document 2 describes a polygon mirror system.
Japanese Patent No. 2807201 Japanese Patent No. 3252125

一般にレーザーイオン化には、多光子過程の効率を高めるため、レーザー光を集光して用いるが、イオン化領域が集光された非常に小さな空間に限られてしまうため、数pptオーダーの低濃度の試料の検出は難しい。またレーザー強度が大きすぎるとさらに高い多光子吸収過程や、生成した親イオンの光分解が起こり、イオンのフラグメント化が進んでしまう。
本発明の目的は、レーザー光を集光しないで平行光とすると共に、イオン化領域を大きくするために、1対の平面鏡の間でレーザー光を複数反射させるように光学系を構成することにより、検出感度を向上させたレーザーイオン化質量分析装置およびレーザーイオン化質量分析方法を提供することにある。
In general, laser ionization is performed by condensing a laser beam in order to increase the efficiency of the multiphoton process. However, since the ionization region is limited to a very small space where the ionization region is collected, a low concentration of several ppt order is required. Sample detection is difficult. On the other hand, if the laser intensity is too high, a higher photon absorption process or photolysis of the generated parent ion occurs, leading to fragmentation of ions.
An object of the present invention is to configure an optical system so as to reflect a plurality of laser beams between a pair of plane mirrors in order to make parallel light without condensing the laser beam and to enlarge an ionization region, An object of the present invention is to provide a laser ionization mass spectrometer and a laser ionization mass spectrometry method with improved detection sensitivity.

本発明は、上記の課題を解決するために、次のような手段を採用した。
第1の手段は、真空チャンバーと、該真空チャンバー内に試料分子線を放射する分子線発生装置と、前記真空チャンバー内または真空チャンバー外に配置された1対の平面鏡と、前記真空チャンバー内にレーザー光を入射するレーザー光発生装置と、前記真空チャンバー内に配置される、イオン化されたイオンを加速する1対の電極と、加速されたイオンを検出するイオン検出器とを備え、前記入射されたレーザー光が前記1対の平面鏡間で反射を繰り返しながら該平面鏡における反射位置を移動する光路において前記試料分子線をイオン化することを特徴とするレーザーイオン化質量分析装置である。
第2の手段は、第1の手段において、前記真空チャンバーに入射されるレーザー光は、前記試料分子線を二光子以下のエネルギーでイオン化できる波長であって、平行光からなることを特徴とするレーザーイオン化質量分析装置である。
第3の手段は、第1の手段または第2の手段において、前記1対の平面鏡は、前記1対の電極の外側に、相互に向き合うように配置されていることを特徴とするレーザーイオン化質量分析装置である。
第4の手段は、第1の手段ないし第3の手段のいずれか1つの手段において、前記1対の平面鏡は、互いに平行な位置から対向する側にそれぞれ傾斜角α傾斜して配置され、前記レーザー光が前記1対の電極間を通過後に最初に反射する平面鏡への入射角をθとするとき、反射回数を2n回とするため、θ−2nα=0の関係を満たすように設定したことを特徴とするレーザーイオン化質量分析装置である。
第5の手段は、真空チャンバー内に試料分子線を入射する工程と、前記真空チャンバー内にレーザー光を入射し、入射したレーザー光が1対の平面鏡間で反射を繰り返しながら該平面鏡における反射位置を移動する光路において前記試料分子線をイオン化する工程と、前記イオン化されたイオンを電場により加速する工程と、加速されたイオンを検出する工程とからなることを特徴とするレーザーイオン化質量分析方法である。
The present invention employs the following means in order to solve the above problems.
The first means includes a vacuum chamber, a molecular beam generator that emits a sample molecular beam into the vacuum chamber, a pair of plane mirrors disposed inside or outside the vacuum chamber, and the vacuum chamber. A laser light generating device for injecting laser light; a pair of electrodes for accelerating ionized ions disposed in the vacuum chamber; and an ion detector for detecting the accelerated ions. The laser ionization mass spectrometer is characterized in that the sample molecular beam is ionized in an optical path in which the laser beam is repeatedly reflected between the pair of plane mirrors and moves at a reflection position of the plane mirrors.
A second means is characterized in that, in the first means, the laser light incident on the vacuum chamber has a wavelength capable of ionizing the sample molecular beam with energy of two photons or less, and comprises parallel light. This is a laser ionization mass spectrometer.
A third means is the laser ionization mass according to the first means or the second means, wherein the pair of plane mirrors are arranged to face each other outside the pair of electrodes. It is an analysis device.
According to a fourth means, in any one of the first means to the third means, the pair of plane mirrors are arranged at inclination angles α on opposite sides from positions parallel to each other, and When the incident angle to the plane mirror that first reflects after passing between the pair of electrodes is θ 0 , the number of reflections is set to 2n, so that the relationship θ 0 -2nα = 0 is satisfied. This is a laser ionization mass spectrometer characterized by the above.
The fifth means includes a step of entering a sample molecular beam into the vacuum chamber, a laser beam incident into the vacuum chamber, and the incident laser beam is repeatedly reflected between a pair of plane mirrors while being reflected at the plane mirror. A laser ionization mass spectrometric method comprising: ionizing the sample molecular beam in an optical path moving through the substrate; accelerating the ionized ions with an electric field; and detecting the accelerated ions is there.

本発明によれば、1対の平面鏡によるレーザー光路の増幅により、イオン化空間領域を広げることができ、レーザーイオン化による飛行時間型のレーザーイオン化質量分析装置およびレーザーイオン化質量分析方法の検出感度を向上させることができる。
また、本発明によれば、レーザー光が1対の平面鏡間を反射する回数2nとした場合、イオン化領域の空間は、短光路の2n+1倍に増幅され、この領域で生成したイオンが全てイオン検出器によって検出されることにより、イオン信号強度を約2n+1倍に増幅することができる。
According to the present invention, it is possible to widen the ionization space region by amplifying the laser optical path with a pair of plane mirrors, and to improve the detection sensitivity of the time-of-flight type laser ionization mass spectrometer and laser ionization mass spectrometry method by laser ionization. be able to.
Further, according to the present invention, when the number of times the laser beam is reflected between a pair of plane mirrors is 2n, the space of the ionization region is amplified 2n + 1 times the short optical path, and all ions generated in this region are detected by ions. As a result, the ion signal intensity can be amplified by about 2n + 1 times.

本発明の一実施形態を図1ないし図4を用いて説明する。
図1は、本実施形態の発明に係るレーザーイオン化質量分析装置の概略構成を示す斜視図である。なお、同図において、平面鏡4,5、電極8,9、分子線3、レーザー光6、およびイオン10は真空チャンバー2内にあるが、理解を容易にするために明示されている。
図2は、図1に示されたレーザーイオン化質量分析装置の平面鏡4,5間で反射するレーザー光路と同一面で切断して見たレーザーイオン化質量分析装置の断面図である。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a perspective view showing a schematic configuration of a laser ionization mass spectrometer according to the present invention. In the figure, the plane mirrors 4 and 5, the electrodes 8 and 9, the molecular beam 3, the laser beam 6, and the ions 10 are in the vacuum chamber 2 but are clearly shown for easy understanding.
2 is a cross-sectional view of the laser ionization mass spectrometer viewed along the same plane as the laser beam path reflected between the plane mirrors 4 and 5 of the laser ionization mass spectrometer shown in FIG.

これらの図において、1はナフタレン等の試料ガスを流入し、真空チャンバー2内に試料分子線として噴出させる分子線発生装置、2は真空チャンバー、3は真空チャンバー2内に噴出された試料分子線、4,5は真空チャンバー2内に収納された(または真空チャンバー2外)に対向配置された平面鏡、6は真空チャンバー2内に入射されて平面鏡4,5間で反射を繰り返しながら平面鏡4,5における反射位置を移動する光路において分子線3をイオン化するレーザー光、7は真空チャンバー2外に設けられ真空チャンバー2内にレーザー光を入射するためのレーザー光発生装置、8、9は平面鏡4,5間で反射を繰り返しながら平面鏡4,5間で反射位置を移動するレーザー光路を挟んで対向配置され、イオン化されたイオンを電場によりイオン検出器12方向に加速するための電極、10はイオン化されたイオン、11は飛行管、12は電極8,9間に印加された電場により加速されたイオン10を検出するイオン検出器である。   In these drawings, reference numeral 1 denotes a molecular beam generator for flowing a sample gas such as naphthalene into a vacuum chamber 2 as a sample molecular beam, 2 a vacuum chamber, and 3 a sample molecular beam ejected into the vacuum chamber 2. , 4, 5 are plane mirrors disposed in the vacuum chamber 2 (or outside the vacuum chamber 2) and opposed to each other, and 6 is incident on the vacuum chamber 2 and is repeatedly reflected between the plane mirrors 4, 5. 5 is a laser beam that ionizes the molecular beam 3 in the optical path that moves the reflection position in 5, 7 is a laser beam generator that is provided outside the vacuum chamber 2 and makes the laser beam enter the vacuum chamber 2, and 8 and 9 are plane mirrors 4. , 5 are arranged opposite to each other with a laser beam path that moves the reflection position between the plane mirrors 4 and 5 while repeating the reflection between the plane mirrors 4 and 5. Electrode for acceleration in the direction of the ion detector 12, 10 is ionized ions, 11 is a flight tube, 12 is an ion detector for detecting ions 10 accelerated by an electric field applied between the electrodes 8 and 9. is there.

図1に示すように、本実施形態の発明に係るレーザーイオン化質量分析装置によれば、イオン化質量分析による検出を目的とした分子が微量に含まれる大気、あるいはその分子をヘリウム等のバッファーガスで希釈した試料ガスを、パルスバルブ等からなる分子線発生装置1により、真空チャンバー2内に噴出させることにより試料分子線3が得られる。分子線3中の試料は、レーザー光6によりイオン化され、イオン化されたイオン10は、飛行時間型質量分析計のイオン引き込み電場発生用の2枚の電極間8,9の電場によりイオン検出器12方向に加速され、それぞれの質量に特有の速度で飛行管11を飛行後、イオン検出器12に到達する。   As shown in FIG. 1, according to the laser ionization mass spectrometer according to the invention of the present embodiment, the atmosphere containing a minute amount of molecules for detection by ionization mass spectrometry, or the molecules with a buffer gas such as helium. The sample molecular beam 3 is obtained by jetting the diluted sample gas into the vacuum chamber 2 by the molecular beam generator 1 including a pulse valve or the like. The sample in the molecular beam 3 is ionized by the laser beam 6, and the ionized ion 10 is converted into an ion detector 12 by an electric field between the two electrodes 8 and 9 for generating an ion drawing electric field of the time-of-flight mass spectrometer. The ions are accelerated in the direction and fly through the flight tube 11 at a speed specific to each mass, and then reach the ion detector 12.

また、図2に示すように、1対の電極8,9間をレーザー光6が複数回往復するように、1対の平面鏡4,5(反射率99%以上)を1対の電極8,9の前後に向かい合うように配置される。レーザー光6の反射の回数を増やすことにより実効的な光路長を伸ばすことができる。最大反射回数は、平面鏡4,5間の距離、電極8,9間の距離、およびレーザービーム径により規定される。   In addition, as shown in FIG. 2, a pair of plane mirrors 4 and 5 (reflectance 99% or more) is connected to the pair of electrodes 8 and 9 so that the laser beam 6 reciprocates a plurality of times between the pair of electrodes 8 and 9. 9 are arranged so as to face each other. By increasing the number of reflections of the laser light 6, the effective optical path length can be extended. The maximum number of reflections is defined by the distance between the plane mirrors 4 and 5, the distance between the electrodes 8 and 9, and the laser beam diameter.

図3は図2に示した反射鏡4,5、電極8,9、およびレーザー光6を拡大して示した図である。
同図において、Lは平面鏡4,5間の距離、Bはレーザー光路の最大幅、Dは電極8,9間の距離、αは平面鏡4,5が互いに平行する位置から対向する側にそれぞれ傾斜する角度、θはレーザー光6の初期入射角、2nはレーザー光の平面鏡4,5間における反射回数である。
ここでは、反射回数2n=10の場合のレーザー光路を例示した。レーザー光6の初期入射角θ0とした場合、平面鏡4,5の角度αをθ−2nα=0となるように設定することによりレーザー光6は平面鏡4,5間を2n回反射する。レーザー光6が反射を繰り返す光路の最大の幅Bは、平面鏡4,5間の距離Lより近似的にLθ(n+1)/2となり、これが電極間隔D以下になる最大の反射回数は4D/Lθ−2である。従って初期入射角θを小さくするほど反射回数は多くなり、増幅効果は大きくなる。
FIG. 3 is an enlarged view of the reflecting mirrors 4 and 5, the electrodes 8 and 9, and the laser beam 6 shown in FIG. 2.
In this figure, L is the distance between the plane mirrors 4 and 5, B is the maximum width of the laser optical path, D is the distance between the electrodes 8 and 9, and α is inclined from the position where the plane mirrors 4 and 5 are parallel to each other to the opposite side angle, theta 0 is the initial angle of incidence of the laser beam 6, 2n is the number of reflections between the plane mirrors 4 and 5 of the laser beam.
Here, the laser optical path when the number of reflections is 2n = 10 is illustrated. If the initial angle of incidence theta 0 of the laser beam 6, the laser beam 6 is reflected 2n times between the plane mirrors 4 and 5 by setting the angle α of the plane mirrors 4 and 5 such that θ 0 -2nα = 0. The maximum width B of the optical path in which the laser beam 6 repeats reflection is approximately Lθ 0 (n + 1) / 2 from the distance L between the plane mirrors 4 and 5, and the maximum number of reflections when this is less than the electrode interval D is 4D / Lθ 0 -2. Accordingly, the smaller the initial incident angle θ 0 , the more the number of reflections, and the greater the amplification effect.

図4は、本実施形態の発明に係るレーザーイオン化質量分析装置によって測定されたナフタレン分子の質量スペクトルの例を示す図である。横軸は飛行時間、縦軸はイオン強度を示す。
本装置において、レーザー光発生装置7から入射されるレーザー光6には、YAGレーザーの4倍波(266nm)を用い、二光子イオン化による検出を行った。同図において、増幅後のスペクトル(点線)は、平面鏡4,5を入れたことにより、実効的な光路長を11倍に増幅して得られたものである。スペクトルピークの面積強度を測定すると、その比は増幅前のスペクトル(実線)に対して約8倍になった。理想的には11倍に増加するはずであるが、必ずしもそうならなかったのは、平面鏡4,5を真空チャンバー2の外部に設置したため、レーザー入射窓の表面で反射による強度の減衰が生じたためである。表面反射ロスはなくすために真空チャンバー2内部に平面鏡4,5を設置すると平面鏡4,5間の距離も短縮されるので、反射回数も増やすことが可能となり、大幅な感度向上が期待できる。
FIG. 4 is a diagram showing an example of a mass spectrum of naphthalene molecules measured by the laser ionization mass spectrometer according to the invention of the present embodiment. The horizontal axis represents time of flight, and the vertical axis represents ion intensity.
In this apparatus, the laser beam 6 incident from the laser beam generator 7 was detected by two-photon ionization using a fourth harmonic (266 nm) of a YAG laser. In the figure, the spectrum after amplification (dotted line) is obtained by amplifying the effective optical path length by 11 times by inserting the plane mirrors 4 and 5. When the area intensity of the spectrum peak was measured, the ratio was about 8 times that of the spectrum before amplification (solid line). Ideally, it should increase by a factor of 11. However, this was not always the case because the plane mirrors 4 and 5 were installed outside the vacuum chamber 2 and the intensity of the light was attenuated by reflection on the surface of the laser incident window. It is. If the plane mirrors 4 and 5 are installed in the vacuum chamber 2 in order to eliminate the surface reflection loss, the distance between the plane mirrors 4 and 5 can be shortened, so that the number of reflections can be increased and a significant improvement in sensitivity can be expected.

本装置によれば、ナフタレン分子の検出感度は700pptにまで向上させることができた。さらなる高感度化、装置のコンパクト化により、大気環境などのオンサイト・リアルタイム高感度分析への展開が期待できる。   According to this apparatus, the detection sensitivity of naphthalene molecules could be improved up to 700 ppt. With higher sensitivity and more compact equipment, it can be expected to develop on-site real-time high-sensitivity analysis such as atmospheric environment.

本発明に係るレーザーイオン化質量分析装置の概略構成を示す斜視図である。1 is a perspective view showing a schematic configuration of a laser ionization mass spectrometer according to the present invention. 図1に示されたレーザーイオン化質量分析装置の平面鏡4,5間で反射するレーザー光路と同一面で切断して見たレーザーイオン化質量分析装置の断面図である。It is sectional drawing of the laser ionization mass spectrometer seen by cut | disconnecting on the same surface as the laser optical path reflected between the plane mirrors 4 and 5 of the laser ionization mass spectrometer shown by FIG. 図2に示した反射鏡4,5、電極8,9、およびレーザー光6を拡大して示した図である。It is the figure which expanded and showed the reflective mirrors 4 and 5, the electrodes 8 and 9, and the laser beam 6 which were shown in FIG. 本発明に係るレーザーイオン化質量分析装置によって測定されたナフタレン分子の質量スペクトルの例を示す図である。It is a figure which shows the example of the mass spectrum of the naphthalene molecule measured with the laser ionization mass spectrometer which concerns on this invention.

符号の説明Explanation of symbols

1 分子線発生装置
2 真空チャンバー
3 試料分子線
4,5 平面鏡
6 レーザー光
7 レーザー光発生装置
8,9 電極
10 イオン
11 飛行管
12 イオン検出器
DESCRIPTION OF SYMBOLS 1 Molecular beam generator 2 Vacuum chamber 3 Sample molecular beam 4, 5 Plane mirror 6 Laser light 7 Laser light generator 8, 9 Electrode 10 Ion 11 Flight tube 12 Ion detector

Claims (5)

真空チャンバーと、該真空チャンバー内に試料分子線を放射する分子線発生装置と、前記真空チャンバー内または真空チャンバー外に配置された1対の平面鏡と、前記真空チャンバー内にレーザー光を入射するレーザー光発生装置と、前記真空チャンバー内に配置される、イオン化されたイオンを加速する1対の電極と、加速されたイオンを検出するイオン検出器とを備え、前記入射されたレーザー光が前記1対の平面鏡間で反射を繰り返しながら該平面鏡における反射位置を移動する光路において前記試料分子線をイオン化することを特徴とするレーザーイオン化質量分析装置。   A vacuum chamber; a molecular beam generator that emits a sample molecular beam into the vacuum chamber; a pair of plane mirrors disposed inside or outside the vacuum chamber; and a laser that emits laser light into the vacuum chamber A light generating device; a pair of electrodes arranged in the vacuum chamber for accelerating the ionized ions; and an ion detector for detecting the accelerated ions. A laser ionization mass spectrometer characterized by ionizing the sample molecular beam in an optical path that moves a reflection position in a plane mirror while repeating reflection between a pair of plane mirrors. 前記真空チャンバーに入射されるレーザー光は、前記試料分子線を二光子以下のエネルギーでイオン化できる波長であって、平行光からなることを特徴とする請求項1に記載のレーザーイオン化質量分析装置。   2. The laser ionization mass spectrometer according to claim 1, wherein the laser light incident on the vacuum chamber has a wavelength capable of ionizing the sample molecular beam with energy of two photons or less, and is composed of parallel light. 前記1対の平面鏡は、前記1対の電極の外側に、相互に向き合うように配置されていることを特徴とする請求項1または請求項2に記載のレーザーイオン化質量分析装置。   3. The laser ionization mass spectrometer according to claim 1, wherein the pair of plane mirrors are arranged so as to face each other outside the pair of electrodes. 4. 前記1対の平面鏡は、互いに平行な位置から対向する側にそれぞれ傾斜角α傾斜して配置され、前記レーザー光が前記1対の電極間を通過後に最初に反射する平面鏡への入射角をθとするとき、反射回数を2n回とするため、θ−2nα=0の関係を満たすように設定したことを特徴とする請求項1ないし請求項3のいずれか1つの請求項に記載のレーザーイオン化質量分析装置。 The pair of plane mirrors are arranged at an inclination angle α on opposite sides from a position parallel to each other, and the incident angle to the plane mirror that the laser beam first reflects after passing between the pair of electrodes is θ. 4. The device according to claim 1, wherein when 0 , the number of reflections is set to 2n, so that the relationship of θ 0 −2nα = 0 is satisfied. Laser ionization mass spectrometer. 真空チャンバー内に試料分子線を入射する工程と、前記真空チャンバー内にレーザー光を入射し、入射したレーザー光が1対の平面鏡間で反射を繰り返しながら該平面鏡における反射位置を移動する光路において前記試料分子線をイオン化する工程と、前記イオン化されたイオンを電場により加速する工程と、加速されたイオンを検出する工程とからなることを特徴とするレーザーイオン化質量分析方法。   In the optical path in which the sample molecular beam is incident in the vacuum chamber, the laser beam is incident in the vacuum chamber, and the incident laser beam is repeatedly reflected between a pair of plane mirrors and moves in the reflection position of the plane mirror. A laser ionization mass spectrometry method comprising a step of ionizing a sample molecular beam, a step of accelerating the ionized ions with an electric field, and a step of detecting the accelerated ions.
JP2008009363A 2008-01-18 2008-01-18 Laser ionization mass spectrometer and laser ionization mass spectrometry method Expired - Fee Related JP4845051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009363A JP4845051B2 (en) 2008-01-18 2008-01-18 Laser ionization mass spectrometer and laser ionization mass spectrometry method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009363A JP4845051B2 (en) 2008-01-18 2008-01-18 Laser ionization mass spectrometer and laser ionization mass spectrometry method

Publications (2)

Publication Number Publication Date
JP2009170354A true JP2009170354A (en) 2009-07-30
JP4845051B2 JP4845051B2 (en) 2011-12-28

Family

ID=40971284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009363A Expired - Fee Related JP4845051B2 (en) 2008-01-18 2008-01-18 Laser ionization mass spectrometer and laser ionization mass spectrometry method

Country Status (1)

Country Link
JP (1) JP4845051B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717189A (en) * 2016-02-17 2016-06-29 上海交通大学 Device for in-situ detection of catalytic reaction intermediate and product and detection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167360A (en) * 1986-01-20 1987-07-23 Matsushita Electric Ind Co Ltd Thioindigo dye and production thereof
JPH10149795A (en) * 1996-11-21 1998-06-02 Hitachi Ltd Mass spectrometer
JPH1114571A (en) * 1997-06-24 1999-01-22 Hitachi Ltd Photoionization mass spectrometer
JP2000275218A (en) * 1999-03-26 2000-10-06 Osaka Gas Co Ltd Laser ionization mass spectrometer
JP2003121418A (en) * 2001-10-11 2003-04-23 Mitsubishi Heavy Ind Ltd Laser measuring device and method
JP2003139743A (en) * 2001-11-06 2003-05-14 Mitsubishi Heavy Ind Ltd Instrument and method for laser measurement
JP2006073437A (en) * 2004-09-03 2006-03-16 Idx Technologies Corp Optical storage type laser ionization mass spectrometer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167360A (en) * 1986-01-20 1987-07-23 Matsushita Electric Ind Co Ltd Thioindigo dye and production thereof
JPH10149795A (en) * 1996-11-21 1998-06-02 Hitachi Ltd Mass spectrometer
JPH1114571A (en) * 1997-06-24 1999-01-22 Hitachi Ltd Photoionization mass spectrometer
JP2000275218A (en) * 1999-03-26 2000-10-06 Osaka Gas Co Ltd Laser ionization mass spectrometer
JP2003121418A (en) * 2001-10-11 2003-04-23 Mitsubishi Heavy Ind Ltd Laser measuring device and method
JP2003139743A (en) * 2001-11-06 2003-05-14 Mitsubishi Heavy Ind Ltd Instrument and method for laser measurement
JP2006073437A (en) * 2004-09-03 2006-03-16 Idx Technologies Corp Optical storage type laser ionization mass spectrometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717189A (en) * 2016-02-17 2016-06-29 上海交通大学 Device for in-situ detection of catalytic reaction intermediate and product and detection method

Also Published As

Publication number Publication date
JP4845051B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
US9318308B2 (en) MALDI imaging and ion source
US20070114395A1 (en) Photoemissive ion mobility spectrometry in ambient air
RU2646860C2 (en) Two-channel time-of-flight mass-spectrometer with unidirectional channels
EP2665084A2 (en) Improvements in and relating to the measurement of ions
JP2014521189A (en) Ion guide connected to MALDI ion source
CN104597112A (en) Time-resolved charged particle imaging apparatus
US20150187558A1 (en) Pulse-burst assisted electrospray ionization mass spectrometer
JP2009054441A (en) Atmospheric pressure maldi mass spectroscope
JP4845051B2 (en) Laser ionization mass spectrometer and laser ionization mass spectrometry method
Tonokura et al. Development of a compact laser-based single photon ionization time-of-flight mass spectrometer
US20230125832A1 (en) Multipass cell
Kirihara et al. Development of a RIMMPA-TOFMS. Isomer selective soft ionization of PCDDs/DFs
JP4543213B2 (en) Molecular orientation thermometer
JP4906403B2 (en) Jet-REMPI system for gas analysis
WO1996031900A1 (en) A method and device for the analysis of the chemical composition of particles
JP3664977B2 (en) Chemical substance detection device
JP2002203510A (en) Small-sized time of flight type secondary ion mass spectrometer
CN112074927A (en) Apparatus and method for mass spectrometry of particles
JP3571215B2 (en) High sensitivity supersonic molecular jet multi-photon ionization mass spectrometer and its high sensitivity detection method
CN115629118B (en) Mass spectrometry apparatus and mass spectrometry method
US20070108391A1 (en) Method of analyzing dioxins
JPH1114571A (en) Photoionization mass spectrometer
WO2010018629A1 (en) Method and device for introducing sample for laser ionization mass analysis
JP2010117245A (en) Mass spectrometry
JP4168422B2 (en) Trace substance detection and analysis equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees