JP2009162418A - Open circulation type combined cooling facilities and operating method - Google Patents

Open circulation type combined cooling facilities and operating method Download PDF

Info

Publication number
JP2009162418A
JP2009162418A JP2007341571A JP2007341571A JP2009162418A JP 2009162418 A JP2009162418 A JP 2009162418A JP 2007341571 A JP2007341571 A JP 2007341571A JP 2007341571 A JP2007341571 A JP 2007341571A JP 2009162418 A JP2009162418 A JP 2009162418A
Authority
JP
Japan
Prior art keywords
water
cooling facility
cooling
concentration
open circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007341571A
Other languages
Japanese (ja)
Inventor
Arata Suzuki
新 鈴木
Tomoaki Matsuura
智昭 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Original Assignee
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd filed Critical Hakuto Co Ltd
Priority to JP2007341571A priority Critical patent/JP2009162418A/en
Publication of JP2009162418A publication Critical patent/JP2009162418A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide open circulation type combined cooling facilities and their operating method capable of reducing the amount of makeup water and the amount of blow water, reducing the usage of medical agents added to the circulated water, and easily controlling the addition of medical agents in a case when the plurality of open circulation type cooling facilities are installed in one area. <P>SOLUTION: In this open circulation type combined cooling facilities, the plurality of open circulation type cooling facilities are installed in one area, levels of concentration in supplying the same makeup water to each of the cooling facilities are different from each other by cooling facilities, and the blow water of the first cooling facility 10 of higher level of concentration is supplied as the makeup water of the second cooling facility 20 of lower level of concentration. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は開放循環式の冷却施設が一区域内に複数設置されている開放循環式複合冷却施設、及びその運転方法に関する。   The present invention relates to an open circulation type combined cooling facility in which a plurality of open circulation type cooling facilities are installed in one area, and an operation method thereof.

一般の工業用冷却施設では、製造工程内の製造装置や冷却装置等を循環する冷却水を冷却塔によって外気と接触させ、気化熱を奪って冷却する開放循環式冷却施設が広く利用されている、例えば、石油化学工業では複数の大型冷却塔を設置して、循環水量数千トン〜2万トン/時の大容量の循環水を冷却している。   In general industrial cooling facilities, an open circulation type cooling facility is widely used in which cooling water circulating through a manufacturing apparatus or a cooling apparatus in a manufacturing process is brought into contact with outside air by a cooling tower and cooled by removing heat of vaporization. For example, in the petrochemical industry, a plurality of large cooling towers are installed to cool a large volume of circulating water with a circulating water volume of several thousand to 20,000 tons / hour.

開放循環式冷却施設では、冷却塔における水の一部蒸発によって循環水は濃縮され、循環水中に含まれる塩類等の固形分濃度が上昇する。このため、循環水の一部を強制ブロー水として排出し、循環水の固形分濃度の上昇を抑制している。また、冷却塔における水の一部蒸発による循環水の損失を補うために、補給水として清水(工業用水等)を注入している。   In the open circulation cooling facility, the circulating water is concentrated by partial evaporation of the water in the cooling tower, and the solid content concentration of salts and the like contained in the circulating water increases. For this reason, a part of circulating water is discharged as forced blow water, and an increase in the solid content concentration of the circulating water is suppressed. Further, fresh water (industrial water or the like) is injected as make-up water to make up for the loss of circulating water due to partial evaporation of water in the cooling tower.

(循環水のCa硬度)/(補給水のCa硬度)の値は濃縮度と称されており、開放循環式冷却施設は、濃縮度が所定の範囲となるように、補給水量と強制ブロー水量の調節を行いながら運転されている(ここで、Ca硬度とは、水中に含まれるカルシウムイオンの重量を、それに対応する炭酸カルシウムの重量に変換した値をいう。以下同様)。このように、濃縮度に基づいて開放循環式冷却施設の制御を行うのは、以下の理由による。   The value of (Ca hardness of circulating water) / (Ca hardness of makeup water) is referred to as the degree of concentration, and the open circulation type cooling facility has an amount of makeup water and a forced blow water amount so that the degree of concentration is within a predetermined range. (Here, Ca hardness is a value obtained by converting the weight of calcium ions contained in water into the corresponding weight of calcium carbonate. The same shall apply hereinafter). As described above, the open circulation cooling facility is controlled based on the enrichment for the following reason.

すなわち、開放循環式冷却施設において濃縮度が高くなると、循環水中に含まれるカルシウムイオンや重炭酸イオンの濃度が高くなり、循環水のpHが上昇し、炭酸カルシウムが析出し易くなる。こうして析出した炭酸カルシウムが金属表面にスケールを形成し、これが金属表面の保護皮膜として金属の腐食を抑制する。このため、濃縮度はある程度以上にすることが防食上必要となる。しかし、過度の濃縮度の上昇は熱交換器等の伝熱面への炭酸カルシウムスケール付着及び炭酸カルシウムを含むスケールの付着を引き起こし、伝熱阻害などの障害を引き起こす。   That is, when the enrichment becomes high in the open circulation cooling facility, the concentration of calcium ions and bicarbonate ions contained in the circulating water increases, the pH of the circulating water rises, and calcium carbonate tends to precipitate. The calcium carbonate thus deposited forms a scale on the metal surface, which suppresses metal corrosion as a protective film on the metal surface. For this reason, it is necessary for the anticorrosion that the degree of enrichment exceeds a certain level. However, an excessive increase in the concentration causes adhesion of calcium carbonate scales and scales containing calcium carbonate to heat transfer surfaces such as heat exchangers, and causes problems such as heat transfer inhibition.

一方、濃縮度が低すぎる場合には、防食成分である炭酸カルシウムやシリカの濃度が低くなり、配管の腐蝕防止が不充分となる。また、濃縮度が低い値で運転する場合には、補給水量や強制ブロー水量が大きくなり、補給水コスト及び強制ブロー水の水処理コストが嵩むこととなる。また、ブロー水には強制ブロー水以外に、冷水塔からの飛散で失われる飛散ロス水、及び循環水系の配管中での漏水等で失われるプラントブロー水がある。強制ブロー水に応じて水処理剤が添加されるため、濃縮度が低い場合には水処理剤の使用量も増え、水処理剤に要するコストも増加する。このため、濃縮度はある程度以上の値に設定する必要がある。   On the other hand, when the degree of concentration is too low, the concentration of calcium carbonate and silica, which are anticorrosive components, is low, and the corrosion prevention of the piping becomes insufficient. Further, when the operation is performed at a low degree of concentration, the amount of makeup water and the amount of forced blow water increase, and the cost of water treatment and water treatment for forced blow water increases. In addition to forced blow water, blow water includes scattered loss water lost due to scattering from the cold water tower, and plant blow water lost due to water leakage in the piping of the circulating water system. Since the water treatment agent is added according to the forced blow water, when the concentration is low, the amount of the water treatment agent used increases, and the cost required for the water treatment agent also increases. For this reason, it is necessary to set the degree of enrichment to a value above a certain level.

また、開放循環式冷却施設の濃縮度の大小に関わりなく、循環冷却施設の配管や熱交換器に使用されている炭素鋼や銅、銅合金等の金属の腐食を防止する目的でリン酸塩、重合リン酸塩、ホスホン酸塩、亜鉛塩、モリブデン酸塩などの腐食防止剤や重合リン酸塩、ホスホン酸塩、カルボン酸系高分子化合物などのスケール防止剤が循環水に添加されている。これらの腐食防止剤やスケール防止剤は、循環水のブローにより排出され、廃水処理を受けた後、河川、湖沼や海域へと排出される。ブローにより排出される腐食防止剤やスケール防止剤は、強制ブロー水、飛散ロス水、及びプラントブロー水の総量に比例し、ブロー水の総量が少ないほど、その損出は少ない。開放循環式冷却施設に用いられる腐食防止剤の有効成分である亜鉛塩やモリブデン酸塩は重金属塩であり、それらを含む排水は水棲生物に対して悪影響を与えるおそれがある。また、腐食防止剤やスケール防止剤の有効成分であるリン含有排水は毒性が低いものの、湖沼、内海などの閉鎖水域において、富栄養化の問題を生じることから、リン含有薬品の周辺環境への排出量は、少ないほど好ましい。   Regardless of the concentration level of the open circulation cooling facility, phosphates are used to prevent corrosion of metals such as carbon steel, copper, and copper alloys used in circulation cooling facility piping and heat exchangers. Corrosion inhibitors such as polymer phosphates, phosphonates, zinc salts and molybdates, and scale inhibitors such as polymer phosphates, phosphonates and carboxylic polymer compounds are added to the circulating water. . These corrosion inhibitors and scale inhibitors are discharged by circulating water blow, and after being subjected to wastewater treatment, are discharged into rivers, lakes, and sea areas. The corrosion inhibitor and scale inhibitor discharged by blowing are proportional to the total amount of forced blow water, splash loss water, and plant blow water. The smaller the total amount of blow water, the smaller the loss. Zinc salts and molybdates, which are active ingredients of corrosion inhibitors used in open circulation cooling facilities, are heavy metal salts, and wastewater containing them may adversely affect aquatic organisms. In addition, although phosphorus-containing wastewater, which is an active ingredient for corrosion inhibitors and scale inhibitors, has low toxicity, it causes eutrophication problems in closed water areas such as lakes and inland seas. The smaller the discharge amount, the better.

そこで、腐食防止剤やスケール防止剤の使用量を低減しながら十分な効果を得る方法が種々提案されている。例えば、補給水の硬度成分を除去し、500(mg−CaCO3/L)以上の高アルカリ度、pHが9以上という条件で運転する防食・防スケール方法(特許文献1参照)や、導電率計とフロートスイッチによって濃縮度の管理を行う冷却水管理装置(特許文献2参照)等が挙げられる。
特開平9−94598号公報 特開平11−248394号公報
Therefore, various methods for obtaining a sufficient effect while reducing the amount of the corrosion inhibitor and the scale inhibitor used have been proposed. For example, an anticorrosion / scale prevention method (see Patent Document 1) or a conductivity meter that removes the hardness component of makeup water and operates under conditions of high alkalinity of 500 (mg-CaCO 3 / L) or higher and pH of 9 or higher. And a cooling water management device (see Patent Document 2) that manages the degree of concentration with a float switch.
JP 9-94598 A Japanese Patent Laid-Open No. 11-248394

しかし、開放循環式の冷却施設における蒸発能力の差や、循環水の漏れの程度等が施設ごとに異なるため、各冷却施設に固形分濃度が等しい補給水を供給したとしても、濃縮度は各冷却施設毎に異なった値となる。このため、一区域内に複数の開放循環式冷却施設が存在する場合には、個々の開放循環式冷却施設の特性や濃縮度に応じて、強制ブロー水もそれぞれ個別の管理下で排出制御されるため、強制ブロー水の総量も多くなり、強制ブロー水の処理コストが高いものとなっていた。また、個々の開放循環式冷却施設の特性や濃縮度に応じて循環水のpH、カルシウム硬度や全硬度が異なるため、使用する防食剤、スケール防止剤及びスライムコントロール剤等の薬剤の種類が各冷却施設毎に異なるようになる。また、例え同一の防食剤、同一のスケール防止剤及び同一のスライムコントロール剤等を使用していても、開放循環式冷却施設の特性に応じた添加量となるように薬剤添加を制御することは、管理が煩雑となり作業性が悪い。   However, the difference in evaporation capacity in open circulation cooling facilities and the degree of leakage of circulating water differ from facility to facility, so even if makeup water with the same solid content concentration is supplied to each cooling facility, Different values for each cooling facility. For this reason, when there are multiple open circulation cooling facilities in an area, the forced blow water is controlled to be discharged under individual management according to the characteristics and concentration of each open circulation cooling facility. For this reason, the total amount of forced blow water is increased, and the treatment cost of forced blow water is high. In addition, since the pH, calcium hardness and total hardness of the circulating water differ depending on the characteristics and concentration of each open circulation cooling facility, the types of chemicals such as anticorrosives, scale inhibitors and slime control agents used are different. It will be different for each cooling facility. In addition, even if the same anticorrosive, the same scale inhibitor, the same slime control agent, etc. are used, it is possible to control the addition of the chemical so that the addition amount according to the characteristics of the open circulation type cooling facility. Management becomes complicated and workability is poor.

本発明は、上記従来の課題に鑑みなされたものであり、開放循環式の冷却施設が一区域内に複数設置されている場合において、補給水量及び強制ブロー水量を低減すると共に、循環水に添加される薬剤の使用量の低減が可能で、薬剤添加制御や薬剤の管理が容易な開放循環式複合冷却施設及びその運転方法を提供することを課題とする。   The present invention has been made in view of the above-described conventional problems. When a plurality of open circulation type cooling facilities are installed in one area, the amount of makeup water and the amount of forced blow water are reduced and added to circulating water. It is an object of the present invention to provide an open circulation type combined cooling facility that can reduce the amount of medicine used and that can easily control the addition of medicine and manage the medicine, and an operation method thereof.

本発明の開放循環式複合冷却施設は、開放循環式の冷却施設が複数設置されており、同じ水質の補給水を供給した場合の濃縮度が各該冷却施設ごとに異なっており、より高い濃縮度となる第1の冷却施設の強制ブロー水が、より低い濃縮度となる第2の冷却施設の補給水として供給されるようになっていることを特徴とする。   In the open circulation type combined cooling facility of the present invention, a plurality of open circulation type cooling facilities are installed, and the concentration when supplying makeup water of the same water quality is different for each cooling facility. The forced blow water of the first cooling facility having a lower degree is supplied as makeup water for the second cooling facility having a lower concentration.

本発明の開放循環式複合冷却施設では、より高い濃縮度となる第1の冷却施設の強制ブロー水が、より低い濃縮度となる第2の冷却施設の補給水として再利用されるため、排水処理装置へ送られる強制ブロー水の量が減少し、強制ブロー水の処理コストも低廉となる。また、強制ブロー水を再利用した分、工業用水等の外部から供給される補給水の量も少なくなる。   In the open circulation type combined cooling facility of the present invention, the forced blow water of the first cooling facility having a higher concentration is reused as makeup water for the second cooling facility having a lower concentration. The amount of forced blow water sent to the treatment device is reduced, and the treatment cost of forced blow water is reduced. Further, the amount of makeup water supplied from the outside such as industrial water is reduced by the amount of reuse of forced blow water.

また、本発明の開放循環式複合冷却施設では、開放循環式の冷却施設が複数設置されており、各該冷却施設に同じ水質の補給水を供給した場合の濃縮度が各該冷却施設ごとに異なっている。しかしながら、より高い濃縮度となる第1の冷却施設の強制ブロー水が、より低い濃縮度となる第2の冷却施設の補給水として導入されるようになっていため、第2の冷却施設へ供給される補給水は、第1の冷却施設への補給水と異なり、防食効果を有する炭酸カルシウム、スケール成分を抑制するスケール防止剤や防食剤、場合によってはスライムコントロール剤などが含まれている。このため、各冷却施設の循環水の水質の差が小さくなり、両冷却施設の水質及び濃縮度は近い値となり、防食剤やスケール防止剤、場合によってはスライムコントロール剤などの種類最適な添加量は近いものとなる。このため、各冷却施設毎に異なる最適な添加量となるように管理しなくても、同一の管理値で添加すれば、最適な条件に近い状態となる。   Further, in the open circulation type combined cooling facility of the present invention, a plurality of open circulation type cooling facilities are installed, and the degree of enrichment when supplying makeup water of the same water quality to each cooling facility is different for each cooling facility. Is different. However, since the forced blow water of the first cooling facility having a higher concentration is introduced as makeup water for the second cooling facility having a lower concentration, it is supplied to the second cooling facility. Unlike the makeup water supplied to the first cooling facility, the supplementary water contains calcium carbonate having an anticorrosive effect, a scale inhibitor and anticorrosive agent that suppresses scale components, and, in some cases, a slime control agent. For this reason, the difference in the water quality of the circulating water in each cooling facility is reduced, the water quality and concentration of both cooling facilities are close to each other, and the optimum addition amount of anticorrosive agent, scale inhibitor, and in some cases, slime control agent, etc. Will be close. For this reason, even if it does not manage so that it may become the optimal addition amount different for every cooling facility, if it adds with the same management value, it will be in the state close | similar to the optimal conditions.

さらには、第1の冷却施設の循環水に添加している腐食抑制剤、スケールコントロール剤等の循環水系への添加薬剤が、強制ブロー水と共に第2の冷却施設の循環水となり、再利用されるため、これらの薬品代の節減、使用薬品の統一、ブロー水排水の処理費の節減、管理負担の低減をもたらす。   Furthermore, chemicals added to the circulating water system such as corrosion inhibitors and scale control agents added to the circulating water in the first cooling facility become recycled water in the second cooling facility along with forced blow water and are reused. As a result, the cost of these chemicals is reduced, the chemicals used are unified, the treatment costs for blow water drainage are reduced, and the management burden is reduced.

本発明の開放循環式複合冷却施設は、次のようにして運転される。すなわち、本発明の開放循環式複合冷却施設の運転方法は、開放循環式の冷却施設が複数設置されており、同じ水質の補給水を供給した場合の濃縮度が各該冷却施設ごとに異なっており、より高い濃縮度となる第1の冷却施設の強制ブロー水を、より低い濃縮度となる第2の冷却施設の補給水として用いることを特徴とする。   The open circulation type combined cooling facility of the present invention is operated as follows. That is, in the operation method of the open circulation type combined cooling facility of the present invention, a plurality of open circulation type cooling facilities are installed, and the concentration when supplying makeup water of the same water quality is different for each cooling facility. The forced blow water of the first cooling facility having a higher concentration is used as makeup water for the second cooling facility having a lower concentration.

開放循環式複合冷却施設の循環水系へのスケールコントロール剤等の水処理薬品は、飛散ロス水、プラントブロー水及び強制ブロー水の総量に比例して添加される。複数の開放循環式冷却施設をそれぞれ単独で運転していた場合には、各開放循環式冷却施設からそれぞれ強制ブロー水が発生し、それぞれを排水として水処理しなければならない。これに対し、本発明の開放循環式複合冷却施設の運転方法によれば、すでに水処理剤が添加された状態の第1の冷却施設の強制ブロー水を、より低い濃縮度となる第2の冷却施設の補給水として用いるため、水処理剤が少なくても、確実に十分な防食効果及びスケール防止効果をえることができる。また、補給水量も減らすことができる。   Water treatment chemicals such as a scale control agent are added to the circulating water system of the open circulation type combined cooling facility in proportion to the total amount of splash loss water, plant blow water and forced blow water. When a plurality of open circulation type cooling facilities are operated independently, forced blow water is generated from each open circulation type cooling facility, and each must be treated as waste water. On the other hand, according to the operating method of the open circulation type combined cooling facility of the present invention, the forced blow water of the first cooling facility in the state where the water treatment agent has already been added is reduced to the second concentration with a lower concentration. Since it is used as makeup water for a cooling facility, sufficient anticorrosive effect and scale preventive effect can be obtained even if there are few water treatment agents. In addition, the amount of makeup water can be reduced.

本発明において、第1の冷却施設の循環水の濃縮度が、第2の冷却施設の濃縮度よりも高ければ、本発明の効果が得られる。特に、第1の冷却施設の循環水の濃縮度が第2の冷却施設の濃縮度よりも1以上大である開放循環式複合冷却施設で本発明の運転方法を行えば、補給水の節減、強制ブロー水の低減、水処理薬品の節減及び循環水水質管理が簡略化される効果が得られるため、好適である。さらに第1の冷却施設の循環水の濃縮度が第2の冷却施設の濃縮度よりも1以上大きく、且つ第1の冷却施設の循環水の濃縮度が5以上、7未満であれば、特に強制ブロー水の低減が大きくなり、水処理薬品の節減及び循環水水質管理がより一層簡略化される効果が得られるため、より好適である。
また、第2の冷却施設の循環水の低濃縮度がプラントブロー水や飛散ロス水等によるロスが大きいことに起因して、少量の強制ブロー水あるいは強制ブローを行わない状態で運転している場合には、本発明の運転方法を適用して、第1の冷却施設の循環水の高濃縮度の強制ブロー水を第2の冷却施設の補給水に使用することにより、第1の冷却施設の強制ブロー水の排水処理を行なわなくてもすみ、第1の冷却施設に添加した添加水処理薬品が第2の冷却施設で有効に再利用でき、さらには、異なる2以上の冷却設備の循環水の水質が近似することにより、両者の循環水の水質管理が一括でできるように簡素化され、好適である。
In the present invention, the effect of the present invention can be obtained if the concentration of circulating water in the first cooling facility is higher than the concentration in the second cooling facility. In particular, if the operation method of the present invention is performed in an open-circulation combined cooling facility in which the concentration of circulating water in the first cooling facility is one or more larger than the concentration in the second cooling facility, it is possible to reduce makeup water. This is preferable because the effects of reducing forced blow water, saving water treatment chemicals, and managing circulating water quality are obtained. Further, if the concentration of circulating water in the first cooling facility is one or more larger than the concentration of the second cooling facility and the concentration of circulating water in the first cooling facility is 5 or more and less than 7, This is more preferable because the forced blow water is greatly reduced, and the effects of further reduction of water treatment chemicals and the management of circulating water quality are obtained.
In addition, the low concentration of circulating water in the second cooling facility is operating in a state where a small amount of forced blow water or forced blow is not performed due to a large loss due to plant blow water or splash loss water, etc. In this case, the operation method of the present invention is applied to use the forced blow water having a high concentration of the circulating water of the first cooling facility as the makeup water of the second cooling facility, so that the first cooling facility is used. Therefore, it is possible to effectively reuse the added water treatment chemical added to the first cooling facility in the second cooling facility, and to circulate two or more different cooling facilities. By approximating the water quality of the water, it is preferable that the quality of the circulating water is simplified and can be collectively managed.

本発明は、河川、湖水、地下水、雨水等から工業用水、水道水、井水などを取り入れて使用される開放循環式冷却施設に適用することができる。このような開放循環式冷却施設として、例えば石油精製工業、石油化学工業、紙パルプ製造業、繊維工業、塗料工業、合成ゴムラテックス工業などの各種製造業、発電プラント、空調システム等における開放循環式冷却施設が挙げられる。   The present invention can be applied to an open circulation type cooling facility that is used by taking industrial water, tap water, well water, etc. from rivers, lake water, ground water, rain water and the like. As such an open circulation type cooling facility, for example, an oil refining industry, a petrochemical industry, a paper pulp manufacturing industry, a textile industry, a paint industry, a synthetic rubber latex industry and various other manufacturing industries, a power plant, an air conditioning system, etc. Cooling facility.

開放循環式冷却施設の諸特性は特に限定されるものではないが、一般的には保有水量は約500トン〜約5,000トン、循環水量は約300トン/時〜約20,000トン/時、ΔTは約2℃〜約12℃、補給水量は約60トン/時〜約100トン/時、ブロー水量は約10トン/時〜約50トン/時、濃縮度は約2〜約7である。飛散ロス水量は、開放循環式冷却施設固有の量であるが、通常、循環水量の約0.1wt%〜0.2wt%である。プラントブロー水量は開放循環式冷却施設固有の値でそれぞれの開放循環式冷却施設により異なる。プラントブロー水量は、冷却塔から送り出される循環開始時の水量と当該冷却塔へ戻ってくる時の回収時の水量の差で算出される。強制ブロー水量は目的とする循環水の水質、濃縮度に応じて調整される。また、開放循環式冷却施設の補給水には、自然にある河川、湖水からの工業用水、水道水などが使用される。   Various characteristics of the open circulation cooling facility are not particularly limited, but generally, the amount of retained water is about 500 tons to about 5,000 tons, and the amount of circulating water is about 300 tons / hour to about 20,000 tons / , ΔT is about 2 ° C. to about 12 ° C., the makeup water amount is about 60 tons / hour to about 100 tons / hour, the blow water amount is about 10 tons / hour to about 50 tons / hour, and the concentration is about 2 to about 7 It is. The amount of scattered water is an amount specific to an open circulation type cooling facility, but is usually about 0.1 wt% to 0.2 wt% of the circulating water amount. The amount of plant blow water is a value specific to an open circulation cooling facility and varies depending on each open circulation cooling facility. The plant blow water amount is calculated by the difference between the water amount at the start of circulation sent out from the cooling tower and the water amount at the time of recovery when returning to the cooling tower. The amount of forced blow water is adjusted according to the quality and concentration of the target circulating water. In addition, natural water from industrial rivers and lakes, tap water, and the like are used as makeup water for the open circulation cooling facility.

以下、本発明をさらに具体化した実施例1及び比較例1について図面を参照しつつ詳述する。
(実施例1)
実施例1の開放循環式複合冷却施設は、図1に示すように、開放循環式の第1冷却施設10と、開放循環式の第2冷却施設20の2つの冷却施設からなる。第1冷却施設10は、保有水量が2400t、循環水量が7000tであり、単独運転をした場合、濃縮度が6倍となる。一方、第2冷却施設20は、保有水量が2300t、循環水量が10000tであり、単独運転をした場合、飛散ロス、プラントブロー(すなわち循環水のプラントでの漏れ)や施設能力の都合や運転状況の都合等で一時的に強制ブローを行うことがあるものの通常、強制ブロー水量が0の状態で運転されていた。そのため、第2冷却施設20での濃縮度は約4.1倍までしか上昇させることができない。
Hereinafter, Example 1 and Comparative Example 1 that further embody the present invention will be described in detail with reference to the drawings.
Example 1
As shown in FIG. 1, the open circulation type combined cooling facility according to the first embodiment includes two cooling facilities of an open circulation type first cooling facility 10 and an open circulation type second cooling facility 20. The first cooling facility 10 has a retained water amount of 2400 t and a circulating water amount of 7000 t. When the first cooling facility 10 is operated independently, the enrichment is 6 times. On the other hand, the second cooling facility 20 has a retained water amount of 2300 t and a circulating water amount of 10000 t. When operated alone, the scattering loss, plant blow (that is, leakage in the circulating water plant), convenience of facility capacity, and operating conditions Although the forced blow was sometimes temporarily performed due to the circumstances of the above, it was usually operated with the forced blow water amount being zero. Therefore, the enrichment in the second cooling facility 20 can only be increased up to about 4.1 times.

第1冷却施設10は、誘引通風向流接触型の冷却塔11及び熱交換器12が配管13によって接続されており、配管13の途中に設置された循環ポンプ14によって配管13内を循環水が循環可能とされている。腐食防止剤は循環水系に対して一定濃度(例えば、腐食防止剤として10mg/Lになるように添加する。)を維持するように添加される。そのため、全ブロー水に対して10mg/L濃度となる腐食防止剤量が補給水に添加される。同様にスライムコントロール剤の場合も、循環水系に対して一定濃度(例えば、スライムコントロール剤として2mg/Lになるように添加する。)を維持するように添加される。腐食防止剤、スライムコントロール剤はそれぞれ注入装置16及び注入装置17によって冷却塔11のピットに添加される。また、補給水には工業用水が用いられ、供給配管15により冷却塔11のピットに供給される。冷却塔11と循環ポンプ14の間の配管13にはバルブ18が設けられており、強制ブロー水をブロワーポンプ30及び強制ブロー水供給配管31を介して第2冷却施設20の冷却塔21のピットに導入されるようになっている。   In the first cooling facility 10, an induced draft counterflow contact type cooling tower 11 and a heat exchanger 12 are connected by a pipe 13, and circulating water is passed through the pipe 13 by a circulation pump 14 installed in the middle of the pipe 13. Circulation is possible. The corrosion inhibitor is added so as to maintain a constant concentration (for example, 10 mg / L as a corrosion inhibitor) with respect to the circulating water system. Therefore, the amount of the corrosion inhibitor having a concentration of 10 mg / L with respect to the total blow water is added to the makeup water. Similarly, in the case of the slime control agent, it is added so as to maintain a constant concentration (for example, added so as to be 2 mg / L as the slime control agent) with respect to the circulating water system. The corrosion inhibitor and the slime control agent are added to the pits of the cooling tower 11 by the injection device 16 and the injection device 17, respectively. In addition, industrial water is used as make-up water and is supplied to the pits of the cooling tower 11 through the supply pipe 15. A valve 18 is provided in the pipe 13 between the cooling tower 11 and the circulation pump 14, and forced blow water is supplied to the pit of the cooling tower 21 of the second cooling facility 20 via the blower pump 30 and the forced blow water supply pipe 31. To be introduced.

第2冷却施設20には、誘引通風向流接触型の冷却塔21及び熱交換器22が配管23によって接続されており、配管23の途中に設置された循環ポンプ24によって配管23内を循環水が循環可能とされている。また、補給水は供給配管25により冷却塔21のピットに供給される。腐食防止剤として、アクリル酸−アクリルアミドスルフォン酸共重合体を循環水系に対して一定濃度(例えば、腐食防止剤として10mg/Lになるように添加する。)を維持するように添加される。そのため、全ブロー水に対して10mg/L濃度となる腐食防止剤量が補給水に添加される。同様にスライムコントロール剤として次亜塩素酸ナトリウム(2〜12重量%水溶液)を循環水系に対して一定濃度(例えば、スライムコントロール剤として2mg/Lになるように添加する。)を維持するように添加される。それぞれ注入装置26及び注入装置27によって冷却塔21のピットに添加されるようになっている。第2冷却施設20から排出される強制ブロー水は、バルブ28及び強制ブロー水供給配管29を介して、図示しない排水処理施設に送られる。   The second cooling facility 20 is connected to a cooling tower 21 and a heat exchanger 22 of an induced draft countercurrent contact type by a pipe 23, and circulating water is circulated in the pipe 23 by a circulation pump 24 installed in the middle of the pipe 23. Can be circulated. The makeup water is supplied to the pit of the cooling tower 21 through the supply pipe 25. As a corrosion inhibitor, an acrylic acid-acrylamide sulfonic acid copolymer is added so as to maintain a certain concentration (for example, 10 mg / L as a corrosion inhibitor) with respect to the circulating water system. Therefore, the amount of the corrosion inhibitor having a concentration of 10 mg / L with respect to the total blow water is added to the makeup water. Similarly, sodium hypochlorite (2 to 12% by weight aqueous solution) as a slime control agent is maintained at a constant concentration (for example, 2 mg / L as a slime control agent) with respect to the circulating water system. Added. They are added to the pits of the cooling tower 21 by the injection device 26 and the injection device 27, respectively. The forced blow water discharged from the second cooling facility 20 is sent to a wastewater treatment facility (not shown) through the valve 28 and the forced blow water supply pipe 29.

以上のように構成された開放循環式複合冷却施設では、第1冷却施設10の配管13内の循環水が熱交換器12で熱交換され、温度が上昇する。そして、循環ポンプ14の駆動によって冷却塔11へ送られ、冷却される。このとき、循環水の一部は蒸発によって持ち去られるため、固形分濃度が上昇する。こうして濃縮度が上昇した循環水の一部は、強制ブロー水としてブロワーポンプ30の駆動により、強制ブロー水供給配管31を介して第2冷却施設20の配管23に全量補給水として再利用される。そして第2冷却施設20においても、第1冷却施設10と同様な循環水の濃縮が起こり、濃縮度が上昇した水の一部が、バルブ28の駆動により、強制ブロー水供給配管29を介して排水処理施設に送られる。   In the open circulation type combined cooling facility configured as described above, the circulating water in the pipe 13 of the first cooling facility 10 is heat-exchanged by the heat exchanger 12, and the temperature rises. And it is sent to the cooling tower 11 by the drive of the circulation pump 14, and is cooled. At this time, part of the circulating water is carried away by evaporation, so that the solid content concentration increases. A part of the circulating water whose concentration has been increased in this way is reused as supplementary water as forced blow water by driving the blower pump 30 through the forced blow water supply pipe 31 to the pipe 23 of the second cooling facility 20. . Also in the second cooling facility 20, the concentration of circulating water similar to that in the first cooling facility 10 occurs, and a part of the water whose concentration is increased is driven through the forced blow water supply pipe 29 by driving the valve 28. Sent to a wastewater treatment facility.

(比較例1)
比較例1では、実施例1と同じ開放循環式複合冷却施設を用いた。ただし、バルブ18は第2冷却施設20への水の供給を閉状態とし、ブロワーポンプ30も停止した。そして、第1冷却施設10及び第2冷却施設20をそれぞれ単独運転とし、ブロワーポンプ19によって第1冷却施設10から強制ブロー水を抜き、バルブ28によって、第2冷却施設20からも強制ブロー水を抜いた。第1冷却施設10及び第2冷却施設20をそれぞれ単独運転とした場合、循環水質が異なるために第1冷却施設10では、腐食防止剤としてアクリル酸−アクリルアミドスルフォン酸共重合体を用い、スライムコントロール剤として次亜塩素酸ナトリウムを用いている。一方、第2冷却施設20では、腐食防止剤としてアクリル酸−ホスフォン酸共重合体を用い、スライムコントロール剤として次亜塩素酸ナトリウムを用いてそれぞれ個々に管理をした。
(Comparative Example 1)
In Comparative Example 1, the same open circulation type combined cooling facility as in Example 1 was used. However, the valve 18 closed the supply of water to the second cooling facility 20, and the blower pump 30 was also stopped. Then, each of the first cooling facility 10 and the second cooling facility 20 is operated independently, the forced blow water is drawn from the first cooling facility 10 by the blower pump 19, and the forced blow water is also discharged from the second cooling facility 20 by the valve 28. I pulled it out. When the first cooling facility 10 and the second cooling facility 20 are each operated independently, the circulating water quality is different, so the first cooling facility 10 uses an acrylic acid-acrylamide sulfonic acid copolymer as a corrosion inhibitor, and slime control. Sodium hypochlorite is used as the agent. On the other hand, in the 2nd cooling facility 20, acrylic acid-phosphonic acid copolymer was used as a corrosion inhibitor, and sodium hypochlorite was used as a slime control agent.

(評価結果)
表1に、第1冷却施設の強制ブロー水を第2冷却施設の補給水として利用した、実施例1の開放循環式複合冷却施設、及びそれぞれの冷却施設を単独で駆動した比較例1についての試験結果を示す。

Figure 2009162418
(Evaluation results)
In Table 1, the forced circulation water of the first cooling facility is used as makeup water for the second cooling facility, and the open circulation type combined cooling facility of Example 1 and the comparative example 1 in which each cooling facility is driven independently. The test results are shown.
Figure 2009162418

表1から分かるように、補給水について比較例1では232t/hrであるのに対し、実施例1では223t/hrとなり、9t/hrの節減(約4%の節減)となった。また、強制ブロー水による排水は実施例1において0t/hrになった。水質については、実施例1における第2冷却施設の循環水の水質は、比較例1における第1冷却施設の循環水とほぼ同様の水質となった。   As can be seen from Table 1, the makeup water was 232 t / hr in Comparative Example 1 whereas it was 223 t / hr in Example 1, which was a 9 t / hr saving (about 4% savings). Further, drainage by forced blow water was 0 t / hr in Example 1. Regarding the water quality, the quality of the circulating water in the second cooling facility in Example 1 was almost the same as that of the first cooling facility in Comparative Example 1.

以上の結果は、次のように説明される。すなわち、実施例1の開放循環式複合冷却施設では、第1冷却施設10のブロー水が、第2冷却施設20の補給水として再利用されるため、排水処理装置へ送られるブロー水の量が減少し、ブロー水の処理コストも低廉となる。また、ブロー水を再利用した分、工業用水等の外部から供給される補給水の量も少なくなる。   The above results are explained as follows. That is, in the open circulation type combined cooling facility of the first embodiment, the blow water of the first cooling facility 10 is reused as makeup water for the second cooling facility 20, and therefore the amount of blow water sent to the waste water treatment apparatus is small. This reduces the cost of treating blow water. Further, the amount of makeup water supplied from the outside such as industrial water is reduced by the amount of reuse of blow water.

また、第1冷却施設10に補給される水は工業用水のみであるのに対し、第2冷却施設20の循環水に補給される水は、工業用水及び第1冷却施設10からのブロー水となり、より高い固形分濃度の水が供給されることとなる。しかし、第1冷却施設10の単独運転での濃縮度は、第2冷却施設20の単独運転での濃縮度よりも高くされているため、その濃縮度の差が、補給される水の固形分濃度の差によって緩和されることとなる。このため、防食剤やスケール防止剤の最適な添加量は近いものとなり、各冷却施設毎に異なる最適な添加量となるように管理しなくても、同一の管理値で添加すれば、最適な条件に近い状態となり、管理が容易となる。例えば、表1に示すように、実施例1では、第1冷却施設と第2冷却施設の水質値(例えばカルシウム硬度)は近い値を示すようになり、実質上、第1冷却施設と第2冷却施設の循環水水質は、同じような管理を行えるようになることが分かる。その結果、2つの冷却施設は共通の水処理薬品類と指標での管理が可能であることが分かる。   In addition, water supplied to the first cooling facility 10 is only industrial water, whereas water supplied to the circulating water of the second cooling facility 20 is industrial water and blow water from the first cooling facility 10. Therefore, water having a higher solid content concentration is supplied. However, since the concentration in the single operation of the first cooling facility 10 is higher than the concentration in the single operation of the second cooling facility 20, the difference in the concentration is the solid content of the replenished water. It is alleviated by the difference in concentration. For this reason, the optimum addition amount of anticorrosive and scale inhibitor is close, and even if it is not controlled so that the optimum addition amount differs for each cooling facility, it is optimal if it is added with the same control value. It becomes a state close to the conditions, and management becomes easy. For example, as shown in Table 1, in Example 1, the water quality values (for example, calcium hardness) of the first cooling facility and the second cooling facility are close to each other. It can be seen that the quality of the circulating water in the cooling facility can be managed in the same way. As a result, it can be seen that the two cooling facilities can be managed with common water treatment chemicals and indicators.

さらには、第1の冷却施設の循環水に添加している腐食抑制剤、スライムコントロール剤等の循環水系への添加薬剤が、ブロー水と共に第2の冷却施設の循環水となり、再利用されるため、これらの薬品代の節減、使用薬品の統一、ブロー水排水の処理費の節減、管理負担の低減をもたらす。例えば、腐食抑制剤、スライムコントロール剤の添加量について、実施例1では、第1冷却施設10のブロー水が、第2冷却施設20の補給水として再利用されるため、表1の結果から比較例1に対して「9/38=約24」(%)の薬品節減となることが分かる。   Furthermore, additives added to the circulating water system such as corrosion inhibitors and slime control agents added to the circulating water of the first cooling facility become recycled water of the second cooling facility together with the blow water and are reused. Therefore, the cost of these chemicals is reduced, the chemicals used are unified, the cost for treating the blow water drainage is reduced, and the management burden is reduced. For example, with respect to the addition amount of the corrosion inhibitor and the slime control agent, in Example 1, since the blow water of the first cooling facility 10 is reused as make-up water of the second cooling facility 20, comparison is made from the results in Table 1. It turns out that it becomes a chemical | medical agent saving of "9/38 = about 24" (%) with respect to Example 1. FIG.

この発明は、上記発明の実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

本発明の開放循環式複合冷却施設及びその運転方法は、開放循環式の冷却施設が一区域内に複数設置されている開放循環式複合冷却施設に利用可能であり、
補給水量及びブロー水量を低減すると共に、循環水に添加される薬剤の使用量が少なくてすみ、該薬剤添加の制御も容易となる。
The open circulation type combined cooling facility and the operation method of the present invention can be used for an open circulation type combined cooling facility in which a plurality of open circulation type cooling facilities are installed in one area.
While reducing the amount of replenishing water and the amount of blown water, the amount of the chemical added to the circulating water can be reduced, and the control of the chemical addition is facilitated.

実施例1の開放循環式複合冷却施設の模式図である。It is a schematic diagram of the open circulation type complex cooling facility of Example 1.

符号の説明Explanation of symbols

10,20…冷却施設(10…第2冷却施設,20…第1冷却施設)   10, 20 ... cooling facility (10 ... second cooling facility, 20 ... first cooling facility)

Claims (3)

開放循環式の冷却施設が複数設置されており、同じ水質の補給水を供給した場合の濃縮度が各該冷却施設ごとに異なっており、より高い濃縮度となる第1の冷却施設の強制ブロー水が、より低い濃縮度となる第2の冷却施設の補給水として供給されるようになっていることを特徴とする開放循環式複合冷却施設。   A plurality of open-circulation cooling facilities are installed, and the concentration when supplying makeup water of the same water quality is different for each cooling facility, and forced blow of the first cooling facility with a higher concentration is achieved. An open circulation combined cooling facility characterized in that water is supplied as makeup water for a second cooling facility having a lower concentration. 開放循環式の冷却施設が複数設置されており、同じ水質の補給水を供給した場合の濃縮度が各該冷却施設ごとに異なっており、より高い濃縮度となる第1の冷却施設の強制ブロー水を、より低い濃縮度となる第2の冷却施設の補給水として用いることを特徴とする開放循環式複合冷却施設の運転方法。   A plurality of open-circulation cooling facilities are installed, and the concentration when supplying makeup water of the same water quality is different for each cooling facility, and forced blow of the first cooling facility with a higher concentration is achieved. A method of operating an open circulation type combined cooling facility, wherein water is used as makeup water for a second cooling facility having a lower concentration. 前記第1の冷却施設の循環水の濃縮度と前記第2の冷却施設の濃縮度との差が1以上であることを特徴とする開放循環式複合冷却施設の運転方法。   The operating method of the open circulation type combined cooling facility, wherein the difference between the concentration of circulating water in the first cooling facility and the concentration of the second cooling facility is 1 or more.
JP2007341571A 2007-12-30 2007-12-30 Open circulation type combined cooling facilities and operating method Pending JP2009162418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007341571A JP2009162418A (en) 2007-12-30 2007-12-30 Open circulation type combined cooling facilities and operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007341571A JP2009162418A (en) 2007-12-30 2007-12-30 Open circulation type combined cooling facilities and operating method

Publications (1)

Publication Number Publication Date
JP2009162418A true JP2009162418A (en) 2009-07-23

Family

ID=40965245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007341571A Pending JP2009162418A (en) 2007-12-30 2007-12-30 Open circulation type combined cooling facilities and operating method

Country Status (1)

Country Link
JP (1) JP2009162418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091797A (en) * 2016-06-21 2016-11-09 中国神华能源股份有限公司 Large Copacity circulating cooling water tower mends water discharge method and system
JP2021113665A (en) * 2020-01-21 2021-08-05 株式会社神鋼環境ソリューション Cooling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551805A (en) * 1978-05-22 1980-01-09 Kurita Water Ind Ltd Water quality controller
JPH0994598A (en) * 1995-09-29 1997-04-08 Kurita Water Ind Ltd Corrosionproof and scale-proof method of open circulating cooling water system
JPH11248394A (en) * 1998-03-04 1999-09-14 Rohm Co Ltd Cooling water controller in cooling water circulation system having cooling tower
JPH11287592A (en) * 1998-04-03 1999-10-19 Mitsubishi Chemical Corp Cooling tower plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551805A (en) * 1978-05-22 1980-01-09 Kurita Water Ind Ltd Water quality controller
JPH0994598A (en) * 1995-09-29 1997-04-08 Kurita Water Ind Ltd Corrosionproof and scale-proof method of open circulating cooling water system
JPH11248394A (en) * 1998-03-04 1999-09-14 Rohm Co Ltd Cooling water controller in cooling water circulation system having cooling tower
JPH11287592A (en) * 1998-04-03 1999-10-19 Mitsubishi Chemical Corp Cooling tower plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091797A (en) * 2016-06-21 2016-11-09 中国神华能源股份有限公司 Large Copacity circulating cooling water tower mends water discharge method and system
CN106091797B (en) * 2016-06-21 2018-09-14 中国神华能源股份有限公司 Large capacity circulating cooling water tower mends water discharge method and system
JP2021113665A (en) * 2020-01-21 2021-08-05 株式会社神鋼環境ソリューション Cooling system
JP7345402B2 (en) 2020-01-21 2023-09-15 株式会社神鋼環境ソリューション cooling system

Similar Documents

Publication Publication Date Title
JP3928182B2 (en) Corrosion prevention and scale prevention method for open circulation cooling water system
US4172786A (en) Ozonation of cooling tower waters
EP2571818B1 (en) Evaporative Recirculation Cooling Water System, Method of Operating an Evaporative Recirculation Cooling Water System
US20020014460A1 (en) Method and apparatus for treating water
CA2952780C (en) Non-phosphorous containing corrosion inhibitors for aqueous systems
CA2602820A1 (en) Process for inhibiting biofilm formation on and/or removing biofilm from an enhanced tube
TW482885B (en) Use of control matrix for cooling water systems control.
US20150376041A1 (en) Aqueous systems having low levels of calcium containing components
JP5098378B2 (en) Magnesium scale inhibitor
JP2009162418A (en) Open circulation type combined cooling facilities and operating method
Chow et al. The use of reclaimed water in electric power stations and other industrial facilities
JP4682273B2 (en) Water treatment method for circulating cooling water system
JP5891630B2 (en) Boiler water scale removal method
Guyer et al. An Introduction to cooling tower water treatment
Boffardi Corrosion inhibitors in the water treatment industry
JP2009299161A (en) Metal corrosion suppression method of water system
US5342548A (en) Methods for inhibiting the corrosion and deposition of iron and iron-containing metals in aqueous systems
JPH09176872A (en) Corrosion suppression of metal in water system and suppressing method of silica based scale
JP7247794B2 (en) Treatment method for circulating cooling water system
JP2004132636A (en) Corrosion inhibition method of iron-based metal
JP2001049471A (en) Water base corrosion inhibiting method
CN112794507B (en) Circulating water treatment method
Guyer An Introduction to Industrial Water Treatment for Professional Engineers
Malinović et al. Corrosion coupon testing of commercial inhibitor in simulated cooling water
Beigi et al. Optimization of side stream filters of blow-down water in cooling water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A977 Report on retrieval

Effective date: 20111116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A02 Decision of refusal

Effective date: 20120403

Free format text: JAPANESE INTERMEDIATE CODE: A02