JP2009168101A - Magnetic gear device - Google Patents

Magnetic gear device Download PDF

Info

Publication number
JP2009168101A
JP2009168101A JP2008005564A JP2008005564A JP2009168101A JP 2009168101 A JP2009168101 A JP 2009168101A JP 2008005564 A JP2008005564 A JP 2008005564A JP 2008005564 A JP2008005564 A JP 2008005564A JP 2009168101 A JP2009168101 A JP 2009168101A
Authority
JP
Japan
Prior art keywords
magnetic gear
magnetic
magnet
magnets
gear device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008005564A
Other languages
Japanese (ja)
Other versions
JP4929190B2 (en
Inventor
Nobuo Shimizu
暢夫 清水
Akihito Nakahara
明仁 中原
Hiroyuki Mikami
浩幸 三上
Kazumasa Ide
一正 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008005564A priority Critical patent/JP4929190B2/en
Publication of JP2009168101A publication Critical patent/JP2009168101A/en
Application granted granted Critical
Publication of JP4929190B2 publication Critical patent/JP4929190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic gear device, capable of restricting deterioration of transmission efficiency or transmittable torque due to enlargement of a magnet retaining mechanism following enlargement (in diameter) and high speed rotation operation. <P>SOLUTION: The device comprises an input side magnetic gear 2, comprising a plurality of magnets 3, circularly disposed around the axial line of an input rotation shaft 1, with its magnetic force generating surface directed in the axial direction, and an output side magnetic gear 6, comprising a plurality of magnets 5, circularly disposed around the axial line of an output rotation shaft 7, and they are arranged with their magnetic generating surfaces facing each other. A plurality of magnetic passage members 4 of electromagnetic steel are circularly provided to be fixed between the magnetic generating surfaces facing each other to exist between the magnet 3 and the magnet 5. The magnets 3 and 5 are restrained by a fixing part from the diametrically outer side of the respective magnetic gears 2 and 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁石の磁気吸引・反発によってトルクを伝達する磁気歯車装置に関する。   The present invention relates to a magnetic gear device that transmits torque by magnetic attraction and repulsion of a magnet.

減速装置としては、高効率での伝動が比較的容易に可能な歯車装置が広く一般に用いられているが、その他に磁石の磁気的吸引・反発によってトルクを伝達する磁気歯車装置がある。   As a reduction gear, a gear device capable of relatively easily transmitting with high efficiency is widely used. However, there is a magnetic gear device that transmits torque by magnetic attraction / repulsion of a magnet.

磁気歯車装置の従来技術として、例えば、同心状に配置した内輪磁気歯車と外輪磁気歯車の間に磁気を透過する複数の磁性バーを環状に配置し、内輪磁気歯車に入力したトルクを外輪磁気歯車に伝達するものがある(特許文献1等参照)。   As a prior art of a magnetic gear device, for example, a plurality of magnetic bars that transmit magnetism are arranged annularly between an inner ring magnetic gear and an outer ring magnetic gear arranged concentrically, and torque input to the inner ring magnetic gear is used as an outer ring magnetic gear. (See Patent Document 1 etc.).

米国特許第3,378,710号明細書U.S. Pat. No. 3,378,710

しかしながら、従来の磁気歯車装置には次のような問題がある。   However, the conventional magnetic gear device has the following problems.

上記のような構成の磁気歯車装置においては、磁気歯車の動作時(回転時)に磁石に対して遠心力がはたらく。特に内輪磁気歯車にはたらく遠心力の方向は半径外側方向、すなわち磁性バーの方向である。磁気歯車を大型化(大径化)、及び高速回転化する場合、それに伴って磁石にはたらく遠心力が大きくなり、遠心力に抗して磁石を保持するために、磁石の保持機構を大型化(強化)する必要がある。   In the magnetic gear device configured as described above, centrifugal force acts on the magnet when the magnetic gear is operating (during rotation). In particular, the direction of the centrifugal force acting on the inner ring magnetic gear is the radially outward direction, that is, the direction of the magnetic bar. When magnetic gears are increased in size (increased in diameter) and rotated at high speed, the centrifugal force acting on the magnets increases accordingly, and the magnet holding mechanism is increased in size to hold the magnets against the centrifugal force. (Strengthen) is necessary.

しかし、磁石の保持機構が大きくなると内輪磁気歯車の磁石と磁性バーの距離を短く保つことが難しくなり、伝達効率や伝達可能トルクの悪化が懸念される。   However, when the magnet holding mechanism becomes large, it becomes difficult to keep the distance between the magnet of the inner ring magnetic gear and the magnetic bar short, and there is a concern that transmission efficiency and transmittable torque will deteriorate.

本発明は上記に鑑みてなされたものであり、大型化(大径化)、及び高速回転化に伴う磁石保持機構の大型化による伝達効率や伝達可能トルクの悪化を抑制することができる磁気歯車装置を提供することを目的とする。   The present invention has been made in view of the above, and a magnetic gear capable of suppressing deterioration in transmission efficiency and transmittable torque due to an increase in size (increase in diameter) and an increase in the size of a magnet holding mechanism accompanying high-speed rotation. An object is to provide an apparatus.

上記目的を達成するために、本発明は、複数の磁石を入力回転軸の軸線周りに環状に配置した磁力発生面を軸方向に向けた入力側磁気歯車と、前記入力側磁気歯車と同軸上に設けられ、複数の磁石を出力回転軸の軸線周りに環状に配置した磁力発生面を前記入力側磁気歯車の磁力発生面に対向させた出力側磁気歯車と、前記入力側磁気歯車と前記出力側磁気歯車の対向する磁力発生面間にて、前記入力側磁気歯車と前記出力側磁気歯車の磁石間に介在するように環状に固設された電磁鋼製の複数の磁気経路部材と、前記入力側磁気歯車及び前記出力側磁気歯車の磁力発生面に設けられ、少なくとも各磁気歯車の径方向の外側から前記磁石を拘束する固定部とを備えるものとする。   In order to achieve the above object, the present invention provides an input side magnetic gear having a plurality of magnets arranged in an annular shape around the axis of an input rotation shaft and having a magnetic force generating surface directed in the axial direction, and coaxial with the input side magnetic gear. An output side magnetic gear having a plurality of magnets arranged annularly around the axis of the output rotation shaft and facing the magnetic force generation surface of the input side magnetic gear, the input side magnetic gear and the output A plurality of magnetic path members made of electromagnetic steel fixed annularly so as to be interposed between the magnets of the input side magnetic gear and the output side magnetic gear, between the opposing magnetic force generation surfaces of the side magnetic gear; Provided on the magnetic force generation surface of the input side magnetic gear and the output side magnetic gear, and includes a fixing portion that restrains the magnet from at least the radial outside of each magnetic gear.

本発明によれば、磁気歯車装置の大型化(大径化)、及び高速回転化に伴う磁石保持機構の大型化による伝達効率や伝達可能トルクの悪化を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the deterioration of the transmission efficiency and the torque which can be transmitted by the enlargement (magnification) of a magnetic gear apparatus and the enlargement of the magnet holding mechanism accompanying high speed rotation can be suppressed.

以下、本発明の実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の第1の実施の形態を図1〜図6を用いて説明する。   A first embodiment of the present invention will be described with reference to FIGS.

図6は、本発明の第1の実施の形態に係る磁気歯車装置100を備えたガスタービン発電機の構成図である。   FIG. 6 is a configuration diagram of a gas turbine generator including the magnetic gear device 100 according to the first embodiment of the present invention.

図6において、ガスタービン発電機は、取り入れた空気を圧縮して圧縮空気を生成する圧縮機90と、圧縮機90からの圧縮空気と燃料とを混合燃焼する燃焼器91と、燃焼器91からの燃焼ガスにより回転駆動するタービン92と、タービン92と圧縮機90を連結し、タービン92の回転を圧縮機90に伝達する中間軸93と、圧縮機90に接続され、圧縮機92により回転駆動される入力回転軸1と、入力回転軸1に接続され、入力回転軸1の回転数を変換して出力する磁気歯車100と、磁気歯車100に接続され、磁気歯車100により変換された回転数で回転駆動される出力回転軸7と、出力回転軸7に接続され、出力回転軸7の回転数に応じて発電を行う発電機94とを備えている。入力回転軸1、出力回転軸7、及びその他の回転軸は同軸上に配置され、複数のジャーナル軸受95及びスラスト軸受(図示せず)により回転可能に支持されている。   In FIG. 6, the gas turbine generator includes a compressor 90 that compresses intake air to generate compressed air, a combustor 91 that mixes and burns compressed air and fuel from the compressor 90, and a combustor 91. The turbine 92 that is rotationally driven by the combustion gas of the turbine, the intermediate shaft 93 that connects the turbine 92 and the compressor 90, and transmits the rotation of the turbine 92 to the compressor 90, is connected to the compressor 90, and is rotationally driven by the compressor 92. Input rotational shaft 1 connected to the input rotational shaft 1, the magnetic gear 100 that converts and outputs the rotational speed of the input rotational shaft 1, and the rotational speed that is connected to the magnetic gear 100 and converted by the magnetic gear 100. And an output rotating shaft 7 that is driven to rotate, and a generator 94 that is connected to the output rotating shaft 7 and generates electric power according to the rotational speed of the output rotating shaft 7. The input rotary shaft 1, the output rotary shaft 7, and other rotary shafts are arranged coaxially and are rotatably supported by a plurality of journal bearings 95 and thrust bearings (not shown).

図1は、磁気歯車装置100の回転軸1,7の軸心線を包含する鉛直面における断面図であり、図2及び図3は、図1の磁気歯車装置100のA−A線矢視図及びB−B線矢視図であり、図4は、図1の磁気歯車装置100のC−C線断面図であり、図5は、磁気歯車装置100を入力回転軸1方向から見た図である。   FIG. 1 is a cross-sectional view of a vertical plane including the axis of rotation shafts 1 and 7 of the magnetic gear device 100. FIGS. 2 and 3 are views of the magnetic gear device 100 of FIG. FIG. 4 is a cross-sectional view taken along line C-C of the magnetic gear device 100 of FIG. 1, and FIG. 5 is a view of the magnetic gear device 100 as viewed from the direction of the input rotation shaft 1. FIG.

図1〜図5において、磁気歯車装置100は、一方の面を互いに対向して配置された略円盤状の入力側磁気歯車2及び出力側磁気歯車6と、入力側磁気歯車2と出力側磁気歯車6の間に配置された複数の磁気経路部材4と、複数の磁気経路部材4を固定するサポート8と、サポート8を図示しない基礎に対して固定する板部9とを有している。   1 to 5, a magnetic gear device 100 includes a substantially disk-shaped input side magnetic gear 2 and output side magnetic gear 6 that are arranged so that one surfaces thereof face each other, an input side magnetic gear 2, and an output side magnetism. A plurality of magnetic path members 4 disposed between the gears 6, a support 8 for fixing the plurality of magnetic path members 4, and a plate portion 9 for fixing the support 8 to a foundation (not shown).

入力側磁気歯車2の一方の面の中心部には、その面に垂直に入力回転軸1が接続されている(図5参照)。入力回転軸1が回転することにより入力側磁気歯車2は周方向に回転駆動される。また、入力側磁気歯車2の他方の面、つまり、出力側磁気歯車6と対向する面には、複数(例えば10個)の磁石3(例えば永久磁石)が入力回転軸1の軸線周りに環状に設けられている(図2参照)。   The input rotary shaft 1 is connected to the center of one surface of the input side magnetic gear 2 perpendicularly to the surface (see FIG. 5). As the input rotation shaft 1 rotates, the input side magnetic gear 2 is rotationally driven in the circumferential direction. On the other surface of the input side magnetic gear 2, that is, the surface facing the output side magnetic gear 6, a plurality of (for example, ten) magnets 3 (for example, permanent magnets) are annular around the axis of the input rotation shaft 1. (See FIG. 2).

出力側磁気歯車6も入力側磁気歯車2と同様である。すなわち、出力側磁気歯車6の一方の面の中心部には、その面に垂直に出力回転軸7が接続されており、出力側磁気歯車2が周方向に回転することにより出力回転軸7は回転駆動される。また、出力側磁気歯車6の他方の面、つまり、入力側磁気歯車2と対向する面には、複数(例えば14個)の磁石5(例えば永久磁石)が出力回転軸7の軸線周りに環状に設けられている(図3参照)。   The output side magnetic gear 6 is the same as the input side magnetic gear 2. That is, the output rotary shaft 7 is connected to the center of one surface of the output side magnetic gear 6 perpendicularly to the surface, and the output rotary shaft 7 is rotated by rotating the output side magnetic gear 2 in the circumferential direction. Driven by rotation. On the other surface of the output-side magnetic gear 6, that is, the surface facing the input-side magnetic gear 2, a plurality of (for example, 14) magnets 5 (for example, permanent magnets) are annular around the axis of the output rotation shaft 7. (See FIG. 3).

入力側磁気歯車2及び出力側磁気歯車6において、磁石3,5は、軸線から複数の磁石3までの距離(半径)と軸線から複数の磁石5までの距離(半径)が同じになるよう配置されている。また、入力回転軸1と出力回転軸7は同軸上に配置されている。したがって、入力側磁気歯車2及び出力側磁気歯車6の周方向の相対位置によらず磁石3と磁石5は対向する。   In the input side magnetic gear 2 and the output side magnetic gear 6, the magnets 3 and 5 are arranged such that the distance (radius) from the axis to the plurality of magnets 3 is the same as the distance (radius) from the axis to the plurality of magnets 5. Has been. Further, the input rotary shaft 1 and the output rotary shaft 7 are arranged coaxially. Therefore, the magnet 3 and the magnet 5 face each other regardless of the relative positions of the input side magnetic gear 2 and the output side magnetic gear 6 in the circumferential direction.

入力側磁気歯車2の磁石3が設けられた面、及び出力側磁気歯車6の磁石5が設けられた面を磁力発生面と呼ぶ。   The surface on which the magnet 3 of the input side magnetic gear 2 is provided and the surface on which the magnet 5 of the output side magnetic gear 6 is provided are referred to as a magnetic force generation surface.

磁石3,5は、入力側磁気歯車2及び出力側磁気歯車6の磁力発生面に軸線周りに、かつ軸線を中心として環状に設けられた磁石固定溝に嵌め込まれて固定されている。入力側磁気歯車2及び出力側磁気歯車6において、軸線から磁石固定溝までの距離(半径)は同じになるよう構成されている。磁石3,5及び磁石固定溝は、入力回転軸1及び出力回転軸7の軸心線を包含する平面で切断した断面が、磁気経路部材4に向かって縮径する台形状に形成されており、この台形状の断面における下底及び斜辺に相当する面で接することにより磁石3,5は磁石固定溝に固定されている。特に、入力側磁気歯車2及び出力側磁気歯車6の磁石固定溝から見て径方向外側の部分は、径方向外側から磁石3,5を拘束する固定部を構成している。これにより、例えば入力側磁気歯車2及び出力側磁気歯車6の回転によってはたらく遠心力による磁石3,5の径方向の動きを拘束することができる。また、磁石3,5は、磁極を軸方向に向けて配置されており、軸方向から見た場合に、周方向にN極とS極が交互に並ぶように配置されている。なお、磁石3,5は、板状の磁石を軸方向、周方向、或いは径方向に積層した構成としても良い。これにより、磁石3,5に発生する渦電流を抑制することができる。   The magnets 3 and 5 are fitted and fixed in magnet fixing grooves provided around the axis and in an annular shape around the axis on the magnetic force generation surfaces of the input side magnetic gear 2 and the output side magnetic gear 6. The input side magnetic gear 2 and the output side magnetic gear 6 are configured such that the distance (radius) from the axis to the magnet fixing groove is the same. The magnets 3 and 5 and the magnet fixing groove are formed in a trapezoidal shape in which a cross section cut along a plane including the axis of the input rotary shaft 1 and the output rotary shaft 7 is reduced in diameter toward the magnetic path member 4. The magnets 3 and 5 are fixed to the magnet fixing groove by contacting with the surfaces corresponding to the lower base and the hypotenuse in the trapezoidal cross section. In particular, the radially outer portion of the input side magnetic gear 2 and the output side magnetic gear 6 as viewed from the magnet fixing groove constitutes a fixing portion that restrains the magnets 3 and 5 from the radially outer side. Thereby, for example, the radial movements of the magnets 3 and 5 due to the centrifugal force acting by the rotation of the input side magnetic gear 2 and the output side magnetic gear 6 can be restricted. Further, the magnets 3 and 5 are arranged such that the magnetic poles are directed in the axial direction, and the N poles and the S poles are arranged alternately in the circumferential direction when viewed from the axial direction. In addition, the magnets 3 and 5 are good also as a structure which laminated | stacked the plate-shaped magnet in the axial direction, the circumferential direction, or radial direction. Thereby, the eddy current which generate | occur | produces in the magnets 3 and 5 can be suppressed.

サポート8は、板状に形成され、軸線に直交するように配置されており、軸線を中心とした円形状の孔が設けられている。また、サポート8は、樹脂等の非金属(非磁性体)により形成されており、磁石3,5により発生する磁場による影響を受けにくい構成となっている。したがって、磁石3,5により発生する磁場によってサポート8にはたらく力や発生する渦電流を抑制することができる。   The support 8 is formed in a plate shape and is disposed so as to be orthogonal to the axis, and is provided with a circular hole centered on the axis. The support 8 is made of a non-metal (non-magnetic material) such as a resin, and is not easily affected by the magnetic field generated by the magnets 3 and 5. Therefore, the force acting on the support 8 and the generated eddy current can be suppressed by the magnetic field generated by the magnets 3 and 5.

磁気経路部材4は、棒状の部材である。その断面形状は限定されないが、例えば長方形(正方形)や円形等の断面形状を有する。磁気経路部材4は一端をサポート8の孔の内側に接続(埋設)されており、他端を径方向に向けて配置されている。また、複数の磁気経路部材4は、サポート8の孔の内側に等間隔に配置されている。すなわち、複数の磁気経路部材4は、軸線周りに環状に、周方向に等間隔に配置されている。   The magnetic path member 4 is a rod-shaped member. Although the cross-sectional shape is not limited, For example, it has cross-sectional shapes, such as a rectangle (square) and a circle. One end of the magnetic path member 4 is connected (embedded) inside the hole of the support 8 and the other end is arranged in the radial direction. The plurality of magnetic path members 4 are arranged at equal intervals inside the hole of the support 8. That is, the plurality of magnetic path members 4 are arranged annularly around the axis and at equal intervals in the circumferential direction.

軸線から各磁気経路部材4までの距離(半径)は、軸線から磁石3又は磁石5までの距離(半径)と同じになるように設定されており、したがって、磁気経路部材4は、磁石3と磁石5の間に位置するよう配置されている。   The distance (radius) from the axis to each magnetic path member 4 is set to be the same as the distance (radius) from the axis to the magnet 3 or the magnet 5. Therefore, the magnetic path member 4 is connected to the magnet 3. It arrange | positions so that it may be located between the magnets 5.

また、磁気経路部材4は、表面を絶縁処理した珪素鋼板を周方向、或いは半径方向に積層して形成されている。これにより回転軸1,7方向の磁界の変化により発生する渦電流を抑制することができる。なお、磁石3,5からの磁界によって発生する周方向の回転トルク荷重に対する強度を重視する場合、磁気経路部材4は珪素鋼板を軸方向に積層して形成しても良い。   The magnetic path member 4 is formed by laminating silicon steel plates whose surfaces are insulated in the circumferential direction or the radial direction. Thereby, the eddy current which generate | occur | produces by the change of the magnetic field of the rotating shafts 1 and 7 direction can be suppressed. When importance is attached to the circumferential rotational torque load generated by the magnetic field from the magnets 3 and 5, the magnetic path member 4 may be formed by laminating silicon steel plates in the axial direction.

図1に示したように、入力側磁気歯車2の磁力発生面に設けられた磁石3と磁気経路部材4の間、及び磁石5と磁気経路部材4の間には間隙が設けられており互いに非接触に配置されている。磁気経路部材4は、磁石3と磁石5の間の磁界を互いに伝達するものであり、磁石3と磁石5は、磁気経路部材4を介して磁気的に噛み合っている。   As shown in FIG. 1, gaps are provided between the magnet 3 and the magnetic path member 4 provided on the magnetic force generating surface of the input side magnetic gear 2 and between the magnet 5 and the magnetic path member 4. Arranged non-contact. The magnetic path member 4 transmits a magnetic field between the magnet 3 and the magnet 5 to each other, and the magnet 3 and the magnet 5 are magnetically meshed via the magnetic path member 4.

磁気歯車装置100の入力回転軸1(入力側磁気歯車2)の回転数と出力回転軸7(出力側磁気歯車6)の回転数の関係は、磁石3,5の員数の比により決まる。入力回転軸1の回転数(入力回転数)をNin、入力側磁気歯車2に設けられた磁石3の員数をXin、出力回転軸7の回転数(出力回転数)をNout、出力側磁気歯車6に設けられた磁石5の員数をXoutとすると、入力回転数Ninと出力回転数Noutの関係は以下の式で表される。   The relationship between the rotational speed of the input rotary shaft 1 (input-side magnetic gear 2) and the rotational speed of the output rotary shaft 7 (output-side magnetic gear 6) of the magnetic gear device 100 is determined by the ratio of the number of magnets 3 and 5. The rotational speed (input rotational speed) of the input rotary shaft 1 is Nin, the number of magnets 3 provided on the input side magnetic gear 2 is Xin, the rotational speed (output rotational speed) of the output rotary shaft 7 is Nout, and the output side magnetic gear If the number of magnets 5 provided in 6 is Xout, the relationship between the input rotation speed Nin and the output rotation speed Nout is expressed by the following equation.

Nin:Nout=Xout:Xin ・・・(1)
例えば、本実施の形態に示したように、磁石3の員数を10(図3参照)、磁石5の員数を14(図4参照)とすると、入力回転数Ninと出力回転軸Noutの比は、14:10となる。
Nin: Nout = Xout: Xin (1)
For example, as shown in the present embodiment, if the number of magnets 3 is 10 (see FIG. 3) and the number of magnets 5 is 14 (see FIG. 4), the ratio between the input rotation speed Nin and the output rotation shaft Nout is 14:10.

入力側磁気歯車2と出力側磁気歯車6の間の伝達可能トルクは、磁石3,5の員数が増えるに従って増加する。また、入力側磁気歯車2と出力側磁気歯車6の間の伝達可能トルクは、磁石3,5それぞれの極性対数と磁気経路部材4の員数の関係で決まる。極性対とは、入力側及び出力側磁気歯車2,6の磁力発生面に環状に配置された磁石3,5のそれぞれにおいて、隣り合って配置されたN極とS極の組のことであり、極性対数とは、N極とS極の組数のことである。   The transmittable torque between the input side magnetic gear 2 and the output side magnetic gear 6 increases as the number of magnets 3 and 5 increases. Further, the transmittable torque between the input side magnetic gear 2 and the output side magnetic gear 6 is determined by the relationship between the number of polar pairs of the magnets 3 and 5 and the number of magnetic path members 4. The polarity pair is a set of N and S poles arranged adjacent to each other in each of the magnets 3 and 5 that are annularly arranged on the magnetic force generating surfaces of the input side and output side magnetic gears 2 and 6. The polar logarithm is the number of pairs of N and S poles.

磁石3,5の員数を一定とした場合において、磁気経路部材4の員数を磁石3の極性対数と磁石5の極性対数の和となるように構成した場合に、回転軸1から回転軸7への伝達可能トルクは最大となる。この知見は、フーリエ解析等を用いたシミュレーションにより得られる。例えば、磁石3の極性対数を5(磁石3の員数は10個)、磁石5の極性対数を7(磁石5の員数は14個)とした場合において、磁気経路部材4の員数を12とすると入力側磁気歯車2と出力側磁気歯車6の間の伝達可能トルクは最大となる。   When the number of the magnets 3 and 5 is constant, the number of the magnetic path members 4 is configured to be the sum of the polar logarithm of the magnet 3 and the polar logarithm of the magnet 5. The maximum torque that can be transmitted is. This knowledge is obtained by simulation using Fourier analysis or the like. For example, when the number of polar pairs of the magnet 3 is 5 (the number of the magnets 3 is 10) and the number of the polar pairs of the magnet 5 is 7 (the number of the magnets 5 is 14), the number of the magnetic path members 4 is 12. The transmittable torque between the input side magnetic gear 2 and the output side magnetic gear 6 is maximized.

以上のように構成した本実施の形態の動作を説明する。   The operation of the present embodiment configured as described above will be described.

圧縮機90及びタービン92を起動し、回転軸1を回転駆動すると磁気歯車装置100の入力側磁気歯車2が回転駆動される。   When the compressor 90 and the turbine 92 are started and the rotary shaft 1 is rotationally driven, the input-side magnetic gear 2 of the magnetic gear device 100 is rotationally driven.

入力側磁気歯車2に設けられた複数の磁石3と出力側磁気歯車6に設けられた複数の磁石5は、磁気経路部材4を介して磁気的に噛み合っている。具体的には、入力側磁気歯車2の磁石3は隣り合うもの同士で磁気経路部材4に向けた磁極面をN・S交互にしているので、入力側磁気歯車2が磁気経路部材4に相対して回転すると、各磁気経路部材4の入力側磁気歯車2および出力側磁気歯車6との対向面がN極又はS極に交互に磁化される。このように、磁化された磁気経路部材4と磁石5の間にはたらく磁気的吸引力または反発力によって出力側磁気歯車6は周方向に回転駆動される。すなわち、磁気歯車装置100は、磁気経路部材4を遊星磁気歯車の様に機能させて入力回転軸1の回転動力を出力回転軸7に伝達する。   A plurality of magnets 3 provided on the input-side magnetic gear 2 and a plurality of magnets 5 provided on the output-side magnetic gear 6 are magnetically meshed via the magnetic path member 4. Specifically, since the magnets 3 of the input side magnetic gear 2 are adjacent to each other and the magnetic pole faces toward the magnetic path member 4 are alternated between N and S, the input side magnetic gear 2 is relative to the magnetic path member 4. Then, the opposing surfaces of the magnetic path members 4 facing the input side magnetic gear 2 and the output side magnetic gear 6 are alternately magnetized to the N or S poles. Thus, the output side magnetic gear 6 is rotationally driven in the circumferential direction by the magnetic attractive force or repulsive force acting between the magnetized magnetic path member 4 and the magnet 5. That is, the magnetic gear device 100 transmits the rotational power of the input rotary shaft 1 to the output rotary shaft 7 by causing the magnetic path member 4 to function like a planetary magnetic gear.

以上のように構成した本実施の形態の効果を従来技術と比較しつつ説明する。   The effect of the present embodiment configured as described above will be described in comparison with the prior art.

近年、例えば工作機械のシャフトのように比較的小径の回転軸への駆動伝達機構として磁気歯車装置を適用することが提唱されつつあるが、例えばガスタービン発電設備においては、大きなトルクを伝達するために互いに連絡されるタービン及び発電機には相応に径の大きな回転軸が必要である。したがって、ガスタービンと発電機の間の減速機に磁気歯車装置を適用する場合、磁気歯車は必然的に大型化される。特にガスタービン発電設備の場合、定格運転時にはガスタービンが高速回転するので軸径差と相まって、工作機械のシャフト等に比べると遠心力は著しく大きい。   In recent years, it has been proposed to apply a magnetic gear device as a drive transmission mechanism to a relatively small-diameter rotating shaft such as a shaft of a machine tool. For example, in a gas turbine power generation facility, a large torque is transmitted. The turbine and the generator connected to each other need a rotating shaft having a correspondingly large diameter. Therefore, when the magnetic gear device is applied to the speed reducer between the gas turbine and the generator, the magnetic gear is necessarily enlarged. In particular, in the case of a gas turbine power generation facility, the centrifugal force is remarkably larger than that of a machine tool shaft or the like because the gas turbine rotates at a high speed during rated operation, coupled with a shaft diameter difference.

従来技術のように内輪磁気歯車と外輪磁気歯車の間に磁気を透過する複数の磁性バーを環状に配置した磁気歯車装置をガスタービン発電設備に適用した場合、この大きな遠心力に抗して磁石を保持するために、磁石の保持機構を強固なものとする必要がある。その結果、磁石の保持機構が大きくなると内輪磁気歯車の磁石と磁性バーの距離を短く保つことが難しくなり、伝達効率や伝達可能トルクの悪化が懸念される。   When a magnetic gear device in which a plurality of magnetic bars that transmit magnetism are annularly arranged between the inner ring magnetic gear and the outer ring magnetic gear as in the prior art is applied to a gas turbine power generation facility, the magnet resists this large centrifugal force. Therefore, it is necessary to strengthen the magnet holding mechanism. As a result, when the magnet holding mechanism becomes large, it becomes difficult to keep the distance between the magnet of the inner ring magnetic gear and the magnetic bar short, and there is a concern that transmission efficiency and transmittable torque will deteriorate.

また、先の従来技術において、ガスタービン発電設備等への適用に伴って、磁気歯車が軸方向に長くなれば、磁性バーも軸方向に長くする必要がある。磁気歯車装置の駆動時には、磁気歯車だけでなく磁性バーにもトルクがはたらく。ガスタービン発電装置に適用する場合のように、磁気歯車装置に要求される伝達トルクが非常に大きい場合、磁性バーにはたらくトルクも非常に大きくなる。しかし、磁性バーは、内輪磁気歯車及び外輪磁気歯車との位置関係の制約により、片持ち支持機構とせざるを得ず、磁性バーの軸方向中間部分に保持機構を設けることも困難である。したがって、自重及びトルクに抗して姿勢を保持することが難しくなり、磁性バーの歪みや磁気歯車との干渉が懸念される。   In the prior art, if the magnetic gear becomes longer in the axial direction along with the application to the gas turbine power generation facility or the like, the magnetic bar needs to be longer in the axial direction. When the magnetic gear device is driven, torque acts not only on the magnetic gear but also on the magnetic bar. When the transmission torque required for the magnetic gear device is very large as in the case of application to a gas turbine power generation device, the torque acting on the magnetic bar is also very large. However, the magnetic bar has to be a cantilever support mechanism due to restrictions on the positional relationship between the inner ring magnetic gear and the outer ring magnetic gear, and it is difficult to provide a holding mechanism in the axial intermediate portion of the magnetic bar. Therefore, it becomes difficult to maintain the posture against the weight and torque, and there is a concern about distortion of the magnetic bar and interference with the magnetic gear.

それに対し、本実施の形態の磁気歯車装置100においては、入力側磁気歯車2及び出力側磁気歯車6の対向する磁力発生面に磁石3,5を設け、磁石3と磁石5が磁気的に軸方向に噛み合う構成としたので、相手歯車側から磁石を押える必要がなく、磁石3,5を遠心力に対して拘束するための保持機構の大きさによる磁石3,5と磁気経路部材4との間の距離の制約が小さくなる。したがって、入力側及び出力側磁気歯車2,6の大型化(大径化)、及び高速回転化に伴う磁石保持機構の大型化による伝達効率や伝達可能トルクの悪化を抑制することができる。   On the other hand, in the magnetic gear device 100 of the present embodiment, the magnets 3 and 5 are provided on the magnetic force generating surfaces of the input side magnetic gear 2 and the output side magnetic gear 6 which are opposed to each other, and the magnet 3 and the magnet 5 are magnetically pivoted. Since it is configured to mesh in the direction, there is no need to press the magnet from the counter gear side, and the magnets 3 and 5 and the magnetic path member 4 according to the size of the holding mechanism for restraining the magnets 3 and 5 against the centrifugal force. The restriction of the distance between them becomes smaller. Therefore, it is possible to suppress deterioration in transmission efficiency and transmittable torque due to an increase in size (increase in diameter) of the input-side and output-side magnetic gears 2 and 6 and an increase in the size of the magnet holding mechanism accompanying high-speed rotation.

また、上記構成により軸方向における入力側磁気歯車2及び出力側磁気歯車6の対向面間に磁気経路部材4を配置することができるので、磁気歯車装置サポート8によって、磁気歯車間の外周方向から磁気経路部材4を保持することができる。これにより、従来の磁気歯車装置における保持機構により保持される磁性バーの一端と他端の距離と比較して、サポート8と磁気経路部材4の保持されない他端の距離を短く保つことができるので、磁気経路部材4にはたらくトルクに対して十分な保持力を得ることが可能となり、磁性バーの歪みや破損の発生を抑制することができる。   Moreover, since the magnetic path member 4 can be disposed between the opposing surfaces of the input side magnetic gear 2 and the output side magnetic gear 6 in the axial direction by the above configuration, the magnetic gear device support 8 can be used from the outer circumferential direction between the magnetic gears. The magnetic path member 4 can be held. As a result, the distance between the support 8 and the other end where the magnetic path member 4 is not held can be kept shorter than the distance between the one end and the other end of the magnetic bar held by the holding mechanism in the conventional magnetic gear device. In addition, it is possible to obtain a sufficient holding force with respect to the torque acting on the magnetic path member 4, and to suppress the occurrence of distortion and breakage of the magnetic bar.

さらに、入力側磁気歯車2と出力側磁気歯車6の間のトルクの伝達を非接触としたので潤滑油等が不要になり、コストの低減に繋がるとともに信頼性の向上を図ることができる。   Furthermore, since the transmission of torque between the input side magnetic gear 2 and the output side magnetic gear 6 is made non-contact, no lubricating oil or the like is required, leading to cost reduction and improved reliability.

また、入力側磁気歯車2と出力側磁気歯車6の間に過大なトルクがかかった場合、磁石3と磁石5の間の磁気的噛み合いがスリップし、磁気歯車装置100及びガスタービン発電機全体の故障を防止することができる。   Further, when an excessive torque is applied between the input side magnetic gear 2 and the output side magnetic gear 6, the magnetic engagement between the magnet 3 and the magnet 5 slips, and the magnetic gear device 100 and the entire gas turbine generator are Failure can be prevented.

本発明の第2の実施の形態を図7を用いて説明する。   A second embodiment of the present invention will be described with reference to FIG.

本実施の形態は、第1の実施の形態における複数の磁石3に換えて、複数の磁石で構成した磁石群を周方向に並べて配置し、隣り合う一対の磁石群を構成する磁石の配置をハルバッハ配列としたものである。   In this embodiment, instead of the plurality of magnets 3 in the first embodiment, magnet groups constituted by a plurality of magnets are arranged side by side in the circumferential direction, and magnets constituting a pair of adjacent magnet groups are arranged. It is a Halbach array.

図7は、本実施の形態に関わる入力側磁気歯車2の磁力発生面に軸線周りに環状に複数設けられた磁石群のうちの隣り合う2つの磁石群10,11を代表して示したものであり、磁石群10,11を半径方向外側から見た図である。図中の上下方向が軸方向、左右方向が周方向にそれぞれ対応している。   FIG. 7 representatively shows two adjacent magnet groups 10 and 11 out of a plurality of magnet groups provided in a ring around the axis on the magnetic force generation surface of the input side magnetic gear 2 according to the present embodiment. It is the figure which looked at the magnet groups 10 and 11 from the radial direction outer side. The vertical direction in the figure corresponds to the axial direction, and the horizontal direction corresponds to the circumferential direction.

図7において、磁石群10は、複数(例えば3個)の磁石10a〜10c(例えば永久磁石)により構成されており、磁石群11は、複数(例えば3個)の磁石11a〜11c(例えば永久磁石)により構成されている。   In FIG. 7, the magnet group 10 is configured by a plurality (for example, three) of magnets 10 a to 10 c (for example, permanent magnets), and the magnet group 11 is a plurality of (for example, three) magnets 11 a to 11 c (for example, permanent). Magnet).

磁石群10において、磁石10aは、図中下方向にN極、上方向にS極を有している。磁石10bも同様に、図中下方向にN極、上方向にS極を有しており、磁石10aの図中上側に隣接して配置されている。磁石10cは、図中左下方向にN極、右上方向にS極を有しており、磁石10bの図中上側に隣接して配置されている。磁石群11において、磁石11aは、図中上方向にN極、下方向にS極を有している。磁石11bも同様に、図中上方向にN極、下方向にS極を有しており、磁石11aの図中上側に隣接して配置されている。磁石11cは、図中左上方向にN極、右下方向にS極を有しており、磁石11bの図中上側に隣接して配置されている。また、磁石群10と磁石群11は、図中左右方向(周方向)に隣接して配置されており、磁石10a〜10cの図中右側にはそれぞれ磁石11a〜11cが隣接して配置されている。   In the magnet group 10, the magnet 10a has an N pole in the downward direction and an S pole in the upward direction. Similarly, the magnet 10b has an N pole in the downward direction in the drawing and an S pole in the upward direction, and is disposed adjacent to the upper side of the magnet 10a in the drawing. The magnet 10c has an N pole in the lower left direction in the figure and an S pole in the upper right direction, and is disposed adjacent to the upper side in the figure of the magnet 10b. In the magnet group 11, the magnet 11a has an N pole in the upward direction and an S pole in the downward direction. Similarly, the magnet 11b has an N pole in the upper direction in the drawing and an S pole in the lower direction, and is disposed adjacent to the upper side of the magnet 11a in the drawing. The magnet 11c has an N pole in the upper left direction in the figure and an S pole in the lower right direction, and is disposed adjacent to the upper side in the figure of the magnet 11b. Moreover, the magnet group 10 and the magnet group 11 are arrange | positioned adjacent to the left-right direction (circumferential direction) in the figure, and magnet 11a-11c is arrange | positioned adjacent to the right side in the figure of magnet 10a-10c, respectively. Yes.

このように、隣り合う磁石群に注目すると、各磁石10a〜10c,11a〜11cは隣接する磁石から発生する磁力線に磁極の向きを合せて配置されている。このようにして互いの磁力を強めあうような磁石の配列をハルバッハ配列と呼ぶ。   Thus, paying attention to adjacent magnet groups, each of the magnets 10a to 10c and 11a to 11c is arranged with the direction of the magnetic pole aligned with the lines of magnetic force generated from the adjacent magnets. An arrangement of magnets that reinforce each other's magnetic force in this way is called a Halbach arrangement.

入力側磁気歯車2の磁力発生面には磁石群10,11のように隣り合う磁石群とともに、各磁石がハルバッハ配列をなす磁石群が入力回転軸1の軸線周りに環状に設けられており、軸方向(図中下側)から見た場合の各磁石群の磁極は周方向にN極とS極が交互に並ぶように配置されている。   On the magnetic force generating surface of the input-side magnetic gear 2, a magnet group in which each magnet forms a Halbach array together with adjacent magnet groups such as magnet groups 10 and 11 is provided in an annular shape around the axis of the input rotary shaft 1, When viewed from the axial direction (lower side in the figure), the magnetic poles of each magnet group are arranged so that N poles and S poles are alternately arranged in the circumferential direction.

その他の構成は、第1の実施の形態と同様である。   Other configurations are the same as those of the first embodiment.

以上のように構成した本実施の形態においても、第1の実施の形態と同様の効果を得ることができる。   Also in the present embodiment configured as described above, the same effects as those of the first embodiment can be obtained.

また、入力側磁気歯車2の磁力発生面に複数の磁石群10,11を設けたので、入力側磁気歯車2(磁石群10,11)と出力側磁気歯車6(磁石5)の磁気的噛み合いがより強くなり、磁気歯車装置100の伝達可能トルクを向上することができる。   In addition, since the plurality of magnet groups 10 and 11 are provided on the magnetic force generating surface of the input side magnetic gear 2, the magnetic engagement between the input side magnetic gear 2 (magnet groups 10 and 11) and the output side magnetic gear 6 (magnet 5). Becomes stronger and the transmittable torque of the magnetic gear device 100 can be improved.

なお、本実施の形態においては、磁石群10を6個の磁石10a〜10fにより構成したが、これに限られず、7個以上または5個以下の磁石をハルバッハ配列とした磁石群を用いても良い。また、磁石群10,11では、磁石10c,11cに磁極が軸方向に対して斜めを向いた磁石を用いたが、これらを例えば磁石10b,11bと同様の磁石に代えても良い。   In the present embodiment, the magnet group 10 is configured by the six magnets 10a to 10f. However, the present invention is not limited to this, and a magnet group in which seven or more or five or less magnets are arranged in a Halbach array may be used. good. In the magnet groups 10 and 11, magnets whose magnetic poles are inclined with respect to the axial direction are used for the magnets 10 c and 11 c, but these may be replaced with magnets similar to the magnets 10 b and 11 b, for example.

また、本実施の形態においては、入力側磁気歯車2の磁石3に換えて磁石群10,11を用いる場合を例に取り説明したが、これに限られず、例えば出力側磁気歯車6の磁石5に換えて磁石群10,11と同様の構成の磁石群を用いても良い。当然ながら、入力側磁気歯車2及び出力側磁気歯車6の双方に磁石のハルバッハ配列を適用しても良い。これらの場合においても、同様の効果を得ることができる。   Further, in the present embodiment, the case where the magnet groups 10 and 11 are used instead of the magnet 3 of the input side magnetic gear 2 has been described as an example. However, the present invention is not limited to this, for example, the magnet 5 of the output side magnetic gear 6. Instead, a magnet group having the same configuration as the magnet groups 10 and 11 may be used. Of course, a Halbach arrangement of magnets may be applied to both the input side magnetic gear 2 and the output side magnetic gear 6. In these cases, similar effects can be obtained.

本発明の第3の実施の形態を図8、図9を用いて説明する。   A third embodiment of the present invention will be described with reference to FIGS.

本実施の形態は、入力側及び出力側磁気歯車2,6の磁力発生面にそれぞれ磁石を同心円状に複数列配置した例である。磁石の列数に特別な制限は無いが、本実施の形態においては、第1の実施の形態における入力及び出力側磁気歯車2,6のそれぞれの磁力発生面に環状に設けた磁石3,5の内周側に磁石をもう一列環状に配置した場合を例示する。   This embodiment is an example in which a plurality of magnets are concentrically arranged on the magnetic force generation surfaces of the input side and output side magnetic gears 2 and 6. Although there is no particular limitation on the number of magnet rows, in the present embodiment, the magnets 3 and 5 provided in an annular shape on the respective magnetic force generation surfaces of the input and output side magnetic gears 2 and 6 in the first embodiment. A case where magnets are arranged in a further annular shape on the inner peripheral side of the is illustrated.

図8は、本実施の形態に係る磁気歯車装置102の回転軸1,7の軸心線を包含する鉛直面における断面図であり、図9は、図8の磁気歯車装置102のD−D線断面図である。図中、図1及び図4に示した部材と同様のものには同じ符号を付し、説明を省略する。   FIG. 8 is a cross-sectional view in a vertical plane including the axis of the rotation shafts 1 and 7 of the magnetic gear device 102 according to the present embodiment, and FIG. 9 is a DD of the magnetic gear device 102 in FIG. It is line sectional drawing. In the figure, the same members as those shown in FIGS. 1 and 4 are denoted by the same reference numerals, and description thereof is omitted.

磁気歯車装置102は、一方の面を互いに対向して配置された略円盤状の入力側磁気歯車2及び出力側磁気歯車6と、入力側磁気歯車2と出力側磁気歯車6の間に配置された複数の磁気経路部材4,22と、複数の磁気経路部材4を環状に固定するサポート8と、磁気経路部材4の内側に磁気経路部材22を環状に固定するサポート23と、サポート8を図示しない基礎に対して固定する板部9とを有している。   The magnetic gear device 102 is disposed between the input-side magnetic gear 2 and the output-side magnetic gear 6, and the substantially disk-shaped input-side magnetic gear 2 and output-side magnetic gear 6 that are disposed so that one surface faces each other. A plurality of magnetic path members 4, 22, a support 8 for fixing the plurality of magnetic path members 4 in a ring shape, a support 23 for fixing the magnetic path member 22 in a ring shape inside the magnetic path member 4, and the support 8 are illustrated. It has the board part 9 fixed with respect to the foundation which does not.

入力側磁気歯車2の磁力発生面には、複数の磁石3(例えば永久磁石)が入力回転軸1の軸線周りに環状に設けられており、その内側に同心円状に複数の磁石20(例えば永久磁石)が環状に設けられている。また、出力側磁気歯車6においても同様であり、出力側磁気歯車6の磁力発生面には、複数の磁石5(例えば永久磁石)が出力回転軸7の軸線周りに環状に設けられており、その内側に同心円状に複数の磁石21(例えば永久磁石)が環状に設けられている。入力側磁気歯車2及び出力側磁気歯車6において、軸線から各磁石20までの距離(半径)及び各磁石21までの距離(半径)は同じになるよう構成されている。また、磁石20,21は、入力回転軸1及び出力回転軸7の軸心線を包含する平面で切断した断面が、磁気経路部材22に向かって縮径する台形状に形成されている。磁石20,21も磁石3,5と同様に、磁極を軸方向に向けて配置されており、軸方向から見た場合に、周方向にN極とS極が交互に並ぶように配置されている。   On the magnetic force generating surface of the input side magnetic gear 2, a plurality of magnets 3 (for example, permanent magnets) are provided in an annular shape around the axis of the input rotary shaft 1, and a plurality of magnets 20 (for example, permanent magnets) are concentrically formed inside thereof. Magnet) is provided in an annular shape. The same applies to the output side magnetic gear 6, and a plurality of magnets 5 (for example, permanent magnets) are provided around the axis of the output rotation shaft 7 on the magnetic force generation surface of the output side magnetic gear 6. A plurality of magnets 21 (for example, permanent magnets) are provided in an annular shape concentrically inside. In the input side magnetic gear 2 and the output side magnetic gear 6, the distance (radius) from the axis to each magnet 20 and the distance (radius) to each magnet 21 are the same. The magnets 20 and 21 are formed in a trapezoidal shape in which a cross section cut by a plane including the axis of the input rotary shaft 1 and the output rotary shaft 7 is reduced in diameter toward the magnetic path member 22. Similarly to the magnets 3 and 5, the magnets 20 and 21 are arranged so that the magnetic poles are directed in the axial direction. When viewed from the axial direction, the N poles and the S poles are alternately arranged in the circumferential direction. Yes.

磁気経路部材4は、入力側磁気歯車2及び出力側磁気歯車6の磁力発生面の間に複数(例えば12個)設けられており、軸線周りに、かつ軸線を中心とした環状に配置され、サポート8により固定されている。磁気経路部材22も同様に、入力側磁気歯車2及び出力側磁気歯車6の磁力発生面の間に複数(例えば12個)設けられており、磁気経路部材4の内側に、磁気経路部材4と同心円状に配置され、サポート23によりサポート8に対して固定されている。   A plurality of magnetic path members 4 (for example, twelve) are provided between the magnetic force generation surfaces of the input side magnetic gear 2 and the output side magnetic gear 6 and are arranged around the axis and in an annular shape around the axis. It is fixed by the support 8. Similarly, a plurality of (for example, twelve) magnetic path members 22 are provided between the magnetic force generation surfaces of the input side magnetic gear 2 and the output side magnetic gear 6, and the magnetic path member 4 and the magnetic path member 4 are disposed inside the magnetic path member 4. They are arranged concentrically and are fixed to the support 8 by the support 23.

サポート23は、例えばベークライト又はエポキシ樹脂等の非金属かつ非磁性の材料により形成されており、サポート8の内周側に固定されている。サポート23の外周部にはサポート8から突出した磁気経路部材4の先端先が係合しており、サポート23の内周部には磁気経路部材22が固定されている。   The support 23 is formed of a nonmetallic and nonmagnetic material such as bakelite or epoxy resin, and is fixed to the inner peripheral side of the support 8. The tip of the magnetic path member 4 protruding from the support 8 is engaged with the outer peripheral portion of the support 23, and the magnetic path member 22 is fixed to the inner peripheral portion of the support 23.

磁気経路部材22は、棒状の部材である。その断面形状は限定されないが、例えば長方形(正方形)や円形等の断面形状を有する。磁気経路部材22は一端をサポート23内周部に接続(埋設)されており、他端を径方向に向けて配置されている。また、複数の磁気経路部材22は、サポート23内周部に等間隔に配置されている。すなわち、複数の磁気経路部材22は、軸線周りに環状に、周方向に等間隔に配置されている。   The magnetic path member 22 is a rod-shaped member. Although the cross-sectional shape is not limited, For example, it has cross-sectional shapes, such as a rectangle (square) and a circle. One end of the magnetic path member 22 is connected (embedded) to the inner peripheral portion of the support 23 and the other end is arranged in the radial direction. The plurality of magnetic path members 22 are arranged at equal intervals on the inner periphery of the support 23. That is, the plurality of magnetic path members 22 are annularly arranged around the axis, and are arranged at equal intervals in the circumferential direction.

軸線から各磁気経路部材22までの距離(半径)は、軸線から磁石20又は磁石21までの距離(半径)と同じになるように設定されており、したがって、磁気経路部材22は、磁石20と磁石21の間に位置するよう配置されている。   The distance (radius) from the axis to each magnetic path member 22 is set to be the same as the distance (radius) from the axis to the magnet 20 or 21, and therefore the magnetic path member 22 is connected to the magnet 20. It arrange | positions so that it may be located between the magnets 21. FIG.

また、磁気経路部材22は、表面を絶縁処理した珪素鋼板を周方向、或いは半径方向に積層して形成されている。これにより回転軸1,7方向の磁界の変化により発生する渦電流を抑制することができる。なお、磁石20,21からの磁界によって発生する周方向の回転トルク荷重に対する強度を重視する場合、磁気経路部材22は珪素鋼板を軸方向に積層して形成しても良い。   The magnetic path member 22 is formed by laminating silicon steel plates whose surfaces are insulated in the circumferential direction or the radial direction. Thereby, the eddy current which generate | occur | produces by the change of the magnetic field of the rotating shafts 1 and 7 direction can be suppressed. When importance is attached to the strength against the circumferential rotational torque load generated by the magnetic field from the magnets 20, 21, the magnetic path member 22 may be formed by laminating silicon steel plates in the axial direction.

入力側磁気歯車2の磁力発生面に設けられた磁石20と磁気経路部材22の間、及び磁石21と磁気経路部材22の間には間隙が設けられており互いに非接触に配置されている。磁気経路部材22は、磁石20と磁石21の間の磁界を互いに伝達するものであり、磁石20と磁石21は、磁気経路部材22を介して磁気的に噛み合っている。   Gaps are provided between the magnet 20 and the magnetic path member 22 provided on the magnetic force generation surface of the input side magnetic gear 2 and between the magnet 21 and the magnetic path member 22 and are disposed in a non-contact manner. The magnetic path member 22 transmits a magnetic field between the magnet 20 and the magnet 21 to each other, and the magnet 20 and the magnet 21 are magnetically engaged with each other via the magnetic path member 22.

第1の実施の形態と同様に、磁気歯車装置102の入力回転軸1(入力側磁気歯車2)の回転数と出力回転軸7(出力側磁気歯車6)の回転数の関係は、磁石3,5の員数の比により決まる。また、磁石3,5の員数の比と磁石20,21の員数の比が同じになるようにし、各磁石3,5,20,21の員数を決定する。このように、各磁石3,5,20,21の員数を決定することにより、磁石3,5の員数の比によって決まる入出力回転数の関係と磁石20,21の員数の比によって決まる入出力回転数の関係が同じとなり、入力側磁気歯車2から出力側磁気歯車6に効率良くトルクを伝達することができる。   As in the first embodiment, the relationship between the rotational speed of the input rotary shaft 1 (input-side magnetic gear 2) of the magnetic gear device 102 and the rotational speed of the output rotary shaft 7 (output-side magnetic gear 6) is as follows. , 5 is determined by the ratio of the number of members. Further, the number ratio of the magnets 3, 5 and the number ratio of the magnets 20, 21 are made the same, and the number of the magnets 3, 5, 20, 21 is determined. Thus, by determining the number of the magnets 3, 5, 20, and 21, the input / output speed determined by the ratio of the input / output rotational speed determined by the ratio of the number of the magnets 3, 5 and the ratio of the number of the magnets 20, 21 is determined. The relationship between the rotational speeds becomes the same, and torque can be efficiently transmitted from the input side magnetic gear 2 to the output side magnetic gear 6.

その他の構成は、第1の実施の形態と同様である。   Other configurations are the same as those of the first embodiment.

以上のように構成した本実施の形態においても第1の実施の形態と同様の効果を得ることができ、磁石を増設した分だけ入力側磁気歯車2と出力側磁気歯車6の磁気的な噛み合い力を増強させ、動力伝達効率を向上させることができる。   In the present embodiment configured as described above, the same effect as in the first embodiment can be obtained, and the magnetic engagement between the input side magnetic gear 2 and the output side magnetic gear 6 by the amount of additional magnets. Power can be increased and power transmission efficiency can be improved.

本発明の第4の実施の形態を図10、図11を用いて説明する。   A fourth embodiment of the present invention will be described with reference to FIGS.

本実施の形態は、磁力発生面に環状に配置した磁石の幅を径方向に広くしたものである。   In the present embodiment, the width of a magnet arranged annularly on the magnetic force generation surface is increased in the radial direction.

図10は、本実施の形態に係る磁気歯車装置103の回転軸1,7の軸心線を包含する鉛直面における断面図であり、図11は、図10の磁気歯車装置103のE−E線矢視図である。図中、図1及び図2に示した部材と同様のものには同じ符号を付し、説明を省略する。   10 is a cross-sectional view of the magnetic gear device 103 according to the present embodiment in a vertical plane including the axis of the rotation shafts 1 and 7, and FIG. 11 is an EE view of the magnetic gear device 103 of FIG. FIG. In the figure, the same members as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.

磁気歯車装置103において、入力側磁気歯車2の磁力発生面には、複数の磁石30(例えば永久磁石)が環状に設けられている。磁石30は、第1の実施の形態における磁石3と比較して径方向に拡張されている。この場合、磁石の員数が同じでも磁力を発生する面の面積が第1の実施の形態に比べて大きくなり、磁力発生面からの発生磁力を増強する上で有利となる。図示しないが、出力側磁気歯車6の磁力発生面にも同様に複数の磁石31が環状に設けられており、第1の実施の形態における磁石5と比較して径方向に拡張されている。また、図示しないが、磁気経路部材4も磁石30と磁石31の間に位置するように径方向に伸された(拡張された)形状とする。   In the magnetic gear device 103, a plurality of magnets 30 (for example, permanent magnets) are annularly provided on the magnetic force generation surface of the input side magnetic gear 2. The magnet 30 is expanded in the radial direction as compared with the magnet 3 in the first embodiment. In this case, even if the number of magnets is the same, the area of the surface that generates the magnetic force is larger than that of the first embodiment, which is advantageous in enhancing the generated magnetic force from the magnetic force generation surface. Although not shown, a plurality of magnets 31 are similarly provided in an annular shape on the magnetic force generation surface of the output-side magnetic gear 6 and are expanded in the radial direction as compared with the magnet 5 in the first embodiment. Although not shown, the magnetic path member 4 also has a shape extended (expanded) in the radial direction so as to be positioned between the magnet 30 and the magnet 31.

その他の構成は、第1の実施の形態と同様である。   Other configurations are the same as those of the first embodiment.

以上のように構成した本実施の形態においても第1の実施の形態と同様の効果を得ることができる。   In the present embodiment configured as described above, the same effects as those of the first embodiment can be obtained.

また、入力側及び出力側磁気歯車2,6の磁力発生面に設けられた磁石の員数を変えることなく、伝達可能トルクを大きくすることができる。   Further, the transmittable torque can be increased without changing the number of magnets provided on the magnetic force generating surfaces of the input side and output side magnetic gears 2 and 6.

本発明の第5の実施の形態を図12を用いて説明する。   A fifth embodiment of the present invention will be described with reference to FIG.

本実施の形態は、第1の実施の形態の入力側及び出力側磁気歯車2,6の磁力発生面に設けた磁石3,5を入力回転軸1及び出力回転軸7の軸心線を包含する平面で切断した断面形状が長方形である場合を示したものである。   In the present embodiment, the magnets 3 and 5 provided on the magnetic force generating surfaces of the input side and output side magnetic gears 2 and 6 of the first embodiment include the axis of the input rotary shaft 1 and the output rotary shaft 7. The case where the cross-sectional shape cut | disconnected by the plane to perform is a rectangle is shown.

図12は、本実施の形態に係る磁気歯車装置104の回転軸1,7の軸心線を包含する鉛直面における断面図である。図中、図1に示した部材と同様のものには同じ符号を付し、説明を省略する。   FIG. 12 is a cross-sectional view in a vertical plane including the axis of rotation shafts 1 and 7 of the magnetic gear device 104 according to the present embodiment. In the figure, the same members as those shown in FIG.

図12において、入力側磁気歯車2の磁力発生面には、複数の磁石40(例えば永久磁石)が設けられている。図示しないが磁石40は、第1の実施の形態における磁石3と同様に、入力回転軸1の軸線周りに環状に設けられている。また、出力側磁気歯車6の磁力発生面には、複数の磁石41(例えば永久磁石)が設けられている。図示しないが磁石41も磁石40と同様であり、出力回転軸7の軸線周りに環状に設けられている。   In FIG. 12, a plurality of magnets 40 (for example, permanent magnets) are provided on the magnetic force generating surface of the input side magnetic gear 2. Although not shown, the magnet 40 is provided in an annular shape around the axis of the input rotary shaft 1 in the same manner as the magnet 3 in the first embodiment. A plurality of magnets 41 (for example, permanent magnets) are provided on the magnetic force generation surface of the output side magnetic gear 6. Although not shown, the magnet 41 is the same as the magnet 40 and is provided in an annular shape around the axis of the output rotation shaft 7.

磁石40,41は、入力側磁気歯車2及び出力側磁気歯車6の磁力発生面に軸線周りに、かつ軸線を中心とした環状に設けられた磁石固定溝に嵌め込まれて固定されている。磁石40,41及び磁石固定溝は、入力回転軸1及び出力回転軸7の軸心線を包含する平面で切断した断面が、長方形(正方形を含む)に形成されている。したがって、入力側及び出力側磁気歯車2,6の磁気経路部材4側から容易に挿入して組み込むことが可能である。   The magnets 40 and 41 are fixed by being fitted into magnet fixing grooves provided around the axis and in an annular shape around the axis on the magnetic force generation surfaces of the input side magnetic gear 2 and the output side magnetic gear 6. The magnets 40 and 41 and the magnet fixing groove are formed in a rectangle (including a square) in a cross section cut along a plane including the axis of the input rotary shaft 1 and the output rotary shaft 7. Therefore, it is possible to easily insert and incorporate them from the magnetic path member 4 side of the input side and output side magnetic gears 2 and 6.

また、入力側及び出力側磁気歯車2,6は、それぞれ磁石40,41の軸方向の動きを拘束する磁石サポート部品42,43を備えており、磁石サポート部品固定ネジ44によって入力側及び出力側磁気歯車2,6に対して固定されている。   Further, the input side and output side magnetic gears 2 and 6 include magnet support parts 42 and 43 that restrain the movement of the magnets 40 and 41 in the axial direction, respectively. The magnetic gears 2 and 6 are fixed.

磁石サポート部品42,43は、非磁性かつ非金属の素材で構成されている。   The magnet support parts 42 and 43 are made of a nonmagnetic and nonmetallic material.

その他の構成は、第1の実施の形態と同様である。   Other configurations are the same as those of the first embodiment.

以上のように構成した本実施の形態においても第1の実施の形態と同様の効果を得ることができる。本発明の磁気歯車装置の場合、磁気歯車の軸方向に向けた面に磁石を埋設しているので、磁石にはたらく遠心力は相手歯車側に向かう方向には作用しない。したがって、本実施の形態のように軸方向から磁石を着脱できる構成とし、磁石を軸方向から押さえるようにした場合でも、磁石を押さえる磁石サポート部品42,43及び固定ネジ44はさほど強固なものが要求されない。よって磁石の押さえ構造の厚みを抑えることができ、入力側磁気歯車2および出力側磁気歯車6の磁気経路部材4との距離を許容の範囲に止めることが出来る。   In the present embodiment configured as described above, the same effects as those of the first embodiment can be obtained. In the case of the magnetic gear device of the present invention, since the magnet is embedded in the surface of the magnetic gear that faces in the axial direction, the centrifugal force acting on the magnet does not act in the direction toward the counterpart gear. Therefore, even when the magnet can be attached and detached from the axial direction as in the present embodiment and the magnet is pressed from the axial direction, the magnet support parts 42 and 43 and the fixing screw 44 that hold the magnet are not so strong. Not required. Therefore, the thickness of the magnet pressing structure can be suppressed, and the distance between the input side magnetic gear 2 and the output side magnetic gear 6 with respect to the magnetic path member 4 can be kept within an allowable range.

本発明の第6の実施の形態を図13を用いて説明する。   A sixth embodiment of the present invention will be described with reference to FIG.

本実施の形態は、第1の実施の形態における磁石(永久磁石)に代えて電磁石を用いたものである。本実施の形態において、図2に示した部材と同様の部材には同じ符号を付し説明を省略する。   In the present embodiment, an electromagnet is used instead of the magnet (permanent magnet) in the first embodiment. In the present embodiment, the same members as those shown in FIG.

図13は、本実施の形態に係る磁気歯車装置105の回転軸1,7の軸心線を包含する鉛直面におけるにおける断面図である。図中、図1に示した部材と同様のものには同じ符号を付し説明を省略する。   FIG. 13 is a cross-sectional view in a vertical plane including the axis of rotation shafts 1 and 7 of magnetic gear device 105 according to the present embodiment. In the figure, the same members as those shown in FIG.

図13において、入力側磁気歯車2は、複数の電磁石55と、電磁石55に電流を伝達する電線54と、入力回転軸1に設けられ、電線54によって電磁石55に接続された整流子53と、整流子53に接触して電流を伝達する接触器(ブラシ)52と、接触器52に接続された電線51と、電線51に接続され、電線51、接触器52、整流子53及び電線54を介して電磁石55に電流を供給する電源50とを備えている。   In FIG. 13, the input-side magnetic gear 2 includes a plurality of electromagnets 55, an electric wire 54 that transmits current to the electromagnet 55, a commutator 53 that is provided on the input rotary shaft 1 and is connected to the electromagnet 55 by the electric wire 54, A contactor (brush) 52 that contacts the commutator 53 and transmits current, an electric wire 51 connected to the contactor 52, an electric wire 51, and the electric wire 51, the contactor 52, the commutator 53, and the electric wire 54. And a power supply 50 for supplying a current to the electromagnet 55.

電磁石55は、入力側磁気歯車2の磁力発生面に軸線周りに、かつ軸線を中心とした環状に設けられた磁石固定溝に嵌め込まれて固定されている。また電磁石55は、電源50から電流が供給された場合に軸方向に向けて磁力(磁場)を発生するよう配置されており、かつ軸方向から見た場合の磁極は周方向にN極とS極が交互に並ぶように配置されている。電源50から電磁石55に電流が供給されない場合は、電磁石55は磁力を発生しない。   The electromagnet 55 is fitted and fixed in a magnet fixing groove provided around the axis and in an annular shape around the axis on the magnetic force generating surface of the input side magnetic gear 2. The electromagnet 55 is arranged so as to generate a magnetic force (magnetic field) in the axial direction when a current is supplied from the power supply 50, and the magnetic poles when viewed from the axial direction are N and S in the circumferential direction. The poles are arranged alternately. When no current is supplied from the power supply 50 to the electromagnet 55, the electromagnet 55 does not generate a magnetic force.

その他の構成は、第1の実施の形態と同様である。   Other configurations are the same as those of the first embodiment.

以上のように構成した本実施の形態においても第1の実施の形態と同様の効果を得ることができる。   In the present embodiment configured as described above, the same effects as those of the first embodiment can be obtained.

また、入力側磁気歯車2に配置した磁石を電磁石55としたので、電源50から電磁石55に供給する電流を遮断することによって電磁石55の磁場の発生を停止させることができ、入力側磁気歯車2から出力側磁気歯車6へのトルクの伝達を止めることができる。例えば、磁気歯車装置105の出力側において不具合が発生した場合に、電源50からの電流の供給を停止することによりトルクの伝達を停止し、ガスタービンの緊急停止等にも迅速に対応することができる。   Further, since the magnet disposed in the input side magnetic gear 2 is the electromagnet 55, the generation of the magnetic field of the electromagnet 55 can be stopped by cutting off the current supplied from the power source 50 to the electromagnet 55, and the input side magnetic gear 2 can be stopped. Transmission of torque to the output side magnetic gear 6 can be stopped. For example, when a problem occurs on the output side of the magnetic gear device 105, torque transmission is stopped by stopping the supply of current from the power supply 50, and an emergency stop of the gas turbine can be quickly handled. it can.

なお、本実施の形態においては、入力側磁気歯車2に磁石として電磁石55を設けたがこれに限られず、出力側磁気歯車6に設けられた磁石5を電磁石とし、出力回転軸7に整流子53、電線54等を備えて、接触器52、電線51を介して電源50から電源を供給するようにしても良い。この場合においても、上記第5の実施の形態と同様の効果を得ることができる。   In this embodiment, the input side magnetic gear 2 is provided with the electromagnet 55 as a magnet. However, the present invention is not limited to this. The magnet 5 provided on the output side magnetic gear 6 is an electromagnet, and the output rotating shaft 7 is provided with a commutator. 53, an electric wire 54, and the like, and power may be supplied from the power source 50 via the contactor 52 and the electric wire 51. Even in this case, the same effect as that of the fifth embodiment can be obtained.

本発明の第1の実施の形態による磁気歯車装置の回転軸の軸心線を包含する鉛直面における断面図である。It is sectional drawing in the vertical plane containing the axial center line of the rotating shaft of the magnetic gear apparatus by the 1st Embodiment of this invention. 図1に示した磁気歯車装置のA−A線矢視図である。It is an AA arrow directional view of the magnetic gear apparatus shown in FIG. 図1に示した磁気歯車装置のB−B線矢視図である。It is a BB arrow directional view of the magnetic gear apparatus shown in FIG. 図1に示した磁気歯車装置のC−C線断面図である。It is CC sectional view taken on the line of the magnetic gear apparatus shown in FIG. 図1に示した磁気歯車装置を回転軸方向から見た図である。It is the figure which looked at the magnetic gear apparatus shown in FIG. 1 from the rotating shaft direction. 本発明の第1の実施の形態に係る磁気歯車装置を備えたガスタービン発電機の構成図である。It is a block diagram of the gas turbine generator provided with the magnetic gear apparatus which concerns on the 1st Embodiment of this invention. 磁石をハルバッハ配列とした状態を半径方向外側から見た場合の図である。It is a figure at the time of seeing the state which made the magnet the Halbach arrangement | sequence from the radial direction outer side. 本発明の第2の実施の形態による磁気歯車装置の回転軸の軸心線を包含する鉛直面における断面図である。It is sectional drawing in the vertical plane containing the axis line of the rotating shaft of the magnetic gear apparatus by the 2nd Embodiment of this invention. 図8に示した磁気歯車装置のD−D線断面図である。It is the DD sectional view taken on the line of the magnetic gear apparatus shown in FIG. 本発明の第3の実施の形態による磁気歯車装置の回転軸の軸心線を包含する鉛直面における断面図である。It is sectional drawing in the vertical plane containing the axial center line of the rotating shaft of the magnetic gear apparatus by the 3rd Embodiment of this invention. 図10に示した時期歯車装置のE−E線矢視図である。It is the EE arrow directional view of the timing gear apparatus shown in FIG. 本発明の第4の実施の形態による磁気歯車装置の回転軸の軸心線を包含する鉛直面における断面図である。It is sectional drawing in the vertical plane containing the axial center line of the rotating shaft of the magnetic gear apparatus by the 4th Embodiment of this invention. 本発明の第5の実施の形態による磁気歯車装置の回転軸の軸心線を包含する鉛直面における断面図である。It is sectional drawing in the vertical plane containing the axial center line of the rotating shaft of the magnetic gear apparatus by the 5th Embodiment of this invention.

符号の説明Explanation of symbols

100,102,103,104 磁気歯車装置
1 入力回転軸
2 入力側磁気歯車
3,5,20,21,30,31,40,41 磁石
4,22 磁気経路部材
6 出力側磁気歯車
7 出力回転軸
8,23 サポート
9 板部
10,11 磁石群
42,43 磁石サポート部品
44 磁石サポート部品固定ネジ
50 電源
51,54 電線
52 接触器
53 整流子
55 電磁石
90 圧縮機
91 燃焼器
92 タービン
93 中間軸
94 発電機
95 ジャーナル軸受
DESCRIPTION OF SYMBOLS 100,102,103,104 Magnetic gear apparatus 1 Input rotation shaft 2 Input side magnetic gears 3, 5, 20, 21, 30, 31, 40, 41 Magnet 4, 22 Magnetic path member 6 Output side magnetic gear 7 Output rotation shaft 8, 23 Support 9 Plate portion 10, 11 Magnet group 42, 43 Magnet support component 44 Magnet support component fixing screw 50 Power source 51, 54 Electric wire 52 Contactor 53 Commutator 55 Electromagnet 90 Compressor 91 Combustor 92 Turbine 93 Intermediate shaft 94 Generator 95 Journal bearing

Claims (10)

複数の磁石を入力回転軸の軸線周りに環状に配置した磁力発生面を軸方向に向けた入力側磁気歯車と、
前記入力側磁気歯車と同軸上に設けられ、複数の磁石を出力回転軸の軸線周りに環状に配置した磁力発生面を前記入力側磁気歯車の磁力発生面に対向させた出力側磁気歯車と、
前記入力側磁気歯車と前記出力側磁気歯車の対向する磁力発生面間にて、前記入力側磁気歯車と前記出力側磁気歯車の磁石間に介在するように環状に固設された電磁鋼製の複数の磁気経路部材と、
前記入力側磁気歯車及び前記出力側磁気歯車の磁力発生面に設けられ、少なくとも各磁気歯車の径方向の外側から前記磁石を拘束する固定部と
を備えることを特徴とする磁気歯車装置。
An input-side magnetic gear having a plurality of magnets arranged in an annular shape around the axis of the input rotation shaft and having a magnetic force generation surface directed in the axial direction;
An output side magnetic gear provided coaxially with the input side magnetic gear and having a plurality of magnets arranged annularly around the axis of the output rotation shaft and facing the magnetic force generation surface of the input side magnetic gear;
Made of electromagnetic steel fixed annularly so as to be interposed between the magnets of the input side magnetic gear and the output side magnetic gear between the magnetic force generating surfaces of the input side magnetic gear and the output side magnetic gear facing each other. A plurality of magnetic path members;
A magnetic gear device comprising: a fixing portion that is provided on a magnetic force generation surface of the input side magnetic gear and the output side magnetic gear, and that restrains the magnet from at least a radially outer side of each magnetic gear.
請求項1記載の磁気歯車装置において、
前記入力側磁気歯車及び出力側磁気歯車の磁石並びに前記磁気経路部材は、軸線周りに同心円状に複数列配置されることを特徴とする磁気歯車装置。
The magnetic gear device according to claim 1,
The magnetic gear device, wherein the input side magnetic gear, the magnets of the output side magnetic gear, and the magnetic path member are arranged in a plurality of rows concentrically around an axis.
請求項1記載の磁気歯車装置において、
前記入力側磁気歯車と前記出力側磁気歯車の少なくとも一方の磁石は、それぞれ複数の磁石からなる磁石群であることを特徴とする磁気歯車装置。
The magnetic gear device according to claim 1,
At least one magnet of the input side magnetic gear and the output side magnetic gear is a magnet group composed of a plurality of magnets, respectively.
請求項3記載の磁気歯車装置において、
前記磁石群は、想定する磁力線方向に磁極面を向けて各磁石を配置するハルバッハ配列とすることを特徴とする磁気歯車装置。
The magnetic gear device according to claim 3, wherein
The magnetic gear device according to claim 1, wherein the magnet group has a Halbach arrangement in which each magnet is arranged with a magnetic pole face directed in a direction of a line of magnetic force assumed.
請求項1記載の磁気歯車装置において、
前記磁石は、前記回転軸を包含する平面で切断した断面が、前記磁気経路部材に向かって縮径する台形状に形成されており、当該断面の斜辺部が前記固定部により拘束されていることを特徴とする磁気歯車。
The magnetic gear device according to claim 1,
The magnet is formed in a trapezoidal shape in which a cross section cut by a plane including the rotation shaft is reduced in diameter toward the magnetic path member, and a hypotenuse of the cross section is constrained by the fixing portion. Magnetic gear characterized by.
請求項1記載の磁気歯車装置において、
非磁性物質で構成され、前記磁石の軸方向の動きを拘束するサポートを備えたことを特徴とする磁気歯車装置。
The magnetic gear device according to claim 1,
A magnetic gear device comprising a support made of a non-magnetic material and restraining the axial movement of the magnet.
請求項1記載の磁気歯車装置において、
前記磁気経路部材は、周方向または径方向に積層した珪素鋼板により構成したことを特徴とする磁気歯車装置。
The magnetic gear device according to claim 1,
The magnetic gear device is characterized in that the magnetic path member is composed of silicon steel plates laminated in a circumferential direction or a radial direction.
請求項1記載の磁気歯車装置において、
非磁性体で構成され、前記磁気経路部材を固定する固定具を備えることを特徴とする磁気歯車装置。
The magnetic gear device according to claim 1,
A magnetic gear device comprising a fixing member that is made of a non-magnetic material and fixes the magnetic path member.
請求項1記載の磁気歯車装置において、
前記磁石は、永久磁石または電磁石であることを特徴とする磁気歯車装置。
The magnetic gear device according to claim 1,
The magnetic gear device, wherein the magnet is a permanent magnet or an electromagnet.
前記磁石は、周方向または径方向に積層した磁石により構成したことを特徴とする磁気歯車装置。   2. The magnetic gear device according to claim 1, wherein the magnet is composed of magnets laminated in a circumferential direction or a radial direction.
JP2008005564A 2008-01-15 2008-01-15 Magnetic gear unit Active JP4929190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008005564A JP4929190B2 (en) 2008-01-15 2008-01-15 Magnetic gear unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008005564A JP4929190B2 (en) 2008-01-15 2008-01-15 Magnetic gear unit

Publications (2)

Publication Number Publication Date
JP2009168101A true JP2009168101A (en) 2009-07-30
JP4929190B2 JP4929190B2 (en) 2012-05-09

Family

ID=40969509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008005564A Active JP4929190B2 (en) 2008-01-15 2008-01-15 Magnetic gear unit

Country Status (1)

Country Link
JP (1) JP4929190B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114368A1 (en) * 2011-02-21 2012-08-30 株式会社 日立製作所 Magnetic gear mechanism
JP2013177931A (en) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd Method of mounting magnetic coupling and method of removing the same
WO2013137252A1 (en) * 2012-03-16 2013-09-19 日立金属株式会社 Magnetic gear device
CN109707894A (en) * 2019-01-15 2019-05-03 西华大学 A kind of self-sealed main valve of Halbach nonmagnetic matrix transmission
WO2019235502A1 (en) * 2018-06-07 2019-12-12 株式会社デンソー Valve device
WO2019235507A1 (en) * 2018-06-07 2019-12-12 株式会社デンソー Valve device
EP4177495A4 (en) * 2020-07-06 2023-12-27 Osaka University Magnetic gear, actuator unit having the same, and link mechanism using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378710A (en) * 1964-06-01 1968-04-16 Micro Pump Corp Magnetic transmission
JPS50136559A (en) * 1974-04-18 1975-10-29
JPH03106621U (en) * 1990-02-19 1991-11-05
JPH07264838A (en) * 1994-02-23 1995-10-13 Philips Electron Nv Magnetic driving device
JPH11318069A (en) * 1998-03-09 1999-11-16 Kwangju Inst Of Science & Technol Non-contact eddy current type damping equipment for vehicle
JP2007151321A (en) * 2005-11-29 2007-06-14 Nissan Motor Co Ltd Rotor of rotary electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378710A (en) * 1964-06-01 1968-04-16 Micro Pump Corp Magnetic transmission
JPS50136559A (en) * 1974-04-18 1975-10-29
JPH03106621U (en) * 1990-02-19 1991-11-05
JPH07264838A (en) * 1994-02-23 1995-10-13 Philips Electron Nv Magnetic driving device
JPH11318069A (en) * 1998-03-09 1999-11-16 Kwangju Inst Of Science & Technol Non-contact eddy current type damping equipment for vehicle
JP2007151321A (en) * 2005-11-29 2007-06-14 Nissan Motor Co Ltd Rotor of rotary electric machine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114368A1 (en) * 2011-02-21 2012-08-30 株式会社 日立製作所 Magnetic gear mechanism
CN103370561A (en) * 2011-02-21 2013-10-23 株式会社日立制作所 Magnetic gear mechanism
JP5526281B2 (en) * 2011-02-21 2014-06-18 株式会社日立製作所 Magnetic gear mechanism
US9385581B2 (en) 2011-02-21 2016-07-05 Hitachi, Ltd. Magnetic gear mechanism
JP2013177931A (en) * 2012-02-28 2013-09-09 Mitsubishi Heavy Ind Ltd Method of mounting magnetic coupling and method of removing the same
WO2013137252A1 (en) * 2012-03-16 2013-09-19 日立金属株式会社 Magnetic gear device
JPWO2013137252A1 (en) * 2012-03-16 2015-08-03 日立金属株式会社 Magnetic gear device
WO2019235502A1 (en) * 2018-06-07 2019-12-12 株式会社デンソー Valve device
WO2019235507A1 (en) * 2018-06-07 2019-12-12 株式会社デンソー Valve device
JP2019211177A (en) * 2018-06-07 2019-12-12 株式会社デンソー Valve device
CN112236632A (en) * 2018-06-07 2021-01-15 株式会社电装 Valve device
CN112292573A (en) * 2018-06-07 2021-01-29 株式会社电装 Valve device
CN112236632B (en) * 2018-06-07 2022-03-15 株式会社电装 Valve device
JP7073925B2 (en) 2018-06-07 2022-05-24 株式会社デンソー Valve device
US11496036B2 (en) 2018-06-07 2022-11-08 Denso Corporation Valve device
CN109707894A (en) * 2019-01-15 2019-05-03 西华大学 A kind of self-sealed main valve of Halbach nonmagnetic matrix transmission
CN109707894B (en) * 2019-01-15 2023-09-15 西华大学 Halbach magnetic moment array transmission self-sealing main valve
EP4177495A4 (en) * 2020-07-06 2023-12-27 Osaka University Magnetic gear, actuator unit having the same, and link mechanism using the same

Also Published As

Publication number Publication date
JP4929190B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4929190B2 (en) Magnetic gear unit
US10797578B2 (en) Vertically mounted and magnetically driven power generation apparatus
JP2014020561A (en) Power transmission device
KR101894672B1 (en) Power generation system
Davey et al. Axial flux cycloidal magnetic gears
US20020153785A1 (en) Rolling bearing with built-in motor
JP2012205348A (en) Magnetic gear
JP2007336784A (en) Generator, wind turbine generator, and wind power generation method
JP2017085778A (en) Rotor for rotary electric machine
KR20110102713A (en) Magnetic bearing structure and turbo machine having the same
US9641059B2 (en) Flux focusing magnetic gear assembly using ferrite magnets or the like
CN105471212A (en) Rotation linear permanent magnetism motor
JP2012246982A (en) Magnetic gear device
EP3017529B1 (en) Reducing bearing forces in an electrical machine
US20170261035A1 (en) Bearing housing structure
JP7345759B2 (en) magnetic gears
US20180248463A1 (en) Magnetic Gear Device
JP2017158333A (en) Motor
JP2012170264A (en) Magnetic gear device
CN103117641A (en) Magnetic force balance device for magnetic transmission equipment
JP4446095B2 (en) Rotation transmission device, power generation device and moving device
JP2013053733A (en) Magnetic gear device
JP5271005B2 (en) Power transmission device
CN203233297U (en) Magnetic force balancing device of magnetic transmission device.
KR101838014B1 (en) High Speed Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4929190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250