JP2007169673A - Heat-treatment method for steel, method for producing rolling member in rolling-support device and rolling-support device - Google Patents

Heat-treatment method for steel, method for producing rolling member in rolling-support device and rolling-support device Download PDF

Info

Publication number
JP2007169673A
JP2007169673A JP2005364976A JP2005364976A JP2007169673A JP 2007169673 A JP2007169673 A JP 2007169673A JP 2005364976 A JP2005364976 A JP 2005364976A JP 2005364976 A JP2005364976 A JP 2005364976A JP 2007169673 A JP2007169673 A JP 2007169673A
Authority
JP
Japan
Prior art keywords
rolling
support device
steel
cooling
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005364976A
Other languages
Japanese (ja)
Inventor
Daisuke Watanuki
大輔 渡貫
Hideyuki Tobitaka
秀幸 飛鷹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005364976A priority Critical patent/JP2007169673A/en
Publication of JP2007169673A publication Critical patent/JP2007169673A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To hardly occur the inner part starting point type breakage without developing a large deformation, even in the case of producing a rolling member in the large bearing, such as the bearing for backup roll. <P>SOLUTION: At least one of rolling member among an inner ring 1, an outer ring 2 and a roller 3, is made by applying a carbonizing or a carbonitriding after processing a blank made of a steel into a prescribed shape and further, by applying a cooling at 15°C/min-300°C/min cooling rate, and a quenching and a tempering in this order, an austenite crystal grain diameter in this core part is made to ≤19.2μm of the average value and ≤5.5 of the standard deviation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋼の熱処理方法と、転がり支持装置(転がり軸受、ボールねじ、リニアガイド等)の転動部材の製造方法と、転がり支持装置に関する。   The present invention relates to a steel heat treatment method, a rolling support device manufacturing method (rolling bearing, ball screw, linear guide, etc.), and a rolling support device.

鋼板の熱間圧延工程において、鋼板の上下に配置される一対の圧延ロールには、生産性の面から、より小径で高荷重に耐えることが求められている。このため、鋼板の上下方向外側には、径の大きなバックアップロールが配置されて、圧延加工時に加わる荷重や衝撃による圧延ロールのたわみを抑制している。
このバックアップロールを回転自在に支持するバックアップロール用軸受には、長寿命に加えて、優れた耐荷重性及び耐衝撃性が要求される。このため、バックアップロール用軸受を構成する転動部材(内輪、外輪、転動体)としては、焼入れ性の良好な鋼種(例えば、浸炭鋼)からなる素材を所定形状に加工した後、浸炭又は浸炭窒化と、焼入れ及び焼戻しとを施すことにより、転がり面をなす表層部の硬さをHRC60(Hv697)以上とし、芯部の硬さをHRC30〜48(Hv302〜484)としたものが用いられている。
In the hot rolling process of a steel plate, a pair of rolling rolls arranged above and below the steel plate is required to withstand a high load with a smaller diameter from the viewpoint of productivity. For this reason, the backup roll with a large diameter is arrange | positioned at the up-down direction outer side of the steel plate, and the bending of the rolling roll by the load and impact which are applied at the time of a rolling process is suppressed.
A backup roll bearing that rotatably supports the backup roll is required to have excellent load resistance and impact resistance in addition to a long life. For this reason, as a rolling member (inner ring, outer ring, rolling element) constituting a backup roll bearing, after carving or carburizing after processing a material made of a steel type having good hardenability (for example, carburized steel) into a predetermined shape. By performing nitriding and quenching and tempering, the hardness of the surface layer part forming the rolling surface is set to HRC60 (Hv697) or more, and the hardness of the core part is set to HRC30 to 48 (Hv302 to 484). Yes.

しかしながら、上述した従来の製造方法で得られる転動部材では、熱処理時に芯部のオーステナイト結晶に粗大粒が生じて破損の起点となったり、芯部と浸炭又は浸炭窒化が施された表層部との間で引っ張り応力が発生したりすることにより、芯部の材料強度が使用環境下で必要とされる材料強度よりも下回り、芯部で内部起点型の破損が生じる場合がある。   However, in the rolling member obtained by the above-described conventional manufacturing method, coarse particles are generated in the austenite crystal of the core during heat treatment and become a starting point of breakage, or the core and the surface layer portion subjected to carburizing or carbonitriding When the tensile stress is generated between the two, the material strength of the core portion is lower than the material strength required in the use environment, and the internal origin type damage may occur in the core portion.

このため、特許文献1では、芯部と表層部との間に発生する引っ張り応力を小さくし、芯部で生じる内部起点型の破損を抑制するために、内輪及び外輪のうち少なくとも一方に浸炭又は浸炭窒化の表面硬化処理を施すとともに、内輪及び外輪のうち少なくとも一方の軸受端面の表層部の硬さをHv550以上Hv690以下とすることが提案されている。   For this reason, in Patent Document 1, in order to reduce the tensile stress generated between the core portion and the surface layer portion, and to suppress damage of the internal origin type that occurs in the core portion, carburization or at least one of the inner ring and the outer ring It has been proposed to perform surface hardening treatment of carbonitriding and to set the hardness of the surface layer portion of at least one of the inner ring and the outer ring to Hv550 or higher and Hv690 or lower.

また、特許文献2では、芯部で生じる内部起点型の破損を抑制するために、バックアップロール用軸受の内輪を、平均粒子径3μm以上30μm以下の酸化物系介在物が単位面積(160mm2 )当たり80個以下で、そのうち平均粒子径10μm以上の酸化物系介在物の構成比率が2%未満である軸受鋼で形成することが提案されている。 Further, in Patent Document 2, in order to suppress internal origin type breakage that occurs in the core portion, the inner ring of the backup roll bearing is made of oxide inclusions having an average particle diameter of 3 μm or more and 30 μm or less in unit area (160 mm 2 ). It has been proposed to form a bearing steel having a structure ratio of oxide inclusions of not more than 80 per particle, of which the average particle diameter is 10 μm or more and less than 2%.

ところで、バックアップロール用軸受の使用環境が更に過酷になるにつれて、上述した特許文献1や特許文献2に記載の技術では、上述した内部起点型の破損を生じ難くして、長寿命に加え、優れた耐荷重性及び耐衝撃性を得ることが難しくなってきている。
このため、近年、鋼のオーステナイト結晶粒径を微細化することで、材料強度を高める技術が注目を集めている。
オーステナイト結晶粒径は、焼入れ前の組織に依存しているため、焼入れ前の組織が微細である程、焼入れ後にオーステナイトの核生成サイトが増加して、オーステナイト結晶粒径を微細化することができる。ここで、焼入れ前の組織を微細化するためには、浸炭又は浸炭窒化後の冷却速度を速くすることが効果的であると言われている。
By the way, as the usage environment of the backup roll bearing becomes more severe, the techniques described in Patent Document 1 and Patent Document 2 described above make it difficult to cause the above-described internal origin type breakage, and in addition to a long life, excellent It has become difficult to obtain high load resistance and impact resistance.
For this reason, in recent years, a technique for increasing material strength by refining the austenite grain size of steel has attracted attention.
Since the austenite crystal grain size depends on the structure before quenching, the finer the structure before quenching, the more austenite nucleation sites increase after quenching, and the austenite crystal grain size can be refined. . Here, it is said that it is effective to increase the cooling rate after carburizing or carbonitriding in order to refine the structure before quenching.

特開2000−314427号公報JP 2000-314427 A 特開2004−84869号公報JP 2004-84869 A

しかしながら、上述した結晶粒径の微細化技術を、バックアップロール用軸受のような大型軸受(例えば、内径120m以上の軸受)の転動部材に適用しようとした場合には、以下に示す不具合が生じる。すなわち、バックアップロール用軸受のような大型軸受では、転動部材の素材として焼入れ性の良好な鋼種を用いていることから、浸炭又は浸炭窒化後に焼入れで急速に冷却すると、組織全体が不均一な冷却によってマルテンサイトに変態するため、焼歪みによる変形が大きくなり、生産性が良好ではなくなる。
そこで、本発明は、バックアップロール用軸受のような大型軸受の転動部材を製造する場合であっても、大きな変形を生じることなく、内部起点型の破損を生じ難くできるようにすることを課題としている。
However, when the above-described crystal grain refinement technique is applied to a rolling member of a large bearing (for example, a bearing having an inner diameter of 120 m or more) such as a backup roll bearing, the following problems occur. . That is, in a large-sized bearing such as a backup roll bearing, since the steel material having good hardenability is used as the material of the rolling member, the entire structure is not uniform when rapidly cooled by quenching after carburizing or carbonitriding. Since it transforms into martensite by cooling, deformation due to burning strain becomes large and productivity is not good.
Accordingly, the present invention is intended to make it difficult to cause internal origin type damage without causing large deformation even when a rolling member of a large-sized bearing such as a backup roll bearing is manufactured. It is said.

このような課題を解決するために、本発明は、浸炭又は浸炭窒化後の冷却を、15℃/min以上300℃/min以下の冷却速度で行った後に、焼入れ及び焼戻しを行うことを特徴とする鋼の熱処理方法を提供する。
本発明に係る鋼の熱処理方法によれば、浸炭又は浸炭窒化後の冷却を、15℃/min以上300℃/min以下の冷却速度で行うことにより、素材として焼入れ性が良好な鋼を用いた場合であっても、組織全体が均一な冷却によってマルテンサイトに変態するため、大きな変形を生じることなく、鋼の芯部のオーステナイト結晶粒径や残留引っ張り応力に起因する内部起点型の破損を生じ難くできる。
In order to solve such problems, the present invention is characterized in that quenching and tempering are performed after cooling after carburizing or carbonitriding at a cooling rate of 15 ° C./min to 300 ° C./min. A method for heat treating steel is provided.
According to the heat treatment method for steel according to the present invention, steel having good hardenability is used as a material by performing cooling after carburizing or carbonitriding at a cooling rate of 15 ° C./min to 300 ° C./min. Even in this case, since the entire structure is transformed into martensite by uniform cooling, the internal origin type damage caused by the austenite grain size of the steel core and residual tensile stress occurs without causing large deformation. It can be difficult.

本発明はまた、互いに対向配置される軌道面を有する第1部材及び第2部材と、前記第1部材及び前記第2部材の間に転動自在に配置され、前記軌道面に対する転動面を有する転動体と、を転動部材として備え、前記転動体が転動することにより、前記第1部材及び前記第2部材のうち一方が他方に対して相対移動する転がり支持装置の前記転動部材を製造する方法において、鋼からなる素材を所定形状に加工した後に、浸炭又は浸炭窒化と、冷却速度が15℃/min以上300℃/min以下の冷却と、焼入れ及び焼戻しとをこの順で施すことにより、その芯部のオーステナイト結晶粒径を、平均値が19.2μm以下で、標準偏差が5.5以下とすることを特徴とする転がり支持装置の転動部材の製造方法を提供する。   The present invention also includes a first member and a second member having raceway surfaces arranged opposite to each other, and a rollable surface disposed between the first member and the second member, the rolling surface with respect to the raceway surface. The rolling member of the rolling support device in which one of the first member and the second member moves relative to the other when the rolling member rolls. In this method, after a steel material is processed into a predetermined shape, carburization or carbonitriding, cooling at a cooling rate of 15 ° C./min to 300 ° C./min, quenching and tempering are performed in this order. Accordingly, the present invention provides a method for producing a rolling member of a rolling support device, characterized in that the austenite grain size of the core is 19.2 μm or less and the standard deviation is 5.5 or less.

ここで、芯部のオーステナイト結晶粒径を平均値が19.2μmよりも大きくなったり、標準偏差が5.5よりも大きくなると、結晶粒の微細化による内部起点型剥離の抑制効果が得られなくなる。なお、大きな変形を生じることなく、内部起点型の破損を確実に生じ難くするためには、浸炭又は浸炭窒化後の冷却を、冷却速度が30℃/min以上300℃/min以下で行って、芯部のオーステナイト結晶粒径の平均値を17.8μm以下とし、その標準偏差を4.8以下にすることが好ましい。   Here, when the average value of the austenite crystal grain size in the core is larger than 19.2 μm or the standard deviation is larger than 5.5, the effect of suppressing the internal origin type peeling due to the refinement of crystal grains is obtained. Disappear. In order to reliably prevent internal origin type damage without causing large deformation, cooling after carburizing or carbonitriding is performed at a cooling rate of 30 ° C./min to 300 ° C./min, It is preferable that the average value of the austenite grain size of the core is 17.8 μm or less and the standard deviation thereof is 4.8 or less.

本発明によれば、上述した本発明に係る鋼の熱処理方法を用いて、転動部材の芯部のオーステナイト結晶粒径を、平均値が19.2μm以下で、標準偏差が5.5以下となるようにしたことにより、転動部材をなす素材として焼入れ性の良好な鋼を用いた場合であっても、転動部材に大きな変形を生じることなく、転動部材の芯部のオーステナイト結晶粒径や残留引っ張り応力に起因する内部起点型の破損を生じ難くできる。   According to the present invention, using the steel heat treatment method according to the present invention described above, the average austenite grain size of the core of the rolling member is 19.2 μm or less and the standard deviation is 5.5 or less. As a result, even when a steel having good hardenability is used as a material for forming the rolling member, austenite crystal grains in the core of the rolling member without causing large deformation in the rolling member. It is possible to make it difficult to cause breakage of the internal origin type due to the diameter and residual tensile stress.

よって、本発明に係る製造方法で得られた転動部材を用いることにより、バックアップローラ用軸受のような大型の転がり支持装置においても、長寿命に加えて、優れた耐荷重性及び耐衝撃性を得ることができる。
また、転がり支持装置の転動部材をなす鋼の組織は、組成の揺らぎ(偏析)や鍛造の影響を受けて、混粒となっていることが一般的である。このため、広い視野で観察すると、正確に粒度を把握することが困難であり、一方、JIS G 0551に規定されている結晶粒度の顕微鏡試験方法を用いて狭い視野で観察すると、1視野の観察で組織全体の粒度を把握することが困難である。
Therefore, by using the rolling member obtained by the manufacturing method according to the present invention, in a large-sized rolling support device such as a backup roller bearing, in addition to long life, excellent load resistance and impact resistance Can be obtained.
Further, the steel structure forming the rolling member of the rolling support device is generally mixed and affected by composition fluctuation (segregation) and forging. For this reason, when observing with a wide field of view, it is difficult to accurately grasp the grain size. On the other hand, when observing with a narrow field of view using the crystal grain size microscopic test method defined in JIS G 0551, observation of one field of view It is difficult to grasp the granularity of the entire organization.

したがって、本発明者は、混粒の影響を受けずに、転動部材の芯部全体の旧オーステナイト結晶粒径を把握できる方法について鋭意検討を重ねた結果、1視野あたりの面積を30000μm2 以上500000μm2 以下として、30視野以上ランダムに観察することにより、転動部材の芯部のオーステナイト結晶粒径を正確に把握できることを見出した。
すなわち、本発明に係る転がり支持装置の転動部材の製造方法において、前記オーステナイト結晶粒径は、1視野あたり30000μm2 以上500000μm2 以下で30視野以上観察して得られた値とすることが好ましい。
Therefore, as a result of intensive studies on a method for grasping the prior austenite crystal grain size of the entire core portion of the rolling member without being affected by the mixed grains, the inventor has obtained an area per field of view of 30000 μm 2 or more. It was found that the austenite grain size of the core part of the rolling member can be accurately grasped by randomly observing 30 fields or more at 500,000 μm 2 or less.
That is, in the method for producing a rolling member of a rolling support device according to the present invention, the austenite crystal grain size is preferably a value obtained by observing 30 or more fields at 30000 μm 2 or more and 500000 μm 2 or less per field of view. .

以下、本発明に係る鋼の熱処理方法について、詳細に説明する。
まず、混合ガス(例えば、RXガス+エンリッチガス)を導入した炉内で加熱保持することによる「浸炭」を行うか、混合ガス(例えば、RXガス+エンリッチガス+アンモニアガス)を導入した炉内で加熱保持することによる「浸炭窒化」を行う。
次に、冷却速度が15℃/min以上300℃/min以下の範囲で、空冷、炉冷、ガス冷等で放冷する冷却を行う。ここで、冷却速度を15℃/minよりも遅くすると、芯部のオーステナイト結晶粒径を十分に微細化できずに、内部起点型の破損を十分に抑制できなくなる。一方、冷却速度を300℃/minよりも速くすると、組織全体が不均一な冷却によってマルテンサイトに変態するため、焼歪みによる変形が大きくなる。
Hereinafter, the heat treatment method for steel according to the present invention will be described in detail.
First, “carburization” is performed by heating and holding in a furnace in which a mixed gas (for example, RX gas + enriched gas) is introduced, or in a furnace in which a mixed gas (for example, RX gas + enriched gas + ammonia gas) is introduced. "Carbonitriding" is carried out by heating and holding.
Next, cooling in which the cooling rate is 15 ° C./min or more and 300 ° C./min or less is performed by air cooling, furnace cooling, gas cooling, or the like. Here, if the cooling rate is slower than 15 ° C./min, the austenite crystal grain size in the core cannot be sufficiently refined, and the internal origin type breakage cannot be sufficiently suppressed. On the other hand, when the cooling rate is higher than 300 ° C./min, the entire structure is transformed into martensite by non-uniform cooling, and deformation due to burning strain increases.

なお、大きな変形を生じることなく、内部起点型の破損を確実に生じ難くするためには、浸炭又は浸炭窒化後の冷却を、冷却速度が30℃/min以上300℃/min以下で行うことが好ましい。
次に、再度A1変態点以上の温度に加熱した後に、水冷や油冷等で急冷する焼入れを行った後に、焼戻しを行う。この焼戻しは、鋼に大きな変形を生じることなく、鋼の芯部におけるオーステナイト結晶粒径を微細化するために、低温(例えば、150〜220℃程度)で行うことが好ましい。
In order to reliably prevent internal origin type damage without causing large deformation, cooling after carburizing or carbonitriding should be performed at a cooling rate of 30 ° C./min to 300 ° C./min. preferable.
Next, after heating again to a temperature equal to or higher than the A1 transformation point, quenching is performed by quenching with water cooling or oil cooling, and then tempering is performed. This tempering is preferably performed at a low temperature (for example, about 150 to 220 ° C.) in order to reduce the austenite crystal grain size in the core of the steel without causing significant deformation of the steel.

なお、本発明に係る転がり支持装置とは、例えば、転がり軸受、ボールねじ、リニアガイドを指す。ここで、転がり支持装置が転がり軸受の場合には、第1部材及び第2部材は内輪及び外輪を指し、同様に、転がり支持装置がボールねじの場合には、第1部材及び第2部材はねじ軸及びナットを、転がり支持装置がリニアガイドの場合には、第1部材及び第2部材は案内レール及びスライダをそれぞれ指す。   The rolling support device according to the present invention refers to, for example, a rolling bearing, a ball screw, and a linear guide. Here, when the rolling support device is a rolling bearing, the first member and the second member refer to the inner ring and the outer ring. Similarly, when the rolling support device is a ball screw, the first member and the second member are When the rolling support device is a linear guide, the first member and the second member indicate a guide rail and a slider, respectively.

また、本発明に係る芯部とは、浸炭又は浸炭窒化による影響を受けていない部分(浸炭層又は浸炭窒化層よりも深い部分)を指す。
さらに、本発明で用いる鋼としては、例えば、SMn420,SMn420C等のマンガン鋼や、SCr415,SCr420等のクロム鋼や、SCM415,SCM420等のクロムモリブデン鋼や、SNC415等のニッケルクロム鋼や、SNCM420,SNCM815等のニッケルクロムモリブデン鋼の浸炭鋼を好適に用いることができる。
Moreover, the core part which concerns on this invention points out the part (part deeper than a carburizing layer or a carbonitriding layer) which is not influenced by carburizing or carbonitriding.
Furthermore, as the steel used in the present invention, for example, manganese steel such as SMn420 and SMn420C, chromium steel such as SCr415 and SCr420, chromium molybdenum steel such as SCM415 and SCM420, nickel chromium steel such as SNC415, SNCM420, A carburized steel of nickel chrome molybdenum steel such as SNCM815 can be suitably used.

本発明に係る鋼の熱処理方法によれば、浸炭又は浸炭窒化後の冷却を、15℃/min以上300℃/min以下の冷却速度で行った後に、焼入れ及び焼戻しを行うことにより、鋼からなる素材に大きな変形を生じることなく、内部起点型の破損を生じ難くできる。 また、本発明に係る転がり支持装置の転動部材の製造方法によれば、本発明に係る鋼の熱処理方法を用いて、転動部材の芯部のオーステナイト結晶粒径を、平均値が19.2μm以下で、標準偏差が5.5以下となるようにすることにより、転動部材に大きな変形を生じることなく、転動部材の芯部で内部起点型の破損を生じ難くできる。
よって、本発明に係る製造方法で得られた転動部材を用いることにより、バックアップロール用軸受のような大型の転がり支持装置においても、長寿命に加えて、優れた耐荷重性及び耐衝撃性を得ることができる。
According to the heat treatment method for steel according to the present invention, the steel is made by quenching and tempering after cooling after carburizing or carbonitriding at a cooling rate of 15 ° C./min to 300 ° C./min. It is possible to make it difficult to cause internal origin type breakage without causing large deformation in the material. Moreover, according to the manufacturing method of the rolling member of the rolling support device according to the present invention, the average value of the austenite grain size of the core part of the rolling member is 19. By setting the standard deviation to be 2 μm or less and having a standard deviation of 5.5 or less, it is possible to make it difficult to cause internal origin type damage at the core of the rolling member without causing significant deformation of the rolling member.
Therefore, by using the rolling member obtained by the manufacturing method according to the present invention, in addition to a long life, excellent load resistance and impact resistance can be obtained even in a large-sized rolling support device such as a backup roll bearing. Can be obtained.

以下、本発明の実施形態について図面を参照しながら説明する。
本実施形態では、図1に示す日本精工株式会社製呼び番号NU228(内径:140mm,外径:250mm,幅:42mm)の円筒ころ軸受を、以下に示す手順で作製した。 この円筒ころ軸受は、図1に示すように、互いに対向配置される軌道面1a,2aを有する内輪(第1部材)1及び外輪(第2部材)2と、この内輪1及び外輪2の間に転動自在に配置され、軌道面に対する表面(転動面)を有するころ(転動体)3と、保持器4と、を備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the present embodiment, a cylindrical roller bearing having a designation number NU228 (inner diameter: 140 mm, outer diameter: 250 mm, width: 42 mm) manufactured by NSK Ltd. shown in FIG. 1 was produced by the following procedure. As shown in FIG. 1, the cylindrical roller bearing includes an inner ring (first member) 1 and an outer ring (second member) 2 having raceway surfaces 1 a and 2 a arranged to face each other, and an inner ring 1 and an outer ring 2. And a roller (rolling element) 3 having a surface (rolling surface) with respect to the raceway surface, and a cage 4.

内輪1、外輪2、及びころ3は、以下に示す手順で作製した。
まず、ニッケルクロムモリブデン鋼(SNCM815)からなる素材を所定形状に加工した後、図2に示すように、混合ガス(RXガス+エンリッチガス)を導入した炉内で所定時間加熱保持する浸炭と、冷却速度を1〜900℃/minの範囲で行う冷却(空冷)と、RXガスを導入した炉内で所定時間加熱した後急冷する焼入れ(油冷)と、焼戻しと、をこの順で施す熱処理を行った。
The inner ring 1, the outer ring 2, and the roller 3 were produced by the following procedure.
First, after processing a material made of nickel chrome molybdenum steel (SNCM815) into a predetermined shape, as shown in FIG. 2, carburization that is heated and held for a predetermined time in a furnace in which a mixed gas (RX gas + enriched gas) is introduced, Heat treatment in which cooling (air cooling) performed at a cooling rate in the range of 1 to 900 ° C./min, quenching (oil cooling) for rapid cooling after heating for a predetermined time in a furnace introduced with RX gas, and tempering in this order Went.

このようにして得られた内輪1の観察検査用サンプルを用いて、芯部(炭素含有率と窒素含有率とが素材と同じ部分)のオーステナイト結晶粒径(γ結晶粒径)の平均値と標準偏差とを、以下に示す手順で測定した。
オーステナイト結晶粒径の平均値は、まず、内輪1を切断して、その切断面を研磨した後、飽和ピクリン酸溶液でエッチングすることにより、芯部のオーステナイト粒界を現出させた。次に、オーステナイト結晶粒界を現出させた芯部において、50視野(1視野あたり30000〜500000μm2 )の写真を、光学顕微鏡(200〜1000倍)を用いて撮影した。次に、得られた写真を用いてオーステナイト結晶粒径を測定し、50視野の平均値を算出した。また、得られた写真を用いて、オーステナイト結晶粒径の標準偏差を算出した。これらの結果は、表1に併せて示した。
Using the sample for observation and inspection of the inner ring 1 obtained in this way, the average value of the austenite crystal grain size (γ crystal grain size) of the core part (the part where the carbon content and nitrogen content are the same as the material) and The standard deviation was measured by the following procedure.
As for the average value of the austenite crystal grain size, first, the inner ring 1 was cut, the cut surface was polished, and then etched with a saturated picric acid solution to reveal the austenite grain boundary in the core. Next, photographs of 50 visual fields (30000 to 500,000 μm 2 per visual field) were taken using an optical microscope (200 to 1000 times) at the core where the austenite grain boundaries appeared. Next, the austenite crystal grain size was measured using the obtained photograph, and the average value of 50 visual fields was calculated. Moreover, the standard deviation of the austenite crystal grain diameter was calculated using the obtained photograph. These results are also shown in Table 1.

また、得られた内輪1の観察検査用サンプルを用いて、内輪1の熱処理前後の真円度を測定し、その寸法差を算出した。この結果は、No.11の寸法差を1とした時の比で、表1に併せて示した。
なお、得られた外輪2及びころ3は、内輪1と同様の熱処理が施されているため、表層部のオーステナイト結晶粒径の平均値及び標準偏差は、上述した内輪1と同様であった。
さらに、得られた内輪1、外輪2、及びころ3の寿命試験用サンプルと、黄銅製のもみぬき保持器4とを用いてころ軸受を組み立てた後、以下に示す条件で寿命試験を行った。<寿命試験条件>
ラジアル荷重:P/C=0.6
回転速度:1000min-1
潤滑油:Ro68
Further, the roundness of the inner ring 1 before and after heat treatment was measured using the obtained sample for observation and inspection of the inner ring 1, and the dimensional difference was calculated. This result is shown in No. Table 1 also shows the ratio when the dimensional difference of 11 is 1.
In addition, since the obtained outer ring 2 and roller 3 were subjected to the same heat treatment as that of the inner ring 1, the average value and standard deviation of the austenite crystal grain size in the surface layer portion were the same as those of the inner ring 1 described above.
Furthermore, after assembling a roller bearing using the obtained inner ring 1, outer ring 2, and roller 3 life test samples and a brass cage holder 4, a life test was performed under the following conditions. . <Life test conditions>
Radial load: P / C = 0.6
Rotational speed: 1000min -1
Lubricating oil: Ro68

Figure 2007169673
Figure 2007169673

表1に示すように、浸炭後の冷却速度を15〜300℃/minとしたNo.1〜No.6では、No.7〜No.11と比べて、長寿命が得られ、変形量が少なかった。
一方、浸炭後の冷却速度を300℃/minよりも速くしたNo.7,No.8では、長寿命は得られたが、変形量が多くなっていた。
また、浸炭後の冷却速度を15℃/minよりも遅くしたNo.9〜No.11では、変形量は小さかったが、短寿命であった。
表1に示す結果に基づいて、浸炭後の冷却速度と、寿命との関係を示す図3のグラフを作成した。図3のグラフから、冷却速度を15℃/min以上にすることで、No.11の1.5倍以上の寿命が得られていることが分かる。
As shown in Table 1, the cooling rate after carburizing was 15 to 300 ° C./min. 1-No. In No. 6, no. 7-No. Compared with 11, a long life was obtained and the amount of deformation was small.
On the other hand, the cooling rate after carburizing was higher than 300 ° C / min. 7, no. In No. 8, a long life was obtained, but the amount of deformation was large.
Moreover, No. which made the cooling rate after carburization slower than 15 degrees C / min. 9-No. In No. 11, the amount of deformation was small, but the life was short.
Based on the result shown in Table 1, the graph of FIG. 3 which shows the relationship between the cooling rate after carburizing and a lifetime was created. From the graph of FIG. 3, by setting the cooling rate to 15 ° C./min or more, No. It can be seen that a life of 1.5 times longer than 11 is obtained.

また、表1に示す結果に基づいて、浸炭後の冷却速度と、変形量との関係を示す図4のグラフを作成した。図4のグラフから、冷却速度を300℃/min以下にすることで、変形量をNo.11の3.2倍以下にできることが分かる。
さらに、表1に示す結果に基づいて、浸炭後の冷却速度と、芯部のオーステナイト結晶粒径の平均値との関係を示す図5のグラフを作成した。図5のグラフから、冷却速度を15〜300℃/minとした範囲では、芯部のオーステナイト結晶粒径が19.2μm以下となっていることが分かる。
さらに、表1に示す結果に基づいて、浸炭後の冷却速度と、芯部のオーステナイト結晶粒径の標準偏差との関係を示す図6のグラフを作成した。図6のグラフから、冷却速度を15〜300℃/minとした範囲では、芯部のオーステナイト結晶粒径の標準偏差が5.5以下となっていることが分かる。
Moreover, based on the results shown in Table 1, the graph of FIG. 4 showing the relationship between the cooling rate after carburizing and the deformation amount was created. From the graph of FIG. 4, the deformation amount is set to No. by setting the cooling rate to 300 ° C./min or less. It can be seen that it can be 3.2 times or less of 11.
Furthermore, based on the results shown in Table 1, the graph of FIG. 5 showing the relationship between the cooling rate after carburizing and the average value of the austenite crystal grain size of the core was prepared. From the graph of FIG. 5, it can be seen that the austenite crystal grain size of the core is 19.2 μm or less in the range where the cooling rate is 15 to 300 ° C./min.
Furthermore, based on the results shown in Table 1, the graph of FIG. 6 showing the relationship between the cooling rate after carburizing and the standard deviation of the austenite crystal grain size in the core was prepared. From the graph of FIG. 6, it can be seen that the standard deviation of the austenite crystal grain size in the core is 5.5 or less in the range where the cooling rate is 15 to 300 ° C./min.

以上の結果から、ころ軸受の内輪1、外輪2、及びころ3を、浸炭鋼からなる素材を所定形状に加工した後、浸炭と、冷却速度が15〜300℃/minの冷却と、焼入れ及び焼戻しとをこの順で施すことで作製し、その芯部において、オーステナイト結晶粒径の平均値を19.2μm以下とし、オーステナイト結晶粒径の標準偏差を5.5以下とすることにより、大きな変形を生じることなく、寿命を長くできることが確認できた。   From the above results, after processing the material made of carburized steel into a predetermined shape for the inner ring 1, outer ring 2 and roller 3 of the roller bearing, carburizing, cooling at a cooling rate of 15 to 300 ° C./min, quenching and It is produced by performing tempering in this order, and in the core portion, the average value of the austenite crystal grain size is set to 19.2 μm or less, and the standard deviation of the austenite crystal grain size is set to 5.5 or less, so that large deformation It was confirmed that the life could be extended without causing

本発明に係る転がり支持装置の一例として、ころ軸受を示す断面図である。It is sectional drawing which shows a roller bearing as an example of the rolling support apparatus which concerns on this invention. 本発明に係る鋼の熱処理の一例を示す図である。It is a figure which shows an example of the heat processing of the steel which concerns on this invention. 浸炭後の冷却速度と、寿命との関係を示す図である。It is a figure which shows the relationship between the cooling rate after carburizing, and lifetime. 浸炭後の冷却速度と、変形量との関係を示す図である。It is a figure which shows the relationship between the cooling rate after carburizing, and a deformation amount. 浸炭後の冷却速度と、芯部のオーステナイト結晶粒径の平均値との関係を示す図である。It is a figure which shows the relationship between the cooling rate after carburizing, and the average value of the austenite crystal grain diameter of a core part. 浸炭後の冷却速度と、芯部のオーステナイト結晶粒径の標準偏差との関係を示す図である。It is a figure which shows the relationship between the cooling rate after carburizing, and the standard deviation of the austenite crystal grain diameter of a core part.

符号の説明Explanation of symbols

1 内輪(第1部材)
1a 軌道面
2 外輪(第2部材)
2a 軌道面
3 転動体
1 Inner ring (first member)
1a Raceway surface 2 Outer ring (second member)
2a Raceway surface 3 Rolling element

Claims (4)

浸炭又は浸炭窒化後の冷却を、15℃/min以上300℃/min以下の冷却速度で行った後に、焼入れ及び焼戻しを行うことを特徴とする鋼の熱処理方法。   A steel heat treatment method characterized by performing quenching and tempering after cooling after carburizing or carbonitriding at a cooling rate of 15 ° C / min to 300 ° C / min. 互いに対向配置される軌道面を有する第1部材及び第2部材と、前記第1部材及び前記第2部材の間に転動自在に配置され、前記軌道面に対する転動面を有する転動体と、を転動部材として備え、前記転動体が転動することにより、前記第1部材及び前記第2部材のうち一方が他方に対して相対移動する転がり支持装置の前記転動部材を製造する方法において、
鋼からなる素材を所定形状に加工した後、浸炭又は浸炭窒化と、冷却速度が15℃/min以上300℃/min以下の冷却と、焼入れ及び焼戻しと、をこの順で施すことにより、
その芯部のオーステナイト結晶粒径を、平均値が19.2μm以下で、標準偏差が5.5以下とすることを特徴とする転がり支持装置の転動部材の製造方法。
A first member and a second member having raceway surfaces arranged to face each other; a rolling element which is disposed between the first member and the second member so as to freely roll and has a rolling surface with respect to the raceway surface; In the method of manufacturing the rolling member of the rolling support device in which one of the first member and the second member moves relative to the other by rolling the rolling element. ,
After processing the material made of steel into a predetermined shape, carburizing or carbonitriding, cooling at a cooling rate of 15 ° C./min to 300 ° C./min, quenching and tempering in this order,
A method for producing a rolling member of a rolling support device, characterized in that an average austenite grain size of the core is 19.2 μm or less and a standard deviation is 5.5 or less.
前記オーステナイト結晶粒径は、1視野あたり30000μm2 以上500000μm2 以下で30視野以上観察して得られた値とすることを特徴とする請求項2に記載の転がり支持装置の転動部材の製造方法。 3. The method for producing a rolling member of a rolling support device according to claim 2, wherein the austenite crystal grain size is a value obtained by observing 30 or more fields of view at 30000 μm 2 or more and 500000 μm 2 or less per field of view. . 互いに対向配置される軌道面を有する第1部材及び第2部材と、前記第1部材及び前記第2部材の間に転動自在に配置され、前記軌道面に対する転動面を有する転動体と、を転動部材として備え、前記転動体が転動することにより、前記第1部材及び前記第2部材のうち一方が他方に対して相対移動する転がり支持装置において、
前記第1部材、前記第2部材、及び前記転動体のうち少なくとも一つの転動部材は、請求項2又は3に記載の製造方法で得られた転動部材であることを特徴とする転がり支持装置。
A first member and a second member having raceway surfaces arranged to face each other; a rolling element which is disposed between the first member and the second member so as to freely roll and has a rolling surface with respect to the raceway surface; In a rolling support device in which one of the first member and the second member moves relative to the other by rolling the rolling element.
The rolling support according to claim 2, wherein at least one of the first member, the second member, and the rolling element is a rolling member obtained by the manufacturing method according to claim 2. apparatus.
JP2005364976A 2005-12-19 2005-12-19 Heat-treatment method for steel, method for producing rolling member in rolling-support device and rolling-support device Pending JP2007169673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364976A JP2007169673A (en) 2005-12-19 2005-12-19 Heat-treatment method for steel, method for producing rolling member in rolling-support device and rolling-support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364976A JP2007169673A (en) 2005-12-19 2005-12-19 Heat-treatment method for steel, method for producing rolling member in rolling-support device and rolling-support device

Publications (1)

Publication Number Publication Date
JP2007169673A true JP2007169673A (en) 2007-07-05

Family

ID=38296623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364976A Pending JP2007169673A (en) 2005-12-19 2005-12-19 Heat-treatment method for steel, method for producing rolling member in rolling-support device and rolling-support device

Country Status (1)

Country Link
JP (1) JP2007169673A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417965A (en) * 2011-11-22 2012-04-18 洛阳中创重型机械有限公司 Post-forging heat treatment process for 45Cr4NiMoV alloy steel large back-up rolls of rolling mills
JP2012526247A (en) * 2009-05-06 2012-10-25 アクツィエブーラゲート エスケイエフ Race element and bearing device for large rolling bearing
CN106521402A (en) * 2016-11-29 2017-03-22 金川集团股份有限公司 Whole heat treatment method for 23CrNi3MoA hollow steel rock drill rod
CN114310494A (en) * 2021-12-22 2022-04-12 中国科学院金属研究所 Steel bearing ring and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525609A (en) * 1991-07-18 1993-02-02 Nippon Seiko Kk Rolling bearing
JPH06108226A (en) * 1992-09-30 1994-04-19 Daido Steel Co Ltd Carburizing heat treatment of steel-made parts
JPH10168515A (en) * 1996-10-11 1998-06-23 Nippon Seiko Kk Heat treated article
JP2001098343A (en) * 1999-07-21 2001-04-10 Daido Steel Co Ltd High bearing pressure resistant member and producing method thereof
JP2003226919A (en) * 2001-11-29 2003-08-15 Ntn Corp Bearing part and roll bearing
JP2004183804A (en) * 2002-12-04 2004-07-02 Ntn Corp Thrust ball bearing, and method for manufacturing the same
JP2005076111A (en) * 2003-09-03 2005-03-24 Nsk Ltd Method for quenching annular member made of steel
JP2005076080A (en) * 2003-08-29 2005-03-24 Ntn Corp Bearing component, heat treatment method therefor, heat treatment apparatus and rolling bearing
JP2005299914A (en) * 2003-06-05 2005-10-27 Ntn Corp Rolling bearing, cam follower with roller, and cam

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525609A (en) * 1991-07-18 1993-02-02 Nippon Seiko Kk Rolling bearing
JPH06108226A (en) * 1992-09-30 1994-04-19 Daido Steel Co Ltd Carburizing heat treatment of steel-made parts
JPH10168515A (en) * 1996-10-11 1998-06-23 Nippon Seiko Kk Heat treated article
JP2001098343A (en) * 1999-07-21 2001-04-10 Daido Steel Co Ltd High bearing pressure resistant member and producing method thereof
JP2003226919A (en) * 2001-11-29 2003-08-15 Ntn Corp Bearing part and roll bearing
JP2004183804A (en) * 2002-12-04 2004-07-02 Ntn Corp Thrust ball bearing, and method for manufacturing the same
JP2005299914A (en) * 2003-06-05 2005-10-27 Ntn Corp Rolling bearing, cam follower with roller, and cam
JP2005076080A (en) * 2003-08-29 2005-03-24 Ntn Corp Bearing component, heat treatment method therefor, heat treatment apparatus and rolling bearing
JP2005076111A (en) * 2003-09-03 2005-03-24 Nsk Ltd Method for quenching annular member made of steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526247A (en) * 2009-05-06 2012-10-25 アクツィエブーラゲート エスケイエフ Race element and bearing device for large rolling bearing
JP2015232396A (en) * 2009-05-06 2015-12-24 アクツィエブーラゲート エスケイエフAktiebolaget SKF Raceway element for large roller bearing and bearing device
CN102417965A (en) * 2011-11-22 2012-04-18 洛阳中创重型机械有限公司 Post-forging heat treatment process for 45Cr4NiMoV alloy steel large back-up rolls of rolling mills
CN106521402A (en) * 2016-11-29 2017-03-22 金川集团股份有限公司 Whole heat treatment method for 23CrNi3MoA hollow steel rock drill rod
CN114310494A (en) * 2021-12-22 2022-04-12 中国科学院金属研究所 Steel bearing ring and preparation method thereof
CN114310494B (en) * 2021-12-22 2023-12-08 中国科学院金属研究所 Steel bearing ring and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5489111B2 (en) Bearing parts, rolling bearings and bearing parts manufacturing method
JP4810157B2 (en) Rolling bearing
JP2005201349A (en) Rolling bearing and heat treatment method of steel
WO2016208343A1 (en) Method for producing bearing part
JP2009204024A (en) Large rolling bearing
JP2014020538A (en) Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment
JPH09257041A (en) Rolling bearing resistant for surface flaw
JP2007169673A (en) Heat-treatment method for steel, method for producing rolling member in rolling-support device and rolling-support device
JP2007113027A (en) Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus
JP2009203526A (en) Rolling bearing
JP2007186760A (en) Manufacturing method of bearing ring for rolling bearing, and rolling bearing
JP2007154281A (en) Rolling-support apparatus
JP2008297620A (en) Method for quenching high carbon-chromium bearing steel, high carbon-chromium bearing steel and bearing part and rolling bearing
WO2022202922A1 (en) Track wheel and shaft
JP2010024492A (en) Heat-treatment method for steel, method for manufacturing machine component, and machine component
JP2006328514A (en) Rolling supporting device
JP2006299313A (en) Rolling supporter
JP2007024250A (en) Pinion shaft
JP4807146B2 (en) Method for manufacturing pinion shaft and method for manufacturing planetary gear device
JP2009270172A (en) Method for manufacturing bearing ring for rolling bearing
JP2010209965A (en) Cage for rolling bearing
JP2007232201A (en) Rolling bearing
JP5286795B2 (en) Pinion shaft and planetary gear device
JP2006002194A (en) Method for manufacturing shaft
JP2019203158A (en) Manufacturing method of bearing part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Effective date: 20101130

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110406

Free format text: JAPANESE INTERMEDIATE CODE: A02