JP2012246982A - Magnetic gear device - Google Patents

Magnetic gear device Download PDF

Info

Publication number
JP2012246982A
JP2012246982A JP2011118262A JP2011118262A JP2012246982A JP 2012246982 A JP2012246982 A JP 2012246982A JP 2011118262 A JP2011118262 A JP 2011118262A JP 2011118262 A JP2011118262 A JP 2011118262A JP 2012246982 A JP2012246982 A JP 2012246982A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic gear
gear
circumferential direction
magnetic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011118262A
Other languages
Japanese (ja)
Inventor
Nobuo Shimizu
暢夫 清水
Tetsuo Sasada
哲男 笹田
Akihito Nakahara
明仁 中原
Osamu Ichinokura
理 一ノ倉
Kenji Nakamura
健二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011118262A priority Critical patent/JP2012246982A/en
Publication of JP2012246982A publication Critical patent/JP2012246982A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic gear device that prevents an increase in temperature of components during transmission of torque.SOLUTION: The magnetic gear device includes: an input magnetic gear 2 formed by arranging a plurality of magnets 24 in a circumferential direction on a magnetic force generating surface that is provided radially outward around an axial line of an input rotating shaft 1; an output magnetic gear 3 which concentrically encircles the input magnetic gear 2, and is formed by arranging a plurality of magnets in a circumferential direction on a magnetic force generating surface facing the magnetic force generating surface of the input magnetic gear 2; and a magnetic path member 4 formed of a magnetic steel and fixed between magnetic force generating surfaces of the input magnetic gear and the output magnetic gear 3 which are facing each other, while being arranged in a circumferential direction so as to be interposed between magnetic poles of the input magnetic gear 2 and the output magnetic gear 3. A cooling medium flowing path 45 is formed between a plurality of magnetic path members 41 of a magnetic path member holder 41 for fixing the magnetic path member 4 to guide the air discharged toward the magnetic force generating surface.

Description

本発明は、磁石の磁気吸引・反発によってトルクを伝達する磁気歯車装置に関する。   The present invention relates to a magnetic gear device that transmits torque by magnetic attraction and repulsion of a magnet.

減速装置としては、高効率での伝動が比較的容易に可能な歯車装置が広く一般に用いられているが、その他に磁石の磁気的吸引・反発によってトルクを伝達する磁気歯車装置がある。   As a reduction gear, a gear device capable of relatively easily transmitting with high efficiency is widely used. However, there is a magnetic gear device that transmits torque by magnetic attraction / repulsion of a magnet.

磁気歯車装置の従来技術として、例えば、同心状に配置した内輪磁気歯車と外輪磁気歯車の間に磁気を透過する複数の磁性バーを環状に配置し、内輪磁気歯車に入力したトルクを外輪磁気歯車に伝達するものがある(特許文献1等参照)。   As a prior art of a magnetic gear device, for example, a plurality of magnetic bars that transmit magnetism are arranged annularly between an inner ring magnetic gear and an outer ring magnetic gear arranged concentrically, and torque input to the inner ring magnetic gear is used as an outer ring magnetic gear. (See Patent Document 1 etc.).

米国特許第3,378,710号明細書U.S. Pat. No. 3,378,710

上記従来技術のような構造の磁気歯車装置において、駆動中、磁石やヨークは相対的に変化する磁界中にさらされている。特に、磁気歯車装置を高い回転数で用いる場合は磁界の相対変化が激しくなり、電磁誘導効果によって磁石やヨークに大きな渦電流が発生してしまう。この渦電流での発熱による各部の温度上昇は、効率の低下や部材の劣化などを生じる一因となっていた。   In the magnetic gear device structured as described above, the magnet and the yoke are exposed to a relatively changing magnetic field during driving. In particular, when the magnetic gear device is used at a high rotational speed, the relative change in the magnetic field becomes intense, and a large eddy current is generated in the magnet or yoke due to the electromagnetic induction effect. The increase in the temperature of each part due to the heat generated by this eddy current is one of the causes that cause a decrease in efficiency, member deterioration, and the like.

本発明は上記に鑑みてなされたものであり、トルク伝達の際に生じる構成部材の温度上昇を抑制することができる磁気歯車装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a magnetic gear device that can suppress the temperature rise of the constituent members that occurs during torque transmission.

(1)上記目的を達成するために、本発明は、複数の磁石を第1回転軸の軸線周りに設けた鉄心に周方向に並べて配置した磁力発生面を径方向外側に向けて設けた第1磁気歯車と、前記第1磁気歯車を同軸状に囲んで設けられ、複数の磁石を第2回転軸の軸線周りに周方向に並べて配置した鉄心の磁力発生面を前記第1磁気歯車の磁力発生面に対向するように径方向内側に向けて設けた第2磁気歯車と、前記第1磁気歯車と前記第2磁気歯車の対向する磁力発生面間に、前記第1磁気歯車と第2磁気歯車の磁極間に介在するように周方向に並べて固設された電磁鋼製の複数の磁気経路部材と、前記周方向に並べて固設された複数の磁気経路部材の間に設けられ、対向する前記磁力発生面の少なくとも何れか一方に向けて吐出される冷媒を導く冷媒流路とを備えたものとする。   (1) In order to achieve the above object, according to the present invention, a magnetic force generating surface in which a plurality of magnets are arranged in a circumferential direction on an iron core provided around the axis of the first rotating shaft is provided in a radially outward direction. One magnetic gear and the first magnetic gear are coaxially enclosed, and a magnetic force generating surface of an iron core in which a plurality of magnets are arranged in the circumferential direction around the axis of the second rotating shaft is provided as the magnetic force of the first magnetic gear. A first magnetic gear and a second magnetic gear between a second magnetic gear provided radially inward so as to face the generation surface, and a magnetic force generation surface opposed to the first magnetic gear and the second magnetic gear; Provided between a plurality of magnetic path members made of electromagnetic steel arranged and fixed in the circumferential direction so as to be interposed between the magnetic poles of the gear and a plurality of magnetic path members fixed and arranged in the circumferential direction. Guides the refrigerant discharged toward at least one of the magnetic force generation surfaces. And that a medium flow path.

(2)また、上記目的を達成するために、本発明は、複数の磁石を第1回転軸の軸線周りに設けた鉄心に周方向に並べて配置した磁力発生面を径方向外側に向けて設けた第1磁気歯車と、前記第1磁気歯車を同軸状に囲んで設けられ、複数の磁石を第2回転軸の軸線周りに周方向に並べて配置した鉄心の磁力発生面を前記第1磁気歯車の磁力発生面に対向するように径方向内側に向けて設けた第2磁気歯車と、前記第1磁気歯車と前記第2磁気歯車の対向する磁力発生面間に設けられ、前記第1磁気歯車と第2磁気歯車の磁極間に介在するように電磁鋼製の複数の磁気経路部材を周方向に並べて保持する保持部材と、前記保持部材内に軸方向に延在するよう設けられ、供給される冷媒を対向する前記磁力発生面の少なくとも何れか一方に向けて吐出する吐出孔を有する冷媒流路とを備えたものとする。   (2) In order to achieve the above object, the present invention provides a magnetic force generating surface in which a plurality of magnets are arranged in a circumferential direction on an iron core provided around the axis of the first rotating shaft and are directed outward in the radial direction. The first magnetic gear and the magnetic force generating surface of the iron core that is provided so as to surround the first magnetic gear coaxially and in which a plurality of magnets are arranged around the axis of the second rotating shaft in the circumferential direction. A second magnetic gear provided radially inward so as to oppose the magnetic force generation surface of the first magnetic gear, and provided between the opposing magnetic force generation surfaces of the first magnetic gear and the second magnetic gear. And a holding member that holds a plurality of magnetic path members made of electromagnetic steel arranged in the circumferential direction so as to be interposed between the magnetic poles of the second magnetic gear, and is provided to be supplied so as to extend in the axial direction in the holding member. Directing the refrigerant toward at least one of the opposing magnetic force generation surfaces And that a coolant flow path having a discharge for discharging hole.

(3)上記(1)または(2)において、好ましくは、前記第1回転軸または第2回転軸に接続された圧縮機で生成される圧縮空気の抽気空気を前記冷媒流路に供給するものとする。   (3) In the above (1) or (2), preferably, the extraction air of compressed air generated by a compressor connected to the first rotating shaft or the second rotating shaft is supplied to the refrigerant flow path. And

(4)また、上記(1)または(2)において、好ましくは、前記磁力発生面の複数の磁石は、前記第1磁気歯車および第2磁気歯車のそれぞれについて、軸線に垂直な面における重心が軸線上となるよう配置されたものとする。   (4) In the above (1) or (2), preferably, the plurality of magnets on the magnetic force generation surface have a center of gravity in a plane perpendicular to the axis of each of the first magnetic gear and the second magnetic gear. It shall be arranged on the axis.

本発明によれば、トルク伝達の際に生じる構成部材の温度上昇を抑制することができる。   According to the present invention, it is possible to suppress the temperature rise of the constituent members that occurs during torque transmission.

本発明の一実施の形態に係る磁気歯車装置を概略的に示す図であり、回転軸に垂直な面における断面図である。It is a figure which shows schematically the magnetic gear apparatus which concerns on one embodiment of this invention, and is sectional drawing in a surface perpendicular | vertical to a rotating shaft. 本発明の一実施の形態に係る磁気歯車装置を概略的に示す図であり、回転軸を含む面における断面図である。It is a figure showing roughly the magnetic gear device concerning one embodiment of the present invention, and is a sectional view in the field containing a rotating shaft. 図1における冷媒流路部分をその周辺構成と共に示す拡大断面図である。It is an expanded sectional view which shows the refrigerant | coolant flow path part in FIG. 1 with the periphery structure. 図3の冷媒流路部分の軸方向の構造を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the axial direction of the refrigerant flow path part of FIG. 本発明の一実施の形態に係る磁気歯車装置を備えたガスタービン発電機の構成図である。It is a block diagram of the gas turbine generator provided with the magnetic gear apparatus which concerns on one embodiment of this invention.

以下、本発明の一実施の形態を図面を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図5は、本実施の形態に係る磁気歯車装置100を備えたガスタービン発電機の構成図である。   FIG. 5 is a configuration diagram of a gas turbine generator including the magnetic gear device 100 according to the present embodiment.

図5において、ガスタービン発電機は、取り入れた空気を圧縮して圧縮空気を生成する圧縮機90と、圧縮機90からの圧縮空気と燃料とを混合燃焼する燃焼器91と、燃焼器91からの燃焼ガスにより回転駆動するタービン92と、タービン92と圧縮機90を連結し、タービン92の回転を圧縮機90に伝達する中間軸93と、圧縮機90に接続され、タービン92及び中間軸93の回転により回転駆動される入力回転軸1と、入力回転軸1及び出力回転軸5に接続され、入力回転軸1の回転数を変換して出力回転軸5に出力する磁気歯車装置100と、出力回転軸5に接続され、出力回転軸5の回転数に応じて発電を行う発電機94とを備えている。入力回転軸1、出力回転軸5、及びその他の回転軸は同軸上に配置され、複数の軸受95及びスラスト軸受(図示せず)により回転可能に支持されている。   In FIG. 5, the gas turbine generator includes a compressor 90 that compresses intake air to generate compressed air, a combustor 91 that combusts and mixes compressed air and fuel from the compressor 90, and a combustor 91. A turbine 92 that is rotationally driven by the combustion gas, an intermediate shaft 93 that couples the turbine 92 and the compressor 90, and transmits the rotation of the turbine 92 to the compressor 90, and is connected to the compressor 90. An input rotary shaft 1 that is rotationally driven by the rotation, and a magnetic gear device 100 that is connected to the input rotary shaft 1 and the output rotary shaft 5 and converts the rotational speed of the input rotary shaft 1 and outputs it to the output rotary shaft 5; A generator 94 is connected to the output rotating shaft 5 and generates electric power according to the rotational speed of the output rotating shaft 5. The input rotary shaft 1, the output rotary shaft 5, and other rotary shafts are arranged coaxially and are rotatably supported by a plurality of bearings 95 and a thrust bearing (not shown).

図1及び図2は、本発明の一実施の形態に係る磁気歯車装置100を概略的に示す図であり、図1は回転軸に垂直な面における断面図、図2は回転軸を含む面における断面図である。   1 and 2 are diagrams schematically showing a magnetic gear device 100 according to an embodiment of the present invention. FIG. 1 is a cross-sectional view in a plane perpendicular to a rotation axis, and FIG. 2 is a plane including the rotation axis. FIG.

図1及び図2において、磁気歯車装置100は、略円柱状の入力側磁気歯車2と、入力側磁気歯車2を同軸状に囲むように配置された略円筒状の出力側磁気歯車3と、入力側磁気歯車2と出力側磁気歯車3の間に配置された複数の磁気経路部材4とを有している。入力側磁気歯車2、出力側磁気歯車3、及び、磁気経路部材4(後述する磁気経路部材ホルダー41)は、互いに径方向に離間して設けられて配置されており、回転駆動によって接触しないように構成されている。   1 and 2, a magnetic gear device 100 includes a substantially cylindrical input-side magnetic gear 2, a substantially cylindrical output-side magnetic gear 3 disposed so as to surround the input-side magnetic gear 2 coaxially, A plurality of magnetic path members 4 disposed between the input side magnetic gear 2 and the output side magnetic gear 3 are provided. The input side magnetic gear 2, the output side magnetic gear 3, and the magnetic path member 4 (magnetic path member holder 41 described later) are disposed so as to be spaced apart from each other in the radial direction so that they do not come into contact with each other by rotational driving. It is configured.

入力側磁気歯車2は、略円柱形状を有しており、その一端において入力回転軸1と同軸上に接続されている。また、出力側磁気歯車3は、出力回転軸5側(入力回転軸1と反対側)の一端を閉じた略円筒形状を有しており、その閉じた端部において出力回転軸5と同軸上に接続されている。入力回転軸1と出力回転軸5は同軸上に配置されており、したがって、入力側磁気歯車2と出力側磁気歯車3は同軸状に形成されている。   The input side magnetic gear 2 has a substantially cylindrical shape, and is connected coaxially with the input rotation shaft 1 at one end thereof. The output-side magnetic gear 3 has a substantially cylindrical shape with one end on the output rotating shaft 5 side (opposite to the input rotating shaft 1) closed, and is coaxial with the output rotating shaft 5 at the closed end. It is connected to the. The input rotary shaft 1 and the output rotary shaft 5 are coaxially arranged, and therefore the input side magnetic gear 2 and the output side magnetic gear 3 are formed coaxially.

入力側磁気歯車2は、入力回転軸1の軸線上に沿うように設けられた軸中心部21と、軸中心部21の外周を覆うように配置された鉄心25と、鉄心25中に周方向に並べて埋設された複数の磁石24とから構成されている。   The input side magnetic gear 2 includes a shaft center portion 21 provided along the axis of the input rotary shaft 1, an iron core 25 disposed so as to cover the outer periphery of the shaft center portion 21, and a circumferential direction in the iron core 25. And a plurality of magnets 24 embedded side by side.

磁石24は、軸中心部21に沿って軸方向に延在するよう設けられており、それぞれ、互いに絶縁した薄板状の永久磁石を軸方向に積層することにより形成されている。このように形成した複数の磁石24は、それぞれ、周方向にN極24aおよびS極24bを向けて配置されている。そして、隣り合う磁石24は、互いの同極が周方向に対向する向きに配置されている。   The magnets 24 are provided so as to extend in the axial direction along the axial center portion 21 and are formed by laminating thin plate-shaped permanent magnets insulated from each other in the axial direction. The plurality of magnets 24 formed in this manner are arranged with the N pole 24a and the S pole 24b facing in the circumferential direction. And the adjacent magnet 24 is arrange | positioned in the direction where the mutually same polarity opposes the circumferential direction.

鉄心25は、互いに絶縁した薄板状の部材(例えば、珪素鋼板)を軸方向に積層することによって形成されている。   The iron core 25 is formed by laminating thin plate members (for example, silicon steel plates) insulated from each other in the axial direction.

このように構成された入力側磁気歯車2において、隣り合う磁石24の磁力線は、同極である相手側には向かず、その磁力線のほとんどが径方向外側に作用する。したがって、入力側磁気歯車2においては、その外周面(径方向外側の面)が磁力発生面であるといえる。   In the input side magnetic gear 2 configured as described above, the magnetic lines of force of the adjacent magnets 24 do not go to the opposite side having the same polarity, and most of the lines of magnetic force act radially outward. Therefore, in the input side magnetic gear 2, it can be said that the outer peripheral surface (radially outer surface) is a magnetic force generating surface.

出力側磁気歯車3は、略円筒状に形成され入力側磁気歯車2と同軸状に配置された外郭構造部31と、外郭構造部31の内周を覆うように配置された鉄心33と、鉄心33中に周方向に並べて埋設された複数の磁石32とから構成されている。   The output side magnetic gear 3 is formed in a substantially cylindrical shape and is arranged coaxially with the input side magnetic gear 2, an iron core 33 arranged so as to cover the inner periphery of the outer structure part 31, and an iron core 33 and a plurality of magnets 32 embedded side by side in the circumferential direction.

磁石32は、外郭構造部31に沿って軸方向に延在するよう設けられており、それぞれ、互いに絶縁した薄板状の永久磁石を軸方向に積層することにより形成されている。このように形成した複数の磁石32は、それぞれ、周方向にN極32aおよびS極32bを向けて配置されている。そして、隣り合う磁石32は、互いの同極が周方向に対向する向きに配置されている。   The magnets 32 are provided so as to extend in the axial direction along the outer structure portion 31 and are formed by laminating thin plate-shaped permanent magnets insulated from each other in the axial direction. The plurality of magnets 32 formed in this way are respectively arranged with the N pole 32a and the S pole 32b facing in the circumferential direction. And the adjacent magnet 32 is arrange | positioned in the direction where the mutually same polarity opposes the circumferential direction.

鉄心33は、互いに絶縁した薄板状の部材(例えば、珪素鋼板)を軸方向に積層することによって形成されている。   The iron core 33 is formed by laminating thin plate members (for example, silicon steel plates) insulated from each other in the axial direction.

このように構成された出力側磁気歯車3において、隣り合う磁石32の磁力線は、同極である相手側には向かず、その磁力線のほとんどが径方向内側に作用する。したがって、出力側磁気歯車3においては、その内周面(径方向内側の面)が磁力発生面であるといえる。   In the output side magnetic gear 3 configured as described above, the magnetic lines of force of the adjacent magnets 32 do not go to the opposite side having the same polarity, and most of the magnetic lines of force act radially inward. Therefore, in the output-side magnetic gear 3, it can be said that the inner peripheral surface (the radially inner surface) is a magnetic force generating surface.

なお、入力側磁気歯車2及び出力側磁気歯車3のそれぞれにおいて、磁力発生面の複数の磁石24,32は、軸線に垂直な面における重心が軸線上となるよう重量計算され配置されている。すなわち、入力側磁気歯車2においては、磁石24の重量が配置前に測定されており、磁石24による重心が軸線上、すなわち、回転中心になるように配置される。出力側磁気歯車3においても同様である。   In each of the input side magnetic gear 2 and the output side magnetic gear 3, the plurality of magnets 24 and 32 on the magnetic force generating surface are weight-calculated and arranged so that the center of gravity in the plane perpendicular to the axis is on the axis. That is, in the input side magnetic gear 2, the weight of the magnet 24 is measured before the placement, and the center of gravity by the magnet 24 is placed on the axis, that is, the rotation center. The same applies to the output side magnetic gear 3.

磁気経路部材4は、入力側磁気歯車2と出力側磁気歯車3の対向する磁力発生面間に同軸状に形成された樹脂製(例えば、非金属材料であるFRP:Fiber Reinforced Plastics)の磁気経路部材ホルダー41により保持されることにより、周方向に複数並べて配置されている。   The magnetic path member 4 is a resin-made magnetic path (for example, FRP: Fiber Reinforced Plastics, which is a nonmetallic material) formed coaxially between the opposing magnetic force generation surfaces of the input side magnetic gear 2 and the output side magnetic gear 3. By being held by the member holder 41, a plurality are arranged in the circumferential direction.

磁気経路部材ホルダー41には、軸方向に延在する穴が周方向に等間隔に複数設けられており、この穴に、互いに絶縁した薄板状の電磁鋼製部材を軸方向に積層することにより、磁気経路部材4が軸方向に延在するよう形成されている。磁気経路ホルダー41は、入力回転軸1側の一端にボルト42で接続された保持部43を介して磁気歯車装置100の基部等に固設されており、これにより、磁気経路部材41が固設されている。   In the magnetic path member holder 41, a plurality of holes extending in the axial direction are provided at equal intervals in the circumferential direction, and thin plate-like electromagnetic steel members insulated from each other are laminated in the holes in the axial direction. The magnetic path member 4 is formed to extend in the axial direction. The magnetic path holder 41 is fixed to the base of the magnetic gear device 100 or the like via a holding part 43 connected to one end of the input rotary shaft 1 by a bolt 42, whereby the magnetic path member 41 is fixed. Has been.

また、磁気経路部材ホルダー41には、周方向に並べて固設された複数の磁気経路部材4のそれぞれの間に軸方向に延在するよう設けられ、対向する磁力発生面の少なくとも何れか一方に向けて吐出される冷媒を導く冷媒流路45が設けられている。冷媒流路45は、複数の磁気経路部材4のそれぞれの間に1つずつ設けられている。   Further, the magnetic path member holder 41 is provided so as to extend in the axial direction between each of the plurality of magnetic path members 4 arranged and fixed in the circumferential direction, and is provided on at least one of the opposing magnetic force generation surfaces. A refrigerant flow path 45 that guides the refrigerant discharged toward the outside is provided. One refrigerant channel 45 is provided between each of the plurality of magnetic path members 4.

図3は、図1における冷媒流路45部分をその周辺構成と共に示す拡大断面図である。また、図4は、図3の冷媒流路45部分の軸方向の構造を概略的に示す断面図である。   FIG. 3 is an enlarged cross-sectional view showing the refrigerant flow path 45 portion in FIG. 1 together with its peripheral configuration. 4 is a cross-sectional view schematically showing the structure in the axial direction of the refrigerant flow path 45 portion of FIG.

図3及び図4において、冷媒流路45は、磁気経路部材ホルダー41において、複数の磁気経路部材4の間に軸方向に延在するよう設けられている。また、磁気経路部材ホルダー41には、冷媒流路45から径方向外側に磁気経路部材ホルダー41を貫通するように形成された吐出孔47が軸方向に複数並べて設けられており、同様に、冷媒流路45から径方向内側に磁気経路部材ホルダー41を貫通するように形成された吐出孔46が軸方向に複数並べて設けられている。吐出孔46,47は、冷媒流路45に向けて縮径する円錐形状を有しており、その頂点側で冷媒流路45に連通している。   3 and 4, the refrigerant flow path 45 is provided in the magnetic path member holder 41 so as to extend in the axial direction between the plurality of magnetic path members 4. The magnetic path member holder 41 is provided with a plurality of discharge holes 47 arranged in the axial direction so as to penetrate the magnetic path member holder 41 radially outward from the refrigerant flow path 45. A plurality of ejection holes 46 formed so as to penetrate the magnetic path member holder 41 radially inward from the flow path 45 are provided side by side in the axial direction. The discharge holes 46 and 47 have a conical shape with a diameter reduced toward the refrigerant flow path 45, and communicate with the refrigerant flow path 45 on the apex side thereof.

冷媒流路45には、冷媒として、入力回転軸1に接続された圧縮機90で生成された圧縮空気の抽気空気が供給されており、その圧縮空気(冷媒)は、冷媒流路45から吐出孔46を介して第1磁気歯車2の外周面20aに吹き付けられ、吐出孔47を介して第2磁気歯車3の内周面30aに吹き付けられる。   Extracted air of compressed air generated by the compressor 90 connected to the input rotary shaft 1 is supplied to the refrigerant flow path 45 as the refrigerant, and the compressed air (refrigerant) is discharged from the refrigerant flow path 45. The air is blown to the outer peripheral surface 20 a of the first magnetic gear 2 through the hole 46, and is blown to the inner peripheral surface 30 a of the second magnetic gear 3 through the discharge hole 47.

以上のように構成した本実施の形態の磁気歯車装置100は、出力回転軸1側の端部において、入力側磁気歯車2と出力側磁気歯車3、及び、出力側磁気歯車3と磁気経路部材ホルダー41は、ボールベアリング2a,3aを介して互いに周方向に摺動可能に保持されており、各部材間の中心軸のずれが抑制されている(図2参照)。   The magnetic gear device 100 of the present embodiment configured as described above has an input side magnetic gear 2 and an output side magnetic gear 3 and an output side magnetic gear 3 and a magnetic path member at the end on the output rotating shaft 1 side. The holder 41 is held so as to be slidable in the circumferential direction via the ball bearings 2a and 3a, and the shift of the central axis between the members is suppressed (see FIG. 2).

磁気歯車装置100の入力回転軸1(入力側磁気歯車2)の回転数と出力回転軸5(出力側磁気歯車3)の回転数の関係は、入力側磁気歯車2の磁力発生面における極性対数と出力側磁気歯車3の磁力発生面における極性対数の比により決まる。言い換えると、入力回転軸1の回転数と出力回転軸5の回転数の関係は、入力側磁気歯車2の磁石24の極性対数と出力側磁気歯車3の磁石32の極性対数の比で決まるということである。   The relationship between the rotational speed of the input rotary shaft 1 (input-side magnetic gear 2) and the rotational speed of the output rotary shaft 5 (output-side magnetic gear 3) of the magnetic gear device 100 is the logarithm of polarity on the magnetic force generation surface of the input-side magnetic gear 2. And the ratio of the logarithm of polarity on the magnetic force generating surface of the output side magnetic gear 3. In other words, the relationship between the rotational speed of the input rotary shaft 1 and the rotational speed of the output rotary shaft 5 is determined by the ratio of the polar logarithm of the magnet 24 of the input side magnetic gear 2 and the polar logarithm of the magnet 32 of the output side magnetic gear 3. That is.

つまり、入力回転軸1の回転数(入力回転数)をNin、入力側磁気歯車2に設けられた磁石3の極性対数をXin、出力回転軸7の回転数(出力回転数)をNout、出力側磁気歯車6に設けられた磁石5の極性対数をXoutとすると、入力回転数Ninと出力回転数Noutの関係は以下の式で表される。   That is, the rotational speed (input rotational speed) of the input rotary shaft 1 is Nin, the polarity logarithm of the magnet 3 provided in the input side magnetic gear 2 is Xin, the rotational speed (output rotational speed) of the output rotary shaft 7 is Nout, and output. When the polarity logarithm of the magnet 5 provided on the side magnetic gear 6 is Xout, the relationship between the input rotation speed Nin and the output rotation speed Nout is expressed by the following expression.

Nin:Nout=Xout:Xin ・・・(1)
例えば、本実施の形態に示したように、磁石24の極性対数を7(図1参照)、磁石32の極性対数を17(図1参照)とすると、入力回転数Ninと出力回転軸Noutの比は、17:7となる。
Nin: Nout = Xout: Xin (1)
For example, as shown in this embodiment, when the polarity logarithm of the magnet 24 is 7 (see FIG. 1) and the polarity logarithm of the magnet 32 is 17 (see FIG. 1), the input rotation speed Nin and the output rotation axis Nout The ratio is 17: 7.

入力側磁気歯車2と出力側磁気歯車3の間の伝達可能トルクは、磁石24,32の体積が増えるに従って増加する。その際、鉄心25,33、磁気経路部材4は、磁気飽和を起こさない寸法である必要がある。   The transmittable torque between the input side magnetic gear 2 and the output side magnetic gear 3 increases as the volumes of the magnets 24 and 32 increase. At that time, the iron cores 25 and 33 and the magnetic path member 4 need to have dimensions that do not cause magnetic saturation.

磁気経路部材4の員数を入力側磁気歯車2の磁力発生面の極性対数と出力側磁気歯車3の磁力発生面の極性対数の和となるように構成した場合に、入力回転軸1から出力回転軸5への伝達可能トルクは最大となる。この知見は、フーリエ解析等を用いたシミュレーションにより得られる。例えば、本実施の形態のように、入力側磁気歯車2の磁力発生面の極性対数を7、出力側磁気歯車3の磁力発生面の極性対数を17とした場合において、磁気経路部材4の員数を24とすると入力側磁気歯車2と出力側磁気歯車3の間の伝達可能トルクは最大となる。   When the number of magnetic path members 4 is the sum of the polar logarithm of the magnetic force generation surface of the input side magnetic gear 2 and the polar logarithm of the magnetic force generation surface of the output side magnetic gear 3, the output rotation from the input rotary shaft 1 The torque that can be transmitted to the shaft 5 is maximized. This knowledge is obtained by simulation using Fourier analysis or the like. For example, as in the present embodiment, when the polarity logarithm of the magnetic force generation surface of the input side magnetic gear 2 is 7 and the polarity logarithm of the magnetic force generation surface of the output side magnetic gear 3 is 17, the number of the magnetic path members 4 Is 24, the transmittable torque between the input-side magnetic gear 2 and the output-side magnetic gear 3 is maximized.

以上のように構成した本実施の形態の動作を説明する。   The operation of the present embodiment configured as described above will be described.

圧縮機90及びタービン92を起動し、入力回転軸1を回転駆動すると磁気歯車装置100の入力側磁気歯車2が回転駆動される。入力側磁気歯車2の磁力発生面と出力側磁気歯車3の磁力発生面は、磁気経路部材4を介して磁気的に噛み合っている。具体的には、入力側磁気歯車2が磁気経路部材4に相対して回転すると、各磁気経路部材4の入力側磁気歯車2および出力側磁気歯車3との対向面がN極又はS極に交互に磁化される。このように、磁化された磁気経路部材4と出力側磁気歯車3の磁力発生面の間にはたらく磁気的吸引力または反発力によって出力側磁気歯車3は周方向に回転駆動される。すなわち、磁気歯車装置100は、磁気経路部材4を遊星歯車のように機能させて入力回転軸1の回転動力を出力回転軸5に伝達する。また、圧縮機90から冷媒流路45に供給された冷媒としての空気は、吐出孔46,47を介して第1磁気歯車2の外周面20a、及び、第2磁気歯車3の内周面30aに吹き付けられ、その空気の衝突によって外周面20aおよび内周面30aが冷却される(衝風冷却)。また、冷媒流路45に供給された冷媒としての空気は、その流路である冷媒流路45内および吐出孔46,47内を流れ、磁気経路ホルダー41と外周面20aおよび内周面30aの間隙を流れることによって磁気経路部材ホルダー41を冷却する。   When the compressor 90 and the turbine 92 are started and the input rotary shaft 1 is rotationally driven, the input-side magnetic gear 2 of the magnetic gear device 100 is rotationally driven. The magnetic force generating surface of the input side magnetic gear 2 and the magnetic force generating surface of the output side magnetic gear 3 are magnetically meshed with each other via the magnetic path member 4. Specifically, when the input-side magnetic gear 2 rotates relative to the magnetic path member 4, the opposing surfaces of the magnetic path members 4 that face the input-side magnetic gear 2 and the output-side magnetic gear 3 become N-pole or S-pole. Magnetized alternately. In this way, the output side magnetic gear 3 is rotationally driven in the circumferential direction by the magnetic attractive force or repulsive force acting between the magnetized magnetic path member 4 and the magnetic force generating surface of the output side magnetic gear 3. That is, the magnetic gear device 100 transmits the rotational power of the input rotary shaft 1 to the output rotary shaft 5 by causing the magnetic path member 4 to function like a planetary gear. Further, the air as the refrigerant supplied from the compressor 90 to the refrigerant flow path 45 passes through the discharge holes 46 and 47, and the outer peripheral surface 20 a of the first magnetic gear 2 and the inner peripheral surface 30 a of the second magnetic gear 3. The outer peripheral surface 20a and the inner peripheral surface 30a are cooled by the air collision (impact cooling). The air as the refrigerant supplied to the refrigerant flow path 45 flows in the refrigerant flow path 45 and the discharge holes 46 and 47, which are the flow paths, and the magnetic path holder 41, the outer peripheral surface 20a, and the inner peripheral surface 30a. The magnetic path member holder 41 is cooled by flowing through the gap.

以上のように構成した本実施の形態の効果を説明する。   The effect of the present embodiment configured as described above will be described.

従来技術のような構造の磁気歯車装置において、駆動中、磁石やヨークは相対的に変化する磁界中にさらされている。特に、磁気歯車装置を高い回転数で用いる場合は磁界の相対変化が激しくなり、電磁誘導効果によって磁石やヨークに大きな渦電流が発生してしまう。この渦電流での発熱による磁石やヨーク、磁気経路部材等の温度上昇は、効率の低下や支持部材の劣化などを生じる一因となっていた。   In a magnetic gear device structured as in the prior art, the magnet and the yoke are exposed to a relatively changing magnetic field during driving. In particular, when the magnetic gear device is used at a high rotational speed, the relative change in the magnetic field becomes intense, and a large eddy current is generated in the magnet or yoke due to the electromagnetic induction effect. The increase in temperature of the magnet, yoke, magnetic path member, and the like due to the heat generated by this eddy current is one factor that causes a decrease in efficiency and deterioration of the support member.

これに対し、本実施の形態においては、第1磁気歯車2と第2磁気歯車3の対向する磁力発生面間に周方向に並べて固設された複数の磁気経路部材4の間に冷媒流路45を設け、冷媒流路45に供給される冷媒としての空気を吐出穴46,47を介して第1磁気歯車2の外周面20aおよび第2磁気歯車3の外周面30aに吐出するよう構成したので、トルク伝達の際に生じる渦電流での発熱による磁石24,32や鉄心25,33、磁気経路部材ホルダー41などの構成部材の温度上昇を抑制することができる。したがって、構成部材の温度上昇による効率の低下や部材の劣化などを抑制することができる。   On the other hand, in the present embodiment, the refrigerant flow path is provided between the plurality of magnetic path members 4 that are fixedly arranged in the circumferential direction between the opposing magnetic force generation surfaces of the first magnetic gear 2 and the second magnetic gear 3. 45 is configured to discharge air as a refrigerant supplied to the refrigerant flow path 45 to the outer peripheral surface 20a of the first magnetic gear 2 and the outer peripheral surface 30a of the second magnetic gear 3 through the discharge holes 46 and 47. Therefore, it is possible to suppress an increase in temperature of components such as the magnets 24 and 32, the iron cores 25 and 33, and the magnetic path member holder 41 due to heat generated by the eddy current generated during torque transmission. Therefore, it is possible to suppress a decrease in efficiency due to a temperature rise of the constituent members, deterioration of the members, and the like.

また、入力側磁気歯車2および出力側磁気歯車3のそれぞれにおいて、複数の磁石24,32の重心が回転中心となるように配置したので、回転駆動時に入力側磁気歯車2および出力側磁気歯車3に生じる遠心力ベクトルを小さくすることができ、径方向へのブレや振動を抑制することができる。   In addition, in each of the input side magnetic gear 2 and the output side magnetic gear 3, since the centers of gravity of the plurality of magnets 24 and 32 are arranged to be the rotation center, the input side magnetic gear 2 and the output side magnetic gear 3 are driven during rotation. Thus, the centrifugal force vector generated can be reduced, and blurring and vibration in the radial direction can be suppressed.

なお、本実施の形態においては、冷媒として空気を用いるよう構成したがこれに限定されるものではない。また、冷媒(空気)は、圧縮機90からの抽気空気を用いるよう構成したが、別途設けた加圧空気の生成手段からの空気を冷媒として用いる構成としても良い。   In the present embodiment, air is used as the refrigerant, but the present invention is not limited to this. The refrigerant (air) is configured to use the extracted air from the compressor 90, but may be configured to use air from a separately provided pressurized air generating unit as the refrigerant.

また、冷媒流路45は、複数の磁気経路部材41のそれぞれの間に1つずつ設けるよう構成したがこれに限られず、磁気経路部材41間に冷媒流路45を設ける部分と設けない部分とを配置するように構成しても良い。   In addition, the refrigerant flow path 45 is configured to be provided one by one between each of the plurality of magnetic path members 41, but is not limited thereto, and a portion where the refrigerant flow path 45 is provided between the magnetic path members 41 and a portion where the refrigerant flow path 45 is not provided. May be arranged.

また、1つの冷媒流路45に、第1磁気歯車2の外周面20aに空気を吐出する吐出孔46と、第2磁気歯車3の外周面30aに空気を吐出する吐出孔47の両方を設けるように構成したがこれに限られない。つまり、第1磁気歯車2の外周面20aに空気を吐出する吐出孔46を有する冷媒流路と、第2磁気歯車3の外周面30aに空気を吐出する吐出孔47を有する冷媒流路とを別々に軸方向に並行に設け、それぞれの冷媒流路に空気を供給する構成としてもよい。この場合には、外周面20a側と外周面30a側で吐出空気の量を別々に最適化することができ、より効率化を図ることができる。   Further, both the discharge hole 46 for discharging air to the outer peripheral surface 20a of the first magnetic gear 2 and the discharge hole 47 for discharging air to the outer peripheral surface 30a of the second magnetic gear 3 are provided in one refrigerant flow path 45. However, the present invention is not limited to this. That is, a refrigerant flow path having a discharge hole 46 for discharging air to the outer peripheral surface 20a of the first magnetic gear 2 and a refrigerant flow path having a discharge hole 47 for discharging air to the outer peripheral surface 30a of the second magnetic gear 3 are provided. It is good also as a structure which provides separately in parallel with an axial direction and supplies air to each refrigerant | coolant flow path. In this case, the amount of discharge air can be optimized separately on the outer peripheral surface 20a side and the outer peripheral surface 30a side, and more efficiency can be achieved.

また、吐出孔46,47は外周面20a側と外周面30a側で軸方向に等間隔で同一位置に設ける構成としたが、これに限られず、外周面20a側と外周面30a側で軸方向に異なる位置に設けるよう構成しても良い。   In addition, the discharge holes 46 and 47 are configured to be provided at the same position in the axial direction at equal intervals on the outer peripheral surface 20a side and the outer peripheral surface 30a side. They may be provided at different positions.

1 入力回転軸(第1回転軸)
2 入力側磁気歯車(第1磁気歯車)
3 出力側磁気歯車(第2磁気歯車)
4 磁気経路部材
5 出力回転軸(第2回転軸)
21 軸中心部
24,32 磁石
25,33 鉄心
41 磁気経路部材ホルダー
43 保持部
90 圧縮機
91 燃焼器
92 タービン
93 中間軸
94 発電機
95 軸受
100 磁気歯車装置
1 Input rotation axis (first rotation axis)
2 Input side magnetic gear (first magnetic gear)
3 Output side magnetic gear (second magnetic gear)
4 Magnetic path member 5 Output rotating shaft (second rotating shaft)
21 Axis center part 24, 32 Magnet 25, 33 Iron core 41 Magnetic path member holder 43 Holding part 90 Compressor 91 Combustor 92 Turbine 93 Intermediate shaft 94 Generator 95 Bearing 100 Magnetic gear device

Claims (4)

複数の磁石を第1回転軸の軸線周りに設けた鉄心に周方向に並べて配置した磁力発生面を径方向外側に向けて設けた第1磁気歯車と、
前記第1磁気歯車を同軸状に囲んで設けられ、複数の磁石を第2回転軸の軸線周りに周方向に並べて配置した鉄心の磁力発生面を前記第1磁気歯車の磁力発生面に対向するように径方向内側に向けて設けた第2磁気歯車と、
前記第1磁気歯車と前記第2磁気歯車の対向する磁力発生面間に、前記第1磁気歯車と第2磁気歯車の磁極間に介在するように周方向に並べて固設された電磁鋼製の複数の磁気経路部材と、
前記周方向に並べて固設された複数の磁気経路部材の間に設けられ、対向する前記磁力発生面の少なくとも何れか一方に向けて吐出される冷媒を導く冷媒流路と
を備えたことを特徴とする磁気歯車装置。
A first magnetic gear provided with a plurality of magnets arranged in a circumferential direction on an iron core provided around the axis of the first rotation axis and having a magnetic force generation surface facing radially outward;
The magnetic force generating surface of the iron core, which is provided coaxially surrounding the first magnetic gear and has a plurality of magnets arranged in the circumferential direction around the axis of the second rotating shaft, faces the magnetic force generating surface of the first magnetic gear. A second magnetic gear provided radially inward as described above,
Made of electromagnetic steel fixedly arranged in the circumferential direction so as to be interposed between the magnetic poles of the first magnetic gear and the second magnetic gear between the opposing magnetic force generation surfaces of the first magnetic gear and the second magnetic gear. A plurality of magnetic path members;
A refrigerant flow path is provided between a plurality of magnetic path members fixed in line in the circumferential direction and guides a refrigerant discharged toward at least one of the opposing magnetic force generation surfaces. A magnetic gear device.
複数の磁石を第1回転軸の軸線周りに設けた鉄心に周方向に並べて配置した磁力発生面を径方向外側に向けて設けた第1磁気歯車と、
前記第1磁気歯車を同軸状に囲んで設けられ、複数の磁石を第2回転軸の軸線周りに周方向に並べて配置した鉄心の磁力発生面を前記第1磁気歯車の磁力発生面に対向するように径方向内側に向けて設けた第2磁気歯車と、
前記第1磁気歯車と前記第2磁気歯車の対向する磁力発生面間に設けられ、前記第1磁気歯車と第2磁気歯車の磁極間に介在するように電磁鋼製の複数の磁気経路部材を周方向に並べて保持する保持部材と、
前記保持部材内に軸方向に延在するよう設けられ、供給される冷媒を対向する前記磁力発生面の少なくとも何れか一方に向けて吐出する吐出孔を有する冷媒流路と
を備えたことを特徴とする磁気歯車装置。
A first magnetic gear provided with a plurality of magnets arranged in a circumferential direction on an iron core provided around the axis of the first rotation axis and having a magnetic force generation surface facing radially outward;
The magnetic force generating surface of the iron core, which is provided coaxially surrounding the first magnetic gear and has a plurality of magnets arranged in the circumferential direction around the axis of the second rotating shaft, faces the magnetic force generating surface of the first magnetic gear. A second magnetic gear provided radially inward as described above,
A plurality of magnetic path members made of electromagnetic steel are provided between the opposing magnetic force generation surfaces of the first magnetic gear and the second magnetic gear and are interposed between the magnetic poles of the first magnetic gear and the second magnetic gear. Holding members that are arranged side by side in the circumferential direction;
A refrigerant flow path provided in the holding member so as to extend in the axial direction and having a discharge hole for discharging the supplied refrigerant toward at least one of the opposing magnetic force generation surfaces. A magnetic gear device.
請求項1又は2記載の磁気歯車装置において、
前記第1回転軸または第2回転軸に接続された圧縮機で生成される圧縮空気の抽気空気を前記冷媒流路に供給することを特徴とする磁気歯車装置。
The magnetic gear device according to claim 1 or 2,
A magnetic gear device, characterized in that extracted air of compressed air generated by a compressor connected to the first rotating shaft or the second rotating shaft is supplied to the refrigerant flow path.
請求項1又は2記載の磁気歯車装置において、
前記磁力発生面の複数の磁石は、前記第1磁気歯車および第2磁気歯車のそれぞれについて、軸線に垂直な面における重心が軸線上となるよう配置されたことを特徴とする磁気歯車装置。
The magnetic gear device according to claim 1 or 2,
The plurality of magnets on the magnetic force generating surface are arranged such that, for each of the first magnetic gear and the second magnetic gear, the center of gravity in a plane perpendicular to the axis is on the axis.
JP2011118262A 2011-05-26 2011-05-26 Magnetic gear device Withdrawn JP2012246982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011118262A JP2012246982A (en) 2011-05-26 2011-05-26 Magnetic gear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011118262A JP2012246982A (en) 2011-05-26 2011-05-26 Magnetic gear device

Publications (1)

Publication Number Publication Date
JP2012246982A true JP2012246982A (en) 2012-12-13

Family

ID=47467615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011118262A Withdrawn JP2012246982A (en) 2011-05-26 2011-05-26 Magnetic gear device

Country Status (1)

Country Link
JP (1) JP2012246982A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017538897A (en) * 2014-10-17 2017-12-28 サフラン・トランスミッション・システムズ Equipment support for turbomachine with speed reducer with magnetic gear
US10030638B2 (en) 2012-05-16 2018-07-24 Nuovo Pignone Srl Electromagnetic actuator for a reciprocating compressor
US10184464B2 (en) 2012-05-16 2019-01-22 Nuovo Pignone Srl Electromagnetic actuator and inertia conservation device for a reciprocating compressor
WO2021149720A1 (en) * 2020-01-24 2021-07-29 三菱重工業株式会社 Pole shoe device, magnetic gear, magnetic geared motor, and magnetic geared electric generator
WO2022163601A1 (en) 2021-01-29 2022-08-04 三菱重工業株式会社 Magnetic-geared electrical machine and electric power generation system
WO2022163603A1 (en) 2021-01-29 2022-08-04 三菱重工業株式会社 Magnetic geared electric machine and power generation system using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10030638B2 (en) 2012-05-16 2018-07-24 Nuovo Pignone Srl Electromagnetic actuator for a reciprocating compressor
US10184464B2 (en) 2012-05-16 2019-01-22 Nuovo Pignone Srl Electromagnetic actuator and inertia conservation device for a reciprocating compressor
JP2017538897A (en) * 2014-10-17 2017-12-28 サフラン・トランスミッション・システムズ Equipment support for turbomachine with speed reducer with magnetic gear
WO2021149720A1 (en) * 2020-01-24 2021-07-29 三菱重工業株式会社 Pole shoe device, magnetic gear, magnetic geared motor, and magnetic geared electric generator
EP4080087A4 (en) * 2020-01-24 2023-06-21 Mitsubishi Heavy Industries, Ltd. Pole shoe device, magnetic gear, magnetic geared motor, and magnetic geared electric generator
JP7433061B2 (en) 2020-01-24 2024-02-19 三菱重工業株式会社 Magnetic pole piece devices, magnetic gears, magnetic geared motors and magnetic geared generators
WO2022163601A1 (en) 2021-01-29 2022-08-04 三菱重工業株式会社 Magnetic-geared electrical machine and electric power generation system
WO2022163603A1 (en) 2021-01-29 2022-08-04 三菱重工業株式会社 Magnetic geared electric machine and power generation system using same

Similar Documents

Publication Publication Date Title
JP2012246982A (en) Magnetic gear device
EP1353436B1 (en) A compact electrical machine
US7557480B2 (en) Communicating magnetic flux across a gap with a rotating body
EP2133982A2 (en) An electrical machine with integrated magnetic gears
JP2021100376A (en) Flux machine
US20110115326A1 (en) Electrical machines
JP5602482B2 (en) Magnetic refrigeration equipment
JP6194319B2 (en) Electromechanical flywheel storage system
JP4929190B2 (en) Magnetic gear unit
CN105391262A (en) Brushless rotating electrical machine
JP5722690B2 (en) Power generator
EP2482432B1 (en) A cooling arrangement for a magnetic gearbox
CN111884417A (en) Magnetic bearing in an aircraft or marine vehicle power system
KR101804209B1 (en) Air Cooling Device
JP2020016284A (en) Rotation device
JP2013053733A (en) Magnetic gear device
JP2012170264A (en) Magnetic gear device
WO2021149720A1 (en) Pole shoe device, magnetic gear, magnetic geared motor, and magnetic geared electric generator
JP2014066290A (en) Magnetic gear device
JP2013257021A (en) Drive device and plant
JP2005036751A (en) Power generating device
JP2016119833A (en) Improved apparatus for transferring torque magnetically
JP5985347B2 (en) Rotational torque transmission device and gas turbine generator using the same
KR101838014B1 (en) High Speed Motor
CN103117641A (en) Magnetic force balance device for magnetic transmission equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805