JP2009264863A - Gyro sensor vibrating body - Google Patents

Gyro sensor vibrating body Download PDF

Info

Publication number
JP2009264863A
JP2009264863A JP2008113442A JP2008113442A JP2009264863A JP 2009264863 A JP2009264863 A JP 2009264863A JP 2008113442 A JP2008113442 A JP 2008113442A JP 2008113442 A JP2008113442 A JP 2008113442A JP 2009264863 A JP2009264863 A JP 2009264863A
Authority
JP
Japan
Prior art keywords
legs
gyro sensor
vibrating body
base
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008113442A
Other languages
Japanese (ja)
Inventor
Tatsuo Koitabashi
竜雄 小板橋
Norihiko Shiratori
典彦 白鳥
Minoru Hatakeyama
稔 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Prefecture
Microstone Corp
Original Assignee
Nagano Prefecture
Microstone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Prefecture, Microstone Corp filed Critical Nagano Prefecture
Priority to JP2008113442A priority Critical patent/JP2009264863A/en
Publication of JP2009264863A publication Critical patent/JP2009264863A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gyro sensor vibrating body having six legs radially and capable of exhibiting excellent performance, by optimizing the shape and structure of the gyro sensor vibrating body. <P>SOLUTION: The gyro sensor vibrating body has the six vibrating legs 2a-2f arranged inside one plane extending radially from one common base part 1 while forming 60 degrees among them respectively. Two legs being in a straight line out of the six legs, are made into detecting legs by providing, on the two legs, detecting electrodes for detecting deflections of the legs in a direction parallel to the one plane, and the other legs are made into driving legs by providing, on the other legs, driving electrodes for generating vibration of the legs in a direction vertical to the one plane. Moreover, rotational angular speed around a rotating shaft in a direction parallel to the detecting legs is detected by the use of the detecting legs, and the gyro sensor vibrating body is supported by the base part 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、振動体に定常的な振動を与えておいて、作用するコリオリ力を前記振動体の振動の変化を用いて検出する、ジャイロセンサ振動体の形状または構造に関する。更に詳しくは、放射状に配列された振動脚を有する6脚の振動体から成るジャイロセンサ振動体の形状または構造に関する。   The present invention relates to a shape or structure of a gyro sensor vibrating body that applies a steady vibration to the vibrating body and detects an acting Coriolis force using a change in vibration of the vibrating body. More specifically, the present invention relates to a shape or structure of a gyro sensor vibrating body including a six-legged vibrating body having radially arranged vibrating legs.

回転角速度を検出するセンサとしての振動ジャイロは、それに用いられるジャイロセンサ振動体の相次ぐ発展により、精度が次第に向上し、形状も既にかなり小型化されていて、様々な大小の移動性の機器や装置に搭載され、用途は益々拡大されている。それに伴ってジャイロセンサ振動体には、小型性を維持しながら、一層の性能の向上、即ち、感度、環境安定性、耐外乱性、生産性等の向上が求められ続けている。   The vibration gyro as a sensor for detecting the rotational angular velocity is improved in accuracy gradually by the successive development of the gyro sensor vibrating body used in the gyro sensor, and the shape is already considerably reduced in size. The usage is expanding more and more. Accordingly, the gyro sensor vibrating body has been required to further improve performance, that is, to improve sensitivity, environmental stability, disturbance resistance, productivity, and the like while maintaining small size.

従来、一定の成功を収めてきたジャイロセンサ振動体は、基本的に音叉型振動体を基礎として、複数個の平行な振動脚を持つものが何種類かあった。すなわちそれらは、2〜6本の平行に配置された屈曲振動する振動脚を持ち、それら全部または一部を脚の配置された平面に平行に振動させ、特定の軸方向に作用するコリオリ力に基づく振動をいずれかの脚で検出するものである。   Conventionally, there have been several types of gyro sensor vibrating bodies that have achieved a certain degree of success, which are basically based on a tuning fork type vibrating body and have a plurality of parallel vibrating legs. That is, they have 2 to 6 vibration legs that bend and vibrate arranged in parallel, and vibrate all or a part of them in parallel with the plane on which the legs are arranged, resulting in a Coriolis force acting in a specific axial direction. The vibration based on this is detected by any leg.

このような音叉型を基調とするセンサ振動体の中には、音叉平面に垂直方向に作用するコリオリ力によるモーメントのバランスが取れておらず、コリオリ力が働くと音叉に捩れ振動が原理的に発生するものや、あるいは振動脚の形状(屈曲や枝分かれなど)がそれぞれ異なり、駆動振動の周波数やコリオリ力検出振動の周波数の調整が必ずしも容易ではないという問題点があった。   Some sensor vibrating bodies based on the tuning fork type do not balance the moment due to the Coriolis force acting in the direction perpendicular to the tuning fork plane. There is a problem in that it is not always easy to adjust the frequency of driving vibration and the frequency of Coriolis force detection vibration because the generated ones or the shapes of vibration legs (bending, branching, etc.) are different.

そこで一方では非平行な振動脚を備えた多脚センサ振動体も、前述の要請に応じて検討されている。下記に例示する従来例のセンサは、振動体を形成する水晶(3回回転対称性を有する圧電性結晶材料であって、光軸であるZ軸の回りに、電気軸であるX軸と機械軸であるY軸が120°の角度を成して3本ずつある)等の結晶材料の3回対称性を利用して、3脚または6脚を有するものである。これらの従来例を以下に挙げる。   Therefore, on the other hand, a multi-leg sensor vibrating body provided with non-parallel vibrating legs has also been studied in response to the above-mentioned request. The sensor of the conventional example illustrated below is a quartz crystal (a piezoelectric crystal material having three-fold rotational symmetry, and an X axis that is an electric axis and a machine around a Z axis that is an optical axis). Using the three-fold symmetry of the crystal material such as the Y-axis that is the axis, three at a time of 120 °, each has three or six legs. These conventional examples are listed below.

特開2001−82963号公報の図5および段落0036〜0040に記載された振動体(以下従来例1とする)。A vibrator described in FIG. 5 and paragraphs 0036 to 0040 of JP 2001-82963 A (hereinafter referred to as Conventional Example 1). 特開2004−354358号公報の図19および段落0047に記載された振動体(以下従来例2とする)。A vibrating body described in FIG. 19 and paragraph 0047 of Japanese Patent Application Laid-Open No. 2004-354358 (hereinafter referred to as Conventional Example 2). 実用新案登録第3104824号公報(以下従来例3とする)。Utility Model Registration No. 3104824 (hereinafter referred to as Conventional Example 3).

上記従来例1の振動体は水晶Z面内にY軸方向に延びる放射状6脚を持つ加速度センサまたはジャイロセンサであり、ジャイロセンサの場合は、(1)各脚を1つおきに面外振動させ、面内に平行な回転軸により面内に発生するコリオリ力による各脚の面内撓みを検出するか、(2)各脚に面内振動をさせ、面内回転によるコリオリ力を面外振動として検出するとの記載がある(段落0040)。   The vibrating body of the above conventional example 1 is an acceleration sensor or a gyro sensor having six radial legs extending in the Y-axis direction in the crystal Z plane. In the case of a gyro sensor, (1) out-of-plane vibration for every other leg. Or detect the in-plane deflection of each leg due to the Coriolis force generated in the plane by the rotation axis parallel to the plane, or (2) cause each leg to vibrate in-plane and out-of-plane the Coriolis force due to the in-plane rotation. There is a description that it is detected as vibration (paragraph 0040).

従来例2および従来例3に記載された振動体は、いずれも回転における角加速度を検出するセンサであって、ジャイロセンサと直接的な関係はないが、構成材料の多対称性を用いている点に共通性があるので例示したものである。   The vibrating bodies described in Conventional Example 2 and Conventional Example 3 are sensors that detect angular acceleration in rotation, and are not directly related to the gyro sensor, but use the multi-symmetry of the constituent materials. This is just an example because there is a common point.

上記従来例1(特許文献1)には放射状脚を有するジャイロセンサについてある程度の記載はあるものの、まだ完成度が不足で、各脚にどのように具体的な役割と構成を与えて利用するかという観点からは十分とは言えない。また振動脚の先端が内向きであって支持を行うべき支持部は外枠となっており、十分な剛性を得るには大きな面積を与える必要があるとも考えられ、小型化要求に対する懸念がある。また、振動体の支持構造を含めた最適構造も明らかにはなっていない。また、検出軸の方向がどのように特定されるかは記載されていない。   Although the above-mentioned conventional example 1 (Patent Document 1) has a certain degree of description about a gyro sensor having radial legs, it is still incomplete and how to use each leg with a specific role and configuration. From the point of view, it is not enough. In addition, the tip of the vibrating leg is inward and the support part to be supported is an outer frame, and it is considered that a large area needs to be given to obtain sufficient rigidity, and there is a concern about the demand for miniaturization . Also, the optimum structure including the support structure for the vibrating body has not been clarified. Moreover, it is not described how the direction of the detection axis is specified.

本発明は、放射状6脚を有する振動体を改良して、最適な形状および構造を与えることによって、原理的な単純性と完全性を備えさせると共に、優れた性能のジャイロセンサ振動体を提供することを目的とする。   The present invention provides a gyro sensor vibrator having excellent performance while improving the vibrator having the radial six legs to provide an optimum shape and structure, thereby providing a principled simplicity and completeness. For the purpose.

本発明のジャイロセンサ振動体は、下記の特徴を備える。
(1)1個の共通の基部から互いに60度ずつの角度をなして1平面内に放射状に配列された6本の振動脚を有し、前記6本の脚のうちの1本の脚の方向を検出軸の方向とし、前記検出軸と平行な方向の1本または2本の脚に検出(駆動)用の電極を設けて検出脚(駆動脚)とし、その他の脚に駆動(検出)用電極を設けて駆動脚(検出脚)とし、前記駆動脚を面外方向に励振し、前記検出軸回りの回転運動に伴うコリオリ力によって前記検出脚に発生する面内振動を検出すること。
The gyro sensor vibrating body of the present invention has the following features.
(1) having six vibrating legs radially arranged in one plane at an angle of 60 degrees from one common base, and one of the six legs The direction is the direction of the detection axis, and one or two legs parallel to the detection axis are provided with detection (drive) electrodes to form detection legs (drive legs), and the other legs are driven (detection). A driving leg (detection leg) is provided, and the driving leg is excited in an out-of-plane direction, and in-plane vibration generated in the detection leg is detected by a Coriolis force accompanying a rotational motion around the detection axis.

また、本発明のジャイロセンサ振動体は、更に下記の特徴の1つ或いは複数を備えることがある。
(2)前記(1)の特徴に加え、更に、前記検出軸に平行な2本の脚を検出脚(駆動脚)とし、他の4本の脚を駆動脚(検出脚)とし、前記駆動脚は前記6本の脚を、隣り合う脚同士が互いに逆位相で面外振動するように励振すること。
(3)前記(1)の特徴に加え、更に、前記検出軸に平行な2本の脚を検出脚(駆動脚)とし、他の4本の脚を駆動脚(検出脚)とし、前記駆動脚はすべて同位相の面外振動をするように励振されること。
(4)前記(1)から(3)のいずれかの特徴に加え、更に、前記6本の脚のうち、前記基部において対向する任意の2本の脚の各先端部間の距離の、当該2本の脚の前記基部に接する根元部の間の距離に対する比の値は、2倍から20倍の間であること。
(5)前記(1)から(3)のいずれかの特徴に加え、更に、前記6本の脚のうち、前記基部において対向する任意の2本の脚の各先端部間の距離の、当該2本の脚の前記基部に接する根元部の間の距離に対する比の値は、4倍から10倍の間であること。
(6)前記(1)から(5)のいずれかの特徴に加え、更に、前記基部は6個の辺または6個の頂点を有する形状であり、前記6本の脚の各々の根元部は、前記辺または頂点に位置すること。
(7)前記(1)から(6)のいずれかの特徴に加え、更に、前記基部には前記振動脚の上面電極と下面電極とを接続するための、複数個のスルーホールが設けられていること。
(8)前記(7)の特徴に加え、更に、前記スルーホールの形状は非円形であり、隣り合う前記スルーホールの間に放射状の部分を有すること。
(9)前記(1)から(8)のいずれかの特徴に加え、更に、前記基部の1面が、該基部の平面形状を越えない面を用いて、支持部材に結合されていること。
(10)前記(7)から(9)のいずれかの特徴に加え、更に、前記基部の1面が、前記複数個のスルーホールの内側の部分において、支持部材に結合されていること。
(11)前記(1)から(10)のいずれかの特徴に加え、更に、前記基部には、支持部材を取り付けるための穴が設けられていること。
(12)前記(1)から(11)のいずれかの特徴に加え、更に、前記基部と前記6本の振動脚の主要な素材は、少なくとも3回回転対称性を有する単結晶材料であり、前記1平面の法線の方向は前記単結晶材料の3回回転対称軸にほぼ平行であること。
(13)前記(12)の特徴に加え、更に前記基部と前記6本の振動脚の主要な素材は水晶であり、前記1平面の法線の方向はZ軸に近く、前記6本の放射状の脚の方向はY軸に近く、かつ前記1平面の法線の方向とZ軸方向との差は5度以内であり、また前記放射状の脚の各々の長軸の方向とY軸方向との差は5度以内であること。
(14)前記(1)から(11)のいずれかの特徴に加え、更に、前記基部と前記6本の振動脚の主要な素材はシリコン単結晶材であり、各脚はその表面に形成された圧電性の膜部材を有すること。
(15)前記(1)から(11)のいずれかの特徴に加え、更に、前記基部と前記6本の振動脚の主要な素材は等方性の材料であり、各脚はその表面に形成された圧電性の膜部材を有すること。
The gyro sensor vibrating body of the present invention may further include one or more of the following features.
(2) In addition to the feature of (1), two legs parallel to the detection axis are set as detection legs (drive legs), and the other four legs are set as drive legs (detection legs). The legs should excite the six legs so that adjacent legs vibrate out of plane in opposite phases.
(3) In addition to the feature of (1), two legs parallel to the detection axis are set as detection legs (drive legs), and the other four legs are set as drive legs (detection legs), and the drive All legs must be excited to have out-of-plane vibrations in phase.
(4) In addition to the feature of any one of (1) to (3) above, the distance between the tip portions of any two legs facing each other at the base of the six legs The value of the ratio of the distance between the bases of the two legs contacting the base is between 2 and 20 times.
(5) In addition to the feature of any one of (1) to (3), further, the distance between the distal ends of any two legs facing each other at the base of the six legs. The value of the ratio to the distance between the bases of the two legs contacting the base is between 4 and 10 times.
(6) In addition to the feature of any one of (1) to (5), the base has a shape having six sides or six vertices, and a root portion of each of the six legs is , Located at the side or vertex.
(7) In addition to any of the features of (1) to (6), the base is further provided with a plurality of through holes for connecting the upper surface electrode and the lower surface electrode of the vibrating leg. Being.
(8) In addition to the feature of (7), the through hole has a non-circular shape and has a radial portion between the adjacent through holes.
(9) In addition to any of the features of (1) to (8), one surface of the base portion is coupled to the support member using a surface that does not exceed the planar shape of the base portion.
(10) In addition to any one of the features of (7) to (9), one surface of the base portion is coupled to a support member at an inner portion of the plurality of through holes.
(11) In addition to any of the features of (1) to (10), the base portion is further provided with a hole for attaching a support member.
(12) In addition to any of the features of (1) to (11), the main material of the base and the six vibrating legs is a single crystal material having at least three-fold rotational symmetry, The direction of the normal line of the one plane is substantially parallel to the three-fold rotational symmetry axis of the single crystal material.
(13) In addition to the feature of (12), the main material of the base and the six vibrating legs is quartz, the direction of the normal of the one plane is close to the Z axis, and the six radial shapes are The direction of the leg of the radial leg is close to the Y axis, and the difference between the normal direction of the one plane and the Z axis direction is within 5 degrees, and the major axis direction and the Y axis direction of each of the radial legs The difference is within 5 degrees.
(14) In addition to any of the features of (1) to (11), the main material of the base and the six vibrating legs is a silicon single crystal material, and each leg is formed on the surface thereof. Having a piezoelectric film member.
(15) In addition to any of the features of (1) to (11), the main material of the base and the six vibrating legs is an isotropic material, and each leg is formed on the surface thereof. Having a piezoelectric film member formed.

本発明のジャイロセンサ振動体によって、以下の効果が得られる。
(1)動作原理が極めて素直であると共に、励振による振動、コリオリ力による振動の両方とも力学的なバランスが取れており、高い感度と安定した動作が得られ易い。
(2)振動体全体の重心位置が各振動脚の軸線上にあると共に、その重心または重心の極めて近傍を支持できるので、外部から衝撃加速度等を印加されても脚の振動への擾乱が少なく、耐外乱性に優れる。
(3)材料の対称性に合うように放射状の脚を形成しているので、各脚の形状的、力学的な特性を揃えることが容易である。
(4)材料の対称性に合うように放射状の脚を形成しているので、各脚の加工において形状誤差を少なくでき、生産性が高い。
The following effects are obtained by the gyro sensor vibrating body of the present invention.
(1) The operation principle is extremely straightforward, and both vibration caused by excitation and vibration caused by Coriolis force are in a dynamic balance, and high sensitivity and stable operation are easily obtained.
(2) Since the center of gravity of the entire vibrating body is on the axis of each vibration leg and can support the center of gravity or the very vicinity of the center of gravity, there is little disturbance to the vibration of the leg even when impact acceleration or the like is applied from the outside. Excellent in disturbance resistance.
(3) Since the radial legs are formed so as to match the symmetry of the material, it is easy to align the shape and dynamic characteristics of each leg.
(4) Since the radial legs are formed so as to match the symmetry of the material, the shape error can be reduced in the processing of each leg, and the productivity is high.

駆動と検出の機能を6本の放射状脚に最適に割り振り、電極の接続機能と振動体の支持の機能を中心の基部に担わせることにより、簡素な構造で高い性能のジャイロセンサ振動体を小型化して実現した。   The drive and detection functions are optimally allocated to the six radial legs, and the connecting function of the electrodes and the support function of the vibrating body are assigned to the central base, thereby miniaturizing the high-performance gyro sensor vibrating body with a simple structure. Realized.

図1は実施例1のジャイロセンサ振動体を示す斜視図、図2は基部1の詳細形状を示す斜視図である。本実施例1は最も原理的に忠実な形状を与えたものである。振動体は平板状で、水晶のZ板(光軸に垂直な板)から一体的に、例えばエッチングの手法で切り出されている。振動体は、比較的小さい6角形をなす基部1と脚部から成り、脚部は互いに60°の角度を成して放射状に配置された真直で矩形断面を有し、等しい形状寸法の6本の脚2a、2b、2c、2d、2e、2fより成る。   FIG. 1 is a perspective view illustrating a gyro sensor vibrating body according to the first embodiment, and FIG. 2 is a perspective view illustrating a detailed shape of the base 1. In the first embodiment, the most faithful shape is given in principle. The vibrating body has a flat plate shape and is integrally cut from a quartz Z plate (a plate perpendicular to the optical axis) by, for example, an etching method. The vibrating body is composed of a base 1 and legs that form a relatively small hexagon, and the legs have straight and rectangular cross-sections that are radially arranged at an angle of 60 ° with respect to each other. Leg 2a, 2b, 2c, 2d, 2e, 2f.

各脚の先端部は振動体の外側に位置し、各脚の根元部は振動体の内側で、基部1の6個の頂点に位置している。基部1の6個の頂点は、各脚1a〜1fの根元部と融合しており図上に表れてはいない。水晶Z板面内には、互いに120°の角度をなすX軸(電気軸)と、3本のX軸の各々と直交する3本のY軸(機械軸)が含まれる。各脚1a〜1fの方向は、好ましくはY軸方向またはその逆方向を向くように設定されている。図1および図2にはX,Y,Z座標軸が3組中1組のみ図示されている。各脚の先端部を結ぶ外端円の直径は例えば6〜12mmであり、各脚の幅は0.1〜0.5mm、振動体の厚さは0.1〜1mm程度である。サイズの制約は原理的ではなく製造上の理由が大きい。   The tip of each leg is located outside the vibrating body, and the base of each leg is located inside the vibrating body and at the six vertices of the base 1. The six vertices of the base 1 are fused with the bases of the legs 1a to 1f and are not shown in the figure. The crystal Z plate surface includes an X axis (electrical axis) that forms an angle of 120 ° with each other, and three Y axes (mechanical axes) orthogonal to each of the three X axes. The directions of the legs 1a to 1f are preferably set to face the Y-axis direction or the opposite direction. 1 and 2 show only one of the three X, Y, and Z coordinate axes. The diameter of the outer end circle connecting the tips of the legs is, for example, 6 to 12 mm, the width of each leg is 0.1 to 0.5 mm, and the thickness of the vibrating body is about 0.1 to 1 mm. Size constraints are not fundamental and there are many manufacturing reasons.

また外端円の直径の、基部の正6角形の直径に対する比率は2倍から20倍の間にあることが好ましい。なぜなら原理的にはセンサ振動体全体の質量に対して振動脚の質量の占める割合は大きい方が望ましいが、基部には振動脚の結合、振動脚の周囲電極からの引出線の通路、その引出線を外部回路へ接続するための電極パッドを設けるスペース、振動体の基台または容器への支持部としての機能、等々を有するので、かなりの面積を必要とするからである。また基部の形状は原理的には円や正多角形である必要もない。また各脚も固有振動数が正しく調整されている限り厳密に等長でなくても良い。そこで、上記比率については以下のように表現することにする。即ち、基部において対向する任意の2本の脚の各先端部間の距離の、当該2本の脚の前記基部に接する根元部の間の距離に対する比は2倍から20倍の間にあることが良い。更に好ましくは約4倍から10倍の間である。   The ratio of the diameter of the outer circle to the diameter of the regular hexagon of the base is preferably between 2 and 20 times. Because, in principle, it is desirable that the ratio of the mass of the vibrating leg to the mass of the entire sensor vibrating body is desirable, but the base is connected to the vibrating leg, the path of the lead wire from the surrounding electrode of the vibrating leg, and the lead This is because a considerable area is required because it has a space for providing an electrode pad for connecting the wire to an external circuit, a function as a base for the vibrating body or a support for the container, and the like. Further, the shape of the base portion does not need to be a circle or a regular polygon in principle. Each leg may not be exactly the same length as long as the natural frequency is correctly adjusted. Therefore, the above ratio is expressed as follows. That is, the ratio of the distance between the tip portions of any two legs facing each other at the base to the distance between the roots of the two legs contacting the base is between 2 times and 20 times. Is good. More preferably, it is between about 4 times and 10 times.

基部1には図2に示すように、各脚の根元部のやや内側(即ち基部1の中心寄り)に、板材を貫通する6個の3角形の穴1a〜1fが設けられている。この穴の役割は、第1に各脚および基部1の表裏に設けられる電極膜を連結するために穴内部に導体膜を形成したスルーホールであり、第2に基部内の剛性の分布を調整し、振動の影響を軽減することである。即ち、隣接する穴の間に残された6本の放射状の、車輪の「輻(や)またはスポーク」のような形状をなす部分は、その外側で各振動脚間の力の伝達を容易にする一方で、その力が内側の支持部に及ぶことを緩和する。第2の役割を効果的にするには、種々な形状的寸法的な検討を要する。例えば穴の形状は角型等異形(非円形)がよい場合が多い。また振動体が載置される基台または容器(図示せず)の支持部材に振動体を固着するには、基部1の表面(Z面)の表裏いずれか(または両面)を用いて行うとよい。   As shown in FIG. 2, the base 1 is provided with six triangular holes 1 a to 1 f penetrating the plate material slightly inside the base of each leg (that is, near the center of the base 1). The role of this hole is through-holes in which a conductor film is formed inside the hole in order to connect the electrode films provided on the front and back of each leg and the base 1, and secondly, the rigidity distribution in the base is adjusted And to reduce the effects of vibration. In other words, the six radial portions of the wheel that are left between adjacent holes, such as “radiation (or) or spoke”, can easily transmit force between the vibrating legs outside. While mitigating the force from reaching the inner support. In order to make the second role effective, various geometrical and dimensional studies are required. For example, the shape of the hole is often an irregular shape (non-circular) such as a square shape. Further, in order to fix the vibrating body to the support member of the base or the container (not shown) on which the vibrating body is placed, it is performed by using either the front or back (or both surfaces) of the surface (Z surface) of the base 1. Good.

支持の固着面積は基部1(の片方の)表面を用いる。その面を基部の形状一杯に使うことも強度上の意味があるが、一般的には小さい方が好ましいので、穴1a〜1fよりも更に基部1の中心寄りの部分の片面において、支持部材と接着するとよい。   For the fixing area of the support, the surface of the base 1 (one side) is used. Although it is meaningful in terms of strength to use the surface to the full shape of the base portion, it is generally preferable that the surface is small, and therefore, on one side of the portion closer to the center of the base portion 1 than the holes 1a to 1f, Adhere.

支持部材としては、ジャイロセンサの特性を重視する場合、水晶と線膨張係数が近似である、水晶材やガラス材がよく、強度を重視する場合は金属材もよい。接着剤も剛支持の場合は例えばエポキシ樹脂、あるいは低融点金属(例えばハンダやAu/Sn合金)による融着がよく、軟支持の場合はシリコーンゴム等耐熱性があって柔軟な材質が用いられる。特に軟支持を行う場合、支持材料との接着面を、穴位置にかかるかまたは穴の外側や基部の全面まで広げることが容易である。しかし剛支持の場合でも、接着剤が穴の縁や穴の内部にかかったとしても、振動の緩衝効果は幾分か残ることが期待される。   As the support member, a crystal material or a glass material whose linear expansion coefficient is close to that of crystal is preferable when importance is attached to the characteristics of the gyro sensor, and a metal material is preferable when strength is important. In the case where the adhesive is also rigidly supported, for example, an epoxy resin or a low melting point metal (for example, solder or Au / Sn alloy) is preferably fused, and in the case of soft support, a heat-resistant and flexible material such as silicone rubber is used. . In particular, when soft support is performed, it is easy to extend the adhesion surface with the support material to the hole position or to the outside of the hole or the entire surface of the base. However, even in the case of rigid support, even if the adhesive is applied to the edge of the hole or the inside of the hole, it is expected that some vibration buffering effect remains.

次に、振動体のジャイロセンサとしての作用を、図3、図4を用いて説明する。この作用は後述する他の実施例についても共通する。   Next, the operation of the vibrating body as a gyro sensor will be described with reference to FIGS. This effect is common to other embodiments described later.

図3において、6脚のうち、垂直方向に太い点線で描いた脚2aと2dはコリオリ力による振動を検出する検出脚の役割を担う。太い実線で描いた他の脚2b、2c、2e、2fは駆動(定常的な励振)の役割を担う。駆動脚2b、2c、2e、2fの振動方向は、振動体平面に垂直な方向、いわゆる面外振動であって、脚2bと2fが同位相、脚2cと2fが逆位相とされる。基部から伝達される起振力によって検出脚2aと2dも、振動体全体の慣性力を打ち消す方向に面外振動を行う。結局、駆動脚を励振することによって、脚2a、2c、2eが同位相(Vz+)、脚2b、2d、2fが逆位相(Vz−)で定常的に面外振動を行っている。   In FIG. 3, among the six legs, legs 2a and 2d drawn with thick dotted lines in the vertical direction serve as detection legs for detecting vibration due to Coriolis force. The other legs 2b, 2c, 2e, and 2f drawn with thick solid lines play a role of driving (steady excitation). The vibration directions of the drive legs 2b, 2c, 2e, and 2f are so-called out-of-plane vibrations that are perpendicular to the vibration body plane, and the legs 2b and 2f are in phase and the legs 2c and 2f are in opposite phases. The detection legs 2a and 2d also perform out-of-plane vibration in a direction that cancels out the inertial force of the entire vibrating body by the vibration force transmitted from the base. Eventually, by exciting the drive legs, the legs 2a, 2c and 2e steadily perform out-of-plane vibration with the same phase (Vz +) and the legs 2b, 2d and 2f with the opposite phase (Vz−).

この状態で、脚2a、2dの方向の回転軸の回りに振動体が回転運動を行った場合を考える。(脚2a、2dの方向が角速度の検出軸の方向となる。)図4に示す如く、この回転の角速度ωyによって、各脚には振動の速度ベクトルと角速度ベクトルの積の方向にコリオリ力Fcが作用する。(説明の便宜上、脚の先端に作用するように図示した。)これらのコリオリ力によって、各脚は検出脚、駆動脚を問わずに、図示した方向の面内たわみを生起する。検出脚2aと2dに設けた検出電極により、コリオリ力Fcに比例した振幅の電圧を圧電的に検出する。この検出電圧を、例えばよく知られた手法により、増幅し、同期検波を行い、整流することによって、角速度に比例した出力が得られる。   In this state, consider a case where the vibrating body rotates around the rotation axis in the direction of the legs 2a and 2d. (The direction of the legs 2a and 2d is the direction of the detection axis of the angular velocity.) As shown in FIG. 4, due to the angular velocity ωy of this rotation, each leg has a Coriolis force Fc in the direction of the product of the vibration velocity vector and the angular velocity vector. Act. (For convenience of explanation, it is shown to act on the tip of the leg.) These Coriolis forces cause in-plane deflection in the direction shown in the figure regardless of the detection leg or the driving leg. A voltage having an amplitude proportional to the Coriolis force Fc is piezoelectrically detected by the detection electrodes provided on the detection legs 2a and 2d. The detection voltage is amplified by, for example, a well-known method, subjected to synchronous detection, and rectified to obtain an output proportional to the angular velocity.

上記の駆動と検出を行うための電気的手段について、図5を用いて説明する。
図5において、各脚の周囲に配置した電極膜を、各脚の外側に延長した位置に断面図で示した。駆動脚2b、2c、2e、2fの断面の周囲に配した電極4a、4b、4c、4dは駆動用の電極であって、各脚の電極4aと4cを連結したものを端子Aとし、各脚の電極4bと4dを連結したものを端子Bとし、各駆動脚の端子をA−B−A−B−A−B−A−Bのように直列接続するか、あるいはA+A+A+AとB+B+B+Bのように並列接続して、図示しない2端子発振回路の出力に結線すれば、水晶板内で各駆動脚にX軸方向の電界が表裏で逆方向に生じ、各振動脚は面外方向の曲げ力を受けて、図3、4で説明した面外振動が得られる。なお、図示されている脚側面にある電極部分が存在することが理想的であるが、脚側面での分割部の形成加工の困難性のため省略され、脚の上下(表裏)平面のみの電極膜によって駆動電極を構成することがある。
Electrical means for performing the above drive and detection will be described with reference to FIG.
In FIG. 5, the electrode film disposed around each leg is shown in a cross-sectional view at a position extended to the outside of each leg. Electrodes 4a, 4b, 4c, and 4d arranged around the cross section of the driving legs 2b, 2c, 2e, and 2f are driving electrodes, and the terminals A are connected to the electrodes 4a and 4c of each leg. A terminal B is formed by connecting the leg electrodes 4b and 4d, and the terminals of the respective driving legs are connected in series as ABABABAB or like A + A + A + A and B + B + B + B. Are connected in parallel to each other and connected to the output of a two-terminal oscillation circuit (not shown), an electric field in the X-axis direction is generated in each drive leg in the quartz plate in the opposite direction, and each vibration leg has a bending force in the out-of-plane direction. In response, the out-of-plane vibration described with reference to FIGS. It is ideal that there is an electrode portion on the side surface of the leg shown in the figure, but it is omitted because of the difficulty in forming the divided portion on the side surface of the leg, and the electrodes are only on the upper and lower (front and back) planes of the leg. The drive electrode may be constituted by a film.

図5を用いて次に検出動作を説明する。検出脚2a、2dの周囲には、断面図に示すように、検出用の電極膜3a、3b、3c、3dが形成される。各脚において電極3aと対向面の電極3dが結合されて検出の一方の端子Cとなり、電極3bと対向面の電極3cが結合されて検出の他方の端子Dとなる。端子C、Dは図5に示したように結線され、3個の差動増幅器5aを経由して検出出力Dtとなる。駆動、検出電極は基部1の上面(支持に用いない方の面)や、スルーホールや、各脚の根元部の間の基部の側面や、基部1の下面(支持部材と結合される側の面)における引き回し配線パターンによって接続され、基部の上面内で、図示しないが例えば駆動用2個、検出用2個、合計4個(2組の2端子)の電極パッドに纏められる。   Next, the detection operation will be described with reference to FIG. As shown in the sectional view, detection electrode films 3a, 3b, 3c, and 3d are formed around the detection legs 2a and 2d. In each leg, the electrode 3a and the electrode 3d on the opposite surface are combined to form one detection terminal C, and the electrode 3b and the electrode 3c on the opposite surface are combined to form the other detection terminal D. Terminals C and D are connected as shown in FIG. 5, and become detection output Dt via three differential amplifiers 5a. The drive and detection electrodes are the upper surface of the base 1 (the surface not used for support), the through holes, the side surfaces of the base between the bases of the legs, the lower surface of the base 1 (the side that is coupled to the support member) (Not shown), for example, two for driving and two for detection, for a total of four (two sets of two terminals) electrode pads, are combined in the upper surface of the base.

本実施例1の有する効果について以下に考察する。
まず本ジャイロセンサ振動体は原理的に極めて単純明快であり、検出軸の方向も明確である。駆動における面外振動の慣性力のバランスも、コリオリ力による面内振動の慣性力のバランスも自動的に達成される。水晶材で図5のような電極配置の場合、圧電的な作用は駆動において比較的弱く、検出において強いが、本実施例では駆動を4本の脚、検出に2本の脚を割り当てているので、駆動と検出における圧電作用のバランスが良い。
The effects of the first embodiment will be discussed below.
First, the gyro sensor vibrating body is very simple in principle, and the direction of the detection axis is also clear. The balance of inertia force of out-of-plane vibration in driving and the balance of inertia force of in-plane vibration due to Coriolis force are automatically achieved. In the case of an electrode arrangement as shown in FIG. 5 using a quartz material, the piezoelectric action is relatively weak in driving and strong in detection, but in this embodiment, four legs are assigned to drive and two legs are assigned to detection. Therefore, the balance of piezoelectric action in driving and detection is good.

各方向に延びた脚は単純な真直片持ち梁として動作し、好ましくない屈曲振動等を行い難い。水晶材料の3つの等価な機械軸方向に対する誤差が小さく、同じ弾性的特性を有すると共に、同じ異方性の条件でエッチング加工されるので、エッチング残滓部分の形状も含めて極めて誤差の少ない高い形状精度が得られ、周波数調整以前の固有振動数の誤差も小さい。また、他軸(ωx、ωz)に対する感度も、数値シミュレーション結果によれば、それぞれ1ppmと10ppm程度に過ぎず、十分小さかった。   The leg extending in each direction operates as a simple straight cantilever, and it is difficult to perform undesirable bending vibrations. Quartz material has little error with respect to the three equivalent machine axis directions, has the same elastic characteristics, and is etched under the same anisotropic conditions, so it has a high shape with very little error, including the shape of the etching residue. Accuracy is obtained, and the natural frequency error before frequency adjustment is small. Also, the sensitivity to the other axes (ωx, ωz) was only about 1 ppm and 10 ppm, respectively, according to the numerical simulation results, and was sufficiently small.

また基部の大きさも小さく、振動体全体の質量中に占める割合も小さい。また事実上各脚の根元への延長部が集まる点に近い部分を実質的に1点で支持することができる。振動体の支持点は振動体全体の重心に一致しているので、支持点に外乱加速度が作用した場合、振動体が受ける擾乱は最小となる。また支持点と外部接続部が近接していることも組立作業性上有利である。また支持部の周辺の穴によって基部内の剛性の分布を調節することができる。   Further, the size of the base is small, and the proportion of the entire vibrating body in the mass is small. In addition, it is possible to substantially support a portion close to a point where extensions to the bases of the legs are gathered at one point. Since the support point of the vibrating body coincides with the center of gravity of the entire vibrating body, when disturbance acceleration acts on the support point, the disturbance received by the vibrating body is minimized. It is also advantageous from the viewpoint of assembling work that the support point and the external connection portion are close to each other. Further, the rigidity distribution in the base can be adjusted by the holes around the support.

また、駆動振動モードと検出振動モードの固有振動数に所定の差を与える、いわゆる離調度の調整も、各脚の幅と素材板の厚さとに差を付けることに帰着するので、それぞれの周波数も、あらかじめ小さな誤差を与え、最終調整を僅かな量で済ませることができる。また検出脚と駆動脚との脚長に差を設ける手段も採用可能である。各脚の駆動電極膜または検出電極膜は、脚の根元から脚長の6〜7割程度にとどめておき、それより先端部には周波数調整用の質量としての膜を設けておくことにより、各脚の細かい周波数調整はこのF調用の膜をトリミングすることによって容易に行うことができる。即ち本発明の振動体は、一言で言えば原理的な利点と製造上の利点を兼ね備えている。   In addition, the adjustment of the so-called detuning, which gives a predetermined difference in the natural frequency between the drive vibration mode and the detection vibration mode, results in a difference between the width of each leg and the thickness of the material plate. However, a small error can be given in advance, and the final adjustment can be done with a small amount. A means for providing a difference in leg length between the detection leg and the drive leg can also be employed. The drive electrode film or the detection electrode film of each leg is limited to about 60 to 70% of the leg length from the base of the leg, and a film as a mass for adjusting the frequency is provided at the distal end portion thereof. Fine frequency adjustment of the legs can be easily performed by trimming the F tone film. In other words, the vibrating body of the present invention has both a principle advantage and a manufacturing advantage.

図6は、基部1の穴1a〜1fの形状および位置を実施例1と変更した点に特徴を有する実施例2の、基部1の近傍を示した斜視図である。各穴の形状は2つの円弧を対向する2辺とし、脚と同じ方向の直線を他の対向する2辺とする扇形である。各穴は基部1を、脚の根元に属する領域と、各穴の内側の支持部材と固着される領域とに判然と分け、各振動脚間の力の伝達はなるべく妨げられないように、かつ振動脚からの力が支持部になるべく及ばないようにされている。各穴の境界をなし車輻のような放射状の部分は、各脚の基部側への延長上に存在している。本実施例2は、実施例1に対して基部1の形状の変化に過ぎないので、実施例の有する原理的、作用的、製造・組立上の特徴はほぼそのまま維持される。   FIG. 6 is a perspective view showing the vicinity of the base 1 according to the second embodiment which is characterized in that the shapes and positions of the holes 1a to 1f of the base 1 are changed from those of the first embodiment. Each hole has a sector shape in which two arcs are two opposite sides and a straight line in the same direction as the leg is the other two opposite sides. Each hole clearly divides the base 1 into a region belonging to the base of the leg and a region fixed to the support member inside each hole so that transmission of force between the vibrating legs is not hindered as much as possible, and The force from the vibrating leg is prevented from reaching the support portion as much as possible. Radial portions, such as vehicle radiation, that delimit each hole are present on the extension of each leg to the base side. Since the second embodiment is merely a change in the shape of the base 1 with respect to the first embodiment, the fundamental, operational, and manufacturing / assembly features of the first embodiment are maintained as they are.

図7は、実施例2と同様に、基部1の穴1a〜1fの形状および位置を実施例1と変更した点に特徴を有する実施例3の、基部1の近傍を示した斜視図である。各穴の形状は2つの円弧を対向する2辺とし、脚と同じ方向の直線を他の対向する2辺とする。各穴は基部1を、脚の根元に属する領域と、各穴の内側の支持部材と固着される領域とに判然と分け、各振動脚間の力の伝達はなるべく妨げられないように、かつ振動脚からの力が支持部になるべく及ばないようにされている。各穴の境界をなし車輻に相当する放射状の部分は、各脚の中間へ向かう角度に設けられている。本実施例3も実施例1の作用効果をほぼ維持している。実施例2と実施例3とのいずれの形状の基部の方が優れているかは検討中の段階である。   FIG. 7 is a perspective view showing the vicinity of the base portion 1 of the third embodiment, which is characterized in that the shapes and positions of the holes 1a to 1f of the base portion 1 are changed from those of the first embodiment, as in the second embodiment. . The shape of each hole is two arcs with two sides facing each other, and a straight line in the same direction as the legs is two other sides facing each other. Each hole clearly divides the base 1 into a region belonging to the base of the leg and a region fixed to the support member inside each hole so that transmission of force between the vibrating legs is not hindered as much as possible, and The force from the vibrating leg is prevented from reaching the support portion as much as possible. Radial portions corresponding to vehicle radii that define the boundaries of the holes are provided at angles toward the middle of the legs. The third embodiment also substantially maintains the effects of the first embodiment. Whether the shape of the base part of Example 2 or Example 3 is superior is in the stage of investigation.

図8は実施例4のジャイロセンサ振動体の平面図で、実施例1の振動体の各脚1a〜1fの先端にそれぞれ同形状の付加質量を一体的に形成し、振動体の固有振動数を好みの値に下げるようにしたものである。なお、基部1については実施例2の基部形状を採用しているが、それに限定されない。本実施例4についても、基本的な作用効果は実施例1のものを受け継いでいる。   FIG. 8 is a plan view of the gyro sensor vibrating body according to the fourth embodiment. An additional mass having the same shape is integrally formed at the tip of each leg 1a to 1f of the vibrating body according to the first embodiment. Is reduced to the desired value. In addition, about the base 1, although the base shape of Example 2 is employ | adopted, it is not limited to it. In the fourth embodiment, the basic functions and effects are the same as those in the first embodiment.

以上本発明の4つの実施例について述べたが、以下種々の変形例について記しておく。
(1)駆動・検出モードについて:
実施例1の如く、隣接する各脚に逆位相の面外振動をするよう駆動信号を与える場合、検出脚は2本が良いが、2本でなくともよい。例えば検出脚は1本であっても、その脚の方向を検出軸とするコリオリ力の検出は可能である。また検出脚を3本とすることも考えられる。隣接3本を検出脚とした場合、実施例1と同様な性質の検出ができる。1本おきの3本を検出脚とした場合、検出軸の方向が定まらないと考えられるが、それで差し支えない用途においては実施可能である。また検出脚を4本(実施例1で脚の機能を入れ替える、即ち検出軸の左右に2本ずつの検出脚が配置される)、または5本(中央の脚の方向が検出軸方向となる)とすることも不可能ではない。なお、脚の形状は、好ましくない振動モードを誘発しない範囲で、真直でなく屈曲させてもよい。
Although the four embodiments of the present invention have been described above, various modifications will be described below.
(1) Drive / detection mode:
As in the first embodiment, when a driving signal is given to each adjacent leg so as to cause out-of-plane vibration in the opposite phase, the number of detection legs is not limited to two. For example, even if there is one detection leg, it is possible to detect Coriolis force with the direction of the leg as the detection axis. It is also conceivable to use three detection legs. When three adjacent legs are used as detection legs, the same property as in the first embodiment can be detected. When every other three detection legs are used as detection legs, it is considered that the direction of the detection axis is not fixed. However, the present invention can be implemented in applications where that is acceptable. In addition, there are four detection legs (the function of the legs is replaced in the first embodiment, that is, two detection legs are arranged on the left and right of the detection axis), or five (the direction of the center leg is the detection axis direction). ) Is not impossible. Note that the shape of the legs may be bent instead of straight as long as undesirable vibration modes are not induced.

他の変形例として、実施例1のように駆動脚を4本、検出脚2本(一直線配置)とするが、駆動脚は全て同位相で面外振動させる。検出脚はその反作用によって逆位相の面外振動をなし、検出脚の方向を角速度の検出軸方向とし、コリオリ力によって2本の検出脚が弓形に変形する面内振動モードが発生するのでそのたわみを検出するものである。作用効果はほぼ実施例1に近いものが期待できる。この場合も駆動脚2本、検出脚4本とする(検出軸は4本の検出脚の対称軸となる)更なる変形も可能である。   As another modification, four drive legs and two detection legs (straight line arrangement) are used as in the first embodiment, but all the drive legs are vibrated out of plane with the same phase. The detection leg causes out-of-plane vibration due to the reaction, the detection leg direction is the detection axis direction of the angular velocity, and the Coriolis force generates an in-plane vibration mode in which the two detection legs are deformed into an arcuate shape. Is detected. The effect can be expected to be almost the same as in the first embodiment. In this case, further modification is possible with two drive legs and four detection legs (the detection axis is the symmetry axis of the four detection legs).

(2)脚の根元部と基部の接続部の形状について:
脚の根元部に作用する衝撃力等の応力集中を避けるという振動体の強度的な要請から、根元部の平面形状の幅は、徐々に広がっていることが好ましい。実施例1〜4ではいずれも正6角形の頂点から隣辺の間の角を2等分する方向に脚が伸びているので、上の条件をある程度は満たしている。しかし更に積極的に、根元部にRを付けたり、6角形を星形(いわゆるダビデの星の輪郭のような形)にして頂角を更に小さくしたりすることもよい。適切なRを設ければ、根元部を辺の上に配置することもできる。また隣接脚の根元部間を、大きなRや辺数の多い多角形でつないでもよい。
(2) About the shape of the base of the leg and the connection of the base:
It is preferable that the width of the planar shape of the base portion gradually increases from the strength requirement of the vibrating body to avoid stress concentration such as impact force acting on the base portion of the leg. In each of Examples 1 to 4, the legs extend in a direction that bisects the angle between the apex of the regular hexagon and the adjacent side, so the above condition is satisfied to some extent. However, it is also possible to more actively attach an R to the root portion, or to make the hexagonal shape a star shape (a shape like the contour of a so-called David star) to further reduce the apex angle. If an appropriate R is provided, the root portion can be arranged on the side. Further, the root portions of adjacent legs may be connected by a large R or a polygon having a large number of sides.

(3)基部における支持の態様等について:
実施例1においては、基部の片面を支持部材に接着固定したが、他の支持構造も考えられる。例えば、基部の中心部に小穴を設けて細い円柱状の部分を有する金属の支持部材を挿入して接着するのもよく、小面積で強度のある支持構造となり得る。その小穴としては、スルーホールと別個に設けるか、またはスルーホールの1個または複数個を支持用の穴に兼用することができる。例えば1個の穴の位置を中心寄りにずらす、または支持部材を多ピンとし、複数穴に挿通して接着する。なおスルーホールの数は6個とは限定されず、接続の必要を満たし、振動緩和作用に特に支障がない限り、個数は増減しても差し支えない。従って、車輻をなす放射状の部分の数も6個にはとらわれない。例えば、穴数は3個であったり、12個であったりしてもよい。
(3) About the mode of support at the base:
In Example 1, one side of the base is bonded and fixed to the support member, but other support structures are also conceivable. For example, a small hole may be provided at the center of the base and a metal support member having a thin columnar portion may be inserted and bonded, which can provide a strong support structure with a small area. The small holes can be provided separately from the through holes, or one or more of the through holes can be used as supporting holes. For example, the position of one hole is shifted toward the center, or the support member is a multi-pin and is inserted into a plurality of holes and bonded. The number of through holes is not limited to six. The number of through holes may be increased or decreased as long as the connection needs are satisfied and the vibration mitigating action is not particularly hindered. Accordingly, the number of radial portions that form the vehicle radiation is not limited to six. For example, the number of holes may be 3 or 12.

また実施例1においては、励振または検出電極と外部回路との接続用の電極パッドを、基部の支持面と対向する面に設けた。この場合にはワイヤボンディングによる外部接続が良いが、電極パッドを直接相手基板にフェイスダウンボンディングすることによって、支持と接続を兼ねた振動体の実装構造とすることもできる。   Moreover, in Example 1, the electrode pad for connection of an excitation or a detection electrode and an external circuit was provided in the surface facing the support surface of a base. In this case, external connection by wire bonding is good. However, by mounting face-down bonding of the electrode pad directly to the mating substrate, it is possible to provide a mounting structure for a vibrating body that serves as both support and connection.

(4)振動体の材質について:
実施例では振動体の主なる素材として水晶Z板を用い、その3回回転対称性を活用した。故に、加工可能でさえあれば、同様な回転対称性を有する他の圧電単結晶を用いることができる。また、エッチング加工が容易な材質として知られているシリコン単結晶材を用いて振動体を高い形状精度で加工することもできる。シリコン単結晶は圧電性がないので、シリコンの表面には、圧電性を示す膜、絶縁膜、導電性の膜を必要に応じて積層形成し、駆動と検出、配線を行わせる。また、等方性の材料を用いることができる。例えば圧電性セラミックスのグリーンシートを本発明の振動体の形状に打抜き加工し、その後必要な方向に分極操作を行い、電極膜を形成してジャイロセンサ振動体を完成させる。
(4) Material of vibrating body:
In the embodiment, a quartz crystal Z plate was used as the main material of the vibrating body, and its three-fold rotational symmetry was utilized. Therefore, other piezoelectric single crystals having the same rotational symmetry can be used as long as they can be processed. In addition, the vibrator can be processed with high shape accuracy using a silicon single crystal material known as a material that can be easily etched. Since the silicon single crystal has no piezoelectricity, a piezoelectric film, an insulating film, and a conductive film are laminated on the surface of the silicon as necessary to drive, detect, and wire. Further, an isotropic material can be used. For example, a green sheet of piezoelectric ceramic is punched into the shape of the vibrator of the present invention, and then a polarization operation is performed in a necessary direction to form an electrode film to complete the gyro sensor vibrator.

本発明のジャイロセンサ振動体は、動作特性と生産性に優れているため、産業上の利用可能性は高い。   Since the gyro sensor vibrating body of the present invention is excellent in operating characteristics and productivity, the industrial applicability is high.

実施例1のジャイロセンサ振動体を示す斜視図である。3 is a perspective view illustrating a gyro sensor vibrating body according to Embodiment 1. FIG. 実施例1の基部の詳細形状を示す斜視図である。FIG. 3 is a perspective view showing a detailed shape of a base portion of Example 1. 実施例1の各脚の役割および駆動の方向と位相を示した模式的な平面図である。It is the typical top view which showed the role of each leg of Example 1, and the direction and phase of a drive. 実施例1の各脚に作用するコリオリ力と、それに起因するたわみ形状を示した模式的な平面図である。It is the typical top view which showed the Coriolis force which acts on each leg of Example 1, and the bending shape resulting from it. 駆動脚と検出脚の電極配置と検出回路を模式的に示した、各脚の断面図つき平面図である。It is a top view with a sectional view of each leg showing typically electrode arrangement and a detection circuit of a drive leg and a detection leg. 実施例2の基部の詳細形状を示す斜視図である。It is a perspective view which shows the detailed shape of the base of Example 2. FIG. 実施例3の基部の詳細形状を示す斜視図である。FIG. 10 is a perspective view showing a detailed shape of a base part in Example 3. 実施例4のジャイロセンサ振動体を示す平面図である。6 is a plan view showing a gyro sensor vibrating body of Example 4. FIG.

符号の説明Explanation of symbols

1 基部
1a、1b、1c、1d、1e、1f 穴
2a、2b、2c、2d、2e、2f 脚
3a、3b、3c、3d 検出電極
4a、4b、4c、4d 駆動電極
5a 差動増幅器
6a、6b、6c、6d、6e、6f 付加質量
Vz 面外振動方向
ωy Y軸方向の回転角速度
Fc コリオリ力
Dt 検出出力端子
1 Base 1a, 1b, 1c, 1d, 1e, 1f Hole 2a, 2b, 2c, 2d, 2e, 2f Leg 3a, 3b, 3c, 3d Detection electrode 4a, 4b, 4c, 4d Drive electrode 5a Differential amplifier 6a, 6b, 6c, 6d, 6e, 6f Additional mass Vz Out-of-plane vibration direction ωy Y-axis rotational angular velocity Fc Coriolis force Dt detection output terminal

Claims (15)

1個の共通の基部から互いに60度ずつの角度をなして1平面内に放射状に配列された6本の振動脚を有し、前記6本の脚のうちの1本の脚の方向を検出軸の方向とし、前記検出軸と平行な方向の1本または2本の脚に検出(駆動)用の電極を設けて検出脚(駆動脚)とし、その他の脚に駆動(検出)用電極を設けて駆動脚(検出脚)とし、前記駆動脚を面外方向に励振し、前記検出軸回りの回転運動に伴うコリオリ力によって前記検出脚に発生する面内振動を検出することを特徴とするジャイロセンサ振動体。   It has six vibrating legs arranged radially in one plane at an angle of 60 degrees from one common base and detects the direction of one of the six legs. A detection (drive) electrode is provided on one or two legs in a direction parallel to the detection axis to form a detection leg (drive leg), and a drive (detection) electrode is provided on the other leg. A driving leg (detection leg) is provided to excite the driving leg in an out-of-plane direction, and to detect in-plane vibration generated in the detection leg by Coriolis force accompanying a rotational motion around the detection axis. Gyro sensor vibrating body. 前記検出軸に平行な2本の脚を検出脚(駆動脚)とし、他の4本の脚を駆動脚(検出脚)とし、前記駆動脚は前記6本の脚を、隣り合う脚同士が互いに逆位相で面外振動するように励振することを特徴とする請求項1に記載のジャイロセンサ振動体。   Two legs parallel to the detection axis are set as detection legs (drive legs), the other four legs are set as drive legs (detection legs), the drive legs are the six legs, and adjacent legs are The gyro sensor vibrating body according to claim 1, wherein the vibrator is excited so as to vibrate out of plane with opposite phases. 前記検出軸に平行な2本の脚を検出脚(駆動脚)とし、他の4本の脚を駆動脚(検出脚)とし、前記駆動脚はすべて同位相の面外振動をするように励振されることを特徴とする請求項1に記載のジャイロセンサ振動体。   Two legs parallel to the detection axis are set as detection legs (drive legs), and the other four legs are set as drive legs (detection legs), and all the drive legs are excited so as to generate out-of-plane vibrations in the same phase. The gyro sensor vibrating body according to claim 1, wherein: 前記6本の脚のうち、前記基部において対向する任意の2本の脚の各先端部間の距離の、当該2本の脚の前記基部に接する根元部の間の距離に対する比の値は、2倍から20倍の間であることを特徴とする請求項1から3のいずれかに記載のジャイロセンサ振動体。   Of the six legs, the value of the ratio of the distance between the distal ends of any two legs facing each other at the base to the distance between the roots of the two legs contacting the base is: The gyro sensor vibrating body according to any one of claims 1 to 3, wherein the vibrating body is between 2 times and 20 times. 前記6本の脚のうち、前記基部において対向する任意の2本の脚の各先端部間の距離の、当該2本の脚の前記基部に接する根元部の間の距離に対する比の値は、4倍から10倍の間であることを特徴とする請求項1から3のいずれかに記載のジャイロセンサ振動体。   Of the six legs, the value of the ratio of the distance between the distal ends of any two legs facing each other at the base to the distance between the roots of the two legs contacting the base is: The gyro sensor vibrating body according to any one of claims 1 to 3, wherein the vibrating body is between 4 times and 10 times. 前記基部は6個の辺または6個の頂点を有する形状であり、前記6本の脚の各々の根元部は、前記辺または頂点に位置することを特徴とする請求項1から5のいずれかに記載のジャイロセンサ振動体。   6. The base according to claim 1, wherein the base has a shape having six sides or six vertices, and a root portion of each of the six legs is located at the side or the vertices. The gyro sensor vibrating body according to 1. 前記基部には前記振動脚の上面電極と下面電極とを接続するための、複数個のスルーホールが設けられていることを特徴とする請求項1から6のいずれかに記載のジャイロセンサ振動体。   The gyro sensor vibrator according to claim 1, wherein a plurality of through holes for connecting the upper surface electrode and the lower surface electrode of the vibration leg are provided in the base portion. . 前記スルーホールの形状は非円形であり、隣り合う前記スルーホールの間に放射状の部分を有することを特徴とする請求項7に記載のジャイロセンサ振動体。   The gyro sensor vibrator according to claim 7, wherein the shape of the through hole is non-circular and has a radial portion between the adjacent through holes. 前記基部の1面が、該基部の平面形状を越えない面を用いて、支持部材に結合されていることを特徴とする請求項1から8のいずれかに記載のジャイロセンサ振動体。   9. The gyro sensor vibrating body according to claim 1, wherein one surface of the base portion is coupled to the support member using a surface that does not exceed the planar shape of the base portion. 前記基部の1面が、前記複数個のスルーホールの内側の部分において、支持部材に結合されていることを特徴とする請求項7から9のいずれかに記載のジャイロセンサ振動体。   10. The gyro sensor vibrating body according to claim 7, wherein one surface of the base portion is coupled to a support member at an inner portion of the plurality of through holes. 前記基部には、支持部材を取り付けるための穴が設けられていることを特徴とする請求項1から10のいずれかに記載のジャイロセンサ振動体。   The gyro sensor vibrating body according to claim 1, wherein a hole for attaching a support member is provided in the base portion. 前記基部と前記6本の振動脚の主要な素材は、少なくとも3回回転対称性を有する単結晶材料であり、前記1平面の法線の方向は前記単結晶材料の3回回転対称軸にほぼ平行であることを特徴とする請求項1から11のいずれかに記載のジャイロセンサ振動体。   The main material of the base and the six vibrating legs is a single crystal material having at least three-fold rotational symmetry, and the direction of the normal of the one plane is substantially the same as the three-fold rotational symmetry axis of the single crystal material. The gyro sensor vibrator according to claim 1, wherein the gyro sensor vibrator is parallel. 前記基部と前記6本の振動脚の主要な素材は水晶であり、前記1平面の法線の方向はZ軸に近く、前記6本の放射状の脚の方向はY軸に近く、かつ前記1平面の法線の方向とZ軸方向との差は5度以内であり、また前記放射状の脚の各々の長軸の方向とY軸方向との差は5度以内であることを特徴とする請求項12に記載のジャイロセンサ振動体。   The main material of the base and the six vibrating legs is quartz, the direction of the normal of the one plane is close to the Z axis, the direction of the six radial legs is close to the Y axis, and the 1 The difference between the normal direction of the plane and the Z-axis direction is within 5 degrees, and the difference between the major axis direction of each of the radial legs and the Y-axis direction is within 5 degrees. The gyro sensor vibrating body according to claim 12. 前記基部と前記6本の振動脚の主要な素材はシリコン単結晶材であり、各脚はその表面に形成された圧電性の膜部材を有することを特徴とする請求項1から11のいずれかに記載のジャイロセンサ振動体。   The main material of the base and the six vibrating legs is a silicon single crystal material, and each leg has a piezoelectric film member formed on the surface thereof. The gyro sensor vibrating body according to 1. 前記基部と前記6本の振動脚の主要な素材は等方性の材料であり、各脚はその表面に形成された圧電性の膜部材を有することを特徴とする請求項1から11のいずれかに記載のジャイロセンサ振動体。   12. The main material of the base and the six vibrating legs is an isotropic material, and each leg has a piezoelectric film member formed on the surface thereof. The gyro sensor vibrating body according to claim 1.
JP2008113442A 2008-04-24 2008-04-24 Gyro sensor vibrating body Pending JP2009264863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008113442A JP2009264863A (en) 2008-04-24 2008-04-24 Gyro sensor vibrating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008113442A JP2009264863A (en) 2008-04-24 2008-04-24 Gyro sensor vibrating body

Publications (1)

Publication Number Publication Date
JP2009264863A true JP2009264863A (en) 2009-11-12

Family

ID=41390904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113442A Pending JP2009264863A (en) 2008-04-24 2008-04-24 Gyro sensor vibrating body

Country Status (1)

Country Link
JP (1) JP2009264863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196822A (en) * 2010-03-19 2011-10-06 Seiko Epson Corp Vibration gyro element, vibration gyro sensor, detection method of angular velocity by vibration gyro sensor and electronic device
JP2015224968A (en) * 2014-05-28 2015-12-14 京セラクリスタルデバイス株式会社 Angular velocity sensor and sensor element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329444A (en) * 1996-06-07 1997-12-22 Toyota Motor Corp Angular velocity sensor
JPH10160476A (en) * 1995-11-13 1998-06-19 Sfim Ind Rate gyroscope with mechanical resonant body
WO1998057124A1 (en) * 1997-06-13 1998-12-17 Citizen Watch Co., Ltd. Vibration gyroscope
JP2004191094A (en) * 2002-12-09 2004-07-08 Ngk Insulators Ltd Vibration type gyroscope
JP2005291858A (en) * 2004-03-31 2005-10-20 Sony Corp Oscillation gyroscopic sensor element
JP2007271497A (en) * 2006-03-31 2007-10-18 Kyocera Kinseki Corp Oscillator and angular velocity sensor
JP2008005089A (en) * 2006-06-21 2008-01-10 Epson Toyocom Corp Contour vibrating piece, contour vibrator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160476A (en) * 1995-11-13 1998-06-19 Sfim Ind Rate gyroscope with mechanical resonant body
JPH09329444A (en) * 1996-06-07 1997-12-22 Toyota Motor Corp Angular velocity sensor
WO1998057124A1 (en) * 1997-06-13 1998-12-17 Citizen Watch Co., Ltd. Vibration gyroscope
JP2004191094A (en) * 2002-12-09 2004-07-08 Ngk Insulators Ltd Vibration type gyroscope
JP2005291858A (en) * 2004-03-31 2005-10-20 Sony Corp Oscillation gyroscopic sensor element
JP2007271497A (en) * 2006-03-31 2007-10-18 Kyocera Kinseki Corp Oscillator and angular velocity sensor
JP2008005089A (en) * 2006-06-21 2008-01-10 Epson Toyocom Corp Contour vibrating piece, contour vibrator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196822A (en) * 2010-03-19 2011-10-06 Seiko Epson Corp Vibration gyro element, vibration gyro sensor, detection method of angular velocity by vibration gyro sensor and electronic device
JP2015224968A (en) * 2014-05-28 2015-12-14 京セラクリスタルデバイス株式会社 Angular velocity sensor and sensor element

Similar Documents

Publication Publication Date Title
US8633637B2 (en) Resonator element, resonator, physical quantity sensor, and electronic equipment that have steps on a side surface of a vibrating arm
JP3483567B2 (en) Monolithic silicon rate gyro with integrated sensor
US8997568B2 (en) Micromachined gyroscope with detection in the plane of the machined wafer
JP2008545128A (en) Micromachined gyrometer sensor for differential measurement of vibration mass motion
WO2017130312A1 (en) Gyroscope
EP0574143B1 (en) Angular rate sensor and method of production thereof
JP3985796B2 (en) Mechanical quantity sensor device
WO2018021166A1 (en) Angular velocity sensor, sensor element, and multi-axis angular velocity sensor
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP2008058062A (en) Angular velocity sensor
WO2018021167A1 (en) Angular velocity sensor, sensor element, and multi-axis angular velocity sensor
JP4295233B2 (en) Tuning fork type vibrator for vibration gyro
JPH08278146A (en) Vibrating gyro
JP2012149961A (en) Vibration gyro
JP2009264863A (en) Gyro sensor vibrating body
JP2009074996A (en) Piezoelectric vibration gyro
WO2019021860A1 (en) Sensor element and angular velocity sensor
JP2012112819A (en) Vibration gyro
JP3959097B2 (en) Vibration gyro tuning fork type vibrator mounting structure
JP2005114631A (en) Angular velocity sensor
WO2019240175A1 (en) Sensor element and angular velocity sensor
JP2006010659A (en) Oscillation gyroscope
WO2019044697A1 (en) Sensor element and angular velocity sensor
JP6450059B1 (en) Sensor element and angular velocity sensor
JP2001215122A (en) Angular velocity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604