JP2006266984A - Vibrating gyroscope element - Google Patents

Vibrating gyroscope element Download PDF

Info

Publication number
JP2006266984A
JP2006266984A JP2005087938A JP2005087938A JP2006266984A JP 2006266984 A JP2006266984 A JP 2006266984A JP 2005087938 A JP2005087938 A JP 2005087938A JP 2005087938 A JP2005087938 A JP 2005087938A JP 2006266984 A JP2006266984 A JP 2006266984A
Authority
JP
Japan
Prior art keywords
arm
detection
vibrating
vibration
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005087938A
Other languages
Japanese (ja)
Inventor
Keiichi Yamaguchi
啓一 山口
Makoto Eguchi
誠 江口
隆介 ▲高▼倉
Ryusuke Takakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005087938A priority Critical patent/JP2006266984A/en
Publication of JP2006266984A publication Critical patent/JP2006266984A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibrating gyroscope element provided with satisfactory sensitivity in detecting angular velocity and excellent in shock resistance. <P>SOLUTION: The vibrating gyroscope element 1 is provided in the same plane with a base part 11, a pair of detection vibrating arms 12 linearly extended to both sides from the base part 11, a pair of connecting arms 14 extended to both sides from the base part 11 in directions intersecting with the detection vibrating arms 12 at right angles, and a pair of drive vibrating arms 16 extended to both sides from a tip part of each connecting arm 14 in directions of intersecting with it at right angles and has groove parts 20 each in one main surfaces and the other main surfaces of at least the detection vibrating arms 12. A terminal 25 of the groove part 20 positioned on the side of the base part 11 of the detection vibrating arm 12 is arranged on a line connecting points (b) of change in the arm width of the detection vibrating arm 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、振動腕に溝部を備えた振動ジャイロ素子に関する。   The present invention relates to a vibrating gyro element having a groove on a vibrating arm.

近年、撮像機器の手ぶれ補正や、GPS衛星信号を用いた車両等の移動体ナビゲーションシステムなどの姿勢制御として、角速度を検出するジャイロセンサが多く用いられている。
ジャイロセンサを構成する振動ジャイロ素子として、例えば、略T字型の駆動振動系を中央の検出振動系に関して左右対称に配置した所謂、ダブルT型振動ジャイロ素子が知られている。このダブルT型振動ジャイロ素子は、Z軸方向に厚みを持ち、基部からX軸方向両側に延出された支持腕と、この支持腕からY軸方向に延出された駆動振動腕からなる略T字型の駆動振動系と、基部からY軸方向に延出された検出振動系を備えている。
そして、Z軸回りの回転が生じたときに、X軸方向に屈曲振動を行う駆動振動腕に発生したコリオリ力を、支持腕および基部を介して検出振動腕に伝達して、X軸方向に振動する検出振動腕の歪を検出して角速度を認識する構成となっている。
In recent years, gyro sensors that detect angular velocities are often used for camera shake correction of imaging devices and attitude control of mobile navigation systems such as vehicles using GPS satellite signals.
As a vibrating gyro element constituting the gyro sensor, for example, a so-called double T-type vibrating gyro element in which a substantially T-shaped driving vibration system is arranged symmetrically with respect to a central detection vibration system is known. This double T-type vibrating gyro element is substantially composed of a supporting arm having a thickness in the Z-axis direction and extending from the base to both sides in the X-axis direction and a driving vibrating arm extending from the supporting arm in the Y-axis direction. A T-shaped drive vibration system and a detection vibration system extending from the base in the Y-axis direction are provided.
Then, when rotation about the Z-axis occurs, the Coriolis force generated in the drive vibration arm that performs bending vibration in the X-axis direction is transmitted to the detection vibration arm via the support arm and the base, and in the X-axis direction. The configuration is such that the angular velocity is recognized by detecting the distortion of the vibrating vibrating arm.

このような振動ジャイロ素子の駆動振動腕と検出振動腕の一方の主面と他方の主面にそれぞれ溝部を設けて、各振動腕の電界効率を高め、振動ジャイロ素子の小型化を図る構成が提案されている(特許文献1参照)。
また、この特許文献1では、振動ジャイロ素子の感度を向上させるために、検出振動形態(XY平面での振動)における最適な溝部の位置を考察し、各振動腕に設けた溝部の終端位置を基部の付け根から腕幅の5%以上の位置に配置するとしている。
Such a vibration gyro element has a configuration in which grooves are provided on one main surface and the other main surface of the drive vibration arm and the detection vibration arm of each vibration gyro element to increase the electric field efficiency of each vibration arm and to reduce the size of the vibration gyro element. It has been proposed (see Patent Document 1).
In Patent Document 1, in order to improve the sensitivity of the vibration gyro element, the optimum groove position in the detection vibration mode (vibration on the XY plane) is considered, and the terminal position of the groove provided on each vibration arm is determined. It is supposed to be arranged at a position of 5% or more of the arm width from the base of the base.

特開2004−245605号公報JP 2004-245605 A

しかしながら、このような溝部を各振動腕に設けて小型化を図ることにより、各振動腕の剛性が低くなるが、ジャイロセンサの携帯機器への利用が拡大するに伴い、携帯機器の落下などの衝撃力に耐えうるように、振動ジャイロ素子の耐衝撃性を向上させる必要に迫られている。   However, by providing such a groove in each vibrating arm to reduce the size, the rigidity of each vibrating arm is lowered. However, as the use of gyro sensors in portable devices has expanded, the falling of portable devices, etc. There is an urgent need to improve the impact resistance of the vibrating gyro element so that it can withstand the impact force.

耐衝撃性の評価は、通常、振動ジャイロ素子のX,Y,Z軸方向にそれぞれ落下などの衝撃力を与えて、そのときの周波数の変動、振動腕の破壊(折れ)について調査が行われる。特に、振動腕の破壊に関しては、振動ジャイロ素子にかかるZ軸方向の力に大きく依存している。また、このZ軸方向の力に対して、駆動振動腕よりも検出振動腕が破壊される傾向がある。これは、駆動振動腕は固定された基部から連結腕を介して連結されており、Z軸方向の力が加わっても支持腕が緩衝材として働き、一方、検出振動腕は基部に直接連結されているため、衝撃力の影響を受けやすいことによる。
このように、振動ジャイロ素子の耐衝撃性を向上させるには、Z軸方向に力が加わった場合の検出振動腕の強度について検討する必要がある。
For evaluation of impact resistance, usually, an impact force such as dropping is applied in the X, Y, and Z axis directions of the vibration gyro element, and the fluctuation of the frequency and the destruction (breaking) of the vibrating arm are investigated. . In particular, the destruction of the vibrating arm greatly depends on the force in the Z-axis direction applied to the vibrating gyro element. Further, the detection vibrating arm tends to be destroyed rather than the driving vibrating arm with respect to the force in the Z-axis direction. This is because the drive vibration arm is connected from the fixed base via the connection arm, and the support arm acts as a buffer even when a force in the Z-axis direction is applied, while the detection vibration arm is directly connected to the base. Because it is susceptible to impact force.
Thus, in order to improve the impact resistance of the vibration gyro element, it is necessary to examine the strength of the detection vibration arm when a force is applied in the Z-axis direction.

本発明は、上記課題を解決するためになされたものであり、その目的は、良好な角速度の検出感度を備え、耐衝撃性に優れた振動ジャイロ素子を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vibration gyro element having a good angular velocity detection sensitivity and excellent impact resistance.

上記課題を解決するために、本発明では、基部と、前記基部から直線状に両側へ延出された1対の検出振動腕と、前記基部から両側へ前記検出振動腕に直交する方向に延出された1対の連結腕と、前記各連結腕の先端部からそれと直交して両側へ延出された各1対の駆動振動腕と、を同一平面に備え、少なくとも前記検出振動腕の一方の主面および他方の主面にそれぞれ溝部を有する振動ジャイロ素子であって、前記検出振動腕の前記基部側に位置する前記溝部の終端が、前記検出振動腕の腕幅の変化点を結ぶ線上に配置されたことを特徴とする。   In order to solve the above problems, in the present invention, a base, a pair of detection vibrating arms linearly extending from the base to both sides, and extending from the base to both sides in a direction perpendicular to the detection vibrating arms. A pair of connected connecting arms and a pair of driving vibrating arms extending from the front end portion of each connecting arm to both sides perpendicularly to the connecting arms, on at least one of the detecting vibrating arms A vibration gyro element having a groove on each of the principal surface and the other principal surface, wherein a terminal end of the groove located on the base side of the detection vibration arm is on a line connecting a change point of the arm width of the detection vibration arm It is characterized by being arranged in.

この検出振動腕の基部側に位置する溝部の終端を、検出振動腕の腕幅の変化点を結ぶ線上に配置する構成によれば、検出振動腕にZ軸方向の力が加わった場合に、他の位置に溝部を配置したときに比べて検出振動腕が受ける応力が小さく、破壊の発生を軽減することができ、耐衝撃性に優れた振動ジャイロ素子を得ることができる。
また、角速度の検出における検出振動腕の歪は、基部に連結される検出振動腕の付け根付近で最大となり、この部分の歪を検出するのが望ましい。本発明によれば、歪の大きい検出振動腕の付け根近くまで溝部を形成することができ、検出振動腕の側面と溝部の壁面に検出電極を設けることにより、大きな歪を検出できる。このことから、良好な角速度の検出感度を備えた振動ジャイロ素子を提供できる。
According to the configuration in which the end of the groove located on the base side of the detection vibrating arm is arranged on a line connecting the change points of the arm width of the detection vibrating arm, when a force in the Z-axis direction is applied to the detection vibrating arm, Compared to the case where the groove is arranged at another position, the stress received by the detection vibrating arm is small, the occurrence of breakage can be reduced, and a vibration gyro element having excellent impact resistance can be obtained.
Further, the distortion of the detection vibrating arm in the detection of the angular velocity becomes maximum near the base of the detection vibrating arm connected to the base, and it is desirable to detect the distortion of this part. According to the present invention, the groove portion can be formed near the base of the detection vibration arm having a large strain, and a large strain can be detected by providing the detection electrodes on the side surface of the detection vibration arm and the wall surface of the groove portion. From this, it is possible to provide a vibrating gyro element having a good angular velocity detection sensitivity.

また、本発明の振動ジャイロ素子は、前記検出振動腕の先端に重り部が形成されていても良い。   In the vibrating gyro element of the present invention, a weight portion may be formed at the tip of the detection vibrating arm.

この場合、検出振動腕の先端に重り部を設けることにより、検出振動腕の振幅を大きくして振動ジャイロ素子の小型化に伴う角速度の検出感度の低下を防いでいる。一方、落下などによりZ軸方向に衝撃力が検出振動腕に加わった場合には、この重り部を設けない構成と比べて、重り部の慣性力により検出振動腕に大きな力が働くことになる。このような場合においても、他の位置に溝部を配置したときに比べて検出振動腕が受ける応力が小さく、破壊の発生を軽減することができ、耐衝撃性に優れた振動ジャイロ素子を得ることができる。   In this case, by providing a weight at the tip of the detection vibrating arm, the amplitude of the detection vibrating arm is increased to prevent a decrease in angular velocity detection sensitivity associated with downsizing of the vibrating gyro element. On the other hand, when an impact force is applied to the detection vibration arm in the Z-axis direction due to dropping or the like, a greater force is applied to the detection vibration arm due to the inertial force of the weight portion than in the configuration in which the weight portion is not provided. . Even in such a case, the stress received by the detection vibrating arm is smaller than when the groove portion is arranged at another position, the occurrence of breakage can be reduced, and a vibration gyro element having excellent impact resistance can be obtained. Can do.

以下、本発明を具体化した実施形態について図面に従って説明する。
(第1の実施形態)
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings.
(First embodiment)

図1は、本実施形態の振動ジャイロ素子の構成を示す概略平面図である。図2は検出振動腕の拡大平面図である。また、図3は図2におけるA−A断面図である。
図1において、振動ジャイロ素子1は、圧電材料である水晶から形成されている。水晶には電気軸と呼ばれるX軸、機械軸と呼ばれるY軸および光学軸と呼ばれるZ軸を有している。そして、振動ジャイロ素子1はZ軸方向に所定の厚みを持ち、表裏のXY平面をそれぞれ主面とする水晶板から、エッチング加工により形成されている。
FIG. 1 is a schematic plan view showing the configuration of the vibrating gyro element of this embodiment. FIG. 2 is an enlarged plan view of the detection vibrating arm. 3 is a cross-sectional view taken along the line AA in FIG.
In FIG. 1, a vibrating gyro element 1 is made of quartz that is a piezoelectric material. Quartz has an X axis called an electric axis, a Y axis called a mechanical axis, and a Z axis called an optical axis. The vibrating gyro element 1 has a predetermined thickness in the Z-axis direction, and is formed by etching from a quartz plate having main surfaces of the front and back XY planes.

振動ジャイロ素子1は、基部11から図中上下両側(Y軸方向)へ直線状に延出する1対の検出振動腕12と、基部11から該検出振動腕12と直交する向きに図中左右両側(X軸方向)へ延出する1対の連結腕14と、各連結腕14の先端部から検出振動腕12と平行に図中上下両側(Y軸方向)へ延出する左右各1対の駆動振動腕16とを有している。   The vibrating gyro element 1 includes a pair of detection vibrating arms 12 that linearly extend from the base 11 to both the upper and lower sides (Y-axis direction) in the drawing, and the left and right in the drawing in a direction perpendicular to the detection vibrating arm 12 from the base 11. A pair of connecting arms 14 extending in both sides (X-axis direction) and a pair of left and right extending in the upper and lower sides (Y-axis direction) in the figure in parallel with the detection vibrating arm 12 from the tip of each connecting arm 14 Drive vibration arm 16.

そして、駆動振動腕16のそれぞれの先端に重り部17が設けられ、さらに駆動振動腕16に溝部21が形成されている。同様に検出振動腕12のそれぞれの先端に重り部13が設けられ、検出用振動腕12に溝部20が形成されている。
この駆動振動腕16および検出用振動腕12の先端にそれぞれ重り部17,13を設けることにより、駆動振動腕16、検出振動腕12の振幅を大きくして振動ジャイロ素子1の小型化に伴う角速度の検出感度の低下を防いでいる。
A weight portion 17 is provided at each tip of the drive vibration arm 16, and a groove portion 21 is formed in the drive vibration arm 16. Similarly, a weight portion 13 is provided at each tip of the detection vibrating arm 12, and a groove portion 20 is formed in the detection vibrating arm 12.
By providing weight portions 17 and 13 at the distal ends of the drive vibration arm 16 and the detection vibration arm 12, respectively, the amplitudes of the drive vibration arm 16 and the detection vibration arm 12 are increased, and the angular velocity accompanying the downsizing of the vibration gyro element 1 is achieved. This prevents a decrease in detection sensitivity.

この検出振動腕12について、図2、図3を用い詳細に説明する。
図2において、検出振動腕12は、基部11に近づくにつれて腕幅が増加する連結部22を介して基部11に連結され、同様に、連結部23を介して重り部13に連結されている。なお、検出振動腕12は、連結部22,23を含んだ名称である。
The detection vibrating arm 12 will be described in detail with reference to FIGS.
In FIG. 2, the detection vibrating arm 12 is connected to the base portion 11 via a connecting portion 22 whose arm width increases as it approaches the base portion 11, and similarly connected to the weight portion 13 via a connecting portion 23. The detection vibrating arm 12 is a name including the connecting portions 22 and 23.

検出振動腕12には溝部20が形成され、基部11側の腕幅の変化点bを結ぶB−B線上に溝部20の終端25が配置されている。この腕幅の変化点bを結ぶB−B線上とは、製造上のばらつきを考慮して、B−B線上から±3μmの範囲を含むものとする。
また、溝部20は図3に示すように、検出振動腕12の一方の主面(表面)および他方の主面(裏面)に設けられている。
A groove portion 20 is formed in the detection vibrating arm 12, and a terminal end 25 of the groove portion 20 is disposed on the line BB connecting the arm width change point b on the base portion 11 side. The BB line connecting the arm width change points b includes a range of ± 3 μm from the BB line in consideration of manufacturing variations.
Further, as shown in FIG. 3, the groove 20 is provided on one main surface (front surface) and the other main surface (back surface) of the detection vibrating arm 12.

検出振動腕12には検出電極(図示せず)が形成され、駆動振動腕16には駆動電極(図示せず)が形成されている。
検出電極および駆動電極の配置については限定されないが、例えば、検出振動腕12の側面と溝部20の壁面に、対向するように検出電極を設け、駆動振動腕16の側面と溝部21の壁面に、対向するように駆動電極を設ける。
このように、検出振動腕12にて角速度を検出する検出振動系を構成し、連結腕14と駆動振動腕16にて振動ジャイロ素子1を駆動する駆動振動系を構成している。
なお、振動ジャイロ素子1は基部11を支持することにより、Z軸回りの角速度の検出を可能にしている。
A detection electrode (not shown) is formed on the detection vibration arm 12, and a drive electrode (not shown) is formed on the drive vibration arm 16.
The arrangement of the detection electrode and the drive electrode is not limited. For example, the detection electrode is provided so as to face the side surface of the detection vibrating arm 12 and the wall surface of the groove portion 20, and the side surface of the drive vibration arm 16 and the wall surface of the groove portion 21 are provided. Drive electrodes are provided so as to face each other.
In this way, the detection vibration arm 12 constitutes a detection vibration system that detects the angular velocity, and the connecting arm 14 and the drive vibration arm 16 constitute a drive vibration system that drives the vibration gyro element 1.
Note that the vibrating gyro element 1 supports the base 11 to detect the angular velocity around the Z axis.

次に、このような構成の振動ジャイロ素子1における、角速度の検出動作について簡単に説明する。
駆動振動腕16は駆動電極に交番電圧を印加することにより駆動され、駆動振動腕16がXY平面で屈曲振動を行う。この状態でZ軸回りの角速度が加わると、駆動振動腕16にコリオリ力が働き、このコリオリ力に呼応して検出振動腕12がXY平面で屈曲振動を行う。この屈曲振動に伴う検出振動腕12に生ずる歪を検出電極が検出して角速度を認識することができる。
Next, the detection operation of the angular velocity in the vibration gyro element 1 having such a configuration will be briefly described.
The drive vibration arm 16 is driven by applying an alternating voltage to the drive electrode, and the drive vibration arm 16 performs bending vibration on the XY plane. When an angular velocity about the Z axis is applied in this state, a Coriolis force is applied to the drive vibrating arm 16, and the detection vibrating arm 12 performs flexural vibration on the XY plane in response to the Coriolis force. The detection electrode can detect the distortion generated in the detection vibration arm 12 due to the bending vibration, and the angular velocity can be recognized.

次に、上記のような振動ジャイロ素子1において、検出振動腕12に形成された溝部20を上記の配置に至った経過について説明する。
検出振動腕12にZ軸方向に力が加わった場合、応力が大きくかかるのは基部11と検出振動腕12を連結する連結部22付近であり、検出振動腕12の破壊もこの部分より発生している。発明者はこの連結部22付近に形成される溝部20の配置を変えることにより、検出振動腕12に生ずる応力の大きさに変化があると考えた。
Next, in the vibration gyro element 1 as described above, the process of reaching the above-described arrangement of the groove 20 formed in the detection vibration arm 12 will be described.
When a force is applied to the detection vibrating arm 12 in the Z-axis direction, a large stress is applied in the vicinity of the connecting portion 22 that connects the base 11 and the detection vibrating arm 12, and the detection vibrating arm 12 is also broken from this portion. ing. The inventor considered that the magnitude of the stress generated in the detection vibrating arm 12 is changed by changing the arrangement of the groove 20 formed in the vicinity of the connecting portion 22.

このため、図4に示すような解析モデルを構成し、溝部の位置を変えたときの有限要素法による応力解析を行った。
図4は解析モデルの一例であり、この解析モデルは、基部30と、基部30から延出される振動腕31と、振動腕31の先端に設けられた重り部32から構成され、振動腕31の表裏に溝部33が設けられている。
For this reason, an analysis model as shown in FIG. 4 was constructed, and stress analysis was performed by the finite element method when the position of the groove was changed.
FIG. 4 shows an example of an analysis model. The analysis model includes a base 30, a vibrating arm 31 extending from the base 30, and a weight portion 32 provided at the tip of the vibrating arm 31. Grooves 33 are provided on the front and back sides.

解析条件としては、基部30の一つの面35を固定面(X,Y,Z軸方向の変位を0)とし、重り部32の先端にZ軸方向の力Fを加えたときの、先端の変位量を一定とする。このとき、溝部33の終端34の配置を、振動腕31の腕幅の変化点bを結ぶB−B線に対して変化させた場合の振動腕31にかかる最大応力を比較した。   As an analysis condition, one surface 35 of the base portion 30 is a fixed surface (displacement in the X, Y, and Z-axis directions is 0), and a force F in the Z-axis direction is applied to the tip of the weight portion 32. The displacement is constant. At this time, the maximum stress applied to the vibrating arm 31 when the arrangement of the terminal end 34 of the groove 33 was changed with respect to the line BB connecting the arm width changing point b of the vibrating arm 31 was compared.

図5は、振動腕31の溝部33の配置におけるタイプ1〜5の形態と、それぞれのタイプにおける振動腕31にかかる最大応力を比較する説明図である。
タイプ1の解析モデルは、振動腕31の腕幅の変化点を結ぶB−B線に対して、基部30より20μm遠ざかる位置に溝部33の終端34を配置した。
タイプ2の解析モデルは、振動腕31の腕幅の変化点を結ぶB−B線上に、溝部33の終端34を配置した。
タイプ3の解析モデルは、振動腕31の腕幅の変化点を結ぶB−B線と、基部30と振動腕31とが連結される境目の中間位置に、溝部33の終端34を配置した。
タイプ4の解析モデルは、基部30と振動腕31とが連結される境目に、溝部33の終端34を配置した。
タイプ5の解析モデルは、基部30と振動腕31とが連結される境目から基部中央に向かい、20μm入った位置に、溝部33の終端34を配置した。
FIG. 5 is an explanatory diagram comparing types 1 to 5 in the arrangement of the groove 33 of the vibrating arm 31 and the maximum stress applied to the vibrating arm 31 of each type.
In the type 1 analysis model, the end 34 of the groove 33 is disposed at a position 20 μm away from the base 30 with respect to the line BB connecting the change points of the arm width of the vibrating arm 31.
In the type 2 analysis model, the end 34 of the groove 33 is arranged on the line BB connecting the changing points of the arm width of the vibrating arm 31.
In the type 3 analysis model, the end 34 of the groove 33 is disposed at the middle position of the boundary line where the base 30 and the vibrating arm 31 are connected to the line B-B connecting the changing points of the arm width of the vibrating arm 31.
In the type 4 analysis model, the end 34 of the groove 33 is arranged at the boundary where the base 30 and the vibrating arm 31 are connected.
In the type 5 analysis model, the end 34 of the groove 33 is disposed at a position 20 μm from the boundary where the base 30 and the vibrating arm 31 are connected to the center of the base.

そして、それぞれのタイプ1〜5における、振動腕31にかかる最大応力を比較すると、タイプ1における最大応力が最も大きく、タイプ2における最大応力が最も小さい結果が得られた。つまり、この解析モデルのタイプ1〜5の比較において、振動腕31に同等の力がZ方向に加わった場合、タイプ1の振動腕31が最も破壊されやすく、タイプ2の振動腕31が最も破壊されにくいことがわかる。   When the maximum stress applied to the vibrating arm 31 in each of the types 1 to 5 was compared, the maximum stress in the type 1 was the largest and the maximum stress in the type 2 was the smallest. That is, in the comparison of types 1 to 5 of this analysis model, when an equivalent force is applied to the vibrating arm 31 in the Z direction, the vibrating arm 31 of the type 1 is most easily broken and the vibrating arm 31 of the type 2 is most broken. It turns out that it is hard to be done.

以上のように、検出振動腕12の基部11側に位置する溝部20の終端25が、検出振動腕12の腕幅の変化点bを結ぶB−B線上に配置されていることから、検出振動腕12にZ軸方向の力が加わった場合に、他の位置に溝部を配置したときに比べて検出振動腕12が受ける応力が小さく、破壊の発生を軽減することができ、耐衝撃性に優れた振動ジャイロ素子1を得ることができる。   As described above, since the terminal end 25 of the groove portion 20 located on the base 11 side of the detection vibrating arm 12 is arranged on the line BB connecting the change point b of the arm width of the detection vibrating arm 12, the detection vibration is detected. When a force in the Z-axis direction is applied to the arm 12, the stress received by the detection vibrating arm 12 is smaller than when a groove is disposed at another position, and the occurrence of breakage can be reduced, resulting in improved shock resistance. An excellent vibration gyro element 1 can be obtained.

特に、検出振動腕12の先端に重り部13を備えた振動ジャイロ素子1において、落下などによりZ軸方向に衝撃力が検出振動腕12に加わった場合には、この重り部13を設けない構成と比べて、重り部13の慣性力により検出振動腕12に大きな力が働くことになる。このような慣性力によりZ軸方向に大きな力が働く場合、他の位置に溝部を配置したときに比べて検出振動腕12が受ける応力が小さく、振動ジャイロ素子1の耐衝撃性を向上させる効果は大きい。   In particular, in the vibrating gyro element 1 having the weight 13 at the tip of the detection vibrating arm 12, when the impact force is applied to the detection vibrating arm 12 in the Z-axis direction due to dropping or the like, the weight 13 is not provided. As compared with the above, a large force acts on the detection vibrating arm 12 due to the inertial force of the weight portion 13. When a large force is exerted in the Z-axis direction due to such an inertial force, the stress received by the detection vibrating arm 12 is smaller than when the groove is disposed at another position, and the impact resistance of the vibrating gyro element 1 is improved. Is big.

また、本実施形態によれば、歪の大きい検出振動腕12の付け根近くまで溝部20を形成することができ、検出振動腕12の側面と溝部20の壁面に検出電極を設けることにより、大きな歪を検出できる。このことから、良好な角速度の検出感度を備えた振動ジャイロ素子1を提供できる。
(第2の実施形態)
Further, according to the present embodiment, the groove portion 20 can be formed near the base of the detection vibration arm 12 having a large strain. By providing the detection electrode on the side surface of the detection vibration arm 12 and the wall surface of the groove portion 20, Can be detected. From this, it is possible to provide the vibrating gyro element 1 having good angular velocity detection sensitivity.
(Second Embodiment)

図6は第2の実施形態における振動ジャイロ素子の構成を示す概略平面図である。
この実施形態は第1の実施形態で示した振動ジャイロ素子1の各振動腕に重り部を設けない形態であり、同様の角速度の検出動作を行う。
FIG. 6 is a schematic plan view showing the configuration of the vibrating gyro element in the second embodiment.
In this embodiment, a weight portion is not provided on each vibrating arm of the vibrating gyro element 1 shown in the first embodiment, and a similar angular velocity detecting operation is performed.

図6において、振動ジャイロ素子2は、基部41から図中上下両側(Y軸方向)へ直線状に延出する1対の検出振動腕42と、基部41から該検出振動腕42と直交する向きに図中左右両側(X軸方向)へ延出する1対の連結腕44と、各連結腕44先端から検出振動腕42と平行に図中上下両側(Y軸方向)へ延出する左右各1対の駆動振動腕46とを有している。
さらに、駆動振動腕46には、駆動振動腕46の長さ方向に沿って溝部52が形成され、検出振動腕42には、検出振動腕42の長さ方向に沿って溝部50が形成されている。
In FIG. 6, the vibrating gyro element 2 includes a pair of detection vibrating arms 42 linearly extending from the base 41 to both the upper and lower sides (Y-axis direction) in the figure, and a direction orthogonal to the detection vibrating arms 42 from the base 41. A pair of connecting arms 44 extending to the left and right sides (X-axis direction) in the drawing, and left and right extending to the upper and lower sides (Y-axis direction) in the drawing parallel to the detection vibrating arm 42 from the tip of each connecting arm 44 And a pair of drive vibrating arms 46.
Further, a groove 52 is formed in the drive vibration arm 46 along the length direction of the drive vibration arm 46, and a groove 50 is formed in the detection vibration arm 42 along the length direction of the detection vibration arm 42. Yes.

この検出振動腕42について、図7を用い詳細に説明する。
図7において、検出振動腕42は、基部41に近づくにつれて腕幅が増加する連結部53を介して基部41に連結されている。なお、検出振動腕42は、連結部53を含んだ名称である。
The detection vibrating arm 42 will be described in detail with reference to FIG.
In FIG. 7, the detection vibrating arm 42 is connected to the base portion 41 via a connecting portion 53 whose arm width increases as it approaches the base portion 41. The detection vibrating arm 42 is a name including the connecting portion 53.

検出振動腕42には溝部50が形成され、腕幅の変化点cを結ぶC−C線上に溝部50の終端55が配置されている。この腕幅の変化点cを結ぶC−C線上とは、製造上のばらつきを考慮して、C−C線上から±3μmの範囲を含むものとする。
また、溝部50は、検出振動腕12の一方の主面(表面)および他方の主面(裏面)に設けられている。
A groove portion 50 is formed in the detection vibrating arm 42, and a terminal end 55 of the groove portion 50 is disposed on the line CC connecting the arm width change point c. The CC line connecting the arm width change points c includes a range of ± 3 μm from the CC line in consideration of manufacturing variations.
The groove 50 is provided on one main surface (front surface) and the other main surface (back surface) of the detection vibrating arm 12.

また、検出振動腕42には検出電極(図示せず)が形成され、駆動振動腕46には駆動電極(図示せず)が形成されている。
検出電極および駆動電極の配置については限定されないが、例えば、検出振動腕42の側面と溝部50の壁面に、対向するように検出電極を設け、駆動振動腕46の側面と溝部52の壁面に、対向するように駆動電極を設ける。
このように、検出振動腕42にて角速度を検出する検出振動系を構成し、連結腕44と駆動振動腕46にて振動ジャイロ素子2を駆動する駆動振動系を構成している。
なお、振動ジャイロ素子2は基部41を支持することにより、角速度の検出を可能にしている。
The detection vibrating arm 42 is formed with a detection electrode (not shown), and the driving vibration arm 46 is formed with a driving electrode (not shown).
The arrangement of the detection electrode and the drive electrode is not limited. For example, the detection electrode is provided so as to face the side surface of the detection vibrating arm 42 and the wall surface of the groove portion 50, and the side surface of the drive vibration arm 46 and the wall surface of the groove portion 52 are provided. Drive electrodes are provided so as to face each other.
Thus, the detection vibration system that detects the angular velocity is configured by the detection vibration arm 42, and the drive vibration system that drives the vibration gyro element 2 is configured by the connecting arm 44 and the drive vibration arm 46.
Note that the vibration gyro element 2 supports the base 41 to detect the angular velocity.

以上のような構成の振動ジャイロ素子2において、第1の実施形態にて説明したのと同様に検出振動腕42における溝部50の位置を変えた5つのタイプの解析モデルを構成し、同様な解析条件で有限要素法による応力解析を行った。この解析モデルは図5に示す各タイプの重り部32を設けず、振動腕31の腕幅がその先端まで伸びた形態である。
この振動腕にかかる最大応力の結果を比較すると、腕幅の変化点を結ぶ線よりも、溝部の終端が基部より遠ざかる位置に配置したタイプ(図5のタイプ1に相当)における最大応力が最も大きく、溝部の終端を腕幅の変化点を結ぶ線上に配置したタイプ(図5のタイプ2に相当)における最大応力が最も小さい結果が得られた。
In the vibrating gyro element 2 having the above-described configuration, five types of analysis models in which the position of the groove portion 50 in the detection vibrating arm 42 is changed are configured in the same manner as described in the first embodiment, and similar analysis is performed. Stress analysis by finite element method was performed under the conditions. This analysis model has a configuration in which each type of weight portion 32 shown in FIG. 5 is not provided, and the arm width of the vibrating arm 31 extends to the tip thereof.
When the results of the maximum stress applied to the vibrating arm are compared, the maximum stress in the type (corresponding to type 1 in FIG. 5) in which the end of the groove is located farther from the base than the line connecting the change points of the arm width is the highest. The result that the maximum stress was the smallest in the type (corresponding to type 2 in FIG. 5) in which the end of the groove portion was arranged on the line connecting the arm width change points was obtained.

以上のように、検出振動腕42の基部41側に位置する溝部50の終端55が、検出振動腕42の腕幅の変化点cを結ぶC−C線上に配置されていることから、検出振動腕42にZ軸方向の力が加わった場合に、他の位置に溝部50を配置したときに比べて検出振動腕42が受ける応力が小さく、破壊の発生を軽減することができ、耐衝撃性に優れた振動ジャイロ素子2を得ることができる。   As described above, since the terminal end 55 of the groove 50 located on the base 41 side of the detection vibrating arm 42 is arranged on the line CC connecting the arm width change point c of the detection vibrating arm 42, the detection vibration is detected. When a force in the Z-axis direction is applied to the arm 42, the stress received by the detection vibrating arm 42 is smaller than when the groove portion 50 is disposed at another position, and the occurrence of breakage can be reduced. Can be obtained.

また、本実施形態によれば、歪の大きい検出振動腕42の付け根近くまで溝部50を形成することができ、検出振動腕42の側面と溝部50の壁面に検出電極を設けることにより、大きな歪を検出できる。このことから、良好な角速度の検出感度を備えた振動ジャイロ素子2を提供できる。   Further, according to the present embodiment, the groove portion 50 can be formed near the base of the detection vibration arm 42 having a large strain. By providing the detection electrodes on the side surface of the detection vibration arm 42 and the wall surface of the groove portion 50, Can be detected. From this, it is possible to provide the vibrating gyro element 2 having good angular velocity detection sensitivity.

なお、検出振動腕に設けられる溝の形状は任意に設定でき、例えば、溝部終端を円弧状とすることや、溝部終端の角部を面取り形状にして実施することも可能である。   The shape of the groove provided on the detection vibrating arm can be arbitrarily set. For example, the groove end can be formed in an arc shape, or the corner of the groove end can be chamfered.

また、本発明の振動ジャイロ素子の材料として、水晶の他に、リン酸ガリウム(GaPO4)、タンタル酸リチウム(LiTaO3)、ニオブ酸リチウム(LiNbO3)、ランガサイト(La3Ga5SiO14)などの圧電材料、またはエリンバ材に代表される恒弾性材料を用いることが可能である。 Further, as a material for the vibration gyro element of the present invention, in addition to quartz, gallium phosphate (GaPO 4 ), lithium tantalate (LiTaO 3 ), lithium niobate (LiNbO 3 ), langasite (La 3 Ga 5 SiO 14). ) Or a constant elastic material typified by an eriba material.

第1の実施形態における振動ジャイロ素子の構成を示す概略平面図。FIG. 3 is a schematic plan view showing the configuration of the vibrating gyro element in the first embodiment. 検出振動腕の拡大平面図。The enlarged plan view of a detection vibrating arm. 検出振動腕の断面図。Sectional drawing of a detection vibrating arm. 解析モデルを示す斜視図。The perspective view which shows an analysis model. 応力解析結果を比較して示す説明図。Explanatory drawing which compares and shows a stress analysis result. 第2の実施形態における振動ジャイロ素子の構成を示す概略平面図。The schematic plan view which shows the structure of the vibration gyro element in 2nd Embodiment. 検出振動腕の拡大平面図。The enlarged plan view of a detection vibrating arm.

符号の説明Explanation of symbols

1,2…振動ジャイロ素子、11…基部、12…検出振動腕、13…重り部、14…連結腕、16…駆動振動腕、17…重り部、20…検出振動腕の溝部、21…駆動振動腕の溝部、22…基部側の連結部、23…重り部側の連結部、25…溝部の終端、41…基部、42…検出振動腕、44…連結腕、46…駆動振動腕、50…検出振動腕の溝部、52…駆動振動腕の溝部、55…溝部の終端、b,c…腕幅の変化点。
DESCRIPTION OF SYMBOLS 1, 2 ... Vibration gyro element, 11 ... Base part, 12 ... Detection vibration arm, 13 ... Weight part, 14 ... Connection arm, 16 ... Drive vibration arm, 17 ... Weight part, 20 ... Groove part of detection vibration arm, 21 ... Drive Groove part of vibration arm, 22 ... connection part on base side, 23 ... connection part on weight side, 25 ... terminal end of groove part, 41 ... base part, 42 ... detection vibration arm, 44 ... connection arm, 46 ... drive vibration arm, 50 ... Detection vibration arm groove 52. Drive vibration arm groove 55. End of groove, b and c Arm width change point.

Claims (2)

基部と、
前記基部から直線状に両側へ延出された1対の検出振動腕と、
前記基部から両側へ前記検出振動腕に直交する方向に延出された1対の連結腕と、
前記各連結腕の先端部からそれと直交して両側へ延出された各1対の駆動振動腕と、を同一平面に備え、
少なくとも前記検出振動腕の一方の主面および他方の主面にそれぞれ溝部を有する振動ジャイロ素子であって、
前記検出振動腕の前記基部側に位置する前記溝部の終端が、前記検出振動腕の腕幅の変化点を結ぶ線上に配置されたことを特徴とする振動ジャイロ素子。
The base,
A pair of detection vibrating arms linearly extending from the base to both sides;
A pair of connecting arms extending from the base to both sides in a direction perpendicular to the detection vibrating arm;
A pair of drive vibrating arms extending from the front end of each of the connecting arms to both sides orthogonally to it, and provided on the same plane,
A vibration gyro element having at least one groove on each of the principal surface and the other principal surface of the detection vibration arm,
The vibrating gyro element according to claim 1, wherein an end of the groove located on the base side of the detection vibrating arm is arranged on a line connecting a change point of an arm width of the detection vibrating arm.
請求項1に記載の振動ジャイロ素子において、
前記検出振動腕の先端に重り部が形成されている振動ジャイロ素子。
The vibrating gyro element according to claim 1,
A vibrating gyro element in which a weight is formed at the tip of the detection vibrating arm.
JP2005087938A 2005-03-25 2005-03-25 Vibrating gyroscope element Withdrawn JP2006266984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087938A JP2006266984A (en) 2005-03-25 2005-03-25 Vibrating gyroscope element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087938A JP2006266984A (en) 2005-03-25 2005-03-25 Vibrating gyroscope element

Publications (1)

Publication Number Publication Date
JP2006266984A true JP2006266984A (en) 2006-10-05

Family

ID=37203111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087938A Withdrawn JP2006266984A (en) 2005-03-25 2005-03-25 Vibrating gyroscope element

Country Status (1)

Country Link
JP (1) JP2006266984A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139054A (en) * 2006-11-30 2008-06-19 Epson Toyocom Corp Angular velocity sensor
JP2008175805A (en) * 2006-12-20 2008-07-31 Epson Toyocom Corp Vibration gyro sensor
JP2008185344A (en) * 2007-01-26 2008-08-14 Epson Toyocom Corp Gyro module
JP2008185343A (en) * 2007-01-26 2008-08-14 Epson Toyocom Corp Gyro module
JP2016085184A (en) * 2014-10-28 2016-05-19 セイコーエプソン株式会社 Sensor element, physical quantity sensor, electronic apparatus and movable body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139054A (en) * 2006-11-30 2008-06-19 Epson Toyocom Corp Angular velocity sensor
JP2008175805A (en) * 2006-12-20 2008-07-31 Epson Toyocom Corp Vibration gyro sensor
JP2008185344A (en) * 2007-01-26 2008-08-14 Epson Toyocom Corp Gyro module
JP2008185343A (en) * 2007-01-26 2008-08-14 Epson Toyocom Corp Gyro module
JP2016085184A (en) * 2014-10-28 2016-05-19 セイコーエプソン株式会社 Sensor element, physical quantity sensor, electronic apparatus and movable body

Similar Documents

Publication Publication Date Title
US7412885B2 (en) Vibrating gyro element, support structure of vibrating gyro element, and gyro sensor
US9835641B2 (en) Angular velocity detection device and angular velocity sensor including the same
US8633637B2 (en) Resonator element, resonator, physical quantity sensor, and electronic equipment that have steps on a side surface of a vibrating arm
JP4415383B2 (en) Vibration gyro element, support structure of vibration gyro element, and gyro sensor
JP5205725B2 (en) Angular velocity sensor
US20060201248A1 (en) Vibrating gyro element
JPH0629733B2 (en) Gyroscope
US7337667B2 (en) Angular velocity sensor and its designing method
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP2005233706A (en) Angular velocity sensor
JP2006266984A (en) Vibrating gyroscope element
US20050061073A1 (en) Vibratory gyroscope and electronic apparatus
US9482533B2 (en) Vibrating reed, angular velocity sensor, electronic device, and moving object
JP4734985B2 (en) Piezoelectric vibrating gyro element and piezoelectric vibrating piece
JP4687085B2 (en) Compound sensor
JP2741620B2 (en) Vibrator support structure
JP5486757B2 (en) Inertial sensor element
WO2016067543A1 (en) Vibration-type angular velocity sensor
JPH03120415A (en) Vibration gyro
EP0563762B1 (en) Vibratory gyroscope with piezoelectric elements in vicinities of nodal points
JP2575212B2 (en) Vibrating gyro
JPH1062179A (en) Vibration gyro
JPH06201387A (en) Oscillating gyro
JP2004125458A (en) Tuning-fork piezoelectric vibration reed and piezoelectric vibration gyro
JPS62250309A (en) Manufacture of angular velocity sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603