JP2009168164A - Pinion shaft - Google Patents

Pinion shaft Download PDF

Info

Publication number
JP2009168164A
JP2009168164A JP2008007330A JP2008007330A JP2009168164A JP 2009168164 A JP2009168164 A JP 2009168164A JP 2008007330 A JP2008007330 A JP 2008007330A JP 2008007330 A JP2008007330 A JP 2008007330A JP 2009168164 A JP2009168164 A JP 2009168164A
Authority
JP
Japan
Prior art keywords
pinion shaft
pinion
gear
axial end
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008007330A
Other languages
Japanese (ja)
Other versions
JP5286795B2 (en
Inventor
Koichi Yamamoto
幸一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008007330A priority Critical patent/JP5286795B2/en
Publication of JP2009168164A publication Critical patent/JP2009168164A/en
Application granted granted Critical
Publication of JP5286795B2 publication Critical patent/JP5286795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Details Of Gearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pinion shaft suppressing deterioration of material strength accompanied by hardening and hardly causing damage and abrasion. <P>SOLUTION: A planetary gear device is provided with a sun gear 1, a ring gear 2 arranged concentrically with the sun gear 1, and a pinion gear 3 engaged with the sun gear 1 and ring gear 2. Since the pinion shaft 5 is inserted into the center hole 3a of the pinion gear 3 and a needle roller is arranged between the outer peripheral surface of the pinion shaft 5 and the inner peripheral surface of the center hole 3a of the pinion gear 3, the pinion gear 3 can rotate freely with the pinion shaft 5 as an axis. A groove 12 is formed in the axial end surface 5a of the pinion shaft 5, and a surface hardened layer 14 applied with induction hardening is formed on the outer peripheral surface 5b of the pinion shaft. A difference between Vickers hardness of the surface hardened layer 14 and Vickers hardness of an unhardened portion 15 is not less than 350 nor more than 550. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、遊星歯車装置に使用されるピニオンシャフトに関する。   The present invention relates to a pinion shaft used in a planetary gear device.

例えば自動車の自動変速機に用いられる遊星歯車装置は、サンギヤ,リングギヤ,及びキャリヤを備えており、これらの回転要素は出力軸の周りに同心に配されている。また、サンギヤ及びリングギヤに噛み合うピニオンギヤが、キャリヤに固定されたピニオンシャフトに、軸受用ころを介して回転自在に支持されている。
ピニオンシャフトの外周面(転走面)上をころが転走すると、数GPaの高い接触応力が発生する。このため、ピニオンシャフトに使用される材料には、硬く負荷に耐え転がり疲労寿命が優れ且つ滑りに対する耐摩耗性が良好であることが要求される。このような要求を満足するため、従来においては、例えば、SUJ2,SUJ3等の軸受鋼や、SCM420等の肌焼材や、SK5等の高周波焼入れ材が使用されている。
For example, a planetary gear set used in an automatic transmission of an automobile includes a sun gear, a ring gear, and a carrier, and these rotating elements are arranged concentrically around an output shaft. Further, a pinion gear meshing with the sun gear and the ring gear is rotatably supported on a pinion shaft fixed to the carrier via bearing rollers.
When the roller rolls on the outer peripheral surface (rolling surface) of the pinion shaft, a high contact stress of several GPa is generated. For this reason, the material used for the pinion shaft is required to be hard and to withstand a load, to have excellent rolling fatigue life, and to have good wear resistance against sliding. Conventionally, for example, bearing steels such as SUJ2 and SUJ3, case-hardening materials such as SCM420, and induction hardening materials such as SK5 are used.

また、ピニオンシャフトは転走面に数GPaの高面圧下で繰り返し剪断応力を受けるため、剪断応力に耐えて転がり疲労寿命が優れていることが要求される。このような要求を満足するため、従来においては、例えば、SUJ2,SUJ3に浸炭処理,浸炭窒化処理等の熱処理を施し、引き続いて高周波焼入れを施して、表面硬さを確保するとともに転がり疲労寿命を向上させている。
特開2002−4003号公報
Further, since the pinion shaft is repeatedly subjected to shear stress under a high surface pressure of several GPa on the rolling surface, it is required to withstand the shear stress and to have excellent rolling fatigue life. In order to satisfy these requirements, conventionally, for example, SUJ2 and SUJ3 are subjected to heat treatment such as carburizing and carbonitriding, and then subjected to induction hardening to ensure surface hardness and provide rolling fatigue life. It is improving.
Japanese Patent Laid-Open No. 2002-4003

しかしながら、高周波焼入れにおいては瞬間的に高温に加熱された後に急冷されるが、加熱過程においてピニオンシャフトの表面に大きな体積膨張が生じ、軸方向両端面や内部にマルテンサイト変態に伴う熱処理歪みが発生する場合があった。また、急冷過程においては、焼入れ部と非焼入れ部との間の温度差による熱歪み(熱膨張によるもの)が発生することにより、材料に過大な内部応力が発生する場合があった。そして、このような熱処理歪みや内部応力により材料自体の強度が低下するため、ピニオンシャフトは破損や摩耗が生じやすい傾向があった。特に、軸方向端面に溝を有するピニオンシャフトの場合は、溝のエッジ部に応力が集中しやすいので、該応力集中部の材料の強度が大きく低下するおそれがあった。
そこで、本発明は、上記のような従来技術が有する問題点を解決し、焼入れに伴う材料強度の低下が抑制されており、破損や摩耗が生じにくいピニオンシャフトを提供することを課題とする。
However, in induction hardening, it is rapidly cooled after being heated to a high temperature instantaneously, but during the heating process, a large volume expansion occurs on the surface of the pinion shaft, and heat treatment distortion due to martensitic transformation occurs on both axial ends and inside. There was a case. Further, in the rapid cooling process, excessive internal stress may be generated in the material due to the occurrence of thermal distortion (due to thermal expansion) due to the temperature difference between the quenched portion and the non-quenched portion. And since the intensity | strength of material itself falls by such heat processing distortion and internal stress, there existed a tendency for a pinion shaft to generate | occur | produce a breakage and abrasion easily. In particular, in the case of a pinion shaft having a groove on the end face in the axial direction, stress tends to concentrate on the edge portion of the groove, so that the strength of the material of the stress concentration portion may be greatly reduced.
Therefore, an object of the present invention is to solve the above-described problems of the prior art and to provide a pinion shaft in which a decrease in material strength due to quenching is suppressed and damage and wear are unlikely to occur.

上記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明に係る請求項1のピニオンシャフトは、遊星歯車装置に使用され、同心に配されたサンギヤ及びリングギヤに噛み合うピニオンギヤの中心孔に挿通されて前記ピニオンギヤを回転自在に支持するピニオンシャフトであって、下記の3つの条件を満足することを特徴とする。
条件A:軸方向両端面の少なくとも一方に溝を有する。
条件B:高周波焼入れによる表面硬化層が外周面に形成されている。
条件C:前記表面硬化層のビッカース硬さと、前記表面硬化層以外の部分である非硬化部のビッカース硬さとの差が、350以上550以下である。
In order to solve the above-described problems, the present invention has the following configuration. That is, the pinion shaft according to claim 1 of the present invention is a pinion shaft that is used in a planetary gear device and is inserted into a center hole of a pinion gear that meshes with a sun gear and a ring gear that are concentrically arranged to rotatably support the pinion gear. Thus, the following three conditions are satisfied.
Condition A: A groove is provided on at least one of both axial end faces.
Condition B: A surface hardened layer by induction hardening is formed on the outer peripheral surface.
Condition C: The difference between the Vickers hardness of the surface hardened layer and the Vickers hardness of the non-hardened portion other than the surface hardened layer is 350 or more and 550 or less.

また、本発明に係る請求項2のピニオンシャフトは、請求項1に記載のピニオンシャフトにおいて、さらに下記の2つの条件を満足することを特徴とする。
条件D:軸長が直径の5倍以上である。
条件E:前記表面硬化層は、前記外周面のうち軸方向中央部に形成され軸方向両端部には形成されておらず、前記軸方向端面から前記表面硬化層までの軸方向距離が5mm以上である。
The pinion shaft according to claim 2 of the present invention is characterized in that, in the pinion shaft according to claim 1, the following two conditions are further satisfied.
Condition D: The axial length is not less than 5 times the diameter.
Condition E: The hardened surface layer is formed at the axial center portion of the outer peripheral surface and is not formed at both axial end portions, and the axial distance from the axial end surface to the hardened surface layer is 5 mm or more. It is.

本発明のピニオンシャフトは、焼入れに伴う材料強度の低下が抑制されているので、焼入れより発生する応力が集中しやすい部位を有していても、破損や摩耗が生じにくい。   In the pinion shaft of the present invention, since the decrease in material strength accompanying quenching is suppressed, even if the pinion shaft has a portion where stress generated by quenching tends to concentrate, breakage and wear hardly occur.

本発明に係るピニオンシャフトの実施の形態を、図面を参照しながら詳細に説明する。図1に示す遊星歯車装置は、図示しない軸が挿通されたサンギヤ1と、該サンギヤ1と同心に配されたリングギヤ2と、サンギヤ1及びリングギヤ2に噛み合う1個以上(図1においては3個)のピニオンギヤ3と、サンギヤ1及びリングギヤ2と同心に配されピニオンギヤ3を回転自在に支持するキャリヤ4と、を備えている。   An embodiment of a pinion shaft according to the present invention will be described in detail with reference to the drawings. 1 includes a sun gear 1 through which a shaft (not shown) is inserted, a ring gear 2 disposed concentrically with the sun gear 1, and one or more meshing with the sun gear 1 and the ring gear 2 (three in FIG. 1). ) And a carrier 4 that is arranged concentrically with the sun gear 1 and the ring gear 2 and rotatably supports the pinion gear 3.

ピニオンギヤ3に形成された中心孔3aには、かしめ等の慣用の固着手段によりキャリヤ4に固定されたピニオンシャフト5が挿通されており、また、ピニオンシャフト5の外周面とピニオンギヤ3の中心孔3aの内周面との間には図示されない複数の針状ころが配されていて、これによりピニオンギヤ3はピニオンシャフト5を軸として回転自在とされている。   A pinion shaft 5 fixed to the carrier 4 by conventional fixing means such as caulking is inserted into the center hole 3a formed in the pinion gear 3, and the outer peripheral surface of the pinion shaft 5 and the center hole 3a of the pinion gear 3 are inserted. A plurality of needle rollers (not shown) are disposed between the inner peripheral surface and the pinion gear 3 so as to be rotatable about the pinion shaft 5.

次に、図2を参照しながら、ピニオンシャフト5について詳細に説明する。このピニオンシャフト5は、高炭素クロム軸受鋼(SUJ2)等の鋼材で構成されている。ただし、鋼材の種類はSUJ2に限定されるものではなく、SUJ3等の他種の軸受鋼や、SCM420等の肌焼材や、SK5等の高周波焼入れ材を用いてもよい。
そして、ピニオンシャフト5には潤滑油の給油路10が設けてあり、軸方向両端面5a,5aの一方に開口する開口部10aに注入された潤滑油が、外周面5b(円筒面)に開口する給油口10bから転走面(外周面5bのうち前記針状ころが転走する部分)に給油されるようになっている。
Next, the pinion shaft 5 will be described in detail with reference to FIG. The pinion shaft 5 is made of a steel material such as high carbon chromium bearing steel (SUJ2). However, the type of steel material is not limited to SUJ2, and other types of bearing steel such as SUJ3, case-hardened materials such as SCM420, and induction-hardened materials such as SK5 may be used.
The pinion shaft 5 is provided with a lubricating oil supply passage 10, and the lubricating oil injected into the opening 10 a that opens in one of the axial end faces 5 a, 5 a opens to the outer peripheral surface 5 b (cylindrical surface). The oil supply port 10b is supplied to the rolling surface (the portion of the outer peripheral surface 5b where the needle rollers roll).

また、軸方向両端面5a,5aの他方には、給油口10bの位置合わせのための溝12が形成されている。すなわち、給油口10bの位置によって潤滑を制御するので、この溝12は、ピニオンシャフト5をキャリヤ4に固定する際に、給油口10bがキャリヤ4の中心に対して所定の位置関係となるように(例えば、給油口10bがキャリヤ4の中心に向くように)するために使用される。なお、溝12は、軸方向両端面5a,5aに形成されていてもよい。   Moreover, the groove | channel 12 for alignment of the oil filler opening 10b is formed in the other of axial direction both end surface 5a, 5a. That is, since the lubrication is controlled by the position of the oil supply port 10b, the groove 12 is arranged so that the oil supply port 10b has a predetermined positional relationship with respect to the center of the carrier 4 when the pinion shaft 5 is fixed to the carrier 4. (For example, so that the fuel filler opening 10b faces the center of the carrier 4). In addition, the groove | channel 12 may be formed in the axial direction both end surfaces 5a and 5a.

さらに、このピニオンシャフト5は、浸炭処理又は浸炭窒化処理と焼鈍しとが施されており、それに続いて、ピニオンシャフト5の外周面5bのうち転走面のみに高周波焼入れが施されている。この高周波焼入れにより、転走面には表面硬化層14が形成されている。表面硬化層14以外の部分、すなわち、表面硬化層14の内側部分(ピニオンシャフト5の径方向中心部)及び軸方向両端部は、焼入れが施されておらず硬化されていない非硬化部15となっており、表面硬化層14と非硬化部15とのビッカース硬さの差が350以上550以下となるように、高周波焼入れが施されている。   Further, the pinion shaft 5 is subjected to carburizing or carbonitriding and annealing, and subsequently, only the rolling surface of the outer peripheral surface 5 b of the pinion shaft 5 is subjected to induction hardening. The surface hardening layer 14 is formed on the rolling surface by this induction hardening. The portions other than the surface hardened layer 14, that is, the inner portion of the surface hardened layer 14 (the central portion in the radial direction of the pinion shaft 5) and both axial end portions are not hardened and are not hardened. Induction hardening is performed so that the difference in Vickers hardness between the surface hardened layer 14 and the non-hardened portion 15 is 350 or more and 550 or less.

前述したように、高周波焼入れの際には、熱処理歪みや内部応力により材料自体の強度が低下するおそれがあり、特に、軸方向端面に溝を有するピニオンシャフトの場合は、溝のエッジ部に応力が集中しやすいので、該応力集中部の材料の強度が大きく低下するおそれがあった。その結果、ピニオンシャフトは割れ,クラック等の破損や摩耗が生じやすい傾向があった。   As described above, during induction hardening, the strength of the material itself may decrease due to heat treatment distortion or internal stress. Particularly, in the case of a pinion shaft having a groove on the axial end surface, stress is applied to the edge of the groove. Since it tends to concentrate, the strength of the material of the stress concentration portion may be greatly reduced. As a result, the pinion shaft tended to be easily broken and worn, such as cracks and cracks.

しかしながら、本実施形態のピニオンシャフト5は、表面硬化層14の硬さが前述のように規定されているので、高周波焼入れの際に前述の熱処理歪みや内部応力が発生しにくい。そのため、熱処理歪みや内部応力による材料強度の低下が抑制されており、軸方向端面5aに溝12を有していて応力集中部が存在する場合でも該応力集中部の材料強度の低下が抑制されているので、本実施形態のピニオンシャフト5は破損や摩耗が生じにくい。このようなピニオンシャフト5を備える本実施形態の遊星歯車装置は、自動車の自動変速機に好適に用いることができる。   However, in the pinion shaft 5 of the present embodiment, since the hardness of the surface hardened layer 14 is defined as described above, the heat treatment distortion and internal stress described above are unlikely to occur during induction hardening. Therefore, a decrease in material strength due to heat treatment distortion and internal stress is suppressed, and even when the axial end surface 5a has the groove 12 and a stress concentration portion exists, a decrease in material strength of the stress concentration portion is suppressed. Therefore, the pinion shaft 5 of the present embodiment is not easily damaged or worn. The planetary gear device of this embodiment including such a pinion shaft 5 can be suitably used for an automatic transmission of an automobile.

表面硬化層14のビッカース硬さと非硬化部15のビッカース硬さとの差が350未満であると(すなわち両硬さの差が小さいと)、軸方向端部の靱性が低くなるため、高周波焼入れの際の熱処理歪みや内部応力により材料自体の強度が低下するおそれがある。特に、軸方向端面5aに溝12を有していて応力集中部が存在する場合には、該応力集中部の材料自体の強度が低下しやすい。   When the difference between the Vickers hardness of the surface hardened layer 14 and the Vickers hardness of the non-cured portion 15 is less than 350 (that is, when the difference between the two hardnesses is small), the toughness of the axial end portion becomes low. There is a risk that the strength of the material itself may be reduced by the heat treatment distortion and internal stress. In particular, when the groove 12 is provided on the axial end face 5a and a stress concentration portion exists, the strength of the material itself of the stress concentration portion tends to decrease.

一方、前記両硬さの差が550超過であると、非硬化部15のビッカース硬さが不十分となるおそれがあるため、ピニオンシャフト5の軸方向端部をキャリヤ4に固定する際に必要な硬さを満足できず、軸方向端部が摩耗するおそれがある。
なお、ピニオンシャフト5の寸法については、特に限定されるものではないが、軸長Lは直径dの5倍以上であることが好ましい。5倍未満であると、高周波焼入れの際に発生する熱処理歪みや内部応力が大きくなるので、軸方向端面5aに溝12を有していて応力集中部が存在する場合には、該応力集中部の材料自体の強度が低下するおそれがある。
On the other hand, if the difference between the two hardnesses exceeds 550, the Vickers hardness of the non-cured portion 15 may be insufficient, so it is necessary when fixing the axial end of the pinion shaft 5 to the carrier 4. May not be satisfactory, and the axial end portion may be worn.
The dimension of the pinion shaft 5 is not particularly limited, but the axial length L is preferably 5 times or more the diameter d. If it is less than 5 times, heat treatment distortion and internal stress generated during induction quenching increase, and therefore, when the axial end surface 5a has the groove 12 and there is a stress concentration portion, the stress concentration portion The strength of the material itself may be reduced.

また、表面硬化層14は、ピニオンシャフト5の外周面5bのうち転走面のみ(軸方向中央部)に形成されるため、外周面5bの軸方向両端部には形成されていないが、表面硬化層14(有効硬化層)のうち軸方向端面5aに最も近い部分と軸方向端面5aとの軸方向距離Aは5mm以上とすることが好ましい。そうすれば、軸方向端面5aの溝12の応力集中部に外部から衝撃等が加えられた際の耐衝撃性が高くなる。   Further, since the hardened surface layer 14 is formed only on the rolling surface (axially central portion) of the outer peripheral surface 5b of the pinion shaft 5, it is not formed at both axial end portions of the outer peripheral surface 5b. The axial distance A between the portion of the hardened layer 14 (effective hardened layer) closest to the axial end surface 5a and the axial end surface 5a is preferably 5 mm or more. If it does so, the impact resistance at the time of an impact etc. being applied from the outside to the stress concentration part of the groove | channel 12 of the axial direction end surface 5a will become high.

〔実施例〕
以下に、さらに具体的な実施例を示して、本発明を説明する。SUJ2製又はSUJ3製の鋼材を所定の寸法に旋削加工した後、後述する熱処理を施し、さらに仕上げ研削加工を施すことにより、ピニオンシャフトを製造した。得られたピニオンシャフトの直径d及び長さL、並びに、表面硬化層のビッカース硬さH1、非硬化部のビッカース硬さH2、及び両硬さの差H1−H2を、表1に示す。なお、ピニオンシャフトの軸方向端面には、該端面の中心を通る直線状の溝が形成されている。この溝の幅は1mm、深さは1mm、長さは直径dと同じである。
〔Example〕
Hereinafter, the present invention will be described with reference to more specific examples. A pinion shaft was manufactured by turning a steel material made of SUJ2 or SUJ3 to a predetermined size, then subjecting to a heat treatment to be described later, and further performing a finish grinding process. Table 1 shows the diameter d and length L of the pinion shaft obtained, the Vickers hardness H1 of the surface hardened layer, the Vickers hardness H2 of the non-cured portion, and the difference H1−H2 between the two hardnesses. A linear groove passing through the center of the end face is formed on the end face in the axial direction of the pinion shaft. The width of this groove is 1 mm, the depth is 1 mm, and the length is the same as the diameter d.

Figure 2009168164
Figure 2009168164

熱処理の内容は以下の通りである。旋削加工した鋼材に浸炭窒化処理を施した後、高温焼戻しを施した。続いて、外周面のうち転走面となる部分のみに高周波焼入れを施した後に、低温焼戻しを施した。
熱処理が終了したら、これらのピニオンシャフトの軸方向端面を光学顕微鏡にて観察し、溝に破損がないか調査した。結果を表1に示す。実施例1〜4のピニオンシャフトは、両硬さの差H1−H2が350以上550以下の範囲内であるので、溝に破損は見られなかった。これに対して、比較例1,3のピニオンシャフトは、両硬さの差H1−H2が350未満であるので、溝に破損が見られた。
The contents of the heat treatment are as follows. The turned steel material was carbonitrided and then subjected to high temperature tempering. Subsequently, induction quenching was performed only on the portion of the outer peripheral surface that would be the rolling surface, followed by low temperature tempering.
When the heat treatment was completed, the end surfaces in the axial direction of these pinion shafts were observed with an optical microscope to investigate whether the grooves were damaged. The results are shown in Table 1. In the pinion shafts of Examples 1 to 4, the difference in both hardnesses H1 to H2 was in the range of 350 to 550, and no breakage was observed in the grooves. On the other hand, the pinion shafts of Comparative Examples 1 and 3 had a difference in hardness between H1 and H2 of less than 350, so that the grooves were damaged.

さらに、日本精工株式会社製プラネタリニードル試験機を用いて、これらのピニオンシャフトの摩耗試験を行った。すなわち、ピニオンシャフトの軸方向両端部5mm以内の範囲をS45C材で固定し、0〜1000Nの荷重を20時間繰り返し負荷した。そして、サーフコム形状測定器を用いて、軸方向端面の形状を測定することにより、軸方向端面の摩耗の有無を調査した。結果を表1に示す。
実施例1〜4のピニオンシャフトは、両硬さの差H1−H2が350以上550以下の範囲内であるので、軸方向端面に摩耗は見られなかった。これに対して、比較例2,4のピニオンシャフトは、両硬さの差H1−H2が550超過であるので、軸方向端面に摩耗が見られた。
Furthermore, the abrasion test of these pinion shafts was performed using a planetary needle testing machine manufactured by NSK Ltd. That is, the range within 5 mm of both axial ends of the pinion shaft was fixed with S45C material, and a load of 0 to 1000 N was repeatedly applied for 20 hours. And the presence or absence of abrasion of an axial direction end surface was investigated by measuring the shape of an axial direction end surface using a surf comb shape measuring device. The results are shown in Table 1.
In the pinion shafts of Examples 1 to 4, since the difference H1-H2 in both hardnesses was in the range of 350 to 550, no abrasion was observed on the axial end face. In contrast, in the pinion shafts of Comparative Examples 2 and 4, since the difference H1-H2 between the two hardnesses exceeded 550, wear was observed on the axial end surface.

次に、前述と同様にしてピニオンシャフトを製造し、強度試験を行った。得られたピニオンシャフトの直径d、長さL、及びこれらの比L/dを、表2に示す。また、表面硬化層のビッカース硬さH1、非硬化部のビッカース硬さH2、及び両硬さの差H1−H2を、表2に併せて示す。さらに、表面硬化層(有効硬化層)のうち軸方向端面に最も近い部分と軸方向端面との軸方向距離Aを、表2に併せて示す。なお、ピニオンシャフトの軸方向端面には、該端面の中心を通る直線状の溝が形成されている。この溝の幅は1mm、深さは1.5mm、長さは直径dと同じである。   Next, a pinion shaft was manufactured in the same manner as described above, and a strength test was performed. Table 2 shows the diameter d, the length L, and the ratio L / d of the obtained pinion shaft. Table 2 also shows the Vickers hardness H1 of the surface hardened layer, the Vickers hardness H2 of the non-cured portion, and the difference H1−H2 between the two hardnesses. Further, Table 2 shows the axial distance A between the portion of the surface hardened layer (effective hardened layer) closest to the axial end face and the axial end face. A linear groove passing through the center of the end face is formed on the end face in the axial direction of the pinion shaft. The width of this groove is 1 mm, the depth is 1.5 mm, and the length is the same as the diameter d.

Figure 2009168164
Figure 2009168164

これらのピニオンシャフトの強度試験は、日本精工株式会社製プラネタリニードル試験機を用いて行った。すなわち、ピニオンシャフトの軸方向両端部5mm以内の範囲をS45C材で固定して、ピニオンシャフトの軸方向中央部に0〜5000Nの荷重を繰り返し負荷し、軸方向端面の溝が破損するまでの時間を測定した。結果を表2に示す。
実施例12,13,15,及び16のピニオンシャフトは、軸方向距離Aが5mm以上であるので、軸方向距離Aが5mm未満である実施例11,14と比べて、繰り返し荷重が負荷されても溝に破損が生じにくかった。
The strength tests of these pinion shafts were performed using a planetary needle tester manufactured by NSK Ltd. That is, the time until the axial end surface of the pinion shaft is damaged within 5 mm is fixed with S45C material, a load of 0 to 5000 N is repeatedly applied to the axial central portion of the pinion shaft, and the groove on the axial end surface is damaged. Was measured. The results are shown in Table 2.
Since the pinion shafts of Examples 12, 13, 15, and 16 have an axial distance A of 5 mm or more, compared to Examples 11 and 14 in which the axial distance A is less than 5 mm, a repeated load is applied. Also, it was difficult for the groove to break.

本発明の一実施形態であるピニオンシャフトを備える遊星歯車装置の分解斜視図である。It is a disassembled perspective view of the planetary gear apparatus provided with the pinion shaft which is one Embodiment of this invention. ピニオンシャフトの断面図である。It is sectional drawing of a pinion shaft.

符号の説明Explanation of symbols

1 サンギヤ
2 リングギヤ
3 ピニオンギヤ
3a 中心孔
4 キャリヤ
5 ピニオンシャフト
5a 軸方向端面
5b 外周面
12 溝
14 表面硬化層
15 非硬化部
DESCRIPTION OF SYMBOLS 1 Sun gear 2 Ring gear 3 Pinion gear 3a Center hole 4 Carrier 5 Pinion shaft 5a Axial end surface 5b Outer peripheral surface 12 Groove 14 Surface hardening layer 15 Non-hardening part

Claims (2)

遊星歯車装置に使用され、同心に配されたサンギヤ及びリングギヤに噛み合うピニオンギヤの中心孔に挿通されて前記ピニオンギヤを回転自在に支持するピニオンシャフトであって、下記の3つの条件を満足することを特徴とするピニオンシャフト。
条件A:軸方向両端面の少なくとも一方に溝を有する。
条件B:高周波焼入れによる表面硬化層が外周面に形成されている。
条件C:前記表面硬化層のビッカース硬さと、前記表面硬化層以外の部分である非硬化部のビッカース硬さとの差が、350以上550以下である。
A pinion shaft that is used in a planetary gear device and is inserted through a central hole of a pinion gear that meshes with a sun gear and a ring gear that are concentrically arranged to rotatably support the pinion gear, and satisfies the following three conditions: And pinion shaft.
Condition A: A groove is provided on at least one of both axial end faces.
Condition B: A surface hardened layer by induction hardening is formed on the outer peripheral surface.
Condition C: The difference between the Vickers hardness of the surface hardened layer and the Vickers hardness of the non-hardened portion other than the surface hardened layer is 350 or more and 550 or less.
さらに下記の2つの条件を満足することを特徴とする請求項1に記載のピニオンシャフト。
条件D:軸長が直径の5倍以上である。
条件E:前記表面硬化層は、前記外周面のうち軸方向中央部に形成され軸方向両端部には形成されておらず、前記軸方向端面から前記表面硬化層までの軸方向距離が5mm以上である。
Furthermore, the following two conditions are satisfied, The pinion shaft of Claim 1 characterized by the above-mentioned.
Condition D: The axial length is not less than 5 times the diameter.
Condition E: The hardened surface layer is formed at the axial center portion of the outer peripheral surface and is not formed at both axial end portions, and the axial distance from the axial end surface to the hardened surface layer is 5 mm or more. It is.
JP2008007330A 2008-01-16 2008-01-16 Pinion shaft and planetary gear device Expired - Fee Related JP5286795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007330A JP5286795B2 (en) 2008-01-16 2008-01-16 Pinion shaft and planetary gear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007330A JP5286795B2 (en) 2008-01-16 2008-01-16 Pinion shaft and planetary gear device

Publications (2)

Publication Number Publication Date
JP2009168164A true JP2009168164A (en) 2009-07-30
JP5286795B2 JP5286795B2 (en) 2013-09-11

Family

ID=40969566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007330A Expired - Fee Related JP5286795B2 (en) 2008-01-16 2008-01-16 Pinion shaft and planetary gear device

Country Status (1)

Country Link
JP (1) JP5286795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271023A (en) * 2006-03-31 2007-10-18 Aisin Aw Co Ltd Rotary unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589942U (en) * 1992-04-30 1993-12-07 エヌティエヌ株式会社 Bearing device
JP2003097676A (en) * 2001-09-21 2003-04-03 Fuji Heavy Ind Ltd Lubricating structure of automatic transmission
JP2005140275A (en) * 2003-11-07 2005-06-02 Nsk Ltd Planetary gear device
JP2007024250A (en) * 2005-07-20 2007-02-01 Nsk Ltd Pinion shaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589942U (en) * 1992-04-30 1993-12-07 エヌティエヌ株式会社 Bearing device
JP2003097676A (en) * 2001-09-21 2003-04-03 Fuji Heavy Ind Ltd Lubricating structure of automatic transmission
JP2005140275A (en) * 2003-11-07 2005-06-02 Nsk Ltd Planetary gear device
JP2007024250A (en) * 2005-07-20 2007-02-01 Nsk Ltd Pinion shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271023A (en) * 2006-03-31 2007-10-18 Aisin Aw Co Ltd Rotary unit

Also Published As

Publication number Publication date
JP5286795B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
EP2256307B1 (en) Roller follower and valve train
JP5045491B2 (en) Large rolling bearing
JP2014020538A (en) Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment
JP2007046114A (en) Rolling bearing
JP2008223104A (en) Rolling shaft
WO2014196428A1 (en) Bearing component and rolling bearing
JP2010185548A (en) Rolling bearing
JP2006291339A (en) Die for heat treatment of bearing ring and method for producing bearing ring
JP2010025311A (en) Rolling bearing and method of manufacturing the same
WO2014196431A1 (en) Bearing component and rolling bearing
JP2015218746A (en) Rolling shaft
JP2016148428A (en) Rolling shaft and method of manufacturing the same
JP5286795B2 (en) Pinion shaft and planetary gear device
WO2022202922A1 (en) Track wheel and shaft
JP2007169673A (en) Heat-treatment method for steel, method for producing rolling member in rolling-support device and rolling-support device
JP2007186760A (en) Manufacturing method of bearing ring for rolling bearing, and rolling bearing
JP2008063603A (en) Method for manufacturing track member, method for manufacturing valve device, and track member
JP4360178B2 (en) Manufacturing method of toroidal type continuously variable transmission
JP2007024250A (en) Pinion shaft
JP5311719B2 (en) Induction hardening method, mechanical member, rolling member, and manufacturing method of mechanical member
JP2006292139A (en) Pinion shaft, its manufacturing method, and planetary gear device
JP4807146B2 (en) Method for manufacturing pinion shaft and method for manufacturing planetary gear device
JP2009270172A (en) Method for manufacturing bearing ring for rolling bearing
JP2007217725A (en) Pinion shaft for epicyclic gear mechanism
JP2008064159A (en) Method of manufacturing track member, method of manufacturing valve gear, and track member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

LAPS Cancellation because of no payment of annual fees