JP2009168644A - Magnetic balance type current sensor - Google Patents

Magnetic balance type current sensor Download PDF

Info

Publication number
JP2009168644A
JP2009168644A JP2008007614A JP2008007614A JP2009168644A JP 2009168644 A JP2009168644 A JP 2009168644A JP 2008007614 A JP2008007614 A JP 2008007614A JP 2008007614 A JP2008007614 A JP 2008007614A JP 2009168644 A JP2009168644 A JP 2009168644A
Authority
JP
Japan
Prior art keywords
current
sensor
coil
magnetic
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008007614A
Other languages
Japanese (ja)
Other versions
JP4771094B2 (en
Inventor
Takashi Urano
高志 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008007614A priority Critical patent/JP4771094B2/en
Publication of JP2009168644A publication Critical patent/JP2009168644A/en
Application granted granted Critical
Publication of JP4771094B2 publication Critical patent/JP4771094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic balance type current sensor for preventing degradation of current detection accuracy, when a coil or a resistor is connected to a power supply terminal or a ground terminal. <P>SOLUTION: This magnetic balance type current sensor 100 comprises a sensor body section 20, a coil L<SB>1</SB>, a resistor R<SB>L2</SB>, and a capacitor C. The coil L<SB>1</SB>is disposed in a path for connecting the power supply terminal 12 to a sensor body section 20, the resistor R<SB>L2</SB>is disposed on a route for connecting the ground terminal 14 to the sensor body section 20, and the resistor R<SB>L2</SB>has the same direct current resistance as the direct current resistance component (resistance R<SB>L1</SB>) of the coil L<SB>1</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えばハイブリットカーや電気自動車のバッテリー電流やモータ駆動電流、工作機械のモータに流れる大電流を測定する、単電源駆動で電圧出力タイプの磁気平衡式電流センサに関する。   The present invention relates to a single-power-supply voltage output type magnetic balance type current sensor that measures, for example, battery current and motor drive current of a hybrid car and an electric vehicle, and a large current flowing through a motor of a machine tool.

磁気平衡式電流センサは、図8に例示のように、ギャップGを有するリング状の磁気コア2(高透磁率で残留磁気が少ないパーマロイコア等)と、ギャップGに配置されたホール素子3(磁気検出素子の例示)と、磁気コア2に巻線を設けてなる負帰還用コイルLFBとを有する。磁気コア2は、被測定電流Iinの流れるバスバー1が貫通する配置である。したがって、被測定電流IinによってギャップG内に第1の磁界が発生し、これがホール素子3の感磁面に印加される。一方で、ホール素子3の感磁面に印加される前記第1の磁界を相殺する(ゼロにする)第2の磁界を発生するように負帰還用コイルLFBに電流が供給される。この供給した電流から被測定電流Iinが求められる。 As illustrated in FIG. 8, the magnetic balance type current sensor includes a ring-shaped magnetic core 2 having a gap G (such as a permalloy core having a high magnetic permeability and a small residual magnetism), and a Hall element 3 ( An example of a magnetic detection element) and a negative feedback coil LFB in which a winding is provided on the magnetic core 2. The magnetic core 2 is arranged so that the bus bar 1 through which the measured current I in flows. Therefore, a first magnetic field is generated in the gap G by the current I in to be measured, and this is applied to the magnetic sensitive surface of the Hall element 3. On the other hand, a current is supplied to the negative feedback coil LFB so as to generate a second magnetic field that cancels (sets to zero) the first magnetic field applied to the magnetic sensitive surface of the Hall element 3. A current to be measured I in is obtained from the supplied current.

磁気平衡式電流センサに関する公知文献としては、下記特許文献1がある。
特開2002−228689号公報
As a known document related to a magnetic balance type current sensor, there is the following Patent Document 1.
JP 2002-228689 A

単電源駆動の場合、電源端子と接地端子との間に例えば2つの抵抗を直列接続し、それら抵抗の接続点の電圧をセンサ内部の差動増幅器の基準電圧として用いるのが一般的である。他方、電源と電流センサとの間には種々のノイズが入るため、電流センサの破壊や誤動作を防止するために、コイルをノイズフィルタとして電源端子又は接地端子の一方に接続することが考えられる。しかし、磁気平衡式電流センサでは、その測定原理のため電源からの供給電流が0〜数十mA程度と大きく変動し、このためノイズフィルタとして設けたコイルの直流抵抗成分による電圧降下が前記基準電圧を変動させ、結果的に電流センサの精度が悪化するという問題がある。また、ノイズ対策の他、電源投入時の突入電流防止のために抵抗を電源端子又は接地端子の一方に接続した場合にも同様の問題がある。   In the case of single power supply driving, for example, two resistors are generally connected in series between a power supply terminal and a ground terminal, and the voltage at the connection point of these resistors is generally used as a reference voltage for a differential amplifier in the sensor. On the other hand, since various noises enter between the power supply and the current sensor, it is conceivable to connect the coil as a noise filter to one of the power supply terminal and the ground terminal in order to prevent destruction and malfunction of the current sensor. However, in the magnetic balance type current sensor, the supply current from the power supply varies greatly from 0 to several tens mA due to the measurement principle, and therefore the voltage drop due to the DC resistance component of the coil provided as a noise filter is the reference voltage. As a result, there is a problem that the accuracy of the current sensor deteriorates. In addition to noise countermeasures, there is a similar problem when a resistor is connected to either the power supply terminal or the ground terminal in order to prevent an inrush current when the power is turned on.

本発明はこうした状況を認識してなされたものであり、その目的は、電源端子又は接地端子にコイルや抵抗を接続した場合の電流検出精度の悪化を防止することの可能な磁気平衡式電流センサを提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a magnetic balance type current sensor capable of preventing deterioration of current detection accuracy when a coil or a resistor is connected to a power supply terminal or a ground terminal. Is to provide.

本発明の第1の態様は、磁気平衡式電流センサである。この電流センサは、
磁気平衡式の原理に基づいて被測定電流に応じた電圧を出力するセンサ本体部と、
電源端子又は接地端子の一方と前記センサ本体部とを接続する経路に設けられたコイルと、
前記電源端子又は前記接地端子の他方と前記センサ本体部とを接続する経路に設けられた、前記コイルと同じ直流抵抗を有する抵抗とを備えるものである。
The first aspect of the present invention is a magnetic balanced current sensor. This current sensor
A sensor body that outputs a voltage according to the current to be measured based on the principle of a magnetic balance type,
A coil provided in a path connecting one of the power supply terminal or the ground terminal and the sensor main body,
And a resistor having the same DC resistance as that of the coil provided in a path connecting the other of the power supply terminal or the ground terminal and the sensor main body.

本発明の第2の態様も、磁気平衡式電流センサである。この電流センサは、
磁気平衡式の原理に基づいて被測定電流に応じた電圧を出力するセンサ本体部と、
電源端子又は接地端子の一方と前記センサ本体部とを接続する経路に設けられた第1のコイルと、
前記電源端子又は前記接地端子の他方と前記センサ本体部とを接続する経路に設けられた、前記第1のコイルと同じ直流抵抗成分を有する第2のコイルとを備えるものである。
The second aspect of the present invention is also a magnetic balance type current sensor. This current sensor
A sensor body that outputs a voltage according to the current to be measured based on the principle of a magnetic balance type,
A first coil provided in a path connecting one of a power supply terminal or a ground terminal and the sensor main body;
And a second coil having the same DC resistance component as the first coil, provided in a path connecting the other of the power supply terminal or the ground terminal and the sensor main body.

本発明の第3の態様も、磁気平衡式電流センサである。この電流センサは、
磁気平衡式の原理に基づいて被測定電流に応じた電圧を出力するセンサ本体部と、
電源端子又は接地端子の一方と前記センサ本体部とを接続する経路に設けられた第1抵抗と、
前記電源端子又は前記接地端子の他方と前記センサ本体部とを接続する経路に設けられた、前記第1抵抗と同じ直流抵抗を有する第2抵抗とを備えるものである。
The third aspect of the present invention is also a magnetic balance type current sensor. This current sensor
A sensor body that outputs a voltage according to the current to be measured based on the principle of a magnetic balance type,
A first resistor provided in a path connecting one of a power supply terminal or a ground terminal and the sensor main body;
A second resistor having the same DC resistance as the first resistor, provided in a path connecting the other of the power supply terminal or the ground terminal and the sensor main body.

各態様の電流センサにおいて、前記センサ本体部は、
前記被測定電流によって発生する第1の磁界が感磁面に印加される磁気検出素子と、
前記磁気検出素子の出力電圧が入力される負帰還用差動増幅器と、
前記負帰還用差動増幅器の出力電流が流れることにより、前記磁気検出素子の感磁面に印加される前記第1の磁界を相殺する第2の磁界を発生する負帰還用コイルと、
前記第2の磁界を発生するために前記負帰還用コイルに流れる電流を電圧に変換する電流電圧変換器と、
前記電流電圧変換器から出力される電圧を増幅する出力用差動増幅器とを有するものであるとよい。
In the current sensor of each aspect, the sensor body is
A magnetic detection element in which a first magnetic field generated by the current to be measured is applied to a magnetosensitive surface;
A negative feedback differential amplifier to which an output voltage of the magnetic detection element is input;
A negative feedback coil that generates a second magnetic field that cancels out the first magnetic field applied to the magnetic sensing surface of the magnetic sensing element when an output current of the negative feedback differential amplifier flows;
A current-voltage converter that converts a current flowing through the negative feedback coil to generate a voltage to generate the second magnetic field;
It is preferable to have an output differential amplifier that amplifies the voltage output from the current-voltage converter.

本発明によれば、電源端子とセンサ本体部との間及び接地端子とセンサ本体部との間の双方にコイル又は抵抗を接続し、それらコイル又は抵抗を同じ直流抵抗を有するものとしているで、電源端子側のコイル又は抵抗による電圧降下と、接地端子側のコイル又は抵抗による電圧降下とが相殺する。したがって、電源端子とセンサ本体部との間及び接地端子とセンサ本体部との間の一方にのみにコイル又は抵抗を接続した場合と比較して、あるいは双方にコイル又は抵抗を接続してあってもそれらコイル又は抵抗が同じ直流抵抗を有していない場合と比較して、電流検出精度の悪化が防止される。   According to the present invention, a coil or a resistor is connected between the power supply terminal and the sensor main body and between the ground terminal and the sensor main body, and the coils or the resistors have the same DC resistance. The voltage drop caused by the coil or resistor on the power supply terminal side cancels out the voltage drop caused by the coil or resistor on the ground terminal side. Therefore, compared with the case where the coil or resistor is connected only between one of the power supply terminal and the sensor main body and between the ground terminal and the sensor main body, or the coil or the resistance is connected to both. As compared with the case where the coils or resistors do not have the same DC resistance, deterioration of current detection accuracy is prevented.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

(第1の実施の形態)
本実施の形態の磁気平衡式電流センサの概略的構成は上述の図8に例示したとおりなので、ここでは回路構成の詳細を中心に説明する。図1は、本発明の第1の実施の形態に係る磁気平衡式電流センサ100の回路図である。この磁気平衡式電流センサ100は、単電源(定電圧源V、例えば5V)で動作する。
(First embodiment)
Since the schematic configuration of the magnetic balanced current sensor according to the present embodiment is as illustrated in FIG. 8 described above, the details of the circuit configuration will be mainly described here. FIG. 1 is a circuit diagram of a magnetic balance type current sensor 100 according to a first embodiment of the present invention. The magnetic balance type current sensor 100 operates with a single power source (constant voltage source V C , for example, 5 V).

磁気平衡式電流センサ100は、センサ本体部20と、コイルLと、抵抗RL2と、コンデンサCとを備える。センサ本体部20は、後述のように、磁気平衡式の原理に基づいて被測定電流Iinに応じた電圧Vをセンサ出力端子16から出力する。コイルLは電源端子12とセンサ本体部20とを接続する経路に設けられ、抵抗RL2は接地端子14とセンサ本体部20とを接続する経路に設けられる。コイルLは、定電圧源Vから電源端子12に至る経路で入るノイズを除去するためのノイズフィルタとして機能する。なお、図1においてコイルLは等価的に、直流抵抗成分のない理想的なコイルと抵抗RL1との直列接続で示される。抵抗RL2は、コイルLの直流抵抗成分(抵抗RL1)と同じ直流抵抗を有するものとする。コンデンサCは、電源端子12と接地端子14との間にコイルL及び抵抗RL2を介して設けられる。 Magnetic balance current sensor 100 includes a sensor body 20, a coil L 1, a resistor R L2, and a capacitor C. As will be described later, the sensor body 20 outputs a voltage V O corresponding to the measured current I in from the sensor output terminal 16 based on the principle of the magnetic balance type. The coil L 1 is provided in a path connecting the power supply terminal 12 and the sensor main body 20, and the resistor R L2 is provided in a path connecting the ground terminal 14 and the sensor main body 20. Coil L 1 functions as a noise filter for removing noise to enter in a path leading from the constant voltage source V C to the power supply terminal 12. The coil L 1 in FIG. 1 is equivalently represented by the series connection of an ideal coil without DC resistance component and the resistance R L1. The resistor R L2 has the same DC resistance as the DC resistance component (resistor R L1 ) of the coil L 1 . Capacitor C is provided through a coil L 1 and a resistor R L2 between the power supply terminal 12 and the ground terminal 14.

センサ本体部20は、磁気検出素子としてのホール素子3と、負帰還用差動増幅器24と、負帰還用コイルLFBと、電流電圧変換器としての検出抵抗Rと、基準電圧源25と、出力用差動増幅器28とを有する。基準電圧源25は、分圧抵抗RHi・RLoと、電流バッファ26(インピーダンス変換器)とを有する。 Sensor body 20 includes a Hall element 3 as a magnetic detection element, a negative feedback differential amplifier 24, and a negative feedback coil L FB, a detection resistor R S as a current-voltage converter, a reference voltage source 25 And an output differential amplifier 28. The reference voltage source 25 includes a voltage dividing resistor R Hi · R Lo and a current buffer 26 (impedance converter).

分圧抵抗RHi・RLoは、電源端子12と接地端子14との間に直列接続される。ここで、電源端子12と分圧抵抗RHiとを接続する経路には前記コイルLが設けられ、接地端子14と抵抗RLoとを接続する経路には前記抵抗RL2が設けられている。上述のとおり抵抗RL2はコイルLの直流抵抗成分(抵抗RL1)と同じ直流抵抗を有するので、分圧抵抗RHi・RLoの抵抗値を同じとすれば、電源端子12と接地端子14との間に流れる直流電流の量によらず分圧抵抗RHi・RLoの接続点の電圧は一定(約2.5V)となる。分圧抵抗RHi・RLoの接続点の電圧は、電流バッファ26(インピーダンス変換器)を介して基準電圧Vref(約2.5V)として出力される。 The voltage dividing resistor R Hi · R Lo is connected in series between the power supply terminal 12 and the ground terminal 14. Here, the coil L 1 is provided in a path connecting the power supply terminal 12 voltage dividing resistors R Hi, the resistor R L2 is provided in the path connecting the ground terminal 14 and the resistor R Lo . Since as described above the resistance R L2 have the same DC resistance and the DC resistance component of the coil L 1 (resistor R L1), if the resistance value of the voltage dividing resistors R Hi · R Lo same, the power supply terminal 12 ground terminal 14 is constant (about 2.5 V) regardless of the amount of direct current flowing between the voltage dividing resistor RHi and RLo . The voltage at the connection point of the voltage dividing resistors R Hi and R Lo is output as a reference voltage V ref (about 2.5 V) via the current buffer 26 (impedance converter).

図1において、ホール素子3は等価的に4つの抵抗のブリッジ接続で表され、端子a,b間に一定のホール素子駆動電流を流しておくことにより出力端子c,d間にホール素子3に印加された磁界に比例した(換言すれば被測定電流Iinに比例した)電圧を得る構成としている。ホール素子3の出力端子c,dは、負帰還用差動増幅器24の入力端子にそれぞれ接続される。負帰還用差動増幅器24の出力端子と基準電圧源25の出力端子とを接続する経路に負帰還用コイルLFBと検出抵抗Rとが直列接続される。検出抵抗Rの両端は出力用差動増幅器28の入力端子にそれぞれ接続され、出力用差動増幅器28の出力端子が磁気平衡式電流センサ100のセンサ出力端子16に接続される。なお、検出抵抗Rは負帰還用コイルLFBへの供給電流を電圧に変換するための微小抵抗であり、その抵抗値は出力用差動増幅器28の入力インピーダンスよりも十分小さいものとする。 In FIG. 1, the Hall element 3 is equivalently represented by a bridge connection of four resistors, and a constant Hall element drive current is allowed to flow between the terminals a and b so that the Hall element 3 is connected between the output terminals c and d. The voltage is proportional to the applied magnetic field (in other words, proportional to the measured current I in ). The output terminals c and d of the Hall element 3 are connected to the input terminals of the negative feedback differential amplifier 24, respectively. A negative feedback coil LFB and a detection resistor RS are connected in series to a path connecting the output terminal of the negative feedback differential amplifier 24 and the output terminal of the reference voltage source 25. Both ends of the detection resistor RS are connected to the input terminal of the output differential amplifier 28, and the output terminal of the output differential amplifier 28 is connected to the sensor output terminal 16 of the magnetic balanced current sensor 100. The detection resistor R S is a very small resistor for converting the current supplied to the negative feedback coil L FB into a voltage, and its resistance value is sufficiently smaller than the input impedance of the output differential amplifier 28.

ホール素子3の出力電圧は負帰還用差動増幅器24に入力される。負帰還用差動増幅器24は、出力端子から電流を吸い込む又は吐き出すことにより、端子c、d間の電位差が常にゼロとなるように、すなわちホール素子3の感磁面において上述の第1の磁界と第2の磁界とが相殺するように、負帰還用コイルLFBに負帰還電流IFBを供給する。ここで、例えば負帰還用コイルLFBの巻き数を4,000ターン、被測定電流Iinを200Aとすれば、「等アンペアターンの原理」より負帰還電流IFB=200/4,000=0.05(A)となる。 The output voltage of the Hall element 3 is input to the negative feedback differential amplifier 24. The negative feedback differential amplifier 24 sucks or discharges current from the output terminal so that the potential difference between the terminals c and d is always zero, that is, the first magnetic field described above on the magnetic sensitive surface of the Hall element 3. The negative feedback current I FB is supplied to the negative feedback coil L FB so that the second magnetic field and the second magnetic field cancel each other. Here, for example, the number of turns of 4,000 turns of the negative feedback coil L FB, if 200A to be measured current I in, the negative feedback current from "the principle of equal ampere-turn" I FB = 200 / 4,000 = 0.05 (A).

負帰還電流IFBは、検出抵抗Rによって電圧Vに変換され、電圧Vは出力用差動増幅器28によって増幅されてセンサ出力端子16から出力される。なお、出力用差動増幅器28は演算増幅器29と抵抗R〜Rとを含み、抵抗R〜Rの抵抗値はR=R、R=Rであり、出力用差動増幅器28の増幅度はR/Rである。増幅度は例えば1近傍とする。出力用差動増幅器28の出力電圧V(すなわち磁気平衡式電流センサ100の出力電圧)は
=−(R/R)V+Vref[V] (式1) ただし、Vrefは約2.5V
となる。
Negative feedback current I FB is converted to a voltage V S by the detection resistor R S, the voltage V S is output after being amplified by the output differential amplifier 28 from the sensor output terminal 16. The output differential amplifier 28 includes an operational amplifier 29 and resistors R 3 to R 6, and the resistance values of the resistors R 3 to R 6 are R 3 = R 4 , R 5 = R 6 , and the output difference The amplification factor of the dynamic amplifier 28 is R 5 / R 3 . The amplification degree is, for example, near 1. The output voltage V O of the output differential amplifier 28 (that is, the output voltage of the magnetic balance type current sensor 100) is V O = − (R 5 / R 3 ) V S + V ref [V] (Formula 1) where V ref Is about 2.5V
It becomes.

本実施の形態によれば、電源端子12とセンサ本体部20とを接続する経路にコイルLが設けられ、接地端子14とセンサ本体部20とを接続する経路に抵抗RL2が設けられ、抵抗RL2はコイルLの直流抵抗成分(抵抗RL1)と同じ直流抵抗を有するので、コイルLによる電圧降下と抵抗RL2による電圧降下とが等しくなる。したがって、被測定電流Iinの変化に追従して負帰還電流IFBが変化しても(つまり電源端子12と接地端子14との間に流れる直流電流の量が変化しても)分圧抵抗RHi・RLoの接続点の電圧は一定(約2.5V)となり、結果的にセンサ本体部20の基準電圧源25から出力される基準電圧Vrefが一定となる。この点、図2(比較例)のように電源端子12側にコイルLを設けるだけで接地端子14側に抵抗RL2を設けなければ、電源端子12と接地端子14との間に流れる直流電流の量によって分圧抵抗RHi・RLoの接続点の電圧が変動して基準電圧Vrefが変動する。このため出力用差動増幅器28の出力電圧V(すなわち磁気平衡式電流センサの出力電圧)も変動し、電流検出精度の悪化につながる。以下、これについて具体的に検討する。 According to this embodiment, the coil L 1 is provided in a path connecting the power supply terminal 12 and the sensor body 20, the resistor R L2 is provided in a path connecting the ground terminal 14 and the sensor body 20, since the resistance R L2 have the same DC resistance and the DC resistance component of the coil L 1 (resistor R L1), and the voltage drop becomes equal to the voltage drop due to the coil L 1 by the resistor R L2. Therefore, even if the negative feedback current I FB changes following the change in the measured current I in (that is, even if the amount of DC current flowing between the power supply terminal 12 and the ground terminal 14 changes), the voltage dividing resistor The voltage at the connection point of R Hi and R Lo is constant (about 2.5 V), and as a result, the reference voltage V ref output from the reference voltage source 25 of the sensor body 20 is constant. In this respect, to be provided a resistor R L2 to the power supply terminal 12 side by the ground terminal 14 side provided coil L 1 as shown in FIG. 2 (Comparative Example), a direct current flowing between the power supply terminal 12 and the ground terminal 14 Depending on the amount of current, the voltage at the connection point of the voltage dividing resistors R Hi and R Lo varies and the reference voltage V ref varies. For this reason, the output voltage V O of the output differential amplifier 28 (that is, the output voltage of the magnetic balance type current sensor) also fluctuates, leading to deterioration of current detection accuracy. This will be specifically examined below.

図3は、図2(比較例)の場合(コイルLの直流抵抗成分(抵抗RL1)は8Ω)における被測定電流Iinとセンサ出力Vとの関係と、理想的な場合(コイルLの直流抵抗成分(抵抗RL1)が0)における同関係とを対比した対比図である。ここで、負帰還用コイルLFBの巻き数は4,000ターンとしている。本図に示されるように、被測定電流Iinの絶対値が大きくなるに従って図2(比較例)の場合の出力電圧Vは理想的な場合と比較して小さくなっている。具体的には、被測定電流Iinが±200Aのとき「等アンペアターンの原理」より負帰還電流IFB=±200/4,000=±0.05(A)なので、図2(比較例)の場合、抵抗RL1による電圧降下は8Ω×|±0.05A|=0.4Vとなる。ここで、抵抗RL1に流れる電流は負帰還電流IFBの向きによらないので抵抗RL1による電圧降下の計算において負帰還電流IFBを|±0.05A|としている。また、演算増幅器等は低消費電流タイプで、ホール素子の駆動電流も小さいため、負帰還電流IFB以外の電流は無視している(つまり電源端子12と接地端子14との間に流れる直流電流は全て負帰還電流IFBであるものとしている)。この場合、上記のように抵抗RL1による電圧降下が0.4Vなので、基準電圧Vrefは0.2V降下し、これによりセンサ出力Vも0.2V降下する(上記式1参照)。 3, the case of FIG. 2 (Comparative Example) and the relationship between the measured current I in and the sensor output V O in (DC resistance component (resistance R L1 of the coil L 1) 8ohms is), the ideal case (a coil It is the contrast figure which contrasted the same relationship in the DC resistance component (resistance R L1 ) of L 1 is 0). Here, the number of turns of the negative feedback coil LFB is 4,000 turns. As shown in this figure, the output voltage V O in the case of FIG. 2 (Comparative Example) according to the absolute value of the measured current I in increases is smaller as compared with the ideal case. Specifically, when the measured current I in is ± 200 A, the negative feedback current I FB = ± 200 / 4,000 = ± 0.05 (A) from the “equal ampere-turn principle”, so FIG. ), The voltage drop due to the resistor R L1 is 8Ω × | ± 0.05A | = 0.4V. Here, the current flowing through the resistor R L1 is a negative feedback current I FB in the calculation of the voltage drop due to the resistance R L1 does not depend on the direction of the negative feedback current I FB | is set to | ± 0.05 A. In addition, since operational amplifiers and the like are of a low current consumption type and the drive current of the Hall element is small, currents other than the negative feedback current IFB are ignored (that is, direct current flowing between the power supply terminal 12 and the ground terminal 14). Are all negative feedback current I FB ). In this case, since the voltage drop due to the resistor R L1 is 0.4 V as described above, the reference voltage V ref is reduced by 0.2 V, and thus the sensor output V O is also reduced by 0.2 V (see the above formula 1).

図4は、図2(比較例)の場合(コイルLの直流抵抗成分(抵抗RL1)は8Ω)における被測定電流Iinとセンサ出力Vの誤差との関係と、理想的な場合(コイルLの直流抵抗成分(抵抗RL1)が0)における同関係とを対比した対比図である。本図に示されるように、被測定電流Iinの絶対値が大きくなるに従って図2(比較例)の場合の出力電圧の誤差の絶対値は大きくなっていることが分かる。具体的には、上記のとおり被測定電流Iinが200Aのときセンサ出力Vは0.2V降下するため、フルスケールを2Vとすれば、誤差は−10%となる。同様に被測定電流Iinが−200Aのときは誤差は10%となる。 FIG. 4 shows the relationship between the measured current I in and the error of the sensor output V O in the case of FIG. 2 (comparative example) (the DC resistance component (resistance R L1 ) of the coil L 1 is 8Ω) and the ideal case. is a comparison view comparing the same relations in (direct current resistance component of the coil L 1 (resistor R L1) is 0). As shown in this figure, it can be seen that is the absolute value is larger the error of the output voltage in the case of FIG. 2 (Comparative Example) according to the absolute value of the measured current I in is increased. Specifically, as described above, when the measured current I in is 200 A, the sensor output V O drops by 0.2 V. Therefore, if the full scale is 2 V, the error is −10%. Similarly, when the measured current I in is −200 A, the error is 10%.

これに対し本実施の形態の磁気平衡式電流センサ100では、上記説明した抵抗RL2によって基準電圧Vrefの変動が抑えられるため、図2(比較例)の場合よりも理想的な場合に近い出力電圧が得られ、センサ出力Vの誤差も小さくなることは明らかである。 On the other hand, in the magnetic balance type current sensor 100 of the present embodiment, since the fluctuation of the reference voltage V ref is suppressed by the resistance R L2 described above, it is closer to an ideal case than the case of FIG. 2 (comparative example). Obviously, an output voltage is obtained and the error of the sensor output V O is reduced.

なお、本実施の形態では接地端子14とセンサ本体部20とを接続する経路に抵抗RL2を設けることとしたが、これに替えて、抵抗RL2と同じ直流抵抗成分(つまりコイルLと同じ直流抵抗成分)を有するコイルLを設けた場合も同様の効果を奏することができる。また、コイルLと抵抗RL2との位置関係を逆にした場合も同様の効果を奏することができる。 In the present embodiment, the resistor R L2 is provided in the path connecting the ground terminal 14 and the sensor main body 20, but instead of this, the same DC resistance component as the resistor R L2 (that is, the coil L 1 and case of providing the coil L 2 having the same DC resistance component) can also achieve the same effect. Further, it is also possible when the positional relationship between the coil L 1 and a resistor R L2 Conversely the same effect.

(第2の実施の形態)
図5は、本発明の第2の実施の形態に係る磁気平衡式電流センサ200の回路図である。本実施の形態の磁気平衡式電流センサ200は、第1の実施の形態の磁気平衡式電流センサ100と比較して、コイルLの替わりに純粋な抵抗RL1(RL1=RL2)が設けられている点で相違し、その他の点で一致する。このような構成は、コンデンサCが数千μFのような大容量の場合の電源投入時の突入電流防止に有効といえる。本実施の形態も、第1の実施の形態と同様の効果を奏することができる。
(Second Embodiment)
FIG. 5 is a circuit diagram of a magnetic balanced current sensor 200 according to the second embodiment of the present invention. Magnetic balance type current sensor 200 of the present embodiment, as compared to the magnetic balance type current sensor 100 of the first embodiment, pure resistance in place of the coil L 1 R L1 (R L1 = R L2) is It differs in that it is provided, and it matches in other points. Such a configuration can be said to be effective for preventing an inrush current when the power is turned on when the capacitor C has a large capacity such as several thousand μF. This embodiment can also achieve the same effects as those of the first embodiment.

(第3の実施の形態)
本実施の形態の磁気平衡式電流センサは、第1又は第2の実施の形態の磁気平衡式電流センサと回路構成は同様であるが、負帰還用コイルLFBの構成が異なるので、この点について説明する。
(Third embodiment)
The magnetic balanced current sensor of the present embodiment has the same circuit configuration as the magnetic balanced current sensor of the first or second embodiment, but the configuration of the negative feedback coil LFB is different. Will be described.

図6は、本発明の第3の実施の形態に係る磁気平衡式電流センサ300の概略斜視図である。磁気平衡式電流センサ300は、ホール素子3と、負帰還用コイルLFBとを備える。ホール素子3及び負帰還用コイルLFBはバスバー7の幅広主面上に固定配置されバスバー7と一体化される。バスバー7は平板形状(例えば銅板)であり、取付穴42、44を介して被測定電流の経路をなすように取り付けられる。負帰還用コイルLFBは、これに限定されないが、巻線32を施したボビン31の内側に軟磁性体の磁気ヨーク(不図示)を設けて構成される。以下、図7も参照して磁気平衡式電流センサ300の形状を詳細に説明する。 FIG. 6 is a schematic perspective view of a magnetic balanced current sensor 300 according to the third embodiment of the present invention. Magnetic balance current sensor 300 includes a Hall element 3, and a negative feedback coil L FB. The Hall element 3 and the negative feedback coil LFB are fixedly disposed on the wide main surface of the bus bar 7 and integrated with the bus bar 7. The bus bar 7 has a flat plate shape (for example, a copper plate), and is attached so as to form a path of the current to be measured via the attachment holes 42 and 44. Although not limited to this, the negative feedback coil LFB is configured by providing a soft magnetic magnetic yoke (not shown) inside the bobbin 31 provided with the winding 32. Hereinafter, the shape of the magnetic balance type current sensor 300 will be described in detail with reference to FIG.

図7は、図6に示される磁気平衡式電流センサ300の形状説明図であり、(A)は平面図、(B)は正断面図、(C)は右側面図である。   FIG. 7 is an explanatory view of the shape of the magnetic balance type current sensor 300 shown in FIG. 6, in which (A) is a plan view, (B) is a front sectional view, and (C) is a right side view.

負帰還用コイルLFBは、バスバー7の長手方向略中央に固着(例えば接着)され、その軸方向はバスバー7の長手方向と略垂直かつ幅方向と略平行である。負帰還用コイルLFBの一方の端面はバスバー7の縁に位置し、他方の端面はバスバー7の幅方向略中央に位置する。この他方の端面上略中央にホール素子3が固着(例えば接着)される。ホール素子3の感磁面は負帰還用コイルLFBの端面(すなわち磁気ヨーク端面)に対向し、バスバー7の幅方向と略垂直である。したがって、バスバー7に流れる電流によって発生する磁界(第1の磁界)とホール素子3の感磁面は略垂直となり、また、負帰還用コイルLFBに流れる電流によって発生する磁界(第2の磁界)とホール素子3の感磁面も略垂直となる。第1又は第2の実施の形態と同様にホール素子3の出力電圧がゼロとなるように負帰還用コイルLFBに電流が供給され、これによりホール素子3の感磁面においては第1の磁界と第2の磁界とが相殺する。つまり、負帰還用コイルLFBはホール素子の感磁面に印加される第1の磁界を相殺する第2の磁界を発生する。この第2の磁界を発生するために負帰還用コイルLFBに流れる電流に基づいてバスバー7に流れる電流が検出される。 The negative feedback coil LFB is fixed (for example, bonded) to the substantially longitudinal center of the bus bar 7, and its axial direction is substantially perpendicular to the longitudinal direction of the bus bar 7 and substantially parallel to the width direction. One end face of the negative feedback coil LFB is located at the edge of the bus bar 7, and the other end face is located substantially at the center in the width direction of the bus bar 7. The Hall element 3 is fixed (for example, bonded) substantially at the center on the other end face. Sensitive surface of the Hall element 3 is opposed to the end surface of the negative feedback coil L FB (i.e. magnetic yoke end face), a vertical substantially the width direction of the bus bar 7. Therefore, sensitive surface of the magnetic field (first magnetic field) and the Hall element 3 generated by the current flowing through the bus bar 7 becomes substantially perpendicular, also the magnetic field generated by the current flowing through the negative feedback coil L FB (second magnetic field ) And the magnetic sensitive surface of the Hall element 3 are also substantially vertical. As in the first or second embodiment, a current is supplied to the negative feedback coil LFB so that the output voltage of the Hall element 3 becomes zero. The magnetic field and the second magnetic field cancel each other. In other words, negative feedback coil L FB generates a second magnetic field to cancel the first magnetic field applied to the sensitive surface of the Hall element. A current flowing through the bus bar 7 is detected based on a current flowing through the negative feedback coil LFB in order to generate the second magnetic field.

本実施の形態の磁気平衡式電流センサ300は、第1及び第2の実施の形態の磁気平衡式電流センサよりも小型化・軽量化に有利といえる。   The magnetic balanced current sensor 300 according to the present embodiment can be said to be more advantageous for miniaturization and weight reduction than the magnetic balanced current sensors according to the first and second embodiments.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素には請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。例えば、実施の形態では磁気検出素子としてホール素子を示したが、磁気検出素子はこれに限定されず、磁気抵抗効果素子等であってもよい。   The present invention has been described above by taking the embodiment as an example. However, it will be understood by those skilled in the art that various modifications can be made to each component of the embodiment within the scope of the claims. For example, although the Hall element is shown as the magnetic detection element in the embodiment, the magnetic detection element is not limited to this, and may be a magnetoresistance effect element or the like.

本発明の第1の実施の形態に係る磁気平衡式電流センサの回路図1 is a circuit diagram of a magnetic balanced current sensor according to a first embodiment of the present invention. 比較例に係る磁気平衡式電流センサの回路図Circuit diagram of magnetically balanced current sensor according to comparative example 図2(比較例)の場合(コイルLの直流抵抗成分(抵抗RL1)は8Ω)における被測定電流Iinとセンサ出力Vとの関係と、理想的な場合(コイルLの直流抵抗成分(抵抗RL1)が0)における同関係とを対比した対比図In the case of FIG. 2 (comparative example) (the DC resistance component (resistance R L1 ) of the coil L 1 is 8Ω), the relationship between the measured current I in and the sensor output V O , and the ideal case (DC of the coil L 1 ) Comparison diagram comparing the same relationship in the case where the resistance component (resistance R L1 ) is 0) 図2(比較例)の場合(コイルLの直流抵抗成分(抵抗RL1)は8Ω)における被測定電流Iinとセンサ出力Vの誤差との関係と、理想的な場合(コイルLの直流抵抗成分(抵抗RL1)が0)における同関係とを対比した対比図In the case of FIG. 2 (comparative example) (the DC resistance component (resistance R L1 ) of the coil L 1 is 8Ω), the relationship between the error of the measured current I in and the sensor output V O and the ideal case (coil L 1 Comparison diagram comparing the same relation in the case of the DC resistance component (resistance R L1 ) is 0) 本発明の第2の実施の形態に係る磁気平衡式電流センサの回路図Circuit diagram of magnetically balanced current sensor according to second embodiment of the present invention 本発明の第3の実施の形態に係る磁気平衡式電流センサの概略斜視図Schematic perspective view of a magnetic balanced current sensor according to a third embodiment of the present invention 図6に示される磁気平衡式電流センサの形状説明図であり、(A)は平面図、(B)は正断面図、(C)は右側面図It is a shape explanatory view of the magnetic balance type current sensor shown in FIG. 6, (A) is a plan view, (B) is a front sectional view, (C) is a right side view. 基本的構成の磁気平衡式電流センサの概略斜視図Schematic perspective view of basic configuration magnetic balanced current sensor

符号の説明Explanation of symbols

1 バスバー
3 ホール素子
12 電源端子
14 接地端子
16 センサ出力端子
20 センサ本体部
24 負帰還用差動増幅器
25 基準電圧源
28 出力用差動増幅器
コイル
L2 抵抗
FB 負帰還用コイル
検出抵抗
Hi・RLo 分圧抵抗
100、200、300 磁気平衡式電流センサ
DESCRIPTION OF SYMBOLS 1 Bus bar 3 Hall element 12 Power supply terminal 14 Grounding terminal 16 Sensor output terminal 20 Sensor main body part 24 Negative feedback differential amplifier 25 Reference voltage source 28 Output differential amplifier L 1 coil R L2 resistance L FB negative feedback coil RS Detection resistor R Hi / R Lo voltage dividing resistor 100, 200, 300 Magnetic balance type current sensor

Claims (4)

磁気平衡式の原理に基づいて被測定電流に応じた電圧を出力するセンサ本体部と、
電源端子又は接地端子の一方と前記センサ本体部とを接続する経路に設けられたコイルと、
前記電源端子又は前記接地端子の他方と前記センサ本体部とを接続する経路に設けられた、前記コイルと同じ直流抵抗を有する抵抗とを備える、磁気平衡式電流センサ。
A sensor body that outputs a voltage according to the current to be measured based on the principle of a magnetic balance type,
A coil provided in a path connecting one of the power supply terminal or the ground terminal and the sensor main body,
A magnetic balance type current sensor, comprising: a resistor having the same DC resistance as that of the coil provided in a path connecting the other of the power supply terminal or the ground terminal and the sensor main body.
磁気平衡式の原理に基づいて被測定電流に応じた電圧を出力するセンサ本体部と、
電源端子又は接地端子の一方と前記センサ本体部とを接続する経路に設けられた第1のコイルと、
前記電源端子又は前記接地端子の他方と前記センサ本体部とを接続する経路に設けられた、前記第1のコイルと同じ直流抵抗成分を有する第2のコイルとを備える、磁気平衡式電流センサ。
A sensor body that outputs a voltage according to the current to be measured based on the principle of a magnetic balance type,
A first coil provided in a path connecting one of a power supply terminal or a ground terminal and the sensor main body;
A magnetic balance type current sensor comprising: a second coil having a DC resistance component identical to that of the first coil, provided in a path connecting the other of the power supply terminal or the ground terminal and the sensor main body.
磁気平衡式の原理に基づいて被測定電流に応じた電圧を出力するセンサ本体部と、
電源端子又は接地端子の一方と前記センサ本体部とを接続する経路に設けられた第1抵抗と、
前記電源端子又は前記接地端子の他方と前記センサ本体部とを接続する経路に設けられた、前記第1抵抗と同じ直流抵抗を有する第2抵抗とを備える、磁気平衡式電流センサ。
A sensor body that outputs a voltage according to the current to be measured based on the principle of a magnetic balance type,
A first resistor provided in a path connecting one of a power supply terminal or a ground terminal and the sensor main body;
A magnetic balance type current sensor comprising: a second resistor having a DC resistance identical to the first resistor, provided in a path connecting the other of the power supply terminal or the ground terminal and the sensor main body.
請求項1から3のいずれかに記載の電流センサにおいて、前記センサ本体部は、
前記被測定電流によって発生する第1の磁界が感磁面に印加される磁気検出素子と、
前記磁気検出素子の出力電圧が入力される負帰還用差動増幅器と、
前記負帰還用差動増幅器の出力電流が流れることにより、前記磁気検出素子の感磁面に印加される前記第1の磁界を相殺する第2の磁界を発生する負帰還用コイルと、
前記第2の磁界を発生するために前記負帰還用コイルに流れる電流を電圧に変換する電流電圧変換器と、
前記電流電圧変換器から出力される電圧を増幅する出力用差動増幅器とを有するものである、磁気平衡式電流センサ。
The current sensor according to any one of claims 1 to 3, wherein the sensor body is
A magnetic detection element in which a first magnetic field generated by the current to be measured is applied to a magnetosensitive surface;
A negative feedback differential amplifier to which an output voltage of the magnetic detection element is input;
A negative feedback coil that generates a second magnetic field that cancels out the first magnetic field applied to the magnetic sensing surface of the magnetic sensing element when an output current of the negative feedback differential amplifier flows;
A current-voltage converter that converts a current flowing through the negative feedback coil to generate a voltage to generate the second magnetic field;
A magnetic balance type current sensor comprising an output differential amplifier for amplifying a voltage output from the current-voltage converter.
JP2008007614A 2008-01-17 2008-01-17 Magnetic balanced current sensor Active JP4771094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007614A JP4771094B2 (en) 2008-01-17 2008-01-17 Magnetic balanced current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007614A JP4771094B2 (en) 2008-01-17 2008-01-17 Magnetic balanced current sensor

Publications (2)

Publication Number Publication Date
JP2009168644A true JP2009168644A (en) 2009-07-30
JP4771094B2 JP4771094B2 (en) 2011-09-14

Family

ID=40969978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007614A Active JP4771094B2 (en) 2008-01-17 2008-01-17 Magnetic balanced current sensor

Country Status (1)

Country Link
JP (1) JP4771094B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8421452B2 (en) 2010-02-12 2013-04-16 Alps Green Devices Co., Ltd. Current sensor and battery with current sensor
JP2022054256A (en) * 2020-09-25 2022-04-06 横河電機株式会社 Current sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631365A (en) * 1986-06-18 1988-01-06 Matsushita Electric Ind Co Ltd Reference voltage generator circuit
JP2006038834A (en) * 2004-06-21 2006-02-09 Tdk Corp Current sensor
JP2008002816A (en) * 2006-06-20 2008-01-10 Tdk Corp Current sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631365A (en) * 1986-06-18 1988-01-06 Matsushita Electric Ind Co Ltd Reference voltage generator circuit
JP2006038834A (en) * 2004-06-21 2006-02-09 Tdk Corp Current sensor
JP2008002816A (en) * 2006-06-20 2008-01-10 Tdk Corp Current sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8421452B2 (en) 2010-02-12 2013-04-16 Alps Green Devices Co., Ltd. Current sensor and battery with current sensor
JP2022054256A (en) * 2020-09-25 2022-04-06 横河電機株式会社 Current sensor
JP7216058B2 (en) 2020-09-25 2023-01-31 横河電機株式会社 current sensor

Also Published As

Publication number Publication date
JP4771094B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4788922B2 (en) Current sensor
JP5531213B2 (en) Current sensor
JP4835868B2 (en) Current sensor
WO2012011306A1 (en) Current sensor
JP5604652B2 (en) Current sensor
US20130169267A1 (en) Current sensor
WO2012005042A1 (en) Current sensor
CN110494760B (en) Magnetic sensor
CN113203885B (en) Current sensor, magnetic sensor and circuit
JP4623289B2 (en) Current sensor
JP2008215970A (en) Bus bar integrated current sensor
JP4883289B2 (en) Current sensor disconnection detector
JP4325811B2 (en) Current sensor
JP4771094B2 (en) Magnetic balanced current sensor
JP2010002388A (en) Magnetic proportional current sensor
JP2014228418A (en) Current sensor
JP2010286415A (en) Current sensor unit
WO2018159776A1 (en) Magnetic sensor
JP5891516B2 (en) Current sensor
JP2010091366A (en) Magnetic balance current sensor
JP6446859B2 (en) Integrated circuit
JP2010286270A (en) Current sensor
JP3516644B2 (en) Magnetic sensor device and current sensor device
US10302678B2 (en) Motor control circuitry
JP7286932B2 (en) magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150