JP2007154281A - Rolling-support apparatus - Google Patents

Rolling-support apparatus Download PDF

Info

Publication number
JP2007154281A
JP2007154281A JP2005353441A JP2005353441A JP2007154281A JP 2007154281 A JP2007154281 A JP 2007154281A JP 2005353441 A JP2005353441 A JP 2005353441A JP 2005353441 A JP2005353441 A JP 2005353441A JP 2007154281 A JP2007154281 A JP 2007154281A
Authority
JP
Japan
Prior art keywords
rolling
content
surface layer
mass
layer portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005353441A
Other languages
Japanese (ja)
Other versions
JP4857746B2 (en
Inventor
Toru Ueda
徹 植田
Naoya Seno
直也 瀬野
Koji Ueda
光司 植田
Nobuaki Mitamura
宣晶 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005353441A priority Critical patent/JP4857746B2/en
Publication of JP2007154281A publication Critical patent/JP2007154281A/en
Application granted granted Critical
Publication of JP4857746B2 publication Critical patent/JP4857746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling-support apparatus with which even in the case of using this apparatus under lubrication mixed with foreign matter, early exfoliation is hardly caused and long service life can be obtained. <P>SOLUTION: At least one of rolling members among an inner race 1, an outer race 2 and a ball 3 constituting a deep groove ball bearing, are produced by applying a heat-treatment including carbo-nitriding or nitriding after working a blank composed of a steel into a prescribed shape, and the abundance ratio of the nitride containing Si and Mn on this rolling surface is 1.0-20.0% area ratio and N content on the surface layer part forming the rolling surface is made ≥0.2 mass%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、転がり軸受、ボールねじ、リニアガイド等の転がり支持装置に関する。   The present invention relates to a rolling support device such as a rolling bearing, a ball screw, and a linear guide.

自動車、農業機械、建設機械、鉄鋼機械等のトランスミッションやエンジンで用いられる転がり軸受は、潤滑油中に金属の切粉、削り屑、バリ、摩耗粉等の異物が混入した条件下(以下、「異物混入潤滑下」と記す。)で使用されることが多いため、軌道輪や転動体に異物による早期剥離が生じて、大幅に寿命が低下する場合がある。
このような異物混入潤滑下における早期剥離は、軌道輪と転動体との間に異物が噛み込むことで転がり面に形成された圧痕のエッジ部(以下、「圧痕縁」と記す。)に、応力集中が生じることが原因であると言われている。
Rolling bearings used in transmissions and engines of automobiles, agricultural machinery, construction machinery, steel machinery, etc. are under conditions where foreign matters such as metal chips, shavings, burrs, and abrasion powder are mixed in the lubricating oil (hereinafter referred to as “ In many cases, it is used as "under lubrication mixed with foreign matter."), And there is a case where the raceway or rolling element is prematurely peeled off by foreign matter, resulting in a significant decrease in service life.
Such early peeling under foreign matter-mixed lubrication is performed on the edge portion of the indentation (hereinafter referred to as “indentation edge”) formed on the rolling surface by foreign matter biting between the raceway and the rolling element. It is said that the cause is stress concentration.

そこで、本出願人は、異物混入潤滑下で転がり面に圧痕が形成された場合であっても、圧痕縁への応力集中を緩和するために、特許文献1において、内外輪のうち少なくとも一つの軌道面をなす表層部と、転動体の転動面をなす表層部の残留オーステナイト量を20体積%以上45体積%以下とし、さらに、転動体の転動面をなす表層部の炭窒化物の含有率を体積比で5%以上15%以下とすることを提案している。
特開昭64−55423号公報
Therefore, in order to alleviate the stress concentration on the indentation edge even in the case where the indentation is formed on the rolling surface under the contamination with foreign matters, the applicant of the present application disclosed in Patent Document 1 at least one of the inner and outer rings. The amount of retained austenite of the surface layer portion forming the raceway surface and the surface layer portion forming the rolling surface of the rolling element is set to 20% by volume or more and 45% by volume or less, and the carbonitride of the surface layer portion forming the rolling surface of the rolling element It has been proposed that the content is 5% to 15% by volume.
Japanese Patent Laid-Open No. 64-55423

ところで、近年、異物混入潤滑下で生じる早期剥離は、上述した圧痕縁への応力集中だけでなく、軌道輪と転動体との転がり面に作用する接線力が原因となっていることが分かってきている。接線力に影響を及ぼす要因としては、転がり面のすべり速度や面圧の他に、転がり面の表面形状や表面粗さ等が挙げられる。すなわち、異物混入潤滑下において早期剥離を生じ難くするためには、転がり面に形成された圧痕縁への応力集中を抑制するとともに、転がり面に作用する接線力を小さくする必要がある。   By the way, in recent years, it has been found that the early peeling that occurs under the contamination with foreign matter is caused not only by the stress concentration on the indentation edge described above but also by the tangential force acting on the rolling surface between the race and the rolling element. ing. Factors affecting the tangential force include the surface shape and surface roughness of the rolling surface in addition to the sliding speed and surface pressure of the rolling surface. That is, in order to make it difficult for early peeling to occur under lubrication mixed with foreign matter, it is necessary to suppress stress concentration on the indentation edge formed on the rolling surface and to reduce the tangential force acting on the rolling surface.

しかしながら、上述した特許文献1では、圧痕縁への応力集中を抑制するために、転がり面をなす表層部の残留オーステナイト量を多くしているため、表層部の硬さが小さくなり、耐摩耗性や耐圧痕性が低下して、転がり面に異物による圧痕が形成され易くなる場合がある。その結果、形成される圧痕の大きさや数が増大する程、転がり面の形状崩れが起こり易く、表面粗さが大きくなるため、転がり面に作用する接線力が大きくなる。   However, in Patent Document 1 described above, in order to suppress stress concentration on the indentation edge, the amount of retained austenite in the surface layer portion that forms the rolling surface is increased, so that the hardness of the surface layer portion is reduced and wear resistance is increased. In some cases, the indentation resistance is lowered, and the indentation due to the foreign matter is easily formed on the rolling surface. As a result, as the size and number of indentations to be formed increase, the shape of the rolling surface tends to collapse and the surface roughness increases, so the tangential force acting on the rolling surface increases.

ここで、転がり面に作用する接線力が大きくなった場合であっても、上述した特許文献1に記載の転がり軸受において、表層部の残留オーステナイト量が多い転動体には早期剥離が生じ難くなる。ところが、転がり接触する二つの部材間では同じ大きさの接線力が作用するため、上述した転動体と転がり接触する内外輪の表層部の残留オーステナイト量が転動体の表層部よりも少ない場合には、内外輪の転がり面に接線力の増大による早期剥離が生じ、結果として、転がり軸受全体の寿命を長くすることができなくなる。   Here, even when the tangential force acting on the rolling surface is increased, in the rolling bearing described in Patent Document 1 described above, early peeling is unlikely to occur in the rolling element having a large amount of retained austenite in the surface layer portion. . However, since the same tangential force acts between the two members that are in rolling contact, the amount of retained austenite in the surface layer portion of the inner and outer rings that is in rolling contact with the rolling element described above is less than the surface layer portion of the rolling element. As a result, early peeling due to an increase in tangential force occurs on the rolling surfaces of the inner and outer rings, and as a result, the life of the entire rolling bearing cannot be extended.

また、表層部に存在する残留オーステナイトは、寸法安定性を劣化させるため、上述した特許文献1に記載の転がり軸受は、異物混入潤滑下で且つ高温下で使用される場合に好適に用いることが難しい。
そこで、本発明は、異物混入潤滑下で使用された場合であっても、早期剥離が生じ難く、寿命の長い転がり支持装置を提供することを課題としている。
Moreover, since retained austenite existing in the surface layer part deteriorates dimensional stability, the rolling bearing described in Patent Document 1 described above is preferably used when it is used under foreign matter lubrication and at high temperature. difficult.
Accordingly, an object of the present invention is to provide a rolling support device that is less likely to cause early peeling even when used under foreign matter lubrication and has a long life.

このような課題を解決するために、本発明は、互いに対向配置される軌道面を有する第1部材及び第2部材と、前記第1部材及び前記第2部材の間に転動自在に配置され、前記軌道面に対する転動面を有する転動体と、を備え、前記転動体が転動することにより、前記第1部材及び前記第2部材のうち一方が他方に対して相対移動する転がり支持装置において、前記第1部材、前記第2部材、及び前記転動体のうち少なくとも一つの転動部材は、鋼からなる素材を所定形状に加工した後に、浸炭窒化又は窒化を含む熱処理が施されて得られ、その転がり面のSi及びMnを含む窒化物の存在率は、面積比で1.0%以上20.0%以下であるとともに、その転がり面をなす表層部のN含有率は、0.2質量%以上であることを特徴とする転がり支持装置を提供する。   In order to solve such a problem, the present invention is arranged between a first member and a second member having raceway surfaces arranged opposite to each other, and between the first member and the second member so as to be freely rollable. A rolling element having a rolling surface with respect to the raceway surface, and one of the first member and the second member moves relative to the other when the rolling element rolls. The at least one rolling member of the first member, the second member, and the rolling element is obtained by performing a heat treatment including carbonitriding or nitriding after processing a material made of steel into a predetermined shape. In addition, the abundance ratio of the nitride containing Si and Mn on the rolling surface is 1.0% or more and 20.0% or less in terms of area ratio, and the N content in the surface layer portion forming the rolling surface is 0. Rolls characterized by being 2% by mass or more To provide a support device.

なお、本発明の転がり支持装置とは、例えば、転がり軸受、ボールねじ、リニアガイドを指す。ここで、転がり支持装置が転がり軸受の場合には、第1部材及び第2部材は内輪及び外輪を指し、同様に、転がり支持装置がボールねじの場合には、第1部材及び第2部材はねじ軸及びナットを、転がり支持装置がリニアガイドの場合には、第1部材及び第2部材は案内レール及びスライダをそれぞれ指す。また、本発明の転がり面とは、第1部材や第2部材の軌道面や、転動体の転動面を指す。さらに、本発明の表層部とは、転がり面から所定深さ(例えば、50μm)までの部分を指す。   In addition, the rolling support apparatus of this invention points out a rolling bearing, a ball screw, and a linear guide, for example. Here, when the rolling support device is a rolling bearing, the first member and the second member refer to the inner ring and the outer ring. Similarly, when the rolling support device is a ball screw, the first member and the second member are When the rolling support device is a linear guide, the first member and the second member indicate a guide rail and a slider, respectively. Moreover, the rolling surface of this invention points out the track surface of a 1st member or a 2nd member, and the rolling surface of a rolling element. Furthermore, the surface layer portion of the present invention refers to a portion from the rolling surface to a predetermined depth (for example, 50 μm).

本発明によれば、転がり支持装置を構成する第1部材、第2部材、及び転動体のうち少なくとも一つの転動部材において、転がり面のSi及びMnを含む窒化物(以下、「Si−Mn系窒化物」と記す。)の存在率と、転がり面をなす表層部のN含有率とを特定したことにより、その転動部材自身に優れた応力集中抑制作用と、耐圧痕性及び耐摩耗性を付与できるとともに、その転動部材と転がり接触する相手部材との間に作用する接線力を小さくできるため、異物混入下において転がり面に早期剥離が生じ難くなる。   According to the present invention, in at least one rolling member among the first member, the second member, and the rolling element constituting the rolling support device, a nitride containing Si and Mn on the rolling surface (hereinafter referred to as “Si-Mn”). )) And the N content of the surface layer portion forming the rolling surface, the stress concentration suppressing action, the scratch resistance and the wear resistance excellent in the rolling member itself are specified. Since the tangential force acting between the rolling member and the mating member that is in rolling contact can be reduced, early peeling on the rolling surface is less likely to occur when foreign matter is mixed.

また、本発明によれば、転がり面の表層部の残留オーステナイト量以外の構成(Si−Mn系窒化物の存在率やN含有率)を特定することで早期剥離の抑制を図っているため、高温下で使用されても、優れた寸法安定性が得られる。
よって、本発明の転がり支持装置は、異物混入潤滑下で使用された場合であっても、早期剥離が生じ難くなり、寿命が長くなる。
In addition, according to the present invention, early peeling is suppressed by specifying a configuration other than the amount of retained austenite in the surface layer portion of the rolling surface (the abundance and N content of Si-Mn nitride). Excellent dimensional stability is obtained even when used at high temperatures.
Therefore, even if the rolling support device of the present invention is used under foreign matter-mixed lubrication, early peeling is unlikely to occur and the life is extended.

以下、本発明における転がり支持装置を構成する転動部材について、詳細に説明する。 本発明で用いる転動部材は、熱処理後において、転がり面のSi−Mn系窒化物の存在率が1.0%以上20.0%以下となり、且つ、転がり面をなす表層部のN含有率が0.2質量%以上となるように、鋼からなる素材を所定形状に加工した後に、浸炭窒化又は窒化を含む熱処理が施されて得られる。   Hereinafter, the rolling member which comprises the rolling support apparatus in this invention is demonstrated in detail. In the rolling member used in the present invention, the abundance ratio of the Si—Mn nitride on the rolling surface is 1.0% or more and 20.0% or less after the heat treatment, and the N content of the surface layer portion forming the rolling surface Is obtained by performing a heat treatment including carbonitriding or nitriding, after processing the material made of steel into a predetermined shape so that the amount becomes 0.2 mass% or more.

<素材をなす鋼について>
素材をなす鋼としては、Si含有率が0.3質量%以上2.2質量%以下で、Mn含有率が0.3質量%以上2.0質量%以下で、Si含有率とMn含有率との質量比Si/Mnが5以下の鋼を用いることが好ましい。また、転がり面にSi−Mn系窒化物を効率よく析出させ、転がり面をなす表層部に本発明の範囲内のNを固溶させるためには、Si含有率とMn含有率との合計を1質量%以上とすることが好ましい。
<About the steel used as the material>
As the steel constituting the material, the Si content is 0.3 to 2.2% by mass, the Mn content is 0.3 to 2.0% by mass, the Si content and the Mn content It is preferable to use steel having a mass ratio Si / Mn of 5 or less. Further, in order to efficiently precipitate Si-Mn nitride on the rolling surface and to dissolve N within the scope of the present invention in the surface layer portion forming the rolling surface, the sum of the Si content and the Mn content is calculated. It is preferable to set it as 1 mass% or more.

ここで、Si含有率及びMn含有率は、Si−Mn系窒化物を効率よく析出させるために、それぞれ0.3質量%以上とする。一方、Si含有率が多すぎると、加工性や被削性が低下するだけでなく、浸炭窒化特性や窒化特性が低下して、転がり面をなす表層部のN含有率を本発明の範囲内に出来なくなる。また、Mn含有率が多すぎると、熱処理後に転がり面をなす表層部の残留オーステナイト量が多くなり、硬さ、耐摩耗性、及び耐圧痕性が劣化する。よって、Si含有率は2.2質量%以下とし、Mn含有率は2.0質量%以下とすることが好ましい。   Here, the Si content and the Mn content are each 0.3% by mass or more in order to precipitate Si—Mn nitride efficiently. On the other hand, if the Si content is too high, not only the workability and machinability are lowered, but also the carbonitriding characteristics and nitriding characteristics are lowered, and the N content of the surface layer portion forming the rolling surface is within the scope of the present invention. It becomes impossible to. Moreover, when there is too much Mn content, the amount of retained austenite of the surface layer part which makes a rolling surface after heat processing will increase, and hardness, abrasion resistance, and pressure dent will deteriorate. Therefore, the Si content is preferably 2.2% by mass or less, and the Mn content is preferably 2.0% by mass or less.

また、Si−Mn系窒化物は、浸炭窒化又は窒化時に侵入した窒素が、オーステナイト域でMnを取り込みながらSiと反応して析出することで得られる。このため、Si含有率に対してMn含有率が少ないと、窒素を十分に拡散させてもSi−Mn系窒化物の析出が促進され難くなる。よって、素材をなす鋼中のSiとMnとの含有率の比(Si/Mn)を、質量比で5以下とすることが好ましい。   Further, the Si—Mn-based nitride can be obtained by nitrogen that has entered during carbonitriding or nitriding reacting with Si while taking in Mn in the austenite region and being precipitated. For this reason, when the Mn content is small with respect to the Si content, it is difficult to promote the precipitation of Si—Mn nitride even if nitrogen is sufficiently diffused. Therefore, it is preferable that the content ratio (Si / Mn) of Si and Mn in the steel constituting the material is 5 or less in mass ratio.

さらに、素材をなす鋼は、C含有率を0.3質量%以上1.2質量%以下とし、Cr含有率を0.5質量%以上2.0質量%以下とすることが好ましい。
ここで、素材をなす鋼中に存在するCは、鋼に必要な強度と寿命を付与するために必要な元素である。素材をなす鋼のC含有率が少なすぎると、転動部材に必要な強度を付与できないだけでなく、窒化又は浸炭窒化を行う際に転がり面に必要な硬化層深さを得るための熱処理時間が長くなり、熱処理コストが増大する。よって、素材をなす鋼のC含有率は0.3質量%以上とすることが好ましく、0.5質量%以上とすることがより好ましい。
Furthermore, it is preferable that the steel constituting the material has a C content of 0.3 mass% to 1.2 mass% and a Cr content of 0.5 mass% to 2.0 mass%.
Here, C which exists in the steel which makes a raw material is an element required in order to provide the intensity | strength and lifetime which are required for steel. Heat treatment time for obtaining the necessary hardened layer depth on the rolling surface when performing nitriding or carbonitriding as well as not giving the necessary strength to the rolling member if the C content of the steel constituting the material is too small Increases the heat treatment cost. Therefore, the C content of the steel constituting the material is preferably 0.3% by mass or more, and more preferably 0.5% by mass or more.

一方、素材をなす鋼のC含有率が多過ぎると、製鋼時に巨大な炭化物が生成されて、その後の焼入れ特性や転がり疲れ寿命に悪影響を与えるだけでなく、ヘッダー加工性が低下してコストの上昇を招く。よって、C含有率は1.2質量%以下とすることが好ましい。 また、素材をなす鋼中に存在するCrは、基地に固溶して、焼入れ性及び焼戻し軟化抵抗性を向上させる作用を有するとともに、高硬度の微細な炭化物や炭窒化物を形成して、転動部材の硬さや熱処理時の結晶粒粗大化を抑制するため、転がり疲れ寿命を向上させる作用を有する。これらの作用を得るために、素材をなす鋼のCr含有率は0.5質量%以上とすることが好ましく、1.3質量%以上とすることがより好ましい。   On the other hand, if the C content of the steel material is too large, huge carbides are produced during steelmaking, which not only adversely affects the subsequent quenching characteristics and rolling fatigue life, but also reduces the header workability and reduces the cost. Invite rise. Therefore, the C content is preferably 1.2% by mass or less. In addition, Cr present in the steel constituting the material is dissolved in the base and has the effect of improving the hardenability and temper softening resistance, and forms fine carbides and carbonitrides with high hardness, In order to suppress the hardness of the rolling member and the coarsening of crystal grains during heat treatment, it has the effect of improving the rolling fatigue life. In order to obtain these effects, the Cr content of the material steel is preferably 0.5% by mass or more, and more preferably 1.3% by mass or more.

一方、素材をなす鋼のCr含有率が多過ぎると、製鋼時に巨大な炭化物が生成されて、その後の焼入れ特性や転がり疲れ寿命に悪影響を与えたり、ヘッダー加工性及び被削性が低下する場合がある。よって、素材をなす鋼のCr含有率は2.0質量%以下とすることが好ましく、1.6質量%以下とすることがより好ましい。
なお、素材をなす鋼には、上述した元素に加えて、Crと同様の作用を有するMoやV等の炭化物形成促進元素を、素材費の上昇や加工性の低下によるコスト上昇を招かない範囲で含有してもよい。また、素材をなす鋼の残部は、実質的にFeからなるが、不可避不純物として、S,P,Al,Ti,O等を含有してもよい。これらの元素は、圧痕縁を起点とする表面起点型の剥離に対して特に際立った抑制効果はないと言われているが、鋼の品質が著しく悪い場合には、これらが起点となって内部起点型の剥離が生じる。このため、コストの著しい上昇を招くような厳しい不純物規制は行わないが、不可避不純物の含有率は、JIS G 4805に規定された高炭素クロム軸受鋼の清浄度規制を満たす品質レベルとする。
On the other hand, if the Cr content of the material steel is too high, huge carbides are produced during steelmaking, which adversely affects the subsequent quenching characteristics and rolling fatigue life, and reduces the header workability and machinability. There is. Therefore, the Cr content of the steel constituting the material is preferably 2.0% by mass or less, and more preferably 1.6% by mass or less.
In addition to the elements described above, carbide forming promoting elements such as Mo and V, which have the same action as Cr, are included in the steel that forms the material in a range that does not cause an increase in cost due to an increase in material cost or a decrease in workability. You may contain. The balance of the steel constituting the material is substantially made of Fe, but may contain S, P, Al, Ti, O, etc. as inevitable impurities. These elements are said to have no particularly remarkable inhibitory effect on surface-initiated peeling starting from the indentation edge. Origin-type peeling occurs. For this reason, strict impurity regulation that causes a significant increase in cost is not performed, but the content of inevitable impurities is set to a quality level that satisfies the cleanliness regulation of high carbon chromium bearing steel defined in JIS G 4805.

<熱処理について>
まず、上述した鋼からなる素材を、成形加工や粗研削等で所定形状に加工した後に、アンモニアガスを導入した炉内で加熱保持することによる「窒化」を行うか、混合ガス(例えば、RXガス+エンリッチガス+アンモニアガス)を導入した炉内で加熱保持することによる「浸炭窒化」を行う。これらの処理は、熱処理後において、転がり面のSi−Mn系窒化物の存在率が1.0%以上20.0%以下で、転がり面をなす表層部のN含有率が0.2質量%以上となるような条件で行う。
次に、焼入れ及び焼戻しを行う。これらの処理は、熱処理後における転がり面をなす表層部に、転動部材として必要な硬さ(例えば、Hv750以上)が得られるような条件で行うことが好ましい。
<About heat treatment>
First, after the above-described material made of steel is processed into a predetermined shape by forming or rough grinding or the like, “nitriding” is performed by heating and holding in a furnace into which ammonia gas is introduced, or a mixed gas (for example, RX) “Carbonitriding” is performed by heating and holding in a furnace in which (gas + enrich gas + ammonia gas) is introduced. In these treatments, after the heat treatment, the abundance ratio of the Si—Mn nitride on the rolling surface is 1.0% or more and 20.0% or less, and the N content of the surface layer portion forming the rolling surface is 0.2% by mass. The conditions are as described above.
Next, quenching and tempering are performed. These treatments are preferably performed under such conditions that the surface layer portion that forms the rolling surface after the heat treatment has a hardness necessary for a rolling member (for example, Hv 750 or more).

<転がり面をなす表層部のN含有率について>
転がり面をなす表層部に存在するNは、マルテンサイトの固溶強化や残留オーステナイトの安定確保に作用するだけでなく、窒化物や炭窒化物を形成して、耐摩耗性及び耐圧痕性を向上させ、転がり面に作用する接線力を小さくする作用を有する。これらの作用を得るために、転がり面をなす表層部のN含有率は0.2質量%以上とし、好ましくは0.3質量%とし、より好ましくは0.45質量%以上とする。
一方、前記表層部のN含有率が多すぎると、転動部材として必要な靱性や強度が得られなくなる。特に、転がり支持装置の転動体には、十分な靱性や強度が必要であるため、転がり面をなす表層部のN含有率は2.0質量%以下とすることが好ましい。
<About the N content of the surface layer portion forming the rolling surface>
N present in the surface layer forming the rolling surface not only acts on solid solution strengthening of martensite and ensuring the stability of retained austenite, but also forms nitrides and carbonitrides to provide wear resistance and scratch resistance. It has the effect of improving and reducing the tangential force acting on the rolling surface. In order to obtain these effects, the N content of the surface layer portion forming the rolling surface is 0.2% by mass or more, preferably 0.3% by mass, more preferably 0.45% by mass or more.
On the other hand, if the N content of the surface layer is too large, the toughness and strength required as a rolling member cannot be obtained. In particular, since the rolling element of the rolling support device needs sufficient toughness and strength, the N content of the surface layer portion forming the rolling surface is preferably 2.0% by mass or less.

<転がり面のSi−Mn系窒化物の存在率について>
本発明者らが鋭意検討を重ねた結果、転がり面に存在するSi−Mn系窒化物は、耐摩耗性及び耐圧痕性を向上させるとともに、転がり疲れ寿命を向上させる作用を有することを見出した。これらの作用を得るために、転がり面のSi−Mn系窒化物の存在率は1.0%以上とする。
一方、転がり面に存在するSi−Mn系窒化物が多すぎると、転動部材として必要な靱性や強度が得られなくなる。よって、転がり面のSi−Mn系窒化物の存在率は20.0%以下とし、好ましくは10.0%以下とする。
<About the abundance ratio of Si-Mn nitride on the rolling surface>
As a result of intensive studies by the present inventors, it has been found that the Si—Mn nitride existing on the rolling surface has the effect of improving the wear resistance and pressure scar resistance and improving the rolling fatigue life. . In order to obtain these effects, the abundance ratio of the Si—Mn nitride on the rolling surface is set to 1.0% or more.
On the other hand, if there is too much Si—Mn nitride present on the rolling surface, the toughness and strength required as a rolling member cannot be obtained. Therefore, the abundance ratio of the Si—Mn nitride on the rolling surface is 20.0% or less, preferably 10.0% or less.

<転がり面をなす表層部の残留オーステナイト量について>
転がり面をなす表層部の残留オーステナイト量は、圧痕縁への応力集中を抑制するためには多くすることが好ましいが、表層部に優れた耐摩耗性や耐圧痕性を付与して、転がり面に作用する接線力を小さくするためには少なくすることが好ましい。
そこで、本発明者らは鋭意検討を重ねた結果、第1部材及び第2部材の軌道面をなす表層部の残留オーステナイト量をγRAB とし、転動体の転動面をなす表層部の残留オーステナイト量をγRCとした時に、0≦γRAB 及び0≦γRC≦50を満たすとともに、γRAB −15≦γRC≦γRAB +15を満たすようにすることにより、転がり面をなす表層部における圧痕縁への応力集中を確実に抑制しつつ、転がり面に作用する接線力をより小さくできることを見出した。ここで、転がり面に必要な硬さを付与し、優れた耐圧痕性や耐摩耗性を得るとともに、高温下で使用された場合に優れた寸法安定性を付与するために、γRCは50体積%以下とする。
<Regarding the amount of retained austenite in the surface layer portion forming the rolling surface>
The amount of retained austenite in the surface layer portion that forms the rolling surface is preferably increased in order to suppress stress concentration on the indentation edge, but the surface surface portion is provided with excellent wear resistance and pressure dent resistance, and the rolling surface In order to reduce the tangential force acting on the surface, it is preferable to reduce the tangential force.
Therefore, as a result of intensive studies, the present inventors have determined that the amount of retained austenite in the surface layer portion forming the raceway surface of the first member and the second member is γ RAB and the retained austenite in the surface layer portion forming the rolling surface of the rolling element. When the amount is γ RC , 0 ≦ γ RAB and 0 ≦ γ RC ≦ 50 are satisfied, and γ RAB −15 ≦ γ RC ≦ γ RAB +15 is satisfied so that the indentation in the surface layer portion forming the rolling surface is satisfied. It was found that the tangential force acting on the rolling surface can be made smaller while reliably suppressing the stress concentration on the edge. Here, γ RC is 50 in order to give the rolling surface the necessary hardness, to obtain excellent pressure scar resistance and wear resistance, and to provide excellent dimensional stability when used at high temperatures. Volume% or less.

本発明の転がり支持装置によれば、第1部材、第2部材、及び転動体のうち少なくとも一つの転動部材において、転がり面のSi及びMnを含む窒化物の存在率を面積比で1.0%以上20.0%以下とし、転がり面をなす表層部のN含有率を0.2質量%以上とすることにより、転がり面に作用する接線力を小さくできるため、異物混入潤滑下において早期剥離を生じ難くできる。   According to the rolling support device of the present invention, in at least one rolling member among the first member, the second member, and the rolling element, the abundance ratio of the nitride containing Si and Mn on the rolling surface is 1. Since the tangential force acting on the rolling surface can be reduced by setting the N content of the surface layer portion forming the rolling surface to 0.2% by mass or more by setting it to 0% or more and 20.0% or less. Peeling can be made difficult to occur.

以下、本発明の効果を実施例に基づいて検証した結果について説明する。
<第1実施例>
まず、高炭素クロム軸受鋼二種(SUJ2)からなる素材を所定形状に加工した後、混合ガス(Rxガス+エンリッチガス+アンモニアガス)を導入した炉内において830〜850℃で1〜3時間加熱保持することによる浸炭窒化と、油焼入れと、180〜240℃で2時間加熱保持することによる焼戻しを施すことにより、円筒状の試験体(内径:16mm,外径:30mm,幅:7mm)を作製した。
Hereinafter, the results of verifying the effects of the present invention based on examples will be described.
<First embodiment>
First, a material composed of two types of high carbon chromium bearing steel (SUJ2) is processed into a predetermined shape, and then in a furnace in which a mixed gas (Rx gas + enrich gas + ammonia gas) is introduced, at 830 to 850 ° C. for 1 to 3 hours. Cylindrical specimens (inner diameter: 16 mm, outer diameter: 30 mm, width: 7 mm) by performing carbonitriding by heating and holding, oil quenching, and tempering by heating and holding at 180 to 240 ° C. for 2 hours. Was made.

なお、SUJ2からなる素材は、C含有率が0.99質量%で、Si含有率が0.25質量%で、Mn含有率が0.40質量%で、Cr含有率が1.49質量%の鋼である。
このとき、浸炭窒化の条件を変えることにより、熱処理後における試験体の外周面(表面)をなす表層部(表面から50μmの深さまでの部分)のN含有率を調節した。
このようにして得られた試験体において、外周面をなす表層部のN含有率を電子線マイクロアナライザ(EPMA)を用いて、加速電圧15kvで測定した。
なお、得られた試験体において、表層部の硬さはいずれもHv750〜780とし、表層部の残留オーステナイト量はいずれも20〜30体積%とした。
そして、得られた試験体を用いて、耐圧痕性試験、耐摩耗性試験、及びシャルピー衝撃試験を行った。
In addition, the material which consists of SUJ2 is C content rate 0.99 mass%, Si content rate is 0.25 mass%, Mn content rate is 0.40 mass%, Cr content rate is 1.49 mass%. Of steel.
At this time, by changing the carbonitriding conditions, the N content of the surface layer portion (portion from the surface to a depth of 50 μm) forming the outer peripheral surface (surface) of the specimen after heat treatment was adjusted.
In the test body thus obtained, the N content of the surface layer portion forming the outer peripheral surface was measured using an electron beam microanalyzer (EPMA) at an acceleration voltage of 15 kv.
In the obtained specimen, the hardness of the surface layer portion was Hv 750-780, and the amount of retained austenite of the surface layer portion was 20-30% by volume.
And using the obtained test body, the pressure-dentation test, the abrasion resistance test, and the Charpy impact test were done.

〔耐圧痕性試験について〕
耐圧痕性試験は、図1に示すように、試験体10の外周面に直径2mmの鋼球20を載せて、5GPaで押し付けることで行った。この試験では、鋼球20を押し付けた後に試験体10の外周面に形成される圧痕深さを測定した。
そして、得られた結果に基づいて、表層部のN含有率と圧痕深さとの関係を示す図2のグラフを作成した。
図2のグラフから、表層部のN含有率が多くなる程、圧痕深さが浅くなり、表層部のN含有率を0.2質量%以上とすると、圧痕深さが250nm以下となることが分かった。
[About pressure resistance test]
As shown in FIG. 1, the pressure scar test was performed by placing a steel ball 20 having a diameter of 2 mm on the outer peripheral surface of the test body 10 and pressing it at 5 GPa. In this test, the indentation depth formed on the outer peripheral surface of the test body 10 after pressing the steel ball 20 was measured.
And based on the obtained result, the graph of FIG. 2 which shows the relationship between N content rate of a surface layer part and indentation depth was created.
From the graph of FIG. 2, the indentation depth becomes shallower as the N content in the surface layer increases, and the indentation depth may be 250 nm or less when the N content in the surface layer is 0.2% by mass or more. I understood.

〔耐摩耗性試験について〕
耐摩耗性試験は、図3に示すように、一対の試験体11,12の両外周面を接触させた状態で配置した後、面圧0.8GPa、滑り率30%の条件下で、駆動側の試験体11を回転速度10min-1で、従動側の試験体12を回転速度7min-1で20時間回転させることで行った。この試験では、回転前後の各試験体11,12の質量差を測定し、これらの平均値を摩耗量として測定した。なお、各試験体11,12はモータ30により回転させて、従動側の試験体12の回転速度はギア40で調節した。
そして、得られた結果に基づいて、表層部のN含有率と摩耗量との関係を示す図4のグラフを作成した。
図4のグラフから、表層部のN含有率が多くなる程、摩耗量が少なくなり、表層部のN含有率を0.2質量以上とすると、摩耗量が0.02g以下となることが分かった。
[Abrasion resistance test]
As shown in FIG. 3, the wear resistance test is carried out under the conditions of a surface pressure of 0.8 GPa and a slip rate of 30% after the two outer peripheral surfaces of the pair of test bodies 11 and 12 are placed in contact with each other. The test specimen 11 on the side was rotated at a rotational speed of 10 min −1 and the test specimen 12 on the driven side was rotated at a rotational speed of 7 min −1 for 20 hours. In this test, the mass difference between the test specimens 11 and 12 before and after rotation was measured, and the average value of these was measured as the amount of wear. The test bodies 11 and 12 were rotated by the motor 30 and the rotational speed of the driven test body 12 was adjusted by the gear 40.
And based on the obtained result, the graph of FIG. 4 which shows the relationship between N content rate of a surface layer part and wear amount was created.
From the graph of FIG. 4, it can be seen that as the N content in the surface layer portion increases, the wear amount decreases, and when the N content rate in the surface layer portion is 0.2 mass or more, the wear amount is 0.02 g or less. It was.

〔シャルピー衝撃試験について〕
シャルピー衝撃試験は、JIS Z 2242に規定されたシャルピー衝撃試験方法で行った。そして、得られた結果に基づいて、表層部のN含有率と吸収エネルギーとの関係を示す図5のグラフを作成した。
図5のグラフから、表層部のN含有率が2.0質量%よりも大きくなると、吸収エネルギーが小さくなり、表層部に十分な靱性が得られなくなることが分かった。
以上の結果より、表層部に耐圧痕性、耐摩耗性、及び靱性の全てを付与するためには、表層部のN含有率を0.2質量%以上2.0質量%以下にすればよいことが確認できた。
[Charpy impact test]
The Charpy impact test was conducted by the Charpy impact test method defined in JIS Z 2242. And based on the obtained result, the graph of FIG. 5 which shows the relationship between N content rate of a surface layer part and absorbed energy was created.
From the graph of FIG. 5, it was found that when the N content in the surface layer portion is larger than 2.0 mass%, the absorbed energy is decreased and sufficient toughness cannot be obtained in the surface layer portion.
From the above results, in order to impart all of the scratch resistance, wear resistance, and toughness to the surface layer portion, the N content of the surface layer portion may be 0.2% by mass or more and 2.0% by mass or less. I was able to confirm.

<第2実施例>
まず、SUJ2からなる素材を所定形状に加工した後、上述した第1実施例と同様の熱処理を施すことにより、上述した第1実施例と同様の円筒状の試験体を作製した。
このとき、浸炭窒化の条件を変えることにより、熱処理後における試験体の外周面をなす表層部(表面から50μmの深さまでの部分)の硬さを調節した。
このようにして得られた試験体において、外周面をなす表層部の硬さを、JIS Z 2244に規定されたビッカース硬さ試験方法を用いて測定した。
なお、得られた試験体において、表層部のN含有率はいずれも0.3〜0.5質量%とし、表層部の残留オーステナイト量はいずれも20〜30体積%とした。
そして、得られた試験体を用いて、上述した第1実施例と同様の条件で、耐圧痕性試験及び耐摩耗性試験を行った。
その後、得られた結果に基づいて、表層部の硬さと圧痕深さとの関係を示す図6のグラフを作成した。
<Second embodiment>
First, after processing a material made of SUJ2 into a predetermined shape, a heat treatment similar to that in the first embodiment was performed to produce a cylindrical test body similar to that in the first embodiment.
At this time, the hardness of the surface layer portion (portion from the surface to a depth of 50 μm) forming the outer peripheral surface of the test body after the heat treatment was adjusted by changing the carbonitriding conditions.
In the test body thus obtained, the hardness of the surface layer portion forming the outer peripheral surface was measured using the Vickers hardness test method defined in JIS Z 2244.
In the obtained specimens, the N content in the surface layer part was 0.3 to 0.5% by mass, and the amount of retained austenite in the surface layer part was 20 to 30% by volume.
And using the obtained test body, the pressure-proof dent test and the abrasion resistance test were done on the same conditions as the 1st example mentioned above.
Then, based on the obtained result, the graph of FIG. 6 which shows the relationship between the hardness of a surface layer part and an indentation depth was created.

図6のグラフから、表層部の硬さを大きくする程、圧痕深さが浅くなり、表層部の硬さをHv750以上とすると、圧痕深さが200nm以下となることが分かった。
また、得られた結果に基づいて、表層部の硬さと摩耗量との関係を示す図7のグラフとを作成した。
図7のグラフから、表層部の硬さが大きくなる程、摩耗量が少なくなり、表層部の硬さをHv750以上とすると、摩耗量が0.011g以下となることが分かった。
以上の結果より、表層部に耐圧痕性及び耐摩耗性を確実に付与するためには、表層部の硬さをHv750以上とすればよいことが確認できた。
From the graph of FIG. 6, it was found that as the hardness of the surface layer portion was increased, the indentation depth became shallower, and when the hardness of the surface layer portion was Hv 750 or more, the indentation depth was 200 nm or less.
Moreover, based on the obtained results, the graph of FIG. 7 showing the relationship between the hardness of the surface layer and the amount of wear was created.
From the graph of FIG. 7, it was found that as the hardness of the surface layer portion increased, the wear amount decreased, and when the hardness of the surface layer portion was set to Hv 750 or more, the wear amount became 0.011 g or less.
From the above results, it was confirmed that the hardness of the surface layer portion should be Hv 750 or more in order to reliably impart pressure scar resistance and wear resistance to the surface layer portion.

<第3実施例>
まず、Si及びMnを含む鋼からなる素材を所定形状に加工した後、上述した第1実施例と同様の熱処理を施すことにより、上述した第1実施例と同様の円筒状の試験体を作製した。
このとき、素材をなす鋼中のSi含有率及びMn含有率を変えることにより、熱処理後における試験体の外周面(表面)のSi−Mn系窒化物の存在率が異なるようにした。
このようにして得られた試験体の外周面において、電界放射型走査顕微鏡(Fe−SEM)を用いて、加速電圧10kVで、倍率5000倍の条件下で、最低3視野以上の写真(図8参照)を撮影した。その後、画像解析装置を用いて、得られた写真を二値化した後に存在率(面積比)を測定した。
<Third embodiment>
First, after processing a material made of steel containing Si and Mn into a predetermined shape, a heat treatment similar to that in the first embodiment described above is performed to produce a cylindrical test body similar to that in the first embodiment described above. did.
At this time, by changing the Si content and the Mn content in the steel constituting the material, the abundance of Si—Mn nitrides on the outer peripheral surface (surface) of the specimen after the heat treatment was varied.
On the outer peripheral surface of the specimen thus obtained, a photograph of at least three fields of view under a condition of an acceleration voltage of 10 kV and a magnification of 5000 using a field emission scanning microscope (Fe-SEM) (FIG. 8). Reference) was taken. Then, using an image analysis apparatus, the obtained photograph was binarized, and then the abundance (area ratio) was measured.

なお、得られた試験体において、表層部(表面から50μmの深さまでの部分)の硬さはいずれもHv780〜820とし、表層部のN含有率はいずれも0.3〜0.7質量%とし、表層部の残留オーステナイト量はいずれも20〜30体積%とした。
そして、得られた試験体を用いて、上述した第1実施例と同様の圧痕性試験、耐摩耗性試験、及びシャルピー衝撃試験を行った。
その後、得られた結果に基づいて、試験体の外周面のSi−Mn系窒化物の存在率と、圧痕深さとの関係を示す図9のグラフを作成した。
図9のグラフから、外周面のSi−Mn系窒化物の存在率を大きくする程、圧痕深さが浅くなり、Si−Mn系窒化物の存在率を1.0%以上とすると、圧痕深さが100nm以下となることが分かった。
In the obtained specimen, the hardness of the surface layer part (part from the surface to a depth of 50 μm) is Hv 780 to 820, and the N content of the surface layer part is 0.3 to 0.7% by mass. The amount of retained austenite in the surface layer was 20-30% by volume.
And using the obtained test body, the indentation test, the abrasion resistance test, and the Charpy impact test similar to the above-mentioned 1st Example were done.
Then, based on the obtained result, the graph of FIG. 9 which shows the relationship between the presence rate of the Si-Mn type nitride of the outer peripheral surface of a test body, and an indentation depth was created.
From the graph of FIG. 9, as the abundance ratio of the Si—Mn nitride on the outer peripheral surface is increased, the indentation depth becomes shallower. When the abundance ratio of the Si—Mn nitride is 1.0% or more, the indentation depth is Was found to be 100 nm or less.

また、得られた結果に基づいて、試験体の外周面のSi−Mn系窒化物の存在率と、摩耗量との関係を示す図10のグラフを作成した。
図10のグラフから、外周面のSi−Mn系窒化物の存在率を大きくする程、摩耗量が少なくなり、外周面のSi−Mn系窒化物の存在率を1.0%以上とすると、摩耗量が0.005g以下となることが分かった。
さらに、得られた結果に基づいて、試験体の外周面のSi−Mn系窒化物の存在率と、吸収エネルギーとの関係を示す図11のグラフを作成した。
Moreover, based on the obtained result, the graph of FIG. 10 which shows the relationship between the abundance of the Si-Mn system nitride of the outer peripheral surface of a test body and the amount of wear was created.
From the graph of FIG. 10, as the abundance ratio of the Si—Mn nitride on the outer peripheral surface is increased, the amount of wear decreases, and when the abundance ratio of the Si—Mn nitride on the outer peripheral surface is 1.0% or more, It was found that the wear amount was 0.005 g or less.
Furthermore, based on the obtained results, the graph of FIG. 11 showing the relationship between the abundance ratio of Si—Mn nitrides on the outer peripheral surface of the specimen and the absorbed energy was created.

図11のグラフから、外周面のSi−Mn系窒化物の存在率が20.0%を超えると、吸収エネルギーが小さくなり、転がり面に十分な靱性が得られなくなることが分かった。 以上の結果より、表層部に耐圧痕性、耐摩耗性、及び靱性の全てを付与するためには、外周面のSi−Mn系窒化物の存在率を1.0%以上、好ましくは2.0%以上とし、20.0%以下にすればよいことが確認できた。   From the graph of FIG. 11, it was found that when the abundance ratio of the Si—Mn nitride on the outer peripheral surface exceeds 20.0%, the absorbed energy becomes small and sufficient toughness cannot be obtained on the rolling surface. From the above results, in order to give the surface layer part all of pressure scar resistance, wear resistance, and toughness, the abundance ratio of the Si—Mn nitride on the outer peripheral surface is 1.0% or more, preferably 2. It was confirmed that it should be 0% or more and 20.0% or less.

<第4実施例>
まず、高炭素クロム軸受鋼三種(SUJ3)からなる素材と、SUJ2からなる素材を、それぞれ旋削加工を施して所定形状に加工した。
次に、これらに、混合ガス(Rxガス+プロパンガス+アンモニアガス)を導入した炉内において820〜900℃で2〜10時間加熱保持することによる浸炭窒化と、油焼入れと、160〜270℃で2時間加熱保持することによる焼戻しとを施した。
次に、これらに研磨及びラッピングによる鏡面仕上げ加工を施すことにより、円板状の試験体(直径65mm,厚さ6mm)を作製した。
<Fourth embodiment>
First, a material composed of three types of high carbon chromium bearing steel (SUJ3) and a material composed of SUJ2 were each turned to be processed into a predetermined shape.
Next, carbonitriding by heating and holding at 820 to 900 ° C. for 2 to 10 hours in an oven into which a mixed gas (Rx gas + propane gas + ammonia gas) is introduced, oil quenching, and 160 to 270 ° C. And tempering by heating and holding for 2 hours.
Next, by subjecting them to mirror finishing by polishing and lapping, disk-shaped test bodies (diameter 65 mm, thickness 6 mm) were produced.

なお、SUJ3からなる素材は、C含有率が1.01質量%で、Si含有率が0.56質量%で、Mn含有率が1.10質量%で、Cr含有率が1.10質量%の鋼である。
このとき、浸炭窒化の条件を変えることにより、表1に示すように、熱処理後における試験体の表面をなす表層部のN含有率を調節した。
なお、得られた試験体において、表層部の硬さはいずれもHv750〜820とし、表層部の残留オーステナイト量はいずれも20〜30体積%とした。
In addition, the material which consists of SUJ3 is C content rate 1.01 mass%, Si content rate is 0.56 mass%, Mn content rate is 1.10 mass%, Cr content rate is 1.10 mass%. Of steel.
At this time, by changing the carbonitriding conditions, as shown in Table 1, the N content of the surface layer portion forming the surface of the test body after the heat treatment was adjusted.
In the obtained specimen, the hardness of the surface layer portion was Hv 750 to 820, and the amount of retained austenite of the surface layer portion was 20 to 30% by volume.

このようにして得られた試験体において、上述と同様の条件で、表面をなす表層部のN含有率と、表面のSi−Mn系窒化物の存在率を測定した。この結果を、表1に併せて示した。
そして、得られた試験体を、日本精工株式会社製のスラスト型寿命試験機に組み込んだ後、異物混入潤滑下で使用することを想定した以下に示す条件で寿命試験を行った。この試験では、試験体の表面に剥離が生じるまでの試験体の回転時間を寿命として測定し、ワイブル分布曲線に基づくL10寿命を算出した。この結果を、No.11のL10寿命を1としたときの比で、表1に併せて示した。
〔寿命試験条件〕
試験荷重:5880N(600kgf)
回転速度:1000min-1
潤滑油:VG68
異物:(硬さ)Hv870
(寸法)74〜147μm
(混入量)潤滑剤全体に対して200ppmとなるように混入
In the specimen thus obtained, under the same conditions as described above, the N content in the surface layer portion forming the surface and the abundance of the Si—Mn nitride on the surface were measured. The results are also shown in Table 1.
Then, after the obtained specimen was incorporated in a thrust type life tester manufactured by NSK Ltd., a life test was performed under the following conditions assuming use under the contamination with foreign matter. In this test, the rotation time of the test body until peeling occurred on the surface of the test body was measured as the life, and the L10 life based on the Weibull distribution curve was calculated. This result is shown in No. Table 1 also shows the ratio when the L10 life of 11 is 1.
[Life test conditions]
Test load: 5880N (600kgf)
Rotational speed: 1000min -1
Lubricating oil: VG68
Foreign matter: (Hardness) Hv870
(Dimensions) 74-147 μm
(Mixing amount) Mixing so that it becomes 200ppm with respect to the whole lubricant.

Figure 2007154281
Figure 2007154281

表1の結果から、試験体の表面をなす表層部のN含有率が0.2質量%以上で、且つ、試験体の表面のSi−Mn系窒化物の存在率が1.0質量%以上であると、長寿命が得られ、No.11の2.1倍以上となっていることが分かる。
また、得られた結果に基づいて、試験体の表面をなす表層部のN含有率と、試験体の表面のSi−Mn系窒化物の存在率との関係を示す図12を作成した。
From the results of Table 1, the N content of the surface layer portion forming the surface of the test specimen is 0.2% by mass or more, and the abundance of Si—Mn nitride on the surface of the test specimen is 1.0% by mass or more. If it is, a long life is obtained. It turns out that it is 2.1 times or more of 11.
Moreover, based on the obtained results, FIG. 12 showing the relationship between the N content of the surface layer portion forming the surface of the specimen and the abundance of Si—Mn nitride on the surface of the specimen was created.

図12のグラフから、試験体の表面をなす表層部のN含有率が多くなる程、試験体の表面のSi−Mn系窒化物の存在率が大きくなっていることが分かる。また、SUJ2と比べてSi含有率やMn含有率の多いSUJ3からなる素材を用いた場合に、表層部のN含有率がSUJ2と同量でも、表面のSi−Mn系窒化物の存在率が大きくなっていることが分かる。   From the graph of FIG. 12, it can be seen that the abundance of Si—Mn nitride on the surface of the test specimen increases as the N content in the surface layer portion forming the surface of the test specimen increases. In addition, when a material made of SUJ3 having a higher Si content or Mn content than SUJ2 is used, even if the N content of the surface layer is the same as SUJ2, the abundance of Si-Mn nitride on the surface is high. You can see that it is getting bigger.

さらに、得られた結果に基づいて、試験体の表面のSi−Mn系窒化物の存在率と、寿命との関係を示す図13のグラフを作成した。
図13のグラフから、試験体の表面のSi−Mn系窒化物の存在率が大きくなる程、寿命が長くなっていることが分かる。また、SUJ2と比べてSi含有率やMn含有率の多いSUJ3からなる素材を用いた場合に、表面のSi−Mn系窒化物の存在率がSUJ2と同様でも、寿命が長くなっていることが分かる。
Furthermore, based on the obtained results, the graph of FIG. 13 showing the relationship between the abundance of Si—Mn nitrides on the surface of the test specimen and the lifetime was prepared.
From the graph of FIG. 13, it can be seen that the lifetime increases as the abundance ratio of the Si—Mn nitride on the surface of the specimen increases. In addition, when a material made of SUJ3 having a higher Si content or Mn content than SUJ2 is used, the lifetime may be longer even if the surface Si-Mn nitride abundance is the same as SUJ2. I understand.

以上の結果より、転がり支持装置の転動部材を、表面をなす表層部のN含有率が0.2質量%以上で、且つ、表面のSi−Mn系窒化物の存在率が1.0%以上20.0%以下とした試験体と同様の構成とすることにより、異物混入潤滑下で使用された場合であっても、転がり支持装置の寿命を長くできることが確認できた。   From the above results, the rolling member of the rolling support apparatus has an N content of 0.2% by mass or more on the surface layer portion forming the surface, and an abundance of Si—Mn nitride on the surface of 1.0%. It has been confirmed that the life of the rolling support device can be extended by using the same configuration as that of the test body of 20.0% or less even when used under foreign matter-mixed lubrication.

<第5実施例>
本実施例では、日本精工株式会社製呼び番号6206の深溝玉軸受(内径:30mm,外径:62mm,幅16mm)を以下に示す手順で作製した。この深溝玉軸受は、図14に示すように、内輪1、外輪2、玉3、及び保持器4からなる。
玉3は、表2に示す各組成の鋼からなる素材を所定形状に加工した後、上述した第4実施例と同様の熱処理及び鏡面仕上げ加工を施すことにより作製した。 このようにして得られた玉3において、上述した第1実施例と同様の条件で転動面(転がり面)をなす表層部のN含有率を測定するとともに、上述した第3実施例と同様の条件で転動面のSi−Mn系窒化物の存在率を測定した。この結果を、表2に併せて示した。
<Fifth embodiment>
In this example, a deep groove ball bearing (inner diameter: 30 mm, outer diameter: 62 mm, width: 16 mm) having a designation number of 6206 manufactured by NSK Ltd. was produced by the following procedure. As shown in FIG. 14, the deep groove ball bearing includes an inner ring 1, an outer ring 2, a ball 3, and a cage 4.
The ball 3 was produced by processing a material made of steel having each composition shown in Table 2 into a predetermined shape and then performing the same heat treatment and mirror finishing as in the fourth embodiment described above. In the ball 3 thus obtained, the N content of the surface layer portion that forms the rolling surface (rolling surface) is measured under the same conditions as in the first embodiment, and the same as in the third embodiment. Under these conditions, the abundance of Si—Mn nitride on the rolling surface was measured. The results are also shown in Table 2.

そして、得られた玉3と、SUJ2製の内輪1及び外輪2と、プラスチック製の保持器4とを用いて深溝玉軸受を組み立てた後、異物混入潤滑下で使用することを想定した以下に示す条件で寿命試験を行った。
この試験では、内輪1、外輪2、及び玉3のいずれかの転がり面に剥離が生じるまでの回転時間を寿命として測定し、ワイブル分布曲線に基づくL10寿命を算出した。この結果を、No.40のL10寿命を1としたときの比で、表2に併せて示した。
〔寿命試験条件〕
試験荷重:6223N(635kgf)
回転速度:3000min-1
潤滑油:VG68
異物:(硬さ)Hv590
(寸法)74〜147μm
(混入量)潤滑剤全体に対して200ppmとなるように混入
And after assembling the deep groove ball bearing using the obtained ball 3, the inner ring 1 and outer ring 2 made of SUJ2, and the cage 4 made of plastic, the following is assumed to be used under the contamination with foreign matter A life test was conducted under the conditions shown.
In this test, the rotation time until peeling occurred on any of the rolling surfaces of the inner ring 1, the outer ring 2 and the ball 3 was measured as a life, and the L10 life based on the Weibull distribution curve was calculated. This result is shown in No. Table 2 also shows the ratio when the L10 life of 40 is 1.
[Life test conditions]
Test load: 6223N (635kgf)
Rotational speed: 3000min -1
Lubricating oil: VG68
Foreign matter: (Hardness) Hv590
(Dimensions) 74-147 μm
(Mixing amount) Mixing so that it becomes 200ppm with respect to the whole lubricant.

Figure 2007154281
Figure 2007154281

表2の結果から、Si含有率が0.3質量%以上2.2質量%以下で、Mn含有率が0.3質量%以上2.0質量%以下であり、Si/Mnが質量比で5以下である鋼からなる素材を用いて作製して、転動面をなす表層部のN含有率を0.2質量%以上とし、転動面のSi−Mn系窒化物の存在率を1.0%以上で20.0%以下とした玉3を用いたNo.21〜No.39では、それ以外の玉3を用いたNo.40〜No.44と比べて、長寿命が得られていることが分かる。   From the results of Table 2, the Si content is 0.3 mass% or more and 2.2 mass% or less, the Mn content is 0.3 mass% or more and 2.0 mass% or less, and Si / Mn is in mass ratio. It is produced using a material made of steel that is 5 or less, the N content of the surface layer portion forming the rolling surface is 0.2 mass% or more, and the abundance of Si—Mn nitride on the rolling surface is 1 0.0% or more and 20.0% or less. 21-No. In No. 39, no. 40-No. Compared to 44, it can be seen that a long life is obtained.

また、得られた結果に基づいて、玉3の素材をなす鋼中のSi/Mnと、玉3の転動面のSi−Mn系窒化物の存在率との関係を示す図15のグラフを作成した。
図15のグラフから、Si含有率及びMn含有率が本発明範囲内の鋼からなる素材を用いて、転動面をなす表層部のN含有率を本発明範囲内とした玉3の素材をなす鋼中のSi/Mnが質量比で5以下であると、玉3の転動面のSi−Mn系窒化物の存在率が1.0%以上になることが分かった。
Moreover, based on the obtained result, the graph of FIG. 15 which shows the relationship between Si / Mn in the steel which comprises the raw material of the ball | bowl 3, and the Si-Mn type | system | group nitride existing rate of the rolling surface of the ball | bowl 3 is shown. Created.
From the graph of FIG. 15, the material of the ball 3 having the N content of the surface layer part forming the rolling surface within the scope of the present invention using the material made of steel having the Si content and the Mn content within the scope of the present invention. It was found that when the Si / Mn in the formed steel was 5 or less in mass ratio, the abundance of Si—Mn nitride on the rolling surface of the balls 3 was 1.0% or more.

<第6実施例>
本実施例では、日本精工株式会社製呼び番号L44649/610の円錐ころ軸受(内径:26.988mm,外径:50.292mm,幅14.224mm)のころを、以下に示す手順で作製した。
まず、表3に示す各組成の鋼からなる線材(素材)をヘッダー加工及び粗研削加工により所定形状に加工した後、混合ガス(Rxガス+プロパンガス+アンモニアガス)を導入した炉内において830℃で5〜20時間加熱保持することによる浸炭窒化と、油焼入れと、180〜270℃で2時間加熱保持することによる焼戻しとを施した。次に、これらの転動面に研磨及びラッピングによる鏡面仕上げ加工を施した。
<Sixth embodiment>
In this example, a roller of a tapered roller bearing (inner diameter: 26.988 mm, outer diameter: 50.292 mm, width: 14.224 mm) having a designation number of L44649 / 610 manufactured by NSK Ltd. was produced by the following procedure.
First, a wire rod (material) made of steel having each composition shown in Table 3 is processed into a predetermined shape by header processing and rough grinding processing, and then in a furnace in which a mixed gas (Rx gas + propane gas + ammonia gas) is introduced 830. Carbonitriding by heating and holding at 5 ° C. for 5 to 20 hours, oil quenching, and tempering by heating and holding at 180 to 270 ° C. for 2 hours were performed. Next, these rolling surfaces were mirror finished by polishing and lapping.

このようにして得られたころにおいて、転動面(転がり面)をなす表層部において、上述した第1実施例と同様の条件でN含有率を測定するとともに、X線回折法により残留オーステナイト量を測定した。また、ころの転動面のSi−Mn系窒化物の存在率を、上述した第3実施例と同様の条件で測定した。これらの結果を、表3に併せて示した。
内輪及び外輪は、以下に示す手順で作製した。
In the roller thus obtained, in the surface layer portion forming the rolling surface (rolling surface), the N content is measured under the same conditions as in the first embodiment described above, and the amount of retained austenite is determined by the X-ray diffraction method. Was measured. Further, the abundance ratio of the Si—Mn nitride on the rolling surface of the roller was measured under the same conditions as in the third example. These results are also shown in Table 3.
The inner ring and the outer ring were produced by the following procedure.

まず、SUJ2からなる素材を所定形状に加工した後、混合ガス(Rxガス+プロパンガス+アンモニアガス)を導入した炉内で、830〜850℃で1〜3時間加熱保持することによる浸炭窒化と、油焼入れと、180〜240℃で2時間加熱保持することによる焼戻しとからなる熱処理を施した。次に、これらの軌道面に研磨及びラッピングによる鏡面仕上げ加工を施した。
この時、浸炭窒化の条件を変えることで、内輪及び外輪の軌道面(転がり面)をなす表層部の残留オーステナイト量を三種類(10体積%、約20体積%、30体積%)に調節した。
First, carbonitriding by processing a material composed of SUJ2 into a predetermined shape and then heating and maintaining at 830 to 850 ° C. for 1 to 3 hours in a furnace in which a mixed gas (Rx gas + propane gas + ammonia gas) is introduced. Then, heat treatment including oil quenching and tempering by heating and holding at 180 to 240 ° C. for 2 hours was performed. Next, these track surfaces were mirror finished by polishing and lapping.
At this time, by changing the carbonitriding conditions, the amount of retained austenite in the surface layer portion forming the raceway surface (rolling surface) of the inner ring and the outer ring was adjusted to three types (10 vol%, about 20 vol%, 30 vol%). .

そして、得られたころと、内輪及び外輪と、を用いて円錐ころ軸受を組み立てた後、異物混入潤滑下で使用することを想定した以下に示す条件で寿命試験を行った。この試験では、ころ、内輪、及び外輪のいずれかの転がり面に剥離が生じるまでの回転時間を寿命として測定し、ワイブル分布曲線に基づくL10寿命を算出した。この結果を、No.96のL10寿命を1としたときの比で、表3に併せて示した。
〔寿命試験条件〕
試験荷重:Fr=12kN,Fa=3.5kN
回転速度:3000min-1
潤滑油:VG68
異物:(硬さ)Hv870
(寸法)74〜134μm
(混入量)潤滑剤全体に対して0.1gとなるように混入
サンプル毎の試験回数:12回
Then, after assembling the tapered roller bearing using the obtained roller, the inner ring, and the outer ring, a life test was performed under the following conditions assuming use under the contamination with foreign matter. In this test, the rotation time until peeling occurred on any of the rolling surfaces of the roller, the inner ring, and the outer ring was measured as the life, and the L10 life based on the Weibull distribution curve was calculated. This result is shown in No. Table 3 shows the ratio when the L10 life of 96 is 1.
[Life test conditions]
Test load: Fr = 12kN, Fa = 3.5kN
Rotational speed: 3000min -1
Lubricating oil: VG68
Foreign matter: (Hardness) Hv870
(Dimensions) 74-134 μm
(Mixed amount) Number of tests for each mixed sample to be 0.1 g with respect to the entire lubricant: 12 times

Figure 2007154281
Figure 2007154281

表3の結果から、転動面をなす表層部のN含有率が0.2質量%以上で、その転動面のSi−Mn系窒化物の存在率が1.0%以上20.0%以下のころを用いたNo.51〜No.91では、上記以外のころを用いたNo.92〜No.96と比べて、長寿命が得られていることが分かる。
このうち、内外輪の軌道面をなす表層部の残留オーステナイト量γRAB を種々変更させたNo.67〜No.74と、No.75〜No.82と、No.83〜No.91との結果から、γRAB が多い程、寿命が長くなる傾向があることが分かる。
From the results in Table 3, the N content of the surface layer portion forming the rolling surface is 0.2% by mass or more, and the abundance of Si—Mn nitride on the rolling surface is 1.0% or more and 20.0%. No. using the following rollers. 51-No. In No. 91, No. using rollers other than the above. 92-No. It can be seen that a longer life is obtained compared to 96.
Among these, No. 1 was obtained by variously changing the amount of retained austenite γ RAB in the surface layer portion forming the raceway surface of the inner and outer rings. 67-No. 74, no. 75-No. 82, no. 83-No. From the results of the 91, as gamma RAB is large, it can be seen that there is a tendency that the life is prolonged.

すなわち、γRAB が10体積%の内外輪を用いたNo.67〜No.74では、No.96の1.7〜2.8倍の寿命が得られた。同様に、γRAB が20体積%の内外輪を用いたNo.75〜No.82では、No.96の2.4〜4.5倍の寿命が得られ、γRAB が30体積%の内外輪を用いたNo.83〜No.91では、No.96の2.9〜6.1倍の寿命が得られた。 That is, No. 1 using an inner and outer ring having a γ RAB of 10% by volume. 67-No. 74, no. A lifetime of 96 to 1.7 to 2.8 times was obtained. Similarly, No. using inner and outer rings with 20% by volume of γ RAB . 75-No. 82, no. No. 96 using 2.4 to 4.5 times the life of No. 96 and using inner and outer rings with γ RAB of 30% by volume. 83-No. 91, no. A life of 96 to 2.9 to 6.1 times longer was obtained.

また、No.67〜No.74のうち、γRAB と、ころの表層部の残留オーステナイト量γRCとの差(以下、「γRAB とγRCとの差」と記す。)が15体積%よりも大きなころを用いたNo.73,No.74では、寿命が短く、No.96の1.8倍以下となっていることが分かる。
同様に、No.75〜No.82のうち、γRAB とγRCとの差が15体積%よりも大きなころを用いたNo.75,No.81,No.82では、寿命が短く、No.96の2.4倍以下となっており、No.83〜No.91のうち、γRAB とγRCとの差が15体積%よりも大きなころを用いたNo.83,No.84,No.90,No.91では、寿命が短く、No.96の2.9倍以下となっていることが分かる。
No. 67-No. Of 74, and gamma RAB, the difference between the amount of retained austenite gamma RC of the surface layer portion of the roller (hereinafter, referred to as "the difference between the gamma RAB and gamma RC".) Was used a larger rollers than 15 vol% No . 73, no. No. 74 has a short life. It turns out that it is 1.8 times or less of 96.
Similarly, no. 75-No. No. 82 using a roller having a difference between γ RAB and γ RC larger than 15% by volume. 75, no. 81, no. No. 82 has a short life. No. 96 is 2.4 times or less. 83-No. No. 91 in which the difference between γ RAB and γ RC is larger than 15% by volume. 83, no. 84, no. 90, no. No. 91 has a short life. It turns out that it is 2.9 times or less of 96.

これらの結果から、γRAB とγRCとの差を15体積%以下とすることにより、円錐ころ軸受の寿命をさらに長くできることが分かる。
表3に示す結果に基づいて、ころの転動面のSi−Mn系窒化物の存在率と、寿命との関係を示す図16のグラフを作成した。
図16のグラフから、ころの転動面のSi−Mn系窒化物の存在率を1.0%以上20.0%以下とすると、No.96の2.0倍以上の寿命が得られていることが分かる。
From these results, it can be seen that the life of the tapered roller bearing can be further extended by setting the difference between γ RAB and γ RC to 15 volume% or less.
Based on the results shown in Table 3, the graph of FIG. 16 showing the relationship between the abundance ratio of the Si—Mn nitrides on the rolling surfaces of the rollers and the service life was prepared.
From the graph of FIG. 16, when the abundance ratio of the Si—Mn nitride on the rolling surface of the roller is 1.0% or more and 20.0% or less, No. It can be seen that a life of 2.0 times that of 96 is obtained.

また、表3に示す結果に基づいて、内輪及び外輪の軌道面をなす表層部及びころの転動面をなす表層部の残留オーステナイト量と、寿命との関係を示す図17のグラフを作成した。
図17のグラフから、ころの転動面をなす表層部の残留オーステナイト量γRCと、内輪及び外輪の軌道面をなす表層部の残留オーステナイト量γRAB との関係が、γRAB −15≦γRC≦γRAB +15を満たさない部分(図17における破線部)では、寿命が短くなっていることが分かる。
Further, based on the results shown in Table 3, the graph of FIG. 17 showing the relationship between the amount of retained austenite of the surface layer portion forming the raceway surface of the inner ring and the outer ring and the surface layer portion forming the rolling surface of the roller and the life was prepared. .
From the graph of FIG. 17, the relationship between the retained austenite amount γ RC in the surface layer portion that forms the rolling surface of the roller and the retained austenite amount γ RAB in the surface layer portion that forms the raceway surfaces of the inner ring and the outer ring is expressed as γ RAB −15 ≦ γ It can be seen that the lifetime is shortened in the portion that does not satisfy RC ≦ γ RAB +15 (the broken line portion in FIG. 17).

以上の結果より、ころの転動面をなす表層部のN含有率及び内外輪の転動面のSi−Mn系窒化物の存在率の特定に加えて、ころの転動面をなす表層部の残留オーステナイト量γRC及び内外輪の軌道面をなす表層部の残留オーステナイト量γRAB を特定することにより、異物混入潤滑下で使用される円錐ころ軸受の寿命をさらに長くできることが確認できた。 From the above results, in addition to specifying the N content of the surface layer part forming the rolling surface of the roller and the abundance of Si-Mn nitride on the rolling surface of the inner and outer rings, the surface layer part forming the roller rolling surface By identifying the retained austenite amount γ RC and the retained austenite amount γ RAB of the surface layer forming the raceway surface of the inner and outer rings, it has been confirmed that the life of the tapered roller bearing used under the foreign matter lubrication can be further extended.

耐圧痕性試験について示す説明図である。It is explanatory drawing shown about a pressure | voltage resistant test. 表層部のN含有率と、圧痕深さとの関係を示す図である。It is a figure which shows the relationship between N content rate of a surface layer part, and indentation depth. 耐摩耗性試験について示す説明図である。It is explanatory drawing shown about an abrasion resistance test. 表層部のN含有率と、摩耗量との関係を示す図である。It is a figure which shows the relationship between N content rate of a surface layer part, and the amount of wear. 表層部のN含有率と、吸収エネルギーとの関係を示す図である。It is a figure which shows the relationship between N content rate of a surface layer part, and absorbed energy. 表層部の硬さと、圧痕深さとの関係を示す図である。It is a figure which shows the relationship between the hardness of a surface layer part, and indentation depth. 表層部の硬さと、摩耗量との関係を示す図である。It is a figure which shows the relationship between the hardness of a surface layer part, and the amount of wear. 試験体の表面における走査顕微鏡写真である。It is a scanning micrograph in the surface of a test body. Si−Mn系窒化物の存在率と、圧痕深さとの関係を示す図である。It is a figure which shows the relationship between the abundance rate of Si-Mn type nitride, and indentation depth. Si−Mn系窒化物の存在率と、摩耗量との関係を示す図である。It is a figure which shows the relationship between the abundance of Si-Mn type nitride, and the amount of wear. Si−Mn系窒化物の存在率と、吸収エネルギーとの関係を示す図である。It is a figure which shows the relationship between the abundance of Si-Mn type nitride, and absorbed energy. 表層部のN含有率と、Si−Mn系窒化物の存在率との関係を示す図である。It is a figure which shows the relationship between N content rate of a surface layer part, and the abundance rate of Si-Mn type nitride. Si−Mn系窒化物の存在率と、寿命との関係を示す図である。It is a figure which shows the relationship between the abundance rate of Si-Mn type nitride, and lifetime. 本発明に係る転がり支持装置の一例として、深溝玉軸受を示す断面図である。It is sectional drawing which shows a deep groove ball bearing as an example of the rolling support apparatus which concerns on this invention. 鋼中のSi/Mnと、Si−Mn系窒化物の存在率との関係を示す図である。It is a figure which shows the relationship between Si / Mn in steel, and the abundance of Si-Mn type nitride. Si−Mn系窒化物の存在率と、寿命との関係を示す図である。It is a figure which shows the relationship between the abundance rate of Si-Mn type nitride, and lifetime. 表層部の残留オーステナイト量と、寿命との関係を示す図である。It is a figure which shows the relationship between the amount of retained austenite of a surface layer part, and a lifetime.

符号の説明Explanation of symbols

1 内輪(第1部材)
2 外輪(第2部材)
3 玉(転動体)
4 保持器
1 Inner ring (first member)
2 Outer ring (second member)
3 balls (rolling elements)
4 Cage

Claims (3)

互いに対向配置される軌道面を有する第1部材及び第2部材と、前記第1部材及び前記第2部材の間に転動自在に配置され、前記軌道面に対する転動面を有する転動体と、を備え、前記転動体が転動することにより、前記第1部材及び前記第2部材のうち一方が他方に対して相対移動する転がり支持装置において、
前記第1部材、前記第2部材、及び前記転動体のうち少なくとも一つの転動部材は、鋼からなる素材を所定形状に加工した後に、浸炭窒化又は窒化を含む熱処理が施されて得られ、
その転がり面のSi及びMnを含む窒化物の存在率は、面積比で1.0%以上20.0%以下であるとともに、その転がり面をなす表層部のN含有率は、0.2質量%以上であることを特徴とする転がり支持装置。
A first member and a second member having raceway surfaces arranged to face each other; a rolling element which is disposed between the first member and the second member so as to freely roll and has a rolling surface with respect to the raceway surface; In the rolling support device in which one of the first member and the second member moves relative to the other by rolling the rolling element,
At least one rolling member among the first member, the second member, and the rolling element is obtained by processing a raw material made of steel into a predetermined shape and then performing a heat treatment including carbonitriding or nitriding,
The abundance ratio of the nitride containing Si and Mn on the rolling surface is 1.0% or more and 20.0% or less in terms of area ratio, and the N content of the surface layer portion forming the rolling surface is 0.2 mass. % Rolling support device characterized in that it is at least%.
前記鋼は、Si含有率が0.3質量%以上2.2質量%以下で、Mn含有率が0.3質量%以上2.0質量%以下であるとともに、SiとMnとの含有率の比(Si/Mn)が、質量比で5以下であることを特徴とする請求項1に記載の転がり支持装置。   The steel has a Si content of 0.3 mass% or more and 2.2 mass% or less, a Mn content of 0.3 mass% or more and 2.0 mass% or less, and a content ratio of Si and Mn. The rolling support device according to claim 1, wherein the ratio (Si / Mn) is 5 or less by mass ratio. 前記軌道面をなす表層部の残留オーステナイト量をγRAB とし、前記転動面をなす表層部の残留オーステナイト量をγRCとした時に、0≦γRAB 及び0≦γRC≦50を満たすとともに、γRAB −15≦γRC≦γRAB +15を満たすことを特徴とする請求項1又は2に記載の転がり支持装置。 When the amount of retained austenite of the surface layer portion forming the raceway surface is γ RAB and the amount of residual austenite of the surface layer portion forming the rolling surface is γ RC , 0 ≦ γ RAB and 0 ≦ γ RC ≦ 50 are satisfied, The rolling support device according to claim 1, wherein γ RAB −15 ≦ γ RC ≦ γ RAB +15 is satisfied.
JP2005353441A 2005-12-07 2005-12-07 Rolling support device Active JP4857746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005353441A JP4857746B2 (en) 2005-12-07 2005-12-07 Rolling support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353441A JP4857746B2 (en) 2005-12-07 2005-12-07 Rolling support device

Publications (2)

Publication Number Publication Date
JP2007154281A true JP2007154281A (en) 2007-06-21
JP4857746B2 JP4857746B2 (en) 2012-01-18

Family

ID=38239017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353441A Active JP4857746B2 (en) 2005-12-07 2005-12-07 Rolling support device

Country Status (1)

Country Link
JP (1) JP4857746B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185548A (en) * 2009-02-13 2010-08-26 Nsk Ltd Rolling bearing
JP2012229482A (en) * 2011-04-27 2012-11-22 Nsk Ltd Rolling bearing
WO2013161775A1 (en) * 2012-04-25 2013-10-31 日本精工株式会社 Rolling bearing
JP2013227675A (en) * 2012-03-30 2013-11-07 Kobe Steel Ltd Gear excellent in seizure resistance
CN111684165A (en) * 2018-03-05 2020-09-18 舍弗勒技术股份两合公司 Turbocharger for an internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578814A (en) * 1991-09-19 1993-03-30 Nippon Seiko Kk Rolling bearing
JPH08120438A (en) * 1994-10-19 1996-05-14 Kobe Steel Ltd Production of parts for machine structure
JP2004353742A (en) * 2003-05-28 2004-12-16 Nsk Ltd Rolling bearing
WO2005068675A1 (en) * 2004-01-20 2005-07-28 Nsk Ltd. Rolling bearing
JP2005282854A (en) * 2004-03-03 2005-10-13 Nsk Ltd Rolling bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578814A (en) * 1991-09-19 1993-03-30 Nippon Seiko Kk Rolling bearing
JPH08120438A (en) * 1994-10-19 1996-05-14 Kobe Steel Ltd Production of parts for machine structure
JP2004353742A (en) * 2003-05-28 2004-12-16 Nsk Ltd Rolling bearing
WO2005068675A1 (en) * 2004-01-20 2005-07-28 Nsk Ltd. Rolling bearing
JP2005282854A (en) * 2004-03-03 2005-10-13 Nsk Ltd Rolling bearing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185548A (en) * 2009-02-13 2010-08-26 Nsk Ltd Rolling bearing
JP2012229482A (en) * 2011-04-27 2012-11-22 Nsk Ltd Rolling bearing
JP2013227675A (en) * 2012-03-30 2013-11-07 Kobe Steel Ltd Gear excellent in seizure resistance
WO2013161775A1 (en) * 2012-04-25 2013-10-31 日本精工株式会社 Rolling bearing
CN103492739A (en) * 2012-04-25 2014-01-01 日本精工株式会社 Rolling bearing
JPWO2013161775A1 (en) * 2012-04-25 2015-12-24 日本精工株式会社 Rolling bearing
CN103492739B (en) * 2012-04-25 2016-11-09 日本精工株式会社 Rolling bearing
TWI558928B (en) * 2012-04-25 2016-11-21 Nsk Ltd Rolling bearings
JP2018087638A (en) * 2012-04-25 2018-06-07 日本精工株式会社 Rolling bearing for main spindle of machine tool
CN111684165A (en) * 2018-03-05 2020-09-18 舍弗勒技术股份两合公司 Turbocharger for an internal combustion engine

Also Published As

Publication number Publication date
JP4857746B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP5194532B2 (en) Rolling bearing
JP2006322017A (en) Rolling bearing
JP5477111B2 (en) Nitriding induction hardening steel and nitriding induction hardening parts
JP4810157B2 (en) Rolling bearing
JP2006348342A (en) Rolling supporter
EP2386669A1 (en) Constituent member of bearing, process for production of same, and ball-and-roller bearing provided with the constituent member
JP4857746B2 (en) Rolling support device
JP5163183B2 (en) Rolling bearing
JP2006241480A (en) Rolling support device, method for manufacturing rolling member of rolling support device, and heat treatment process for steel
JP5372316B2 (en) Rolling member
JP2002180203A (en) Needle bearing components, and method for producing the components
JP2008151236A (en) Rolling bearing
JP2007113027A (en) Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus
JP2007100126A (en) Rolling member and ball bearing
JP2005282854A (en) Rolling bearing
JP4968106B2 (en) Rolling bearing
JP2007186760A (en) Manufacturing method of bearing ring for rolling bearing, and rolling bearing
JP2006328514A (en) Rolling supporting device
JP5211453B2 (en) Rolling bearing
JP5194538B2 (en) Rolling bearing
JP2005337361A (en) Roller bearing
JP2009174656A (en) Rolling bearing
JP2009191942A (en) Rolling bearing
JP2006183845A (en) Rolling bearing
JP2006045591A (en) Tapered roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350