JP2009168724A - Magnetic field measuring device and method of correcting magnetic field measurement value - Google Patents

Magnetic field measuring device and method of correcting magnetic field measurement value Download PDF

Info

Publication number
JP2009168724A
JP2009168724A JP2008009247A JP2008009247A JP2009168724A JP 2009168724 A JP2009168724 A JP 2009168724A JP 2008009247 A JP2008009247 A JP 2008009247A JP 2008009247 A JP2008009247 A JP 2008009247A JP 2009168724 A JP2009168724 A JP 2009168724A
Authority
JP
Japan
Prior art keywords
magnetic field
reference line
sensor
fixed point
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008009247A
Other languages
Japanese (ja)
Other versions
JP4972568B2 (en
Inventor
Yutaka Yoshino
裕 吉野
Takayuki Yoshino
隆之 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMS Co Ltd
Original Assignee
IMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMS Co Ltd filed Critical IMS Co Ltd
Priority to JP2008009247A priority Critical patent/JP4972568B2/en
Publication of JP2009168724A publication Critical patent/JP2009168724A/en
Application granted granted Critical
Publication of JP4972568B2 publication Critical patent/JP4972568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for precisely measuring a magnetic field in three-axis directions. <P>SOLUTION: A three-axis sensor 14 having, mounted thereon, a detection sensor 12 capable of independently measuring a magnetic field in the three-axis directions orthogonal with each other, is moved straight along a reference line 24 connecting a pair of reference points 22. A first fixing point 30 and a second fixing point 32 are set on a cross straight line 25 with the reference line 24 therebetween, the cross straight line 25 being orthogonal to the reference line 24. The magnetic field generated by magnet pieces 28 supported on the fixing points 30, 32 is measured. Zero cross points 44 of magnetic field measurement values in the direction of the reference line 24 are compared with each other. When they are not coincident with each other, a correction coefficient 46 for correcting the magnetic field measurement values of the three-axis sensor 14 in the direction of the reference line 24 and the direction of the cross straight line 25 is selected. The correction coefficient 46 in which the zero cross points 44 are coincident with each other is set as the correction coefficient 46 for obtaining the magnetic field measurement values in the direction of the reference line 24 and the direction of the cross straight line 25. This device includes a correction coefficient computing means that performs the above processes for setting the correction coefficient 46. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高精度に3軸方向の磁界を測定するために使用される、磁界測定装置と磁界測定値の補正方法に関する。   The present invention relates to a magnetic field measuring apparatus and a method for correcting a magnetic field measurement value used for measuring a magnetic field in three axial directions with high accuracy.

例えば、永久磁石が設計どおりのバタンに着磁されているかどうかを確認するために、磁気センサが使用される。この磁気センサをプローブ先端に取り付けて、測定対象物近傍の磁界を精密に測定するための装置が開発されている(特許文献1参照)。
特開2005−189200号公報
For example, a magnetic sensor is used to check whether a permanent magnet is magnetized to a stencil as designed. An apparatus for accurately measuring a magnetic field in the vicinity of a measurement object by attaching this magnetic sensor to the probe tip has been developed (see Patent Document 1).
JP 2005-189200 A

既知の従来の技術には、次のような解決すべき課題があった。
例えば、3軸方式の磁気センサは一辺が50ミクロン程度の素子で、数ミリメートル幅の棒状の基板先端付近に搭載されている。この棒状の基板に磁気検出出力取り出し用の電極を取り付け、保護用の樹脂を被覆したものが磁気測定用プローブである。磁界測定機構中でこのプローブの先端を移動させて、測定対象物の近傍磁界を3次元的に測定する。
The known prior art has the following problems to be solved.
For example, a three-axis magnetic sensor is an element having a side of about 50 microns and is mounted near the tip of a rod-shaped substrate having a width of several millimeters. A magnetic measurement probe is formed by attaching an electrode for taking out magnetic detection output to this rod-shaped substrate and coating a protective resin. The tip of the probe is moved in the magnetic field measuring mechanism to measure the near magnetic field of the measurement object three-dimensionally.

しかしながら、磁界測定機構中で設定された3軸に対して、磁気センサの検出素子の想定する測定系の3軸とが一致しないと、測定値に誤差が生じる。プローブの支持機構やプローブ先端への磁気センサの位置決め精度を高めるのには限界がある。
上記の課題を解決するために、本発明は、3軸方向の磁界を精密に測定することができる磁気測定装置と磁気測定方法を提供することを目的とする。
However, if the three axes set in the magnetic field measurement mechanism do not match the three axes of the measurement system assumed by the detection element of the magnetic sensor, an error occurs in the measurement value. There is a limit to increasing the positioning accuracy of the magnetic sensor to the probe support mechanism and the probe tip.
In order to solve the above-described problems, an object of the present invention is to provide a magnetic measurement apparatus and a magnetic measurement method that can accurately measure a magnetic field in three axial directions.

以下の構成はそれぞれ上記の課題を解決するための手段である。
〈構成1〉
互いに直交する3軸方向の磁界を個別に測定できる検出素子を搭載した3軸センサと、この3軸センサを支持するアームを、磁界測定機構中で設定された互いに直交する3軸方向に自在に移動させるアクチュエータと、上記磁界測定機構中で設定された3軸のうちのいずれかの軸上に一対の基準点を設定し、上記アクチュエータを駆動して、上記一対の基準点間を結ぶ基準線に沿って上記3軸センサを直線的に移動させるセンサ駆動手段と、上記基準線と直交する交差直線上に、上記基準線を間に挟んで第1固定点と第2固定点とを設定し、上記第1固定点と第2固定点に、同一の磁石片を、互いに鏡像の関係になるように向けて支持する構成の第1固定手段と第2固定手段と、上記第1固定点に上記磁石片を支持した状態で、上記基準線上を一方から他方に向かって上記3軸センサを移動させたとき、上記基準線の方向と上記交差直線の方向の磁界を測定した結果を第1の測定結果として記憶装置に記憶させ、上記第2固定点に上記磁石片を支持した状態で、上記基準線上を一方から他方に向かって上記3軸センサを移動させたとき、上記基準線の方向と上記交差直線の方向の磁界を測定した結果を第2の測定結果として記憶装置に記憶させる測定結果記憶手段と、上記第1の測定結果と第2の測定結果のうち、上記基準線の方向の磁界測定値のゼロクロス点を比較し、両者が一致しないときは、上記3軸センサの上記基準線の方向と上記交差直線の方向の磁界測定値を補正する補正係数を選択して、両者が一致する補正係数を、上記基準線の方向と上記交差直線の方向の磁界測定値を求めるための補正係数に設定する補正係数演算手段とを備えたことを特徴とする磁界測定装置。
The following configurations are means for solving the above-described problems.
<Configuration 1>
A triaxial sensor equipped with a detection element capable of individually measuring magnetic fields in three axial directions orthogonal to each other and an arm supporting the three axial sensors can be freely set in three orthogonal directions set in the magnetic field measuring mechanism. A reference line that connects the pair of reference points by setting a pair of reference points on any one of the three axes set in the magnetic field measuring mechanism and the actuator to be moved The first fixed point and the second fixed point are set on a crossing straight line perpendicular to the reference line and the sensor driving means for linearly moving the three-axis sensor along the reference line. The first fixed point and the second fixed point are configured to support the same magnet piece so as to be in a mirror image relationship with each other, and the first fixed point and the first fixed point. With the magnet piece supported, on the reference line When the three-axis sensor is moved from one side to the other side, the result of measuring the magnetic field in the direction of the reference line and the direction of the crossing straight line is stored in the storage device as a first measurement result, and the second fixed The result of measuring the magnetic field in the direction of the reference line and the direction of the intersecting straight line when the three-axis sensor is moved from one to the other on the reference line while the magnet piece is supported at a point. The measurement result storage means for storing in the storage device as the measurement result of No. 2, and the zero cross point of the magnetic field measurement value in the direction of the reference line is compared between the first measurement result and the second measurement result. If not, select a correction coefficient that corrects the magnetic field measurement value in the direction of the reference line and the direction of the intersecting straight line of the three-axis sensor, and set the correction coefficient that matches both to the direction of the reference line and the intersection. Magnetic field measurement in the direction of a straight line Magnetic field measuring apparatus is characterized in that a correction coefficient calculating means for setting a correction coefficient for determining the value.

互いに直交する3軸方向の磁界を個別に測定できる検出素子を、磁界測定機構中に配置して、磁界測定機構中で設定された3軸方向の磁界を測定する。このとき、磁界測定機構中で設定された3軸に対して、3軸センサの検出素子の想定する測定系の3軸とが一致しないと、測定値に誤差が生じる。同一の磁石を基準線の両側に互いに鏡像の関係になるように支持したときに測定した磁界測定値を比較して、その補正係数を求めることができる。これにより、高精度の3次元磁界測定が可能になる。   Detection elements capable of individually measuring magnetic fields in three axial directions orthogonal to each other are arranged in the magnetic field measuring mechanism, and the magnetic fields in the three axial directions set in the magnetic field measuring mechanism are measured. At this time, if the three axes set in the magnetic field measurement mechanism do not match the three axes of the measurement system assumed by the detection element of the three-axis sensor, an error occurs in the measurement value. The correction coefficient can be obtained by comparing magnetic field measurement values measured when the same magnet is supported on both sides of the reference line so as to have a mirror image relationship with each other. Thereby, highly accurate three-dimensional magnetic field measurement becomes possible.

〈構成2〉
構成1に記載の磁界測定装置において、上記第1固定手段と第2固定手段とは、上記磁石片を支持する1個の支持台からなり、この支持台を上記第1固定点から上記第2固定点に移動する機構を備えたことを特徴とする磁界測定装置。
<Configuration 2>
In the magnetic field measurement apparatus according to Configuration 1, the first fixing means and the second fixing means include a single support base that supports the magnet piece, and the support base from the first fixing point to the second fixing base. A magnetic field measuring apparatus comprising a mechanism for moving to a fixed point.

位置精度調整済みの移動機構を用いれば、第1固定点と第2固定点の位置決めをスピーディーに正確に行える。   If the moving mechanism whose position accuracy has been adjusted is used, the first fixed point and the second fixed point can be positioned quickly and accurately.

〈構成3〉
構成2に記載の磁界測定装置において、上記第1固定手段と第2固定手段とは、上記磁石片を支持する1個の支持台からなり、この支持台は、上記基準線と上記交差直線の交点上に、上記基準線と上記交差直線を含む面に対して垂直な回転軸を持つ回転テーブル上に配置されていることを特徴とする磁界測定装置。
<Configuration 3>
In the magnetic field measurement apparatus according to Configuration 2, the first fixing unit and the second fixing unit include a single support base that supports the magnet piece, and the support base is formed between the reference line and the intersecting straight line. A magnetic field measuring apparatus arranged on a turntable having a rotation axis perpendicular to a plane including the reference line and the intersecting straight line on an intersection.

第1の測定結果を得た後、回転テーブルを180度回転させて、正確に第2の測定結果を得ることができる。   After obtaining the first measurement result, the second measurement result can be obtained accurately by rotating the rotary table 180 degrees.

〈構成4〉
構成2または3に記載の磁界測定装置において、上記支持台上で、上記磁石片を上記鏡像の関係になるように支持状態を切り替える切り替え機構を備えたことを特徴とする磁界測定装置。
<Configuration 4>
4. The magnetic field measurement apparatus according to Configuration 2 or 3, further comprising a switching mechanism that switches a support state of the magnet pieces so as to have a mirror image relationship on the support base.

磁石片の向きを簡単に切り替えて磁石片を鏡像の関係になるように位置決めできる。   The magnet pieces can be positioned so as to have a mirror image relationship by simply switching the direction of the magnet pieces.

〈構成5〉
構成1乃至3のいずれかに記載の磁界測定装置において、上記磁石片は、上記基準線に並行で、上記基準線と上記交差直線を含む面に垂直な側面を持つ支持板に固定されていることを特徴とする磁界測定装置。
<Configuration 5>
In the magnetic field measurement apparatus according to any one of Configurations 1 to 3, the magnet piece is fixed to a support plate having a side surface parallel to the reference line and perpendicular to a plane including the reference line and the intersecting straight line. Magnetic field measuring apparatus characterized by the above.

基準線や交差直線に対して支持板の側面の向きを調整すると、磁石片を目的とする状態に正確に支持できる。   When the orientation of the side surface of the support plate is adjusted with respect to the reference line or the intersecting straight line, the magnet piece can be accurately supported in the intended state.

〈構成6〉
互いに直交する3軸方向の磁界を個別に測定できる検出素子を搭載した3軸センサと、この3軸センサを支持するアームを、磁界測定機構中で設定された互いに直交する3軸方向に自在に移動させるアクチュエータと、上記磁界測定機構中で設定された3軸のうちのいずれかの軸上に一対の基準点を設定し、上記アクチュエータを駆動して、上記一対の基準点間を結ぶ基準線に沿って上記3軸センサを直線的に移動させるセンサ駆動手段とを設け、上記基準線と直交する交差直線上に、上記基準線を間に挟んで第1固定点と第2固定点とを設定し、上記第1固定点に上記磁石片を支持した状態で、上記基準線上を一方から他方に向かって上記3軸センサを移動させたとき、上記基準線の方向と上記交差直線の方向の磁界を測定した結果を第1の測定結果として記憶装置に記憶させ、上記第2固定点に、同一の磁石片を、上記第1固定点に支持されたときと互いに鏡像の関係になるように向けて支持し、上記第2固定点に上記磁石片を支持した状態で、上記基準線上を一方から他方に向かって上記3軸センサを移動させたとき、上記基準線の方向と上記交差直線の方向の磁界を測定した結果を第2の測定結果として記憶装置に記憶させる測定結果記憶手段と、上記第1の測定結果と第2の測定結果のうち、上記基準線の方向の磁界測定値のゼロクロス点を比較し、両者が一致しないときは、上記3軸センサの上記基準線の方向と上記交差直線の方向の磁界測定値を補正する補正係数を選択して、両者が一致する補正係数を、上記基準線の方向と上記交差直線の方向の磁界測定値を求めるための補正係数に設定することを特徴とする磁界測定装置の補正方法。
<Configuration 6>
A triaxial sensor equipped with a detection element capable of individually measuring magnetic fields in three axial directions orthogonal to each other and an arm supporting the three axial sensors can be freely set in three orthogonal directions set in the magnetic field measuring mechanism. A reference line that connects the pair of reference points by setting a pair of reference points on any one of the three axes set in the magnetic field measuring mechanism and the actuator to be moved Sensor driving means for linearly moving the three-axis sensor along the line, and on the intersecting straight line orthogonal to the reference line, the first fixed point and the second fixed point with the reference line interposed therebetween When the three-axis sensor is moved from one side to the other on the reference line with the magnet piece supported at the first fixed point, the direction of the reference line and the direction of the intersecting straight line The result of measuring the magnetic field is the first The measurement result is stored in the storage device, and the same magnet piece is supported at the second fixed point so that it is in a mirror image relationship with the second fixed point. The result of measuring the magnetic field in the direction of the reference line and the direction of the intersecting straight line when the three-axis sensor is moved from one to the other on the reference line while the magnet piece is supported at a point. The measurement result storage means for storing in the storage device as the measurement result of No. 2, and the zero cross point of the magnetic field measurement value in the direction of the reference line is compared between the first measurement result and the second measurement result. If not, select a correction coefficient that corrects the magnetic field measurement value in the direction of the reference line and the direction of the intersecting straight line of the three-axis sensor, and set the correction coefficient that matches both to the direction of the reference line and the intersection. Find the magnetic field measurement in the direction of the straight line Correction method for a magnetic field measuring device and sets the correction coefficient for.

3軸センサは、3個の磁気センサをそれぞれ測定系の3軸方向に向けて、プローブの先端に固定したものである。3個の磁気センサは、素子の製造段階で相互に精密に軸合わせ(角度合わせ)されている。一方、この磁気センサを用いて磁界測定をする磁界測定機構は、測定対象物を支持し、移動させたり回転したりする。その磁界測定機構中で設定された3軸も、相互に精密に軸合わせ(角度合わせ)されている。しかし、磁気センサの検出素子の想定する測定系の3軸とは必ずしも一致しない。両者が一致しないと、測定対象物の磁界測定機構のX軸方向の磁界を測定したはずなのに、実際に検出素子の想定する測定系のX軸方向の磁界の測定値を取得してしまう。そこで、測定対象物の磁界測定に先だって、磁石片を使用して補正係数の演算をする。以下、本発明の実施の形態を実施例毎に詳細に説明する。   The three-axis sensor is a sensor in which three magnetic sensors are fixed to the tip of the probe in the three-axis direction of the measurement system. The three magnetic sensors are precisely aligned (angled) with each other in the element manufacturing stage. On the other hand, a magnetic field measurement mechanism that measures a magnetic field using this magnetic sensor supports, moves, or rotates a measurement object. The three axes set in the magnetic field measuring mechanism are also precisely aligned (angle aligned) with each other. However, it does not always coincide with the three axes of the measurement system assumed by the detection element of the magnetic sensor. If they do not match, the measurement value of the magnetic field in the X-axis direction of the measurement system assumed by the detection element is actually acquired even though the magnetic field in the X-axis direction of the magnetic field measurement mechanism of the measurement object should be measured. Therefore, prior to the measurement of the magnetic field of the measurement object, the correction coefficient is calculated using a magnet piece. Hereinafter, embodiments of the present invention will be described in detail for each example.

図1は実施例1の磁界測定装置を示す平面図である。図2はその測定値の性質を示す説明図である。
これらの図を用いて、本発明の装置の動作原理を説明する。3軸センサ14は、磁界測定機構18中を3軸方向に自在に移動できるようにアーム16に支持されている。磁界測定機構18のアクチュエータ20は、アーム16を、磁界測定機構18中で設定された互いに直交する3軸方向に移動させる機構群を備える。この機構群は、従来から、各種工作機械や測定装置に多用されているものであり、詳細な説明を省略する。
FIG. 1 is a plan view showing the magnetic field measuring apparatus according to the first embodiment. FIG. 2 is an explanatory diagram showing the nature of the measured values.
The operation principle of the apparatus of the present invention will be described with reference to these drawings. The triaxial sensor 14 is supported by the arm 16 so as to freely move in the triaxial direction in the magnetic field measuring mechanism 18. The actuator 20 of the magnetic field measurement mechanism 18 includes a mechanism group that moves the arm 16 in three axial directions set in the magnetic field measurement mechanism 18 and orthogonal to each other. This mechanism group has been conventionally used in various machine tools and measuring devices, and detailed description thereof will be omitted.

3軸センサ14は、互いに直交する3軸方向の磁界を個別に測定できる検出素子12を搭載したものである。ここでは、アーム16を磁界測定機構18のX軸方向に移動する例を説明する。この装置には、磁界測定値の補正処理のために、磁石片28が設けられている。磁石片28は、3軸センサ14の側方からY軸方向に向けて磁力線を発生する磁石である。一点鎖線は、磁力線を示す。 The triaxial sensor 14 is equipped with a detection element 12 that can individually measure magnetic fields in three axial directions orthogonal to each other. Here, an example in which the arm 16 is moved in the X-axis direction of the magnetic field measurement mechanism 18 will be described. In this apparatus, a magnet piece 28 is provided for correcting the magnetic field measurement value. The magnet piece 28 is a magnet that generates magnetic lines of force from the side of the triaxial sensor 14 in the Y-axis direction. A dashed-dotted line shows a magnetic force line.

図2は、磁石の発生する磁力線と磁界測定値と3軸センサ14の傾きとの関係を説明する説明図である。
図のように、アーム16をX軸方向に移動させて3軸センサ14により磁石片28の前方の磁界を測定する。Y軸方向の磁界は、3軸センサ14が磁石片28の正面に位置したときに最大値になる。一方、X軸方向の磁界は、図のように、磁石片28の正面でゼロになり、その前後では向きを反転して次第に絶対値が大きくなる。
FIG. 2 is an explanatory diagram for explaining the relationship among the lines of magnetic force generated by the magnet, the magnetic field measurement value, and the inclination of the three-axis sensor 14.
As shown in the figure, the arm 16 is moved in the X-axis direction, and the magnetic field in front of the magnet piece 28 is measured by the triaxial sensor 14. The magnetic field in the Y-axis direction has a maximum value when the triaxial sensor 14 is located in front of the magnet piece 28. On the other hand, as shown in the figure, the magnetic field in the X-axis direction becomes zero in front of the magnet piece 28, and the absolute value gradually increases after reversing the direction before and after that.

ここで、3軸センサ14の測定系のX軸方向がアーム16の移動するX軸方向に対して傾斜していると、X軸方向磁界のゼロクロス点を測定する位置は、若干磁石片28の正面の位置からシフトする。Y軸方向磁界の最大値を測定する位置も、若干磁石片28の正面の位置からシフトする。このとき、3軸センサ14で測定したX軸方向の磁界測定値は、磁界測定機構18のX軸方向の磁界を測定したものでなくなる。即ち、微妙に測定誤差が生じる。   Here, when the X-axis direction of the measurement system of the triaxial sensor 14 is inclined with respect to the X-axis direction in which the arm 16 moves, the position at which the zero-cross point of the magnetic field in the X-axis direction is measured is slightly Shift from the front position. The position where the maximum value of the magnetic field in the Y-axis direction is also slightly shifted from the position in front of the magnet piece 28. At this time, the measured value of the magnetic field in the X-axis direction measured by the triaxial sensor 14 is not a value obtained by measuring the magnetic field in the X-axis direction of the magnetic field measuring mechanism 18. That is, a measurement error slightly occurs.

図3は、上記の測定誤差を補正することができる装置の原理図である。
図に示すように、この装置は、3軸センサ14を支持するアーム16と、磁石片28を支持する回転テーブル56を備える。3軸センサ14を図のX軸方向に移動させて上記の測定を行う。このとき、X軸上に、一対の基準点22を設定する。一対の基準点22間を結ぶ線を基準線24とする。基準線24と直交する線を交差直線25とする。
この交差直線25上に、基準線24を間に挟んで第1固定点30と第2固定点32とを設定する。
FIG. 3 is a principle diagram of an apparatus capable of correcting the above measurement error.
As shown in the figure, the apparatus includes an arm 16 that supports the triaxial sensor 14 and a rotary table 56 that supports the magnet piece 28. The above-mentioned measurement is performed by moving the triaxial sensor 14 in the X-axis direction in the figure. At this time, a pair of reference points 22 is set on the X axis. A line connecting the pair of reference points 22 is defined as a reference line 24. A line orthogonal to the reference line 24 is defined as a crossing straight line 25.
A first fixed point 30 and a second fixed point 32 are set on the intersecting straight line 25 with the reference line 24 interposed therebetween.

磁石片28は、基準線24に並行で、基準線24と交差直線25を含む面に垂直な側面62を持つ支持板60に固定されている。基準線24や交差直線に対して支持板60の側面62の向きを調整すると、磁石片28を目的とする状態に正確に支持できる。   The magnet piece 28 is fixed to a support plate 60 having a side surface 62 parallel to the reference line 24 and perpendicular to the plane including the reference line 24 and the intersecting straight line 25. When the orientation of the side surface 62 of the support plate 60 is adjusted with respect to the reference line 24 or the intersecting straight line, the magnet piece 28 can be accurately supported in the intended state.

第1固定点30と第2固定点32に、磁石片28を支持するように構成された第1固定手段34と第2固定手段36とを設ける。各固定手段は、磁石片28を一定の方向に向けて一定の姿勢で保持する皿やピンやクランプにより構成するとよい。なお、全く同一の特性の磁石片28を一対用意するのは困難である。従って、1個の磁石片28を第1固定手段34を用いて第1固定点30に支持し第1の測定結果を得る。次に、磁石片28を第2固定点32側に移動し、第2固定手段36を用いて支持して第2の測定結果を得る。   A first fixing means 34 and a second fixing means 36 configured to support the magnet piece 28 are provided at the first fixing point 30 and the second fixing point 32. Each fixing means may be composed of a plate, a pin, or a clamp that holds the magnet piece 28 in a fixed posture in a fixed direction. It is difficult to prepare a pair of magnet pieces 28 having exactly the same characteristics. Accordingly, one magnet piece 28 is supported on the first fixing point 30 by using the first fixing means 34 to obtain the first measurement result. Next, the magnet piece 28 is moved to the second fixing point 32 side and supported by the second fixing means 36 to obtain a second measurement result.

このとき、磁石片28が発生する磁力線は、基準線24に対して左右対称であることが好ましい。従って、磁石片28を第1固定手段34で固定したときと第2固定手段36で固定したときとでは、互いに鏡像の関係になるように、磁石片28の位置や向きを選定することが好ましい。第1固定点30と第2固定点32とは、必ずしも、基準線24から等距離にある必要はない。磁石片28が互いに鏡像の関係になるように支持できればよい。   At this time, the lines of magnetic force generated by the magnet pieces 28 are preferably symmetrical with respect to the reference line 24. Accordingly, it is preferable to select the position and orientation of the magnet piece 28 so that the magnet piece 28 is in a mirror image relationship when the magnet piece 28 is fixed by the first fixing means 34 and when the magnet piece 28 is fixed by the second fixing means 36. . The first fixed point 30 and the second fixed point 32 do not necessarily have to be equidistant from the reference line 24. What is necessary is just to be able to support so that the magnet piece 28 may become a mirror image relationship mutually.

センサ駆動手段26は、アクチュエータ20(図)を駆動して、基準線24に沿って3軸センサ14を直線的に移動させる。1回目は、第1固定点30に磁石片28を支持した状態で、基準線24上を一方から他方に向かって3軸センサ14を移動させる。これを元に戻して、第2固定点32に磁石片28を支持した状態で、同じ動作を繰り返す。この動作により、3軸センサ14は、基準線24の方向と交差直線25の方向の磁界を測定した結果を、第1の測定結果38及び第2の測定結果40として測定結果記憶手段42に記憶させることができる。   The sensor driving means 26 drives the actuator 20 (FIG.) To move the triaxial sensor 14 linearly along the reference line 24. The first time, the three-axis sensor 14 is moved from one side to the other on the reference line 24 with the magnet piece 28 supported by the first fixed point 30. This is returned to the original state and the same operation is repeated with the magnet piece 28 supported by the second fixed point 32. By this operation, the triaxial sensor 14 stores the measurement result of the magnetic field in the direction of the reference line 24 and the direction of the intersecting straight line 25 in the measurement result storage unit 42 as the first measurement result 38 and the second measurement result 40. Can be made.

図4は、第1の測定結果と第2の測定結果の比較説明図である。
図のグラフの形式は図2と同様である。図のように、第1の測定結果38と第2の測定結果40とは、極性が反転しているが、ほぼ同レベルの磁界測定値が得られている。基準線24と第1固定点30との間の距離と基準線24と第2固定点32との間の距離が等しくなければ、磁界測定値の絶対値は若干相違するが、Y軸方向磁界の最大値の位置とX軸方向磁界のゼロクロス点44の位置は、一致するはずである。しかしながら、磁界測定機構18中で設定された3軸方向と、3軸センサ14の検出素子の想定する測定系の3軸とが一致しないと、図のようにゼロクロス点44の位置にずれが生じる。
FIG. 4 is a comparative explanatory diagram of the first measurement result and the second measurement result.
The format of the graph in the figure is the same as in FIG. As shown in the figure, the first measurement result 38 and the second measurement result 40 are reversed in polarity, but magnetic field measurement values at substantially the same level are obtained. If the distance between the reference line 24 and the first fixed point 30 and the distance between the reference line 24 and the second fixed point 32 are not equal, the absolute values of the magnetic field measurement values are slightly different, but the Y-axis direction magnetic field is slightly different. And the position of the zero cross point 44 of the magnetic field in the X-axis direction should match. However, if the three-axis direction set in the magnetic field measurement mechanism 18 and the three axes of the measurement system assumed by the detection element of the three-axis sensor 14 do not match, the position of the zero cross point 44 is shifted as shown in the figure. .

ここで、例えば、3軸センサ14の支持角度を調整して、磁界測定機構18中で設定された3軸方向と3軸センサ14の検出素子の想定する測定系の3軸とを一致させることができる。図のゼロクロス点44のX軸方向の位置が一致するように支持角度調整をするとよい。   Here, for example, the support angle of the three-axis sensor 14 is adjusted so that the three-axis direction set in the magnetic field measurement mechanism 18 matches the three axes of the measurement system assumed by the detection element of the three-axis sensor 14. Can do. The support angle may be adjusted so that the positions of the zero cross points 44 in the figure coincide with each other in the X-axis direction.

しかし、この調整には熟練を要し、精度の高い調整機構が必要になる。機械的に角度を調整する方法のほかに、角度の狂いは許容してそのまま測定をし、磁界測定値をその後に数字的に補正すれば、高精度の測定が可能である。   However, this adjustment requires skill and requires a highly accurate adjustment mechanism. In addition to the method of adjusting the angle mechanically, if the angle deviation is allowed and measured as it is, and the magnetic field measurement value is numerically corrected thereafter, high-precision measurement is possible.

図5は、磁界測定値の補正係数の求め方を示す説明図である。
図において、磁界測定機構18中で設定されたX軸とY軸に対して、3軸センサ14の測定系のX軸とY軸を、P、Qと表した。3軸センサ14の測定系は、磁界測定機構18中のX−Y平面上でβだけ傾斜している。
FIG. 5 is an explanatory diagram showing how to obtain the correction coefficient of the magnetic field measurement value.
In the figure, the X axis and Y axis of the measurement system of the triaxial sensor 14 are represented as P and Q with respect to the X axis and Y axis set in the magnetic field measurement mechanism 18. The measurement system of the triaxial sensor 14 is inclined by β on the XY plane in the magnetic field measurement mechanism 18.

このとき、磁界ベクトルAを3軸センサ14で測定すると、そのX軸方向磁界はGx、Y軸方向磁界はGyとなる。ベクトルAは、磁界測定機構18中のX軸に対してαだけ傾いている。このとき、Gx、Gyと、ベクトルAの絶対値と角度α、βの関係は、(b)の式のようになる。真の測定値は、Hx、Hyである。   At this time, when the magnetic field vector A is measured by the three-axis sensor 14, the magnetic field in the X-axis direction is Gx, and the magnetic field in the Y-axis direction is Gy. The vector A is inclined by α with respect to the X axis in the magnetic field measurement mechanism 18. At this time, the relationship between Gx, Gy, the absolute value of the vector A, and the angles α, β is expressed by the equation (b). The true measured values are Hx and Hy.

(b)の関係式から、X軸補正係数は(c)に示すようになる。また、Y軸補正係数は(d)に示すようになる。これにより、基準線24の方向と交差直線25の方向の磁界測定値を求めるための補正係数46が求められる。論理的にはこのとおりであるが、コンピュータが処理する場合には演算処理が比較的複雑になる。そこで、予めこのような角度ずれを想定した補正係数を多数算出して保持しておく。   From the relational expression (b), the X-axis correction coefficient is as shown in (c). The Y-axis correction coefficient is as shown in (d). Thereby, the correction coefficient 46 for obtaining the magnetic field measurement values in the direction of the reference line 24 and the direction of the crossing straight line 25 is obtained. This is logically the same, but when the computer processes, the arithmetic processing becomes relatively complicated. Therefore, a large number of correction coefficients assuming such an angle shift are calculated and held in advance.

βの考えられる最大値が5度とすれば、例えば、0.1度刻みで対応する補正値を準備しても、50個程度である。すべての補正値を当てはめてみて、第1の測定結果38と第2の測定結果40の測定値のゼロクロス点44がX軸方向にみて一致したとき、その補正値を採用するとよい。図3に示した補正係数演算手段48は、こうした演算処理を実行するコンピュータにより構成するとよい。   If the maximum possible value of β is 5 degrees, for example, even if correction values corresponding to 0.1 degrees are prepared, it is about 50. By applying all the correction values, when the zero cross points 44 of the measurement values of the first measurement result 38 and the second measurement result 40 coincide in the X-axis direction, the correction value may be adopted. The correction coefficient calculation means 48 shown in FIG. 3 may be configured by a computer that executes such calculation processing.

なお、図3に示した回転テーブル56は、基準線24と交差直線の交点54上に、基準線24と交差直線を含む面に対して垂直な回転軸を持つものにすることができる。この回転テーブル56は磁界測定の対象物を置いて回転させる等のために使用される。その周辺部に、第1固定手段を設ける。第1固定手段34は皿やクランプ等の支持台50である。回転テーブル56を180度回転させて、回転テーブル56の回転とともに支持台50が移動すると、第1固定点30から第2固定点32に移動させることができる。これにより、位置精度調整済みの移動機構を用いれば、第1固定点30と第2固定点32における磁石片28の位置決めをスピーディーに正確に行える。   Note that the rotary table 56 shown in FIG. 3 can have a rotation axis perpendicular to the plane including the reference line 24 and the crossing straight line on the intersection 54 of the reference line 24 and the crossing straight line. The rotary table 56 is used for rotating a magnetic field measurement object. A first fixing means is provided at the periphery. The first fixing means 34 is a support base 50 such as a plate or a clamp. When the rotary table 56 is rotated 180 degrees and the support base 50 moves along with the rotation of the rotary table 56, it can be moved from the first fixed point 30 to the second fixed point 32. Thereby, if the moving mechanism in which position accuracy is adjusted is used, the positioning of the magnet piece 28 at the first fixed point 30 and the second fixed point 32 can be performed quickly and accurately.

図6は具体的な磁界測定方法のフローチャートである。
磁界測定は、具体的にはこの図に示すように進められる。まず、ステップS11で、磁石を初期状態にセットする。即ち、磁石片28を第1固定点30に支持する。次に、ステップS12で、3軸センサ14を基準点22にセットをする。続いて、ステップS13で、3軸センサ14をX軸に沿って移動する。即ち、基準線24上を移動させる。ステップS14では、X軸とY軸方向の磁界測定をする。
FIG. 6 is a flowchart of a specific magnetic field measuring method.
Specifically, the magnetic field measurement proceeds as shown in this figure. First, in step S11, the magnet is set to an initial state. That is, the magnet piece 28 is supported on the first fixed point 30. Next, the triaxial sensor 14 is set at the reference point 22 in step S12. Subsequently, in step S13, the triaxial sensor 14 is moved along the X axis. That is, it moves on the reference line 24. In step S14, magnetic field measurement in the X-axis and Y-axis directions is performed.

磁界測定が終了すると、第1の測定結果38が取得される。ステップS15では、中央のゼロクロス点44(第1)の検出をする。ステップS16では、磁石片28を180度公転させる。こうして、磁石片28を第2固定点32の位置に支持する。ステップS17では、磁石片28の3軸センサ14に面した面の向きは変えずに、交差直線25を軸にして180度自転させる。これで、磁石片28を鏡像関係にセットできる。ステップS18で、磁石片28を基準点22にセットする。ステップS19で、3軸センサ14をX軸に沿って移動する。ステップS20では、X軸とY軸方向の磁界測定をする。これで、第2の測定結果40が取得できる。ステップS21で、中央のゼロクロス点44(第2)の検出をする。   When the magnetic field measurement is completed, a first measurement result 38 is acquired. In step S15, the center zero cross point 44 (first) is detected. In step S16, the magnet piece 28 is revolved 180 degrees. Thus, the magnet piece 28 is supported at the position of the second fixed point 32. In step S17, the direction of the surface of the magnet piece 28 facing the three-axis sensor 14 is not changed, and the magnet piece 28 is rotated 180 degrees about the intersecting straight line 25 as an axis. Thus, the magnet piece 28 can be set in a mirror image relationship. In step S 18, the magnet piece 28 is set at the reference point 22. In step S19, the triaxial sensor 14 is moved along the X axis. In step S20, magnetic field measurement in the X-axis and Y-axis directions is performed. Thus, the second measurement result 40 can be acquired. In step S21, the center zero cross point 44 (second) is detected.

図7は、補正係数の計算処理動作フローチャートである。
ステップS31では、取得されたゼロクロス点(第1と第2)のX軸上の位置を比較する。ステップS32では、X軸上の位置が一致しているかどうかという判断をする。この判断の結果がイエスのときは補正の必要が無いから処理を終了する。ノーのときはステップS33の処理に移行する。ステップS33では、既に説明した多数の補正係数を保存した補正値テーブルを参照する。ステップS34では、取得した補正係数で第1の測定結果38と第2の測定結果40の測定値を補正する。ステップS35では、ゼロクロス点(第1と第2)の比較をする。ステップS36では、X軸上の位置が一致しているかどうかという判断をする。この判断の結果がイエスのときはステップS37の処理に移行し、使用した補正値を、実際の測定時に使用する補正係数としてセットする。ノーのときはステップS33の処理に戻り、ステップS33からステップS36の処理で、補正係数の探索を繰り返す。
FIG. 7 is a flowchart of the correction coefficient calculation processing operation.
In step S31, the acquired zero cross points (first and second) on the X axis are compared. In step S32, it is determined whether or not the positions on the X axis match. If the result of this determination is yes, there is no need for correction, and the process is terminated. If no, the process proceeds to step S33. In step S33, the correction value table storing a number of correction coefficients already described is referred to. In step S34, the measurement values of the first measurement result 38 and the second measurement result 40 are corrected with the acquired correction coefficient. In step S35, the zero cross points (first and second) are compared. In step S36, it is determined whether or not the positions on the X axis match. When the result of this determination is yes, the process proceeds to step S37, and the correction value used is set as a correction coefficient used during actual measurement. If no, the process returns to step S33, and the correction coefficient search is repeated in steps S33 to S36.

図6と図7のステップS37までの処理で、3軸センサをX軸方向に移動させて、X−Y平面上の3軸センサのZ軸方向から見たときの角度ずれ補正係数を取得した。全く同様の要領で、3軸センサをY軸方向に移動させて、Y−Z平面上の3軸センサのX軸方向から見たときの角度ずれ補正係数を取得する(図7ステップS38)。さらに、3軸センサをZ軸方向に移動させて、Z−X平面上の3軸センサのY軸方向から見たときの角度ずれ補正係数を取得する(図7ステップS39)。なお、Z軸方向から見たときの角度ずれは、Y軸上に磁石片を配置してセンサをX軸方向に移動する。X軸方向から見たときの角度ずれは、Y軸上に磁石片を配置してセンサをZ軸方向に移動する。Y軸方向から見たときの角度ずれは、X軸上に磁石片を配置してセンサをZ軸方向に移動するとよい。この方法によれば、マグネットをX−Y平面上にだけ配置して補正係数の取得ができる。従って、Z軸上にマグネットを配置するための特別の機構は不用になり、特許文献1に記載されたような既知の構成の装置をそのまま使用できる。以上のようにして、Z軸方向、X軸方向、Y軸方向からみたときの角度ずれ補正係数を取得して装置にセットする。   6 and 7, the three-axis sensor is moved in the X-axis direction, and the angle deviation correction coefficient when viewed from the Z-axis direction of the three-axis sensor on the XY plane is acquired. . In exactly the same manner, the 3-axis sensor is moved in the Y-axis direction, and an angle deviation correction coefficient when viewed from the X-axis direction of the 3-axis sensor on the YZ plane is acquired (step S38 in FIG. 7). Further, the three-axis sensor is moved in the Z-axis direction to obtain an angle deviation correction coefficient when viewed from the Y-axis direction of the three-axis sensor on the ZX plane (step S39 in FIG. 7). Note that the angle shift when viewed from the Z-axis direction moves the sensor in the X-axis direction by disposing a magnet piece on the Y-axis. The angle deviation when viewed from the X-axis direction is such that a magnet piece is arranged on the Y-axis and the sensor is moved in the Z-axis direction. As for the angular deviation when viewed from the Y-axis direction, it is preferable to dispose a magnet piece on the X-axis and move the sensor in the Z-axis direction. According to this method, the correction coefficient can be acquired by arranging the magnet only on the XY plane. Therefore, a special mechanism for disposing the magnet on the Z axis is unnecessary, and a device having a known configuration as described in Patent Document 1 can be used as it is. As described above, the angle deviation correction coefficient when viewed from the Z-axis direction, the X-axis direction, and the Y-axis direction is acquired and set in the apparatus.

以上の演算処理で得られた補正係数を使用すると、実際の測定対象物を回転テーブル56等の上に固定して、アクチュエータ20を使用して、3軸センサ14を移動させながら、得た磁界測定値を補正して、精密な3次元磁界を測定することができる。   When the correction coefficient obtained by the above arithmetic processing is used, the magnetic field obtained while moving the three-axis sensor 14 using the actuator 20 while fixing the actual measurement object on the rotary table 56 or the like. A precise three-dimensional magnetic field can be measured by correcting the measured value.

実施例1の磁界測定装置を示す平面図である。図2はその測定値の性質を示す説明図である。1 is a plan view showing a magnetic field measuring apparatus according to Embodiment 1. FIG. FIG. 2 is an explanatory diagram showing the nature of the measured values. 磁石の発生する磁力線と磁界測定値と3軸センサ14の傾きとの関係を説明する説明図である。It is explanatory drawing explaining the relationship between the magnetic force line which a magnet generate | occur | produces, a magnetic field measured value, and the inclination of the triaxial sensor. 上記の測定誤差を補正することができる装置の原理図である。It is a principle figure of the apparatus which can correct | amend said measurement error. 第1の測定結果と第2の測定結果の比較説明図である。It is comparison explanatory drawing of a 1st measurement result and a 2nd measurement result. 磁界測定値の補正係数の求め方を示す説明図である。It is explanatory drawing which shows how to obtain | require the correction coefficient of a magnetic field measurement value. 具体的な磁界測定方法のフローチャートである。It is a flowchart of a specific magnetic field measurement method. 補正係数の計算処理動作フローチャートである。It is a correction coefficient calculation processing operation flowchart.

符号の説明Explanation of symbols

10 磁界測定装置
12 検出素子
14 3軸センサ
16 アーム
18 磁界測定機構
20 アクチュエータ
22 基準点
24 基準線
25 交差直線
26 センサ駆動手段
28 磁石片
30 第1固定点
32 第2固定点
34 第1固定手段
36 第2固定手段
38 第1の測定結果
40 第2の測定結果
42 測定結果記憶手段
44 ゼロクロス点
46 補正係数
48 補正係数演算手段
50 支持台
52 センサ移動機構
54 交点
56 回転テーブル
58 切り替え機構
60 支持板
62 側面
DESCRIPTION OF SYMBOLS 10 Magnetic field measuring device 12 Detection element 14 3-axis sensor 16 Arm 18 Magnetic field measurement mechanism 20 Actuator 22 Reference point 24 Reference line 25 Crossing straight line 26 Sensor drive means 28 Magnet piece 30 1st fixing point 32 2nd fixing point 34 1st fixing means 36 Second fixing means 38 First measurement result 40 Second measurement result 42 Measurement result storage means 44 Zero cross point 46 Correction coefficient 48 Correction coefficient calculation means 50 Support base 52 Sensor moving mechanism 54 Intersection 56 Rotary table 58 Switching mechanism 60 Support Plate 62 side

Claims (6)

互いに直交する3軸方向の磁界を個別に測定できる検出素子を搭載した3軸センサと、
この3軸センサを支持するアームを、磁界測定機構中で設定された互いに直交する3軸方向に自在に移動させるアクチュエータと、
前記磁界測定機構中で設定された3軸のうちのいずれかの軸上に一対の基準点を設定し、前記アクチュエータを駆動して、前記一対の基準点間を結ぶ基準線に沿って前記3軸センサを直線的に移動させるセンサ駆動手段と、
前記基準線と直交する交差直線上に、前記基準線を間に挟んで第1固定点と第2固定点とを設定し、前記第1固定点と第2固定点に、同一の磁石片を、互いに鏡像の関係になるように向けて支持する構成の第1固定手段と第2固定手段と、
前記第1固定点に前記磁石片を支持した状態で、前記基準線上を一方から他方に向かって前記3軸センサを移動させたとき、前記基準線の方向と前記交差直線の方向の磁界を測定した結果を第1の測定結果として記憶装置に記憶させ、前記第2固定点に前記磁石片を支持した状態で、前記基準線上を一方から他方に向かって前記3軸センサを移動させたとき、前記基準線の方向と前記交差直線の方向の磁界を測定した結果を第2の測定結果として記憶装置に記憶させる測定結果記憶手段と、
前記第1の測定結果と第2の測定結果のうち、前記基準線の方向の磁界測定値のゼロクロス点を比較し、両者が一致しないときは、前記3軸センサの前記基準線の方向と前記交差直線の方向の磁界測定値を補正する補正係数を選択して、両者が一致する補正係数を、前記基準線の方向と前記交差直線の方向の磁界測定値を求めるための補正係数に設定する補正係数演算手段とを備えたことを特徴とする磁界測定装置。
A triaxial sensor equipped with a detecting element capable of individually measuring magnetic fields in three axial directions orthogonal to each other;
An actuator that freely moves an arm that supports the three-axis sensor in three orthogonal directions set in the magnetic field measurement mechanism;
A pair of reference points is set on any one of the three axes set in the magnetic field measurement mechanism, the actuator is driven, and the 3 points along the reference line connecting the pair of reference points. Sensor driving means for linearly moving the axis sensor;
A first fixed point and a second fixed point are set on an intersecting straight line orthogonal to the reference line with the reference line interposed therebetween, and the same magnet piece is placed at the first fixed point and the second fixed point. A first fixing means and a second fixing means configured to support the mirror images in a mirror image relationship with each other;
Measuring the magnetic field in the direction of the reference line and the direction of the crossing line when the three-axis sensor is moved from one to the other on the reference line with the magnet piece supported at the first fixed point. When the triaxial sensor is moved from one side to the other on the reference line in a state where the result is stored in the storage device as the first measurement result, and the magnet piece is supported on the second fixed point, Measurement result storage means for storing a result of measuring the magnetic field in the direction of the reference line and the direction of the intersecting straight line in a storage device as a second measurement result;
Of the first measurement result and the second measurement result, the zero cross point of the magnetic field measurement value in the direction of the reference line is compared, and when both do not match, the direction of the reference line of the triaxial sensor and the A correction coefficient for correcting the magnetic field measurement value in the direction of the intersecting straight line is selected, and a correction coefficient matching the two is set as a correction coefficient for obtaining the magnetic field measurement value in the direction of the reference line and the direction of the intersecting straight line. A magnetic field measuring apparatus comprising a correction coefficient calculating means.
請求項1に記載の磁界測定装置において、
前記第1固定手段と第2固定手段とは、前記磁石片を支持する1個の支持台からなり、この支持台を前記第1固定点から前記第2固定点に移動する機構を備えたことを特徴とする磁界測定装置。
The magnetic field measurement apparatus according to claim 1,
The first fixing means and the second fixing means comprise one support base that supports the magnet piece, and a mechanism for moving the support base from the first fixing point to the second fixing point is provided. Magnetic field measuring apparatus characterized by the above.
請求項2に記載の磁界測定装置において、
前記第1固定手段と第2固定手段とは、前記磁石片を支持する1個の支持台からなり、この支持台は、前記基準線と前記交差直線の交点上に、前記基準線と前記交差直線を含む面に対して垂直な回転軸を持つ回転テーブル上に配置されていることを特徴とする磁界測定装置。
The magnetic field measurement apparatus according to claim 2,
The first fixing means and the second fixing means comprise a single support base for supporting the magnet piece, and the support base is located at the intersection of the reference line and the intersecting straight line and intersects the reference line. A magnetic field measuring apparatus arranged on a rotary table having a rotation axis perpendicular to a plane including a straight line.
請求項2または3に記載の磁界測定装置において、
前記支持台上で、前記磁石片を前記鏡像の関係になるように支持状態を切り替える切り替え機構を備えたことを特徴とする磁界測定装置。
The magnetic field measurement apparatus according to claim 2 or 3,
A magnetic field measuring apparatus comprising a switching mechanism for switching a support state of the magnet pieces so as to have a mirror image relationship on the support base.
請求項1乃至3のいずれかに記載の磁界測定装置において、
前記磁石片は、前記基準線に並行で、前記基準線と前記交差直線を含む面に垂直な側面を持つ支持板に固定されていることを特徴とする磁界測定装置。
In the magnetic field measuring apparatus according to any one of claims 1 to 3,
The magnetic piece is fixed to a support plate having a side surface parallel to the reference line and perpendicular to a plane including the reference line and the intersecting straight line.
互いに直交する3軸方向の磁界を個別に測定できる検出素子を搭載した3軸センサと、
この3軸センサを支持するアームを、磁界測定機構中で設定された互いに直交する3軸方向に自在に移動させるアクチュエータと、前記磁界測定機構中で設定された3軸のうちのいずれかの軸上に一対の基準点を設定し、前記アクチュエータを駆動して、前記一対の基準点間を結ぶ基準線に沿って前記3軸センサを直線的に移動させるセンサ駆動手段とを設け、
前記基準線と直交する交差直線上に、前記基準線を間に挟んで第1固定点と第2固定点とを設定し、
前記第1固定点に前記磁石片を支持した状態で、前記基準線上を一方から他方に向かって前記3軸センサを移動させたとき、前記基準線の方向と前記交差直線の方向の磁界を測定した結果を第1の測定結果として記憶装置に記憶させ、
前記第2固定点に、同一の磁石片を、前記第1固定点に支持されたときと互いに鏡像の関係になるように向けて支持し、
前記第2固定点に前記磁石片を支持した状態で、前記基準線上を一方から他方に向かって前記3軸センサを移動させたとき、前記基準線の方向と前記交差直線の方向の磁界を測定した結果を第2の測定結果として記憶装置に記憶させる測定結果記憶手段と、
前記第1の測定結果と第2の測定結果のうち、前記基準線の方向の磁界測定値のゼロクロス点を比較し、両者が一致しないときは、前記3軸センサの前記基準線の方向と前記交差直線の方向の磁界測定値を補正する補正係数を選択して、両者が一致する補正係数を、前記基準線の方向と前記交差直線の方向の磁界測定値を求めるための補正係数に設定することを特徴とする磁界測定装置の補正方法。
A triaxial sensor equipped with a detecting element capable of individually measuring magnetic fields in three axial directions orthogonal to each other;
An actuator that freely moves the arm that supports the three-axis sensor in the three-axis directions orthogonal to each other set in the magnetic field measurement mechanism, and any one of the three axes set in the magnetic field measurement mechanism A sensor driving means for setting a pair of reference points on the upper surface, driving the actuator, and linearly moving the three-axis sensor along a reference line connecting the pair of reference points;
On the intersecting straight line orthogonal to the reference line, a first fixed point and a second fixed point are set with the reference line in between,
Measuring the magnetic field in the direction of the reference line and the direction of the crossing line when the three-axis sensor is moved from one to the other on the reference line with the magnet piece supported at the first fixed point. And store the result as a first measurement result in the storage device,
The same magnet piece is supported on the second fixed point so as to be in a mirror image relationship with that when supported on the first fixed point,
Measuring the magnetic field in the direction of the reference line and the direction of the crossing line when the three-axis sensor is moved from one to the other on the reference line with the magnet piece supported at the second fixed point. Measurement result storage means for storing the result obtained in the storage device as a second measurement result;
Of the first measurement result and the second measurement result, the zero cross point of the magnetic field measurement value in the direction of the reference line is compared, and when both do not match, the direction of the reference line of the triaxial sensor and the A correction coefficient for correcting the magnetic field measurement value in the direction of the intersecting straight line is selected, and a correction coefficient matching the two is set as a correction coefficient for obtaining the magnetic field measurement value in the direction of the reference line and the direction of the intersecting straight line. A correction method for a magnetic field measuring apparatus.
JP2008009247A 2008-01-18 2008-01-18 Magnetic field measuring apparatus and magnetic field measurement value correction method Active JP4972568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008009247A JP4972568B2 (en) 2008-01-18 2008-01-18 Magnetic field measuring apparatus and magnetic field measurement value correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009247A JP4972568B2 (en) 2008-01-18 2008-01-18 Magnetic field measuring apparatus and magnetic field measurement value correction method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012085289A Division JP5603900B2 (en) 2012-04-04 2012-04-04 Magnetic field measuring device

Publications (2)

Publication Number Publication Date
JP2009168724A true JP2009168724A (en) 2009-07-30
JP4972568B2 JP4972568B2 (en) 2012-07-11

Family

ID=40970048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009247A Active JP4972568B2 (en) 2008-01-18 2008-01-18 Magnetic field measuring apparatus and magnetic field measurement value correction method

Country Status (1)

Country Link
JP (1) JP4972568B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149942A (en) * 2011-01-18 2012-08-09 Ims:Kk Magnetic field measurement adjusting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243723A (en) * 1996-03-13 1997-09-19 Hitachi Ltd Sensor mounting correcting device for magnetic measuring device
JP2005049116A (en) * 2003-07-29 2005-02-24 Tokyo Gas Co Ltd Hall effect measuring instrument
JP2005189200A (en) * 2003-12-26 2005-07-14 Ims:Kk Magnetic vector measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243723A (en) * 1996-03-13 1997-09-19 Hitachi Ltd Sensor mounting correcting device for magnetic measuring device
JP2005049116A (en) * 2003-07-29 2005-02-24 Tokyo Gas Co Ltd Hall effect measuring instrument
JP2005189200A (en) * 2003-12-26 2005-07-14 Ims:Kk Magnetic vector measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149942A (en) * 2011-01-18 2012-08-09 Ims:Kk Magnetic field measurement adjusting device

Also Published As

Publication number Publication date
JP4972568B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
CN109813336B (en) Calibration method for inertia measurement unit
US20140350881A1 (en) Angle measuring device and methods for calibration
JP2008286723A (en) Magnetic measurement device and technique
CN109459585B (en) Accelerometer zero offset correction method
JP5571007B2 (en) Sphere shape measuring device
JP2004257927A (en) Three-dimensional profile measuring system and method for measuring the same
JP5297906B2 (en) Image probe calibration method and shape measuring machine
JP2006030200A (en) Freely orientational probe
JP2020020670A (en) Circularity measurement device, measurement guide system and method
JP2003057026A (en) Alignment adjusting apparatus for probe, measuring machine equipped therewith and alignment adjusting method for probe
JP5688842B2 (en) Magnetic field measurement adjustment device
JP2000266534A (en) Surface profile measuring apparatus, inclination adjuster therefor and method for adjusting attitude of object
JP4972568B2 (en) Magnetic field measuring apparatus and magnetic field measurement value correction method
JP5603900B2 (en) Magnetic field measuring device
JP2012163366A (en) Circularity measuring apparatus and center shift amount correction method therefor
TWI504475B (en) Compensation controlling method for a multi-axes machine
JP2021139711A (en) Measuring method and measuring apparatus
JPH1011146A (en) Device for correcting stop posture of mobile object
JP2006125893A (en) Measuring jig
US10578424B2 (en) Rotating/pivoting sensor system for a coordinate measuring apparatus
JP2013145193A (en) Magnetic field measuring instrument and method for positioning three-axis magnetic field sensor thereof
JP5310336B2 (en) measuring device
JP2003097943A (en) Method and device for measuring straightness of mobile stage, and three-dimensional shape measuring machine using them
JP2012233842A (en) Method and program for evaluating characteristic of acceleration sensor
JP2004082228A (en) Controller of robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4972568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250