JP2009168788A - Gyro sensor vibrator - Google Patents

Gyro sensor vibrator Download PDF

Info

Publication number
JP2009168788A
JP2009168788A JP2008031077A JP2008031077A JP2009168788A JP 2009168788 A JP2009168788 A JP 2009168788A JP 2008031077 A JP2008031077 A JP 2008031077A JP 2008031077 A JP2008031077 A JP 2008031077A JP 2009168788 A JP2009168788 A JP 2009168788A
Authority
JP
Japan
Prior art keywords
rod
vibrating body
gyro sensor
gravity
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008031077A
Other languages
Japanese (ja)
Inventor
Yoshiro Tomikawa
義朗 富川
Norihiko Shiratori
典彦 白鳥
Minoru Hatakeyama
稔 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microstone Corp
Original Assignee
Microstone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microstone Corp filed Critical Microstone Corp
Priority to JP2008031077A priority Critical patent/JP2009168788A/en
Publication of JP2009168788A publication Critical patent/JP2009168788A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gyro sensor vibrator, which uses curved secondary oscillating attitude of a rod for driving and detecting, with high accuracy, easy supporting, simple structure, and enhanced practicality. <P>SOLUTION: In the gyro sensor vibrator, a main constituent of which is a straight rod consisting practically of elastic material, the rod concerned includes a driving electrode exciting secondary flexing oscillation with both free ends piezoelectrically in a first plane containing the long axis thereof, and a detecting electrode detecting piezoelectrically oscillation caused by Coriolis force generated along a second plane perpendicular to the plane when the rod rotates around the rotating axis parallel to the long axis. In addition , the driving electrode and the detecting electrode are deployed at opposite side of the gravity center of the rod. Also, at least the gravity center of the rod is supported elastically. Moreover, a direction of piezoelectricity of the rod is shifted to 90 degree at both sides of the gravity center. Furthermore, the rod is equipped with buffers at sections near both ends. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、振動ジャイロスコープにおいて、回転角速度に比例した電気的信号を出力するセンサ振動体に関する。  The present invention relates to a sensor vibrating body that outputs an electrical signal proportional to a rotational angular velocity in a vibrating gyroscope.

振動ジャイロスコープは、小型で簡便であり、消費電力も少ないため、運動の計測や姿勢制御用のセンサとして、車両やロボットあるいはカメラ等小型の携帯用電子機器に至るまで広く用いられている。角速度センサとして使用される振動体には種々な形式のものが提案され、小型化、感度や精度の向上、検出方向の多軸化、等の性能を競っている。棒の1次屈曲振動を用いたものがまず実用化されたが、次第に圧電性材料より成る音叉型振動体またはその変形と考えられる振動体を用いたものが次第に優勢となりつつある。しかし用途によっては、異なる長所を持つ他の形態のセンサ振動体が求められることがある。  Vibrating gyroscopes are small, simple, and consume little power, so they are widely used as small sensors such as vehicles, robots, and cameras for motion measurement and attitude control. Various types of vibrating bodies used as angular velocity sensors have been proposed and compete for performance such as downsizing, improvement in sensitivity and accuracy, and multi-axis detection direction. A rod using the primary bending vibration was first put into practical use, but gradually a tuning fork type vibration body made of a piezoelectric material or a vibration body considered to be a deformation thereof is gradually becoming dominant. However, depending on the application, another type of sensor vibrating body having different advantages may be required.

弾性体より成る棒(あるいは細長い板)の屈曲振動を利用したジャイロセンサ振動体の従来技術については、下記文献が例示される。  The following documents are exemplified for the prior art of the gyro sensor vibrating body using the bending vibration of the rod (or elongated plate) made of an elastic body.

特開昭61−191916号公報JP 61-191916 A 実開昭59−40813号公報Japanese Utility Model Publication No.59-40813 日本音響学会誌56巻1号(2000)pp47〜55掲載「縦1次−屈曲2次の2重モード矩形版振動子を用いた圧電ジャイロ・センサ」富川義朗 後藤隆志 菅原澄夫Journal of the Acoustical Society of Japan, Vol. 56, No. 1 (2000), pp. 47-55, “Piezoelectric Gyro Sensor Using a Longitudinal First-Bending Quadratic Dual Mode Rectangular Vibrator” Yoshiro Tomikawa Takashi Goto Sumio Sugawara

上記特許文献1、2は棒の1次屈曲振動を利用したジャイロセンサ振動体であるから、これらをまとめて従来例1とし、上記非特許文献1は棒の2次屈曲振動を用いたジャイロセンサ振動体であるから、これを従来例2とすることにする。  Since the above Patent Documents 1 and 2 are gyro sensor vibrating bodies using the primary bending vibration of the rod, these are collectively referred to as Conventional Example 1, and the Non-Patent Document 1 is a gyro sensor using the secondary bending vibration of the rod. Since it is a vibrating body, this will be referred to as Conventional Example 2.

従来例1のジャイロセンサ振動体の概略を図7に示した。(a)は主振動(励振駆動される基本振動)を示す斜視図、(b)は振動体が棒の長軸に平行な回転軸の回りに回転したとき現れるコリオリ力によって生起される検出振動(振幅は回転角速度に比例する)を示す平面図である。1は断面矩形の弾性体(圧電材料)より成る棒状振動体、2はその長軸、2aは長軸の振動姿態である。振動姿態は駆動、検出とも1次の屈曲振動であって、2個の節点(ノード)を有する。11は棒状振動体1の側面の主振動のノード位置Nに固定された4本の支持線である。主振動の振動面は垂直方向で、検出振動の振動面は水平方向である。主振動は棒1の上面および下面に設けた圧電素子又は電極膜(図示せず)により励振され、検出振動による電圧は棒1の側面に設けた圧電素子又は電極膜(図示せず)により検出される。  An outline of the gyro sensor vibrating body of the conventional example 1 is shown in FIG. (A) is a perspective view showing main vibration (fundamental driving fundamental vibration), (b) is detected vibration caused by Coriolis force that appears when the vibrating body rotates around a rotation axis parallel to the long axis of the rod. It is a top view which shows (amplitude is proportional to a rotation angular velocity). Reference numeral 1 denotes a rod-like vibrating body made of an elastic body (piezoelectric material) having a rectangular cross section, 2 denotes a long axis thereof, and 2a denotes a vibration state of a long axis. The vibration state is a primary bending vibration for both driving and detection, and has two nodes. Reference numeral 11 denotes four support lines fixed to the main vibration node position N on the side surface of the rod-shaped vibrating body 1. The vibration surface of the main vibration is in the vertical direction, and the vibration surface of the detected vibration is in the horizontal direction. The main vibration is excited by piezoelectric elements or electrode films (not shown) provided on the upper and lower surfaces of the rod 1, and the voltage due to the detected vibration is detected by the piezoelectric elements or electrode films (not shown) provided on the side surfaces of the rod 1. Is done.

従来例2のジャイロセンサ振動体の要点を図8に示した。本センサ振動体は棒状振動体1の長手方向の伸縮振動を主振動とし、振動体が棒1の長軸に直交する方向の回転軸回りの回転運動によって現れるコリオリ力による、棒の2次屈曲振動を検出振動とする。図8(a)の平面図、(b)の側面図(棒状振動体1の長軸方向より見た)は該略構造を表す。(c)は主振動の振動姿態(伸張時)を表す平面図、(d)はその電極配置と主振動の入出力特性を示す平面図、(e)は検出振動の振動姿態を示す平面図、(f)はその電極配置と検出電圧の出力特性を示す平面図である。  The main points of the gyro sensor vibrating body of Conventional Example 2 are shown in FIG. This sensor vibrating body has a longitudinal vibration of the rod-shaped vibrating body 1 as a main vibration, and the second bending of the rod due to the Coriolis force that appears by the rotational movement of the vibrating body around the rotation axis in the direction perpendicular to the long axis of the rod 1. Vibration is detected vibration. A plan view of FIG. 8A and a side view of FIG. 8B (viewed from the long axis direction of the rod-shaped vibrating body 1) represent the substantially structure. (C) is a plan view showing the vibration state (when extended) of the main vibration, (d) is a plan view showing the electrode arrangement and input / output characteristics of the main vibration, and (e) is a plan view showing the vibration state of the detected vibration. (F) is a top view which shows the electrode arrangement | positioning and the output characteristic of a detection voltage.

図8において、1は棒状振動体、12は支持柱、13は接着剤で、支持柱12の上部先端を棒状振動体1(圧電セラミクス又は水晶より成り、細長い平板状をなす)の中央下面に接着している。14は主振動の振動姿態(伸張時のみを図示)、15は検出振動の振動姿態(片側のみを図示)を示す。両振動モードの共振周波数は、棒の辺比を適宜に選んで縮退関係にさせ、検出振幅が極力大きくなるようにしている。(d)は板面を4分する駆動電極膜8を示す。(板の裏面には対向電極がある。)主振動の振動姿態の対称性により、4つの駆動電極に印加される駆動電圧は全て同じである。このことを、各電極端子5を黒く塗りつぶして示した。(f)は同じ電極8を検出に用いた場合であるが、板面の部分的な伸縮が(e)図の如く長軸2の両側で反対になるので、電極端子5に現れる電圧は、図示のように異なる。即ち、駆動電圧をV、屈曲振動によって1個の電極に現れる検出電圧をΔVとすると、黒く塗りつぶした電極端子5にはV+ΔVの電圧が発生し、白抜きの電極端子5にはV−ΔVが発生する。そこでこれら電極を差動的に接続することによって、必要な検出電圧2ΔVを検出することができる。  In FIG. 8, 1 is a rod-shaped vibrating body, 12 is a supporting column, 13 is an adhesive, and the upper end of the supporting column 12 is placed on the lower surface of the center of the rod-shaped vibrating body 1 (made of piezoelectric ceramics or quartz and has an elongated flat plate shape). Glued. Reference numeral 14 denotes a vibration state of the main vibration (only shown when extended), and 15 denotes a vibration state of the detected vibration (only one side is shown). The resonance frequencies of both vibration modes are set so that the side ratios of the bars are appropriately selected to be in a degenerate relationship so that the detected amplitude is maximized. (D) shows the drive electrode film 8 that divides the plate surface into four. (There is a counter electrode on the back of the plate.) Due to the symmetry of the vibration mode of the main vibration, the drive voltages applied to the four drive electrodes are all the same. This is shown by blackening each electrode terminal 5. (F) shows the case where the same electrode 8 is used for detection, but the partial expansion and contraction of the plate surface is opposite on both sides of the long axis 2 as shown in FIG. Different as shown. That is, assuming that the drive voltage is V and the detection voltage appearing on one electrode due to bending vibration is ΔV, a voltage V + ΔV is generated in the black electrode terminal 5, and V−ΔV is generated in the white electrode terminal 5. appear. Therefore, the necessary detection voltage 2ΔV can be detected by differentially connecting these electrodes.

従来例1,2とも、センサ振動体は単純な形状(直方体)でよいので、高精度の加工ができ、それが高精度の検出動作につながるメリットがある。しかし次の課題がある。従来例1においては、支持線11の固定点Nにおける検出振動による棒表面の歪みはゼロではない。また棒の重心は振幅の腹であるので支持部として用いることができない。また従来例2においては、棒の重心位置Gを支持することができて力学的な安定が良いが、主振動による伸縮のため表面歪みはゼロにならず、また重心は検出振動によって回転するので、接着剤を用いて支持すると、振動体のQ値を十分高くすることができない。  In both of the conventional examples 1 and 2, the sensor vibrating body may have a simple shape (a rectangular parallelepiped), so that high-precision machining can be performed, which has an advantage that leads to high-precision detection operation. However, there are the following problems. In Conventional Example 1, the distortion of the rod surface due to the detected vibration at the fixed point N of the support line 11 is not zero. Moreover, since the bar's center of gravity is an antinode, it cannot be used as a support. In the conventional example 2, the center of gravity position G of the rod can be supported and the mechanical stability is good. However, the surface distortion does not become zero due to expansion and contraction due to the main vibration, and the center of gravity rotates due to the detection vibration. When supported using an adhesive, the Q value of the vibrating body cannot be sufficiently increased.

本発明の目的は、形状が単純で加工精度が出し易い棒状の振動体の長所を生かすと共に、振動歪みに影響され難くかつ簡素な支持構造を適用して、回転検出精度が高く、実用的なジャイロセンサ振動体を提供することである。  The object of the present invention is to make use of the advantages of a rod-shaped vibrating body that is simple in shape and easy to obtain machining accuracy, and is applied to a simple support structure that is not easily affected by vibration distortion and has high rotation detection accuracy and is practical. A gyro sensor vibrator is provided.

上記目的を達成するため、本発明のジャイロセンサ振動体は、以下の(1)〜(15)の特徴のいずれかを備える。
(1)弾性材料より成る実質的に真直な棒を主体とし、該棒はその長軸を含む第1の平面内において両端自由の2次の屈曲振動を圧電的に励振する駆動電極と、前記棒が前記長軸に平行な回転軸の回りに回転するとき前記平面と直交する平面である第2の平面に沿って発生するコリオリ力によって生起される振動を圧電的に検出する検出電極を備えていること。
(2)上記(1)に加えて更に、前記弾性材料は圧電性を有する材料であり、前記駆動電極および前記検出電極は前記棒の表面に形成された駆動電極膜と検出電極膜であること。
(3)上記(1)又は(2)に加えて更に、前記駆動電極と前記検出電極は、それぞれ前記重心の反対側に配置されていること。
(4)上記(1)ないし(3)のいずれかに加えて更に、前記棒は、その重心位置における断面が任意の方向に微小な傾斜を可能とするように弾性支持部材によって基台に支持されていること。
(5)上記(4)に加えて更に、前記棒は、更に重心を除く節点位置付近においても他の弾性支持部材によって支持されていること。
(6)上記(1)ないし(5)のいずれかに加えて更に、前記重心を支持する支持部材と、重心を除く他の2箇所の節点位置をそれぞれ支持する他の2つの支持部材はすべて導体で形成され、前記駆動電極と前記検出電極に必要な3端子の引出線となっていること。
(7)上記(1)ないし(6)のいずれかに加えて更に、前記棒の、少なくとも前記長軸の周囲への移動を制限するため、前記重心よりも端部に近い位置において、緩衝器を設けたこと。
(8)上記(7)に加えて更に、前記緩衝器の前記棒との当接部は、ゴム材で形成されていること。
(9)上記(2)ないし(8)のいずれかに加えて更に、圧電性を有する材料より成る前記棒は、ほぼ前記重心位置の両側において、圧電性の方向がほぼ90°異なっている2つの部分から成ること。
(10)上記(9)に加えて更に、前記2つの部分を結合する結合部材に、前記支持部材が取り付けられていること。
(11)上記(9)又は(10)のいずれかに加えて更に、前記2つの部分はいずれも断面形状がほぼ正方形である棒材からなること。
(12)上記(9)又は(10)のいずれかに加えて更に、前記2つの部分はいずれも断面形状が矩形である棒材からなること。
(13)上記(1)ないし(12)のいずれかに加えて更に、前記支持部材または前記他の支持部材は、板バネによって弾性を得ていること。
(14)上記(1)ないし(12)のいずれかに加えて更に、前記支持部材または前記他の支持部材は、線材によって弾性を得ていること。
(15)上記(1)ないし(12)のいずれかに加えて更に、前記支持部材または前記他の支持部材は、ゴム材によって弾性を得ていること。
In order to achieve the above object, the gyro sensor vibrating body of the present invention includes any of the following features (1) to (15).
(1) A substantially straight rod made of an elastic material as a main body, and the rod is a drive electrode that piezoelectrically excites secondary bending vibrations at both ends in a first plane including the major axis thereof; A detection electrode for piezoelectrically detecting vibration caused by a Coriolis force generated along a second plane which is a plane orthogonal to the plane when the rod rotates around a rotation axis parallel to the major axis; That.
(2) In addition to the above (1), the elastic material is a material having piezoelectricity, and the drive electrode and the detection electrode are a drive electrode film and a detection electrode film formed on the surface of the rod. .
(3) In addition to (1) or (2) above, the drive electrode and the detection electrode are respectively disposed on the opposite sides of the center of gravity.
(4) In addition to any of the above (1) to (3), the rod is supported on the base by an elastic support member so that the cross section at the center of gravity can be inclined slightly in any direction. is being done.
(5) In addition to (4) above, the rod is also supported by another elastic support member in the vicinity of the node position excluding the center of gravity.
(6) In addition to any of the above (1) to (5), the support member that supports the center of gravity and the other two support members that respectively support the other two node positions excluding the center of gravity are all provided. It is formed of a conductor and serves as a three-terminal lead line necessary for the drive electrode and the detection electrode.
(7) In addition to any of the above (1) to (6), in order to limit the movement of the rod at least around the long axis, a shock absorber at a position closer to the end than the center of gravity Was established.
(8) In addition to the above (7), the contact portion of the shock absorber with the rod is made of a rubber material.
(9) In addition to any of the above (2) to (8), the rod made of a piezoelectric material has a piezoelectric direction that is substantially 90 ° different on both sides of the center of gravity. It consists of two parts.
(10) In addition to (9) above, the support member is attached to a coupling member that couples the two portions.
(11) In addition to (9) or (10) above, each of the two parts is made of a bar having a substantially square cross-sectional shape.
(12) In addition to either (9) or (10) above, each of the two parts is made of a bar having a rectangular cross-sectional shape.
(13) In addition to any of the above (1) to (12), the support member or the other support member may be elastic by a leaf spring.
(14) In addition to any of the above (1) to (12), the support member or the other support member may be elastic by a wire.
(15) In addition to any of the above (1) to (12), the support member or the other support member may be elastic by a rubber material.

本発明によって、以下の諸効果のうちの一つ以上を備えたジャイロセンサ振動体を提供することができた効果がある。即ち、駆動・検出共に棒の2次屈曲振動を用いることによって、形状が単純で加工精度が出し易い棒状の振動体の長所を生かし、性能を高度に安定化させることができた。また駆動電極と検出電極とを棒の重心を挟んで反対側に配置したことにより、検出電圧にノイズとして混入する駆動電圧を減らすことができた。また棒の重心位置を支持しすることにより、バランスがよく歪みの影響が極めて小さい支持構造を実現できた。また移動制限部材を設けることにより振動体の強度を実用的に高めることができた。また重心を挟んで圧電性の方向を変えた振動片を結合したことにより、駆動・検出いずれにおいてもその能率を高めた電極配置とすることができた。また支持部材の工夫により、強度が高く検出振動を妨害することが少ない支持構造を得ることができた。  According to the present invention, there is an effect that a gyro sensor vibrating body having one or more of the following effects can be provided. That is, by using the secondary bending vibration of the rod for both driving and detection, the advantages of the rod-shaped vibrating body that is simple in shape and easy to obtain machining accuracy can be utilized, and the performance can be highly stabilized. In addition, the drive electrode and the detection electrode are arranged on the opposite sides of the bar center of gravity, so that the drive voltage mixed as noise in the detection voltage can be reduced. In addition, by supporting the bar center of gravity, a support structure with good balance and very little influence of strain could be realized. Moreover, the strength of the vibrating body could be practically increased by providing the movement limiting member. In addition, by combining vibrating pieces with different piezoelectric directions across the center of gravity, an electrode arrangement with improved efficiency in both driving and detection could be achieved. Moreover, the support structure which has high strength and hardly disturbs the detection vibration can be obtained by devising the support member.

まず最良の実施形態として実施例1を説明し、更にいくつかの観点で極めて良好であると判断される種々の実施例やその変形例について図面を援用して説明する。  First, Example 1 will be described as the best mode, and various examples and modifications that are judged to be extremely good from several viewpoints will be described with reference to the drawings.

図1の各図は本発明の実施例1の構造と動作を示す。(a)は平面図、(b)は正面図、(c)は支持部材の形状を示す左側面図、(d)は基本振動の振動姿態、(e)はコリオリ力による振動姿態、(f)は駆動電極膜の断面配置図、(g)は検出電極の断面配置図である。
棒状振動体1は棒の中央の重心Gの位置で、板バネ状の支持部材4によって基台3上に水平に支持される。基台3は図示しないが、振動体を収容する気密(真空)容器の一部であることが高精度ジャイロセンサとしてはより好ましい。棒状振動体1は圧電性の弾性材料である水晶材より成り、結晶軸であるX,Y,Z軸は例えば図(a)、(b)に示した方向にほぼ向いているが、周波数温度特性等の調整のため多少変わることがある。
FIG. 1 shows the structure and operation of the first embodiment of the present invention. (A) is a plan view, (b) is a front view, (c) is a left side view showing the shape of the support member, (d) is a vibration state of basic vibration, (e) is a vibration state by Coriolis force, (f ) Is a sectional arrangement view of the drive electrode film, and (g) is a sectional arrangement view of the detection electrode.
The rod-shaped vibrating body 1 is horizontally supported on the base 3 by a leaf spring-like support member 4 at the position of the center of gravity G at the center of the rod. Although the base 3 is not illustrated, it is more preferable as a high-accuracy gyro sensor that it is a part of an airtight (vacuum) container that houses the vibrating body. The rod-shaped vibrating body 1 is made of a quartz material that is a piezoelectric elastic material, and the X, Y, and Z axes that are crystal axes are substantially oriented in the directions shown in FIGS. May vary slightly due to adjustment of characteristics.

駆動(励振)電極と検出電極は必須であるがそれらの平面形状は図示されていない。動作には駆動端子、検出端子、共通端子(接地端子)の3端子を要するが、本実施例では、棒状振動体1の重心部表面に設けた金属膜(図示せず)に接合された金属板バネ状の支持部材4を共通端子とし、また駆動端子と検出端子は二つの振動節点の表面に設けた電極端子(パッド)5より細くて柔軟なリード線7を経由して各々端子支柱6に導き、それらを外部回路(図示せず)に接続している。  The drive (excitation) electrode and the detection electrode are essential, but their planar shapes are not shown. The operation requires three terminals: a drive terminal, a detection terminal, and a common terminal (ground terminal). In this embodiment, a metal bonded to a metal film (not shown) provided on the surface of the center of gravity of the rod-like vibrator 1. The leaf spring-like support member 4 is used as a common terminal, and the drive terminal and the detection terminal are each connected to the terminal column 6 via a lead wire 7 which is thinner and more flexible than the electrode terminal (pad) 5 provided on the surface of the two vibration nodes. Are connected to an external circuit (not shown).

棒状振動体1は、励振電極によって図(d)で示すように水平面内(XY面内)の2次の屈曲振動モードで励振される。屈曲2次モードでは、重心Gは不動である。他に2個の節点(ノード)があり、その位置は棒状振動体が十分細くかつ一様断面である場合、その両端面から棒の全長の約13.2%の位置にある。(棒の屈曲1次モードでは、2個の節点は両端面から約22.4%の位置にあるので、2次モードではずっと端面寄りになる。)この棒が図(a)に示すようにその長軸2に平行な回転軸の回りに角速度Ωで回転運動をすると、コリオリ力により、図(e)に示すように垂直面内(YZ面内)の2次の屈曲振動が生起され、振幅はΩに比例する。この振動による変形を、他のジャイロセンサと同様に圧電的に検出することによって、回転角速度の上記長軸方向の成分を知ることができる。  The rod-shaped vibrating body 1 is excited by the excitation electrode in a secondary bending vibration mode in the horizontal plane (in the XY plane) as shown in FIG. In the bent secondary mode, the center of gravity G does not move. If there are two other nodes (nodes) and the rod-shaped vibrating body is sufficiently thin and has a uniform cross section, the position is approximately 13.2% of the total length of the rod from both end faces. (In the bending primary mode of the rod, the two nodes are located at about 22.4% from both end faces, so in the secondary mode, it is closer to the end face.) As shown in FIG. When rotational motion is performed at an angular velocity Ω around the rotational axis parallel to the major axis 2, the Coriolis force causes secondary bending vibration in the vertical plane (in the YZ plane) as shown in FIG. The amplitude is proportional to Ω. By detecting the deformation due to this vibration in a piezoelectric manner like other gyro sensors, it is possible to know the component in the major axis direction of the rotational angular velocity.

図1(c)に示した、重心Gに設けられた金属材料より成る板バネ状の支持部材4は、HDD装置などにおいて磁気ヘッドの面を磁気ディスクの表面に対して平行を保ちかつなじませるように保持するために用いられている、ジンバルバネと呼ばれることがあるバネ部材を応用したものである。支持部材4は、バネ性を有する金属薄板を打抜き又はエッチング技法により形成したもので、内枠4a、中枠4b、外枠4cを、くびれ部分である各2個の垂直軸4dと水平軸4eにて連結した構造を有し、基台3上にバネ面を立てて固着される。4fは必要があれば用いられる取付穴である。棒状振動体1(断面で表されている)は内枠4aの穴に重心位置まで挿通され、表面の金属膜と適量のハンダ又は(導電)接着剤等で固着される。固着部4gとして示した狭い枠状の斜線部は、そのハンダ等が振動体表面の金属膜から濡れ上がる部分を表している。  A leaf spring-like support member 4 made of a metal material provided at the center of gravity G shown in FIG. 1C keeps the surface of the magnetic head parallel to the surface of the magnetic disk in an HDD device or the like and is adapted to it. This is an application of a spring member, sometimes called a gimbal spring, that is used for holding. The support member 4 is formed by punching or etching a thin metal plate having a spring property. The inner frame 4a, the middle frame 4b, and the outer frame 4c are each provided with two vertical shafts 4d and a horizontal shaft 4e which are constricted portions. And is fixed to the base 3 with a spring surface upright. 4f is a mounting hole used if necessary. The rod-shaped vibrating body 1 (represented by a cross section) is inserted into the hole of the inner frame 4a up to the position of the center of gravity, and is fixed to the metal film on the surface with an appropriate amount of solder or (conductive) adhesive. A narrow frame-shaped hatched portion shown as the fixing portion 4g represents a portion where the solder or the like gets wet from the metal film on the surface of the vibrating body.

棒状振動体1の重心Gは、2次屈曲振動モードにおいては不動であるが、重心Gを含む断面は駆動・検出の動作において水平・垂直いずれの方向にも僅かに傾斜することが可能でなければならない。本実施例の支持部材4は、垂直軸4d、水平軸4eの捩れに中枠4bの若干の曲げを加えた弾性変形により、内枠4a部分の傾斜を摩擦損失を生じることなく可能にしている。もう一つ重要な点は、上記モードの自由振動においては理論上、重心を含む断面には曲げモーメントが発生していない(剪断力のみが作用する)ことである。従って重心近傍の棒の表面では材料の伸縮歪みがゼロに近く、この部分にハンダや接着剤が付着していてもその範囲が狭ければ棒状振動体1のQ値を低下させることが少ない。従って棒状振動体1の重心Gと支持部材4とを、センサとしての機能を損なうことなく強固に固着することができ、外力に対して丈夫なセンサ振動体を構成できる。(従来例1に用いられる1次屈曲振動モードでは、重心での屈曲歪みと変位は最大であるし、従来例2においては、重心表面には励振の伸縮振動による表面歪みの最大値が発生しており、本実施例の重心のような好都合な点は棒上には存在しない。)  The center of gravity G of the rod-shaped vibrating body 1 does not move in the secondary bending vibration mode, but the cross section including the center of gravity G should be able to be slightly inclined in both the horizontal and vertical directions in the drive and detection operations. I must. The support member 4 of the present embodiment makes it possible to incline the inner frame 4a without causing friction loss by elastic deformation obtained by adding a slight bend of the middle frame 4b to the twist of the vertical shaft 4d and the horizontal shaft 4e. . Another important point is that, in the free vibration of the above mode, theoretically, no bending moment is generated in the cross section including the center of gravity (only the shearing force acts). Therefore, the expansion / contraction strain of the material is close to zero on the surface of the rod near the center of gravity, and even if solder or adhesive is attached to this portion, the Q value of the rod-shaped vibrating body 1 is less likely to be reduced if the range is narrow. Therefore, the center of gravity G of the rod-shaped vibrating body 1 and the support member 4 can be firmly fixed without impairing the function as a sensor, and a sensor vibrating body that is strong against external force can be configured. (In the primary bending vibration mode used in Conventional Example 1, the bending distortion and displacement at the center of gravity are maximum, and in Conventional Example 2, the maximum value of surface distortion due to excitation stretching vibration occurs on the surface of the center of gravity. And there is no convenient point on the bar, such as the center of gravity of this embodiment.)

次に駆動(励振)電極と検出電極の配置について述べる。図1(f)断面図のように、駆動用の電極膜5a、5bは棒状振動体1の周囲4側面に配置される(図示を容易にするため、電極膜を棒の表面から離して描いてある)。白抜きで描いた電極膜5aは共通電極、塗りつぶした駆動電極膜5bには外部の発振回路(図示せず)の出力端子から駆動電圧が供給される。棒状振動体1の断面内には電界Eが生じ、棒状振動体1を水平面内で屈曲させる。断面図(g)に検出用の電極膜5a、5bを示す。これらの間にもし電圧を与えれば、横向きの電界Eが生じて棒状振動体1を垂直面内で屈曲させるが、逆に垂直面内で棒が屈曲すると圧電逆効果によって両電極間に検出電圧が生じるので、検出電極膜5cを検出端子に接続する。検出端子は外部の検出回路(図示せず)及び前記発振回路の入力端子に接続される。共通電極膜5aは支持部材4に接続し接地する。なお図(g)を駆動電極に、図(f)を検出電極に用いてもよいし、また棒状振動体1を長軸2の回りに90°回転し、駆動を垂直面内での屈曲、検出を水平面内での屈曲としてもよい。  Next, the arrangement of drive (excitation) electrodes and detection electrodes will be described. As shown in the cross-sectional view of FIG. 1 (f), the driving electrode films 5a and 5b are arranged on the four side surfaces around the rod-shaped vibrating body 1 (for ease of illustration, the electrode films are drawn away from the surface of the rod). ) The electrode film 5a drawn in white is a common electrode, and the painted drive electrode film 5b is supplied with a drive voltage from an output terminal of an external oscillation circuit (not shown). An electric field E is generated in the cross section of the rod-shaped vibrator 1, and the rod-shaped vibrator 1 is bent in a horizontal plane. Sectional drawing (g) shows electrode films 5a and 5b for detection. If a voltage is applied between them, a horizontal electric field E is generated and the rod-shaped vibrating body 1 is bent in the vertical plane. Conversely, when the rod is bent in the vertical plane, the detection voltage is detected between the two electrodes due to the piezoelectric inverse effect. Therefore, the detection electrode film 5c is connected to the detection terminal. The detection terminal is connected to an external detection circuit (not shown) and an input terminal of the oscillation circuit. The common electrode film 5a is connected to the support member 4 and grounded. Note that FIG. (G) may be used as the drive electrode, and FIG. (F) may be used as the detection electrode, or the rod-like vibrator 1 may be rotated 90 ° around the long axis 2 to drive the drive in a vertical plane. The detection may be a bend in a horizontal plane.

駆動電極と検出電極は棒状振動体1の表面の異なる位置に配置されるのが良いが、駆動と検出のいずれにも2次屈曲振動モードを用いる本発明においては、それぞれの電極を、重心Gを挟んで互いに反対側に位置する棒の側面に、それぞれ分離して配置するとよい。即ち重心Gの一方側の大部分では電極配置を(f)のようにし、重心Gの他方の側の大部分(最大ではほぼ半長まで可能)では電極配置を(g)のようにする。これは、曲げモーメントの長軸上の分布が重心に関して点対称的であり、しかも重心の各片側では曲げモーメントは同符号で、かつ駆動・検出の効率が高い最大曲率部分は重心の両側に離れて生じていることによる。駆動電極膜5bと検出電極膜5cとを重心Gを挟んで反対側に設け、それらをある程度離しておくことにより、駆動信号が検出電極で拾われノイズとなる恐れが少なくなるので好ましい。また駆動端子、検出端子は重心Gを挟んで反対側に設けることも容易となり、配置構成が合理的となる。(従来例1でも棒の重心を挟むように駆動電極と検出電極を配置することはできないことはないが、駆動又は検出効果が最も大きい最大歪みは重心位置を含んで生じるので、その部分が駆動・検出電極の一方又は両方に属さないことになり、有効利用できない不利がある。)  The drive electrode and the detection electrode are preferably arranged at different positions on the surface of the rod-shaped vibrating body 1. However, in the present invention using the secondary bending vibration mode for both driving and detection, each electrode is connected to the center of gravity G. It is good to arrange | position separately on the side surface of the rod located in the mutually opposite side on both sides. That is, the electrode arrangement is as shown in (f) in the majority of one side of the center of gravity G, and the electrode arrangement is as shown in (g) in the majority of the other side of the center of gravity G (up to almost half length possible). This is because the distribution of the bending moment on the long axis is point-symmetric with respect to the center of gravity, and on each side of the center of gravity, the bending moment has the same sign, and the maximum curvature part with high drive / detection efficiency is separated on both sides of the center of gravity. This is due to what is happening. It is preferable that the drive electrode film 5b and the detection electrode film 5c are provided on the opposite sides of the center of gravity G and separated from each other to some extent because the possibility that the drive signal is picked up by the detection electrode and becomes noise is reduced. In addition, the drive terminal and the detection terminal can be easily provided on the opposite side with the center of gravity G interposed therebetween, and the arrangement configuration is rational. (In the conventional example 1, it is not impossible to dispose the drive electrode and the detection electrode so as to sandwich the center of gravity of the rod. However, since the maximum distortion with the largest driving or detection effect occurs including the position of the center of gravity, the portion is driven.・ There is a disadvantage that it does not belong to one or both of the detection electrodes and cannot be used effectively.)

本実施例1では、棒状振動体1を正方形断面の棒とした。これは水平方向の屈曲振動の固有振動数と垂直方向の屈曲振動の固有振動数とを等しく設定し、共振によって検出電圧を最大にするためである。このような寸法条件の設定は、音叉等と比較すると、棒は単純な直方体形状でよいから、ラッピング等の高精度加工により歩留りよく達成することが可能となる。断面が正方形に近い場合、その方向性を判別するには、例えば棒の端面の+X側にあるエッジに適宜な面取り加工を行っておけばよい(その分の質量欠損は、必要ならば棒の長さを微増させて補正することができる)。また検出動作を安定化するため、検出モードの固有振動数を駆動周波数から故意に所定量外すことも行われるが、この離調度付与を行う場合も上記高精度加工によって、断面形状の辺比を正確に設定し、特性を安定化させることができる。  In Example 1, the rod-shaped vibrating body 1 was a rod having a square cross section. This is because the natural frequency of the bending vibration in the horizontal direction is set equal to the natural frequency of the bending vibration in the vertical direction, and the detection voltage is maximized by resonance. Such setting of dimensional conditions can be achieved with a high yield by high-precision machining such as lapping because the rod may have a simple rectangular parallelepiped shape as compared with a tuning fork or the like. In order to determine the directionality when the cross section is close to a square, for example, an appropriate chamfering process may be performed on the edge on the + X side of the end face of the bar. It can be corrected by slightly increasing the length). In addition, in order to stabilize the detection operation, the natural frequency of the detection mode is intentionally deviated from the drive frequency by a predetermined amount. It can be set accurately and the characteristics can be stabilized.

次に、実施例1及び後述する他の実施例にも適用できる、図1(c)ジンバルバネ構造に代わる数種の支持構造の変形例について説明する。図2(a)〜(e)は本発明のジャイロセンサ振動体に用いられる各種の板バネ状の支持部材4および支持構造の実施例を示す図である。  Next, modifications of several types of support structures, which can be applied to the first embodiment and other embodiments described later, instead of the gimbal spring structure shown in FIG. 1 (c) will be described. FIGS. 2A to 2E are views showing examples of various leaf spring-like support members 4 and support structures used in the gyro sensor vibrating body of the present invention.

図2(a)、(b)は、ジンバルバネとほぼ同じ効果を発揮するが、棒状振動体1の周囲への張出し寸法量が、少なくともある方向ではやや小さくなるようにしたものである。(c)は支持部材4を左右の支持バネに分離し小型にした支持構造の3面図である。片側の支持部材の端部4gは棒状振動体1の側面に(導電的に)接着される。逆U字形のバネ部は棒の表面から離してある。(c)はバネ部を渦巻き形とし、しかもバネ面を棒状振動体1に平行に沿わせて(振動体表面からは僅か離しておく)センサ振動体の横幅を小さくしたものである。(d)はバネ部を蛇腹形屈曲形状とした他は前例と同様である。
図1(c)のジンバルバネを含め、これら図2の各種のバネは、棒状振動体1の重心Gの支持のみに限らず、節点(ノード点)を支持するためにも用いることができる。また、例えば(c)のように接着部分4gがバネ部の面またはバネ形状の撓みの中心から外れているような支持部材の場合には、接着部分4gは重心G又はノード点N位置からやや外れる。またこれらの支持部材4を、駆動、検出電極のリード線に兼用することができる。
FIGS. 2A and 2B show substantially the same effect as the gimbal spring, but the projecting dimension amount around the rod-shaped vibrating body 1 is slightly reduced at least in a certain direction. (C) is a three-sided view of a support structure in which the support member 4 is separated into left and right support springs to reduce the size. The end portion 4g of the support member on one side is bonded (conductively) to the side surface of the rod-shaped vibrating body 1. The inverted U-shaped spring part is separated from the surface of the bar. (C) shows a spring part having a spiral shape and a spring surface that is parallel to the rod-like vibrator 1 (slightly separated from the surface of the vibrator) to reduce the lateral width of the sensor vibrator. (D) is the same as the previous example except that the spring portion has a bellows-shaped bent shape.
The various springs shown in FIG. 2 including the gimbal spring shown in FIG. 1C can be used not only to support the center of gravity G of the rod-shaped vibrating body 1 but also to support nodes (node points). Further, for example, in the case of a support member in which the bonding portion 4g is out of the surface of the spring portion or the center of the spring shape as shown in (c), the bonding portion 4g is slightly from the center of gravity G or the node point N position. Come off. These support members 4 can also be used as lead wires for drive and detection electrodes.

図3は板バネを用いない他の数種の支持構造を例示したもので、(a)、(b)、(c)は支持店部分の断面図、(d)は棒状振動体1の端面側から見た側面図である。(a)は支持線11を用いた支持構造である。従来の棒状水晶振動子によく用いられた支持構造は、振動子のノード位置表面に頭部を釘の頭状に成形したネイルヘッドワイヤをハンダ付けしたものであったが、接合部で壊れ易く脆弱な構造であった。本発明においては振動体を貫通する支持線を用いて強度を飛躍的に高めている。1cは棒状振動体の重心又はノード点位置に両側から設けた例えば円錐状の凹部、1dはそれらを繋ぐ貫通穴である。凹部と穴の内面には電極膜と接続している金属膜を形成する。支持線11は中間部にストッパーとなる鍔部1aを設け、支持線11は貫通穴1dの近傍でハンダ又は導電接着剤11bにて固着される。直交する面内で振動するので、真に不動な重心又はノード点は棒状振動体1の表面にはなく中心部にのみ存在する。この構成は正にその点を支持しようとするものであり、重心又は接点を含む断面をいずれの方向へも傾斜可能に支持する。  FIG. 3 illustrates several other types of support structures that do not use a leaf spring. (A), (b), and (c) are cross-sectional views of the support store part, and (d) is the end face of the rod-shaped vibrator 1. It is the side view seen from the side. (A) is a support structure using the support wire 11. The support structure often used in the conventional bar-shaped quartz crystal was a soldered nail head wire with a head shaped like a nail head on the surface of the node position of the vibrator. It was a fragile structure. In the present invention, the strength is dramatically increased by using a support wire penetrating the vibrating body. Reference numeral 1c denotes, for example, a conical concave portion provided from both sides at the center of gravity or node point position of the rod-shaped vibrating body, and 1d denotes a through hole connecting them. A metal film connected to the electrode film is formed on the inner surface of the recess and the hole. The support wire 11 is provided with a flange 1a serving as a stopper at the intermediate portion, and the support wire 11 is fixed by solder or conductive adhesive 11b in the vicinity of the through hole 1d. Since it vibrates in an orthogonal plane, the truly stationary center of gravity or node point is not on the surface of the rod-shaped vibrating body 1 but only at the center. This configuration is intended to support the point exactly, and supports the cross section including the center of gravity or the contact point so as to be tiltable in any direction.

(b)は前例のように棒状振動体1の両側面に設けた円錐穴1cにゴム材4hを充填し、その内部に頭つき支持線11を埋設した構造を図示している。ゴム材4hの弾性変形により、棒断面の任意方向への傾斜を容易にした。(c)では円錐穴を設ける代わりに側面にゴム材4hをドーム状に盛り上げ、その内部にネイルヘッドワイヤ11を埋設している。これら支持線を用いた支持構造の実施例においては、支持線の長さを振動体1の振動周波数に共振するように選び、それによって振動の抵抗を下げるようにしてもよい。(d)では支持線を用いず、棒状振動体1の重心又はノード点の周囲に例えば断面円形のゴムのO−リングを嵌め、そのゴムリング4iの周囲の一部を基板(図示せず)上の保持部材4jで支持した構造である。これらの実施例で、ゴム材4hやゴムリング4iに導電フィラーを混入していない場合は、電極端子に接続する柔軟なリード線を別の位置に設ける。  (B) illustrates a structure in which the rubber material 4h is filled in the conical holes 1c provided on both side surfaces of the rod-shaped vibrating body 1 and the headed support wire 11 is embedded therein as in the previous example. The elastic deformation of the rubber material 4h facilitated the inclination of the bar cross section in any direction. In (c), instead of providing a conical hole, a rubber material 4h is raised in a dome shape on the side surface, and the nail head wire 11 is embedded therein. In the embodiment of the support structure using these support lines, the length of the support line may be selected so as to resonate with the vibration frequency of the vibrating body 1, thereby reducing the vibration resistance. In (d), a support line is not used, but a rubber O-ring having a circular cross section, for example, is fitted around the center of gravity or node point of the rod-shaped vibrator 1, and a part of the periphery of the rubber ring 4i is a substrate (not shown). This structure is supported by the upper holding member 4j. In these embodiments, when no conductive filler is mixed in the rubber material 4h or the rubber ring 4i, a flexible lead wire connected to the electrode terminal is provided at another position.

図4は本発明の実施例2を示す部分斜視図である。実施例2においては、水晶材より成る棒状振動体1を重心位置で2分し、一方を長軸の回りに90°回転した上で端面を突合せ再接合してある。図4にて2点鎖線で示した振動片a、振動片bはそれらの近傍に示した結晶軸の方向からわかるように、上記のような捩れ回転関係になっている。結合部材10は金属の薄板よりなり、樋状をなし、その内面が、振動片a、振動片bに設けた接合用金属膜(図示しないし、共通電極膜と接続していてもよい)とハンダ又は接着剤の薄層で結合される。実施例1の段落0018で述べたように、重心点付近は移動せず微小回転するのみで歪みも少ないので、結合部材10の質量や慣性能率、接着剤等の悪影響が少ない。一方、駆動電極にも検出電極にも電気−機械変換効率がよいとされる、図1(f)に示す方の断面配置を採用することができ、検出感度や耐ノイズ性を向上させ得るメリットがある。なお振動片a、振動片bは共に正方形・同大の断面を与えると接合は容易・正確であるが、多少の差を設けてもよい。また接合部材は金属以外の材質を用いてもよい。  FIG. 4 is a partial perspective view showing Embodiment 2 of the present invention. In the second embodiment, the rod-shaped vibrating body 1 made of a quartz material is divided into two at the center of gravity, one end is rotated by 90 ° around the major axis, and the end faces are butted and rejoined. As can be seen from the directions of the crystal axes shown in the vicinity of the vibrating piece a and the vibrating piece b shown by the two-dot chain line in FIG. The coupling member 10 is made of a thin metal plate, has a bowl shape, and the inner surface thereof is a metal film for bonding (not shown or may be connected to a common electrode film) provided on the vibrating piece a and the vibrating piece b. Bonded with a thin layer of solder or adhesive. As described in the paragraph 0018 of the first embodiment, the vicinity of the center of gravity does not move, and only a slight rotation occurs and distortion is small. On the other hand, it is possible to adopt the cross-sectional arrangement shown in FIG. 1 (f), which is considered to have good electro-mechanical conversion efficiency for both the drive electrode and the detection electrode, and the merit of improving detection sensitivity and noise resistance. There is. It should be noted that if the vibrating piece a and the vibrating piece b are both square and the same cross section, joining is easy and accurate, but a slight difference may be provided. Moreover, you may use materials other than a metal for a joining member.

図5は本発明の実施例3を示し、(a)は結合部材の斜視図、(b)、(c)はそれぞれセンサ振動片の片側における電極配置を示す斜視図、(d)、(e)はセンサ振動体の基本振動または検出振動の振動姿態を示す図である。
実施例3では振動片a、振動片bを、矩形断面でかなり大きな辺比を持つ板材にしたものである。斜視図(a)に示した結合部材10は合成樹脂、セラミックス又は金属材より成り、直交するスリットを持っている。各振動片は斜視図(b)又は(c)に示すような板状の圧電体であり、例えばニオブ酸リチウムのX軸128°回転Y板が用いられる。(b)、(c)は駆動又は検出電極の2種類の結線を示す。このような板材を結合部材10のスリットに両側から挿入・固着され一体化する。図5(e)は駆動の振動姿態、(f)はそれと振動面が直交している検出時の振動姿態を表している。
FIG. 5 shows a third embodiment of the present invention, in which (a) is a perspective view of a coupling member, (b) and (c) are perspective views showing electrode arrangement on one side of a sensor vibrating piece, and (d) and (e), respectively. ) Is a diagram illustrating a vibration state of a basic vibration or a detection vibration of the sensor vibrating body.
In the third embodiment, the resonator element a and the resonator element b are plate members having a rectangular cross section and a considerably large side ratio. The connecting member 10 shown in the perspective view (a) is made of synthetic resin, ceramics or metal material, and has orthogonal slits. Each resonator element is a plate-like piezoelectric body as shown in a perspective view (b) or (c). For example, an X-axis 128 ° rotation Y plate of lithium niobate is used. (B) and (c) show two types of connection of drive or detection electrodes. Such a plate material is inserted and fixed into the slit of the coupling member 10 from both sides to be integrated. FIG. 5E shows the vibration state of the drive, and FIG. 5F shows the vibration state at the time of detection in which the vibration surface is orthogonal.

これまで説明したように、棒状振動体1はその重心を弾性的に支持されているので、例えば音叉型振動体に用いられる片持ち的な支持構造に比べればより好ましい支持がなされていると言えるが、それでも過大な衝撃加速度が加わったり、あるいは回転的な衝撃が加わったりすると破損する恐れがある。実施例4ではそのような事故を防止するための安全性を与えた構造を例示する。図6は本実施例4における緩衝器構造を示し、(a)はセンサ振動体を含む部分断面図、(b)、(c)はそれぞれ他の実施例である緩衝器単体の斜視図である。  As described above, since the bar-shaped vibrating body 1 is elastically supported at its center of gravity, for example, it can be said that the rod-shaped vibrating body 1 is more favorably supported than a cantilevered supporting structure used for a tuning fork type vibrating body. However, there is a risk of damage if excessive impact acceleration or rotational impact is applied. Example 4 illustrates a structure that provides safety to prevent such an accident. 6A and 6B show a shock absorber structure according to the fourth embodiment. FIG. 6A is a partial cross-sectional view including a sensor vibrating body. FIGS. 6B and 6C are perspective views of a shock absorber according to another embodiment. .

図6(a)において、断面が示された9は緩衝器であり、棒状振動体1の軸方向の移動、又は重心回りの回転運動を所定の範囲内に制限することによって、振動体自体や支持系や接続系の破損を防ぐために設けたものである。9a、9bは緩衝部材保持体で基板3上に固着される。9cは緩衝部材で、柔軟なゴム材より成り、過大衝撃時には棒状振動体とソフトに接触する。緩衝部材保持体9aは軸方向の並進運動の制限用で棒の端面に近く設置され、緩衝部材保持体9bは回転運動の制限用で、振動体1と接触してもなるべく振動を妨害しないようにノード点(節点)位置を囲むように設けられる。なお接続端子(リード線の付着位置)は図1(a)よりも重心近くに移動した。斜視図(b)、(c)は更に構造を簡略化したもので、棒状振動体1の端部が周囲に所定の間隙を保って挿入される、凹部つきのゴム材9cを内部に有する緩衝器9を示す。その保持体は図示を省略した。(b)の緩衝器9では棒状振動体1の側面が緩衝部材9cと接触し、(c)では棒状振動体のエッジが緩衝部材保持体9と接触する。  In FIG. 6 (a), reference numeral 9 denotes a shock absorber, which limits the movement of the rod-shaped vibrating body 1 in the axial direction or the rotational movement around the center of gravity within a predetermined range, It is provided to prevent damage to the support system and connection system. Reference numerals 9a and 9b denote buffer member holders which are fixed on the substrate 3. 9c is a buffer member, which is made of a flexible rubber material, and in soft contact with the rod-shaped vibrating body at the time of excessive impact. The buffer member holding body 9a is installed close to the end face of the rod for limiting the translational movement in the axial direction, and the buffer member holding body 9b is for limiting the rotational movement so as not to disturb the vibration as much as possible even if it contacts the vibrating body 1. Is provided so as to surround the position of the node point (node). The connection terminal (position where the lead wire was attached) moved closer to the center of gravity than in FIG. The perspective views (b) and (c) further simplify the structure, and a shock absorber having a rubber material 9c with a recess therein in which the end of the rod-like vibrating body 1 is inserted with a predetermined gap around it. 9 is shown. The holding body is not shown. In the shock absorber 9 of (b), the side surface of the rod-shaped vibrating body 1 is in contact with the buffer member 9c, and in (c), the edge of the rod-shaped vibrating body is in contact with the buffer member holding body 9.

以上各実施例について述べたが、本発明は既述の実施例に限定されるものではない。例えば、各実施例の特徴を任意に組み合わせてもよいし、従来技術を含む他の要素を導入してもよい。また棒状振動体を構成する材料として、例示した以外の材料例えば恒弾性金属材料、セラミックス、又は他の圧電性の材料(ランガサイト、タンタル酸リチウム等)を使用してもよい。  Although the embodiments have been described above, the present invention is not limited to the above-described embodiments. For example, the features of the respective embodiments may be arbitrarily combined, or other elements including conventional techniques may be introduced. Further, as a material constituting the rod-shaped vibrating body, materials other than those exemplified, for example, a constant elastic metal material, ceramics, or other piezoelectric materials (such as langasite and lithium tantalate) may be used.

本発明は、高い形状精度と実用的な支持構造を持つジャイロセンサ振動体を提供するものであるから、産業上の利用可能性は大きい。  Since the present invention provides a gyro sensor vibrating body having high shape accuracy and a practical support structure, the industrial applicability is great.

本発明の実施例1を示し、(a)は平面図、(b)は正面図、(c)は左側面図、(d)は基本振動の振動姿態、(e)はコリオリ力による振動姿態、(f)は駆動電極膜の断面配置図、(g)は検出電極の断面配置図である。  Fig. 1 shows a first embodiment of the present invention, (a) is a plan view, (b) is a front view, (c) is a left side view, (d) is a vibration state of basic vibration, and (e) is a vibration state by Coriolis force. , (F) is a cross-sectional arrangement view of the drive electrode film, and (g) is a cross-sectional arrangement view of the detection electrode. (a)〜(e)は本発明のジャイロセンサ振動体に用いられる各種の支持バネおよび支持構造の実施例を示す図である。  (A)-(e) is a figure which shows the Example of the various support springs and support structure which are used for the gyro sensor vibrating body of this invention. (a)〜(d)は本発明のジャイロセンサ振動体に用いられる他の各種の支持構造の実施例を示す断面図である。  (A)-(d) is sectional drawing which shows the Example of the other various support structure used for the gyro sensor vibrating body of this invention. 本発明の実施例2を示す部分斜視図である。  It is a fragmentary perspective view which shows Example 2 of this invention. 本発明の実施例3を示し、(a)は結合部材の斜視図、(b)、(c)はそれぞれセンサ振動片の片側における電極配置を示す斜視図、(d)、(e)はセンサ振動体の基本振動または検出振動の振動姿態を示す図である。  Fig. 4 shows a third embodiment of the present invention, in which (a) is a perspective view of a coupling member, (b) and (c) are perspective views showing electrode arrangement on one side of the sensor vibrating piece, and (d) and (e) are sensors. It is a figure which shows the vibration mode of the fundamental vibration or detection vibration of a vibrating body. 本発明の実施例4における緩衝器構造を示し、(a)はセンサ振動体を含む部分断面図、(b)、(c)はそれぞれ他の実施例である緩衝器単体の斜視図である。  The buffer structure in Example 4 of this invention is shown, (a) is a fragmentary sectional view containing a sensor vibrating body, (b), (c) is a perspective view of the buffer body which is another Example, respectively. 従来例1のジャイロセンサ振動体を示し、(a)は斜視図と主振動の振動姿態、(b)は平面図と検出振動の振動姿態を示す図である。  The gyro sensor vibrating body of the prior art example 1 is shown, (a) is a perspective view and a vibration state of main vibration, and (b) is a plan view and a vibration state of detection vibration. 従来例2ジャイロセンサ振動体を示し、(a)は概略の平面図、(b)は側面図、(c)は主振動の振動姿態を示す平面図、(d)はその電極配置と出力特性を示す平面図、(e)は検出振動の振動姿態を示す平面図、(f)はその電極配置と出力特性を示す平面図である。  Conventional Example 2 shows a gyro sensor vibrating body, wherein (a) is a schematic plan view, (b) is a side view, (c) is a plan view showing the vibration state of the main vibration, and (d) is its electrode arrangement and output characteristics. (E) is a plan view showing the vibration state of the detected vibration, and (f) is a plan view showing the electrode arrangement and output characteristics.

符号の説明Explanation of symbols

1 棒状振動体
1a振動片a、1b振動片b、1c凹部、1d貫通穴
2 振動体の長軸
2a長軸の振動姿態
3 基台
4 支持部材
4a内枠、4b中枠、4c外枠、4d垂直軸、4e水平軸、4f取付穴、4g固着部 4hゴム材、4iゴムリング、 4j保持部材
5 電極端子
5a共通電極膜、5b駆動電極膜、5c検出電極膜
6 端子支柱
7 リード線
8、8a、8b 電極膜
9 緩衝器
9a、9b緩衝材保持体、9c緩衝部材
10 結合部材
11 支持線
11a鍔部、11bハンダ
12 支持柱
13 接着剤
14 駆動振動姿態
15 検出振動姿態
G 振動体の重心
N 振動の節点(ノード点)
E 電界
Ω 角速度
DESCRIPTION OF SYMBOLS 1 Bar-shaped vibrating body 1a Vibrating piece a, 1b Vibrating piece b, 1c recessed part, 1d through-hole 2 Vibrating body long axis 2a Long-axis vibration mode 3 Base 4 Support member 4a inner frame, 4b middle frame, 4c outer frame, 4d vertical axis, 4e horizontal axis, 4f mounting hole, 4g fixing part 4h rubber material, 4i rubber ring, 4j holding member 5 electrode terminal 5a common electrode film, 5b drive electrode film, 5c detection electrode film 6 terminal column 7 lead wire 8 8a, 8b Electrode film 9 Shock absorber 9a, 9b Buffer material holder, 9c Buffer member 10 Coupling member 11 Support line 11a flange part, 11b Solder 12 Support column 13 Adhesive 14 Drive vibration state 15 Detected vibration state G Vibration body Center of gravity N Vibration node (node point)
E Electric field Ω Angular velocity

Claims (15)

弾性材料より成る実質的に真直な棒を主体とし、該棒はその長軸を含む第1の平面内において両端自由の2次の屈曲振動を圧電的に励振する駆動電極と、前記棒が前記長軸に平行な回転軸の回りに回転するとき前記平面と直交する平面である第2の平面に沿って発生するコリオリ力によって生起される振動を圧電的に検出する検出電極を備えていることを特徴とするジャイロセンサ振動体。  A substantially straight rod made of an elastic material is used as a main body, the rod is a drive electrode that piezoelectrically excites secondary bending vibrations at both ends in a first plane including the major axis, and the rod is A detection electrode that piezoelectrically detects vibration caused by a Coriolis force generated along a second plane that is a plane orthogonal to the plane when rotating around a rotation axis parallel to the long axis; A gyro sensor vibrating body. 前記弾性材料は圧電性を有する材料であり、前記駆動電極および前記検出電極は前記棒の表面に形成された駆動電極膜と検出電極膜であることを特徴とする請求項1に記載のジャイロセンサ振動体。  2. The gyro sensor according to claim 1, wherein the elastic material is a piezoelectric material, and the drive electrode and the detection electrode are a drive electrode film and a detection electrode film formed on a surface of the rod. Vibrating body. 前記駆動電極と前記検出電極は、それぞれ前記重心の反対側に配置されていることを特徴とする請求項1または2に記載のジャイロセンサ振動体。  The gyro sensor vibrating body according to claim 1, wherein the drive electrode and the detection electrode are respectively disposed on opposite sides of the center of gravity. 前記棒は、その重心位置における断面が任意の方向に微小な傾斜を可能とするように弾性支持部材によって基台に支持されていることを特徴とする請求項1ないし3のいずれかに記載のジャイロセンサ振動体。  The said bar | burr is supported by the base by the elastic support member so that the cross section in the gravity center position can make a minute inclination in arbitrary directions, The base in any one of Claim 1 thru | or 3 characterized by the above-mentioned. Gyro sensor vibrating body. 前記棒は、更に重心を除く節点位置付近においても他の弾性支持部材によって支持されていることを特徴とする請求項4に記載のジャイロセンサ振動体。  The gyro sensor vibrating body according to claim 4, wherein the bar is supported by another elastic support member even in the vicinity of a node position excluding the center of gravity. 前記重心を支持する支持部材と、重心を除く他の2箇所の節点位置をそれぞれ支持する他の2つの支持部材はすべて導体で形成され、前記駆動電極と前記検出電極に必要な3端子の引出線となっていることを特徴とする請求項1ないし5のいずれかに記載のジャイロセンサ振動体。  The supporting member that supports the center of gravity and the other two supporting members that respectively support the other two node positions excluding the center of gravity are all formed of a conductor, and the three terminals necessary for the drive electrode and the detection electrode are drawn out. 6. The gyro sensor vibrating body according to claim 1, wherein the gyro sensor vibrating body is a line. 前記棒の、少なくとも前記長軸の周囲への移動を制限するため、前記重心よりも端部に近い位置において、緩衝器を設けたことを特徴とする請求項1ないし6のいずれかに記載のジャイロセンサ振動体。  7. The shock absorber according to claim 1, wherein a shock absorber is provided at a position closer to the end than the center of gravity in order to limit movement of the rod at least around the long axis. Gyro sensor vibrating body. 前記緩衝器の前記棒との当接部は、ゴム材で形成されていることを特徴とする請求項7に記載のジャイロセンサ振動体。  The gyro sensor vibrating body according to claim 7, wherein a contact portion of the shock absorber with the rod is formed of a rubber material. 圧電性を有する材料より成る前記棒は、ほぼ前記重心位置の両側において、圧電性の方向がほぼ90°異なっている2つの部分から成ることを特徴とする請求項2ないし8のいずれかに記載のジャイロセンサ振動体。  9. The bar according to claim 2, wherein the bar made of a piezoelectric material is composed of two portions whose directions of piezoelectricity are substantially different by 90 degrees on both sides of the center of gravity. Gyro sensor vibrating body. 前記2つの部分を結合する結合部材に、前記支持部材が取り付けられていることを特徴とする請求項9に記載のジャイロセンサ振動体。  The gyro sensor vibrating body according to claim 9, wherein the support member is attached to a coupling member that couples the two portions. 前記2つの部分はいずれも断面形状がほぼ正方形である棒材からなることを特徴とする請求項9または10に記載のジャイロセンサ振動体。  11. The gyro sensor vibrating body according to claim 9, wherein each of the two parts is made of a bar material having a substantially square cross-sectional shape. 前記2つの部分はいずれも断面形状が矩形である棒材からなることを特徴とする請求項9または10に記載のジャイロセンサ振動体。  11. The gyro sensor vibrating body according to claim 9, wherein each of the two portions is made of a bar member having a rectangular cross-sectional shape. 前記支持部材または前記他の支持部材は、板バネによって弾性を得ていることを特徴とする請求項1ないし12のいずれかに記載のジャイロセンサ振動体。  The gyro sensor vibrating body according to any one of claims 1 to 12, wherein the supporting member or the other supporting member is elastic by a leaf spring. 前記支持部材または前記他の支持部材は、線材によって弾性を得ていることを特徴とする請求項1ないし12のいずれかに記載のジャイロセンサ振動体。  The gyro sensor vibrating body according to claim 1, wherein the support member or the other support member is elastic by a wire. 前記支持部材または前記他の支持部材は、ゴム材によって弾性を得ていることを特徴とする請求項1ないし12のいずれかに記載のジャイロセンサ振動体。  The gyro sensor vibrating body according to claim 1, wherein the support member or the other support member is elastic by a rubber material.
JP2008031077A 2008-01-16 2008-01-16 Gyro sensor vibrator Pending JP2009168788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031077A JP2009168788A (en) 2008-01-16 2008-01-16 Gyro sensor vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031077A JP2009168788A (en) 2008-01-16 2008-01-16 Gyro sensor vibrator

Publications (1)

Publication Number Publication Date
JP2009168788A true JP2009168788A (en) 2009-07-30

Family

ID=40970103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031077A Pending JP2009168788A (en) 2008-01-16 2008-01-16 Gyro sensor vibrator

Country Status (1)

Country Link
JP (1) JP2009168788A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022019831A (en) * 2018-02-27 2022-01-27 セイコーエプソン株式会社 Angular velocity sensor, inertia measurement device, moving body positioning device, portable type electronic device, electronic device, and moving body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022019831A (en) * 2018-02-27 2022-01-27 セイコーエプソン株式会社 Angular velocity sensor, inertia measurement device, moving body positioning device, portable type electronic device, electronic device, and moving body
JP7036273B2 (en) 2018-02-27 2022-03-15 セイコーエプソン株式会社 Angular velocity sensors, inertial measurement units, mobile positioning devices, portable electronic devices, electronic devices, and mobile objects

Similar Documents

Publication Publication Date Title
JP4702942B2 (en) Vibrating gyro element and vibrating gyro
JP6620243B2 (en) Angular velocity sensor, sensor element and multi-axis angular velocity sensor
US6598476B2 (en) Angular velocity sensor
US20110221312A1 (en) Vibrator element, vibrator, sensor, and electronic apparatus
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
WO2018021167A1 (en) Angular velocity sensor, sensor element, and multi-axis angular velocity sensor
JP4911690B2 (en) Vibrating gyro vibrator
JPH0313006A (en) Support structure of vibrator
JP2012149961A (en) Vibration gyro
JP2006266984A (en) Vibrating gyroscope element
JP2009168788A (en) Gyro sensor vibrator
JP3720563B2 (en) Vibrator, vibratory gyroscope and measuring method of rotational angular velocity
JP2010032482A (en) Gyro sensor vibrator
JP2012112819A (en) Vibration gyro
JPH03120415A (en) Vibration gyro
JP2009264863A (en) Gyro sensor vibrating body
JP2006208261A (en) Inertia sensor element
JP3371609B2 (en) Vibrating gyro
JPH116734A (en) Oscillation gyro and driving method therefor
KR100238980B1 (en) Piezoelectric angular sensor
JP5016652B2 (en) Tuning fork type vibration gyro
JPH08122082A (en) Piezoelectric vibration angular speedometer
JPH07318351A (en) Support structure of vibrator
JP2006125917A (en) Angular velocity sensor
JPH0748045B2 (en) Vibrating gyro