JP2009160508A - Ozone water forming apparatus, ozone water forming method, ozone water, ozone aqueous solution, and ozone water or ozone aqueous solution - Google Patents

Ozone water forming apparatus, ozone water forming method, ozone water, ozone aqueous solution, and ozone water or ozone aqueous solution Download PDF

Info

Publication number
JP2009160508A
JP2009160508A JP2007341966A JP2007341966A JP2009160508A JP 2009160508 A JP2009160508 A JP 2009160508A JP 2007341966 A JP2007341966 A JP 2007341966A JP 2007341966 A JP2007341966 A JP 2007341966A JP 2009160508 A JP2009160508 A JP 2009160508A
Authority
JP
Japan
Prior art keywords
water
ozone
gas
ejector
ozone water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007341966A
Other languages
Japanese (ja)
Inventor
Eiji Matsumura
栄治 松村
Nobuko Hagiwara
信子 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007341966A priority Critical patent/JP2009160508A/en
Publication of JP2009160508A publication Critical patent/JP2009160508A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Accessories For Mixers (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase dissolved efficiency and reaching concentration by dissolving ozone gas into water or an aqueous solution, and suppressing self-decomposition of ozone molecules in bubbles by thermal energy caused by sonoluminescence action generated at mixing, and to miniaturize an ozone water forming apparatus and to form highly concentrated ozone water with high effect by providing a gas cooling device cooling sucked and introduced ozone-containing gas by an ejector and keeping the gas at low temperature. <P>SOLUTION: In the ozone water forming apparatus and ozone water forming method, ozone gas is injected to water or raw water of liquid passing from a water flow-in channel upstream of the ejector through an orifice part or a gas sucking and introducing pipe connection part, and gas is mixed with liquid to form ozone water or ozone aqueous water. The gas cooling device is provided, and ozone gas is cooled to 0°C or lower in the gas sucking and introducing pipe from an ozonizer to the ejector, and introduced into the ejector. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、原水に、オゾンガスを流入させ、気液混合してオゾン水またはオゾン水溶液を生成するオゾン水生成装置、オゾン水生成方法、オゾン水、オゾン水溶液、及びオゾン水またはオゾン水溶液に関する。  The present invention relates to an ozone water generating device, an ozone water generating method, ozone water, an ozone aqueous solution, and ozone water or an ozone aqueous solution, in which ozone gas is introduced into raw water and gas-liquid mixed to generate ozone water or an ozone aqueous solution.

オゾンは、気相では極めて人や動物に危険で有害である。オゾン気泡を水中に溶存させて液相にし、食品などの表面に対する殺菌消毒、水の浄化処理、半導体ウエハーや液晶パネルなど精密部品類の洗浄やレジスト剥離、表面改質などに用いることは、気相に比較して安全性が高いことと共に、コントロールの容易な酸化技術として又、残留性が無く環境にやさしい洗浄技術として広く利用されている。  Ozone is extremely dangerous and harmful to humans and animals in the gas phase. Ozone bubbles are dissolved in water to form a liquid phase that can be used for sterilization and sterilization of food surfaces, water purification, cleaning of precision parts such as semiconductor wafers and liquid crystal panels, resist stripping, and surface modification. In addition to its high safety compared to the phase, it is widely used as an oxidation technique that is easy to control and as an environmentally friendly cleaning technique with no persistence.

オゾン水の効果を高めるためには、より多くオゾンを水中に溶存保持させて高濃度にできる技術が必要であり、同じくより効率よくオゾン水やオゾン水溶液を生成する手段が求められている。高濃度で効率よくオゾン水やオゾン水溶液を生成するために、様々な方法が提案されている。  In order to enhance the effect of ozone water, a technique capable of increasing the concentration of ozone by dissolving it in water is required, and there is a need for a means for generating ozone water and an aqueous ozone solution more efficiently. Various methods have been proposed in order to efficiently generate ozone water or an aqueous ozone solution at a high concentration.

例えば特開2005−334797では、オゾナイザー内において放電されオゾン化する以前の、酸素または空気をペルチェ式冷却装置により冷却し、放電の効率を上げると共に、冷却による除湿効果により酸素や空気中の水分を除湿させて、放電の安定性を高める方法が提案されている。同様に特開2003−47825や、特開平5−97405には、方式こそ異なるものの、空気または酸素原料をオゾナイザーに於いて、放電する以前に冷却すると共に除湿し、下流の放電においてオゾン発生効率を上げることが提案されている。  For example, in Japanese Patent Application Laid-Open No. 2005-334797, oxygen or air before being discharged and ozonized in an ozonizer is cooled by a Peltier cooling device to increase the efficiency of discharge, and oxygen and moisture in the air are removed by a dehumidifying effect by cooling. A method of increasing the stability of discharge by dehumidifying has been proposed. Similarly, Japanese Patent Application Laid-Open No. 2003-47825 and Japanese Patent Application Laid-Open No. 5-97405 are different in the method, but the air or oxygen source is cooled and dehumidified before discharge in the ozonizer, and the ozone generation efficiency is improved in the downstream discharge. It is proposed to raise.

これら原料ガスの冷却によればオゾンの発生効率は高まり、放電装置に供給される水分が減少することで放電装置の寿命が延びるといった効果があった。しかし、放電後にオゾンを含有したガスは、高圧放電により発せられる熱エネルギーにより瞬時に昇温し、さらに装置フローによっては放電装置から下流の混合装置(エジェクターやインジェクター)に至る間に、周辺環境温度と供給管での熱交換により外気温と均しく、数℃〜数十℃の状態になって後に水や液体と混合された。オゾンガス温度が上昇することにより、オゾンは自己分解するというヘンリー定数に示される現象が起こり、水中にガスとして送り込まれた際に、水中に溶存保持される効率が低下していた。  The cooling of these raw material gases has the effect of increasing the efficiency of ozone generation and extending the life of the discharge device by reducing the amount of water supplied to the discharge device. However, the ozone-containing gas after discharge is instantly heated by the heat energy generated by the high-pressure discharge, and depending on the device flow, the ambient environment temperature may vary between the discharge device and the downstream mixing device (ejector or injector). And the heat exchange in the supply pipe was equal to the outside air temperature, and it became a state of several to several tens of degrees Celsius and was mixed with water and liquid later. As the ozone gas temperature rises, the phenomenon shown by the Henry constant that ozone is self-decomposing occurs, and the efficiency of being dissolved and retained in water when it is sent into the water as gas is reduced.

さらに、これら特許文献においては、エジェクターオリフィス部において混合される水及び液の中で、オゾンガス気泡のキャビテーションが起こり、これに付随して発生するソノルミネッセンス現象すなわち気泡圧縮による熱エネルギー発生による影響については何ら配慮さるものではなかった。原料ガス冷却式オゾン水生成装置のフローを(図6)に示す。  Furthermore, in these patent documents, cavitation of ozone gas bubbles occurs in the water and liquid mixed in the ejector orifice, and the sonoluminescence phenomenon that occurs accompanying this, that is, the influence of thermal energy generation due to bubble compression, There was nothing to consider. The flow of the raw material gas-cooled ozone water generator is shown in FIG.

一方、気液混合法によりオゾン水を生成する際に、水を冷却して溶存効率を高めるということは例えば特開2006−102576において提案されている様に、一般に広く実施されている方法であり、ガス冷却と同じくヘンリー定数に示されるオゾンの温度上昇による自己分解の物性に鑑みて実用化されている。しかし、水または水溶液を冷却する場合は、添加される物により若干の違いはあるが、水が凍結する温度域以下に水温維持することは不可能であり、凡そ0℃以上数℃以内に水温を保持することが限界となっている。    On the other hand, when ozone water is generated by the gas-liquid mixing method, cooling the water to increase the dissolution efficiency is a widely practiced method as proposed in, for example, JP-A-2006-102576. As in the case of gas cooling, it has been put into practical use in view of the physical properties of self-decomposition due to the rise in ozone temperature indicated by the Henry constant. However, when cooling water or an aqueous solution, although there are some differences depending on what is added, it is impossible to maintain the water temperature below the temperature range where water freezes. It is the limit to hold.

また、ガス冷却と同様に、ソノルミネッセンス現象による熱エネルギー発生とその影響について配慮されている例はなかった。水冷却式オゾン水生成装置のフロー図を(図5)に示す。また、あらかじめ微細径で発生させたオゾン等のマイクロバブル気泡に、超音波を印加する等して気泡を収縮させ、圧壊と称せられる気泡の収縮現象により、気泡内に超高圧で超高温な場を発生させ、気泡径50〜500nmといった極めて微細な気泡を含有するオゾン水が生成できることは、特開2005−245817で提案されている。    In addition, as in the case of gas cooling, there has been no example in which generation of thermal energy due to the sonoluminescence phenomenon and its influence are taken into consideration. A flow diagram of the water-cooled ozone water generator is shown in FIG. In addition, by applying ultrasonic waves to microbubble bubbles such as ozone that have been generated with a fine diameter in advance, the bubbles shrink, and the bubble contraction phenomenon called crushing causes ultrahigh pressure and ultrahigh temperature in the bubbles. Japanese Patent Laid-Open No. 2005-245817 proposes that ozone water containing extremely fine bubbles having a bubble diameter of 50 to 500 nm can be generated.

しかし、この圧壊作用による方法においてもソノルミネッセンス現象により熱エネルギーが発生し、それは計測不能な程瞬間であるが、極めて高温であり、よってオゾンが分解して濃度低下する作用となることについて配慮されたものではなかった。
特開2005−334797 特開2003−47825 特開平5−97405号公報 特開2006−102576 特開2005−245817
However, even in this method by the crushing action, thermal energy is generated by the sonoluminescence phenomenon, which is an instant that cannot be measured, but it is extremely high temperature, and therefore, it is considered that ozone is decomposed and the concentration is lowered. It was not.
JP 2005-334797 A JP 2003-47825 A JP-A-5-97405 JP 2006-102576 A JP-A-2005-245817

この発明は、エジェクターまたはインジェクターという気液混合装置を用いてオゾンガスを水又は水溶液中に溶存させ、混合時に発生するソノルミネッセンス作用による熱エネルギーにより、気泡内オゾン分子が自己分解することを抑制して、溶存効率と到達濃度を高めることを目的とし、エジェクターに吸引導入されるオゾン含有ガスを冷却し、低温保持できるガス冷却装置を備えたオゾン水生成装置、オゾン水生成方法、オゾン水、オゾン水溶液、及びオゾン水またはオゾン水溶液であり、オゾン水生成装置の小型化や、効果の高い高濃度オゾン水の生成が可能となる。  This invention dissolves ozone gas in water or an aqueous solution using a gas-liquid mixing device called an ejector or an injector, and suppresses the self-decomposition of ozone molecules in the bubbles due to the thermal energy generated by the sonoluminescence action generated during mixing. , Ozone water generator, ozone water generator, ozone water, ozone aqueous solution with a gas cooling device that can cool and keep the ozone-containing gas sucked into the ejector for the purpose of increasing the dissolution efficiency and concentration , And ozone water or an aqueous ozone solution, and it is possible to reduce the size of the ozone water generator and to produce highly effective high-concentration ozone water.

前記課題を解決し、かつ目的を達成するために、この発明は、以下のように構成した。  In order to solve the above problems and achieve the object, the present invention is configured as follows.

請求項1に記載の発明は、
エジェクター上流入水路からオリフィス部またはガス吸引導入管接続部を通過して下流排水路へと、通過する水、又は液の原水に、前記オリフィス部近傍に接続した吸引導入管よりオゾンガスを流入させ、気液混合してオゾン水またはオゾン水溶液を生成するオゾン水生成装置であり、
オゾナイザーからエジェクターに至るガス吸引導入管経路内でオゾンガスを、0℃以下の低温に冷却して前記エジェクター内に導入するための、ガス冷却装置を具備したことを特徴とするオゾン水生成装置である。
The invention described in claim 1
From the inflow water channel on the ejector to the downstream drainage channel through the orifice part or the gas suction introduction pipe connection part, the ozone gas is caused to flow from the suction introduction pipe connected in the vicinity of the orifice part to the passing water or raw liquid water, An ozone water generator that generates ozone water or an aqueous ozone solution by gas-liquid mixing.
An ozone water generator comprising a gas cooling device for cooling ozone gas to a low temperature of 0 ° C. or less and introducing it into the ejector in a gas suction introduction pipe path from the ozonizer to the ejector. .

請求項2に記載の発明は、
エジェクター上流入水路からオリフィス部またはガス吸引導入管接続部を通過して下流排水路へと、通過する水、又は液の原水に、前記オリフィス部近傍に接続した吸引導入管よりオゾンガスを流入させ、気液混合してオゾン水またはオゾン水溶液を生成するオゾン水生成方法であり、
ガス冷却装置を具備し、オゾナイザーからエジェクターに至るガス吸引導入管経路内でオゾンガスを、0℃以下の低温に冷却して前記エジェクター内に導入することを特徴とするオゾン水生成方法である。
The invention described in claim 2
From the inflow water channel on the ejector to the downstream drainage channel through the orifice part or the gas suction introduction pipe connection part, the ozone gas is caused to flow from the suction introduction pipe connected in the vicinity of the orifice part to the passing water or raw liquid water, It is an ozone water generation method that generates ozone water or an ozone aqueous solution by gas-liquid mixing.
A method for generating ozone water comprising a gas cooling device, wherein ozone gas is cooled to a low temperature of 0 ° C. or lower and introduced into the ejector in a gas suction introduction pipe path from the ozonizer to the ejector.

請求項3に記載の発明は、
前記原水が、少なくとも水道水、井戸水、海水、純水、超純水のいずれかの添加物を含まない水を、原水とし、
前記オゾン水を生成することを特徴とする請求項2に記載のオゾン水生成方法である。
The invention according to claim 3
The raw water is water that does not contain at least one of tap water, well water, seawater, pure water, and ultrapure water as raw water,
The ozone water generation method according to claim 2, wherein the ozone water is generated.

請求項4に記載の発明は、
前記原水が、少なくとも水道水、井戸水、海水、純水、超純水に、少なくとも硫酸、塩酸、酢酸、過酸化水素のいずれかの添加物を加えた液を、原水とし、
前記オゾン水溶液を生成することを特徴とする請求項2に記載のオゾン水生成方法である。
The invention according to claim 4
The raw water is at least tap water, well water, seawater, pure water, ultrapure water, and a solution obtained by adding at least one of sulfuric acid, hydrochloric acid, acetic acid, and hydrogen peroxide as raw water,
The ozone water generation method according to claim 2, wherein the ozone aqueous solution is generated.

請求項5に記載の発明は、
前記オゾンガスに、少なくとも酸素、水素、窒素、ヘリウム、アンモニアのいずれかのガスを任意に混合または含有せしめ、それを請求項3の水や、請求項4の液に吸引導入させて、気液混合し、
前記オゾン水または前記オゾン水溶液を生成することを特徴とする請求項2に記載のオゾン水生成方法である。
The invention described in claim 5
The ozone gas is arbitrarily mixed or contained with at least one of oxygen, hydrogen, nitrogen, helium, and ammonia, and it is sucked and introduced into the water of claim 3 or the liquid of claim 4 for gas-liquid mixing. And
The ozone water generation method according to claim 2, wherein the ozone water or the ozone aqueous solution is generated.

請求項6に記載の発明は、
請求項2に記載のオゾン水生成方法を用い、
前記原水が、少なくとも水道水、井戸水、海水、純水、超純水のいずれかの添加物を含まない水を、原水として生成したことを特徴とするオゾン水である。
The invention described in claim 6
Using the ozone water generation method according to claim 2,
The raw water is ozone water, characterized in that water containing at least any one of tap water, well water, seawater, pure water, and ultrapure water is not produced as raw water.

請求項7に記載の発明は、
請求項2に記載のオゾン水生成方法を用い、
前記原水が、少なくとも水道水、井戸水、海水、純水、超純水に、少なくとも硫酸、塩酸、酢酸、過酸化水素のいずれかの添加物を加えた液を、原水として生成したことを特徴とするオゾン水溶液である。
The invention described in claim 7
Using the ozone water generation method according to claim 2,
The raw water is produced as a raw water by adding at least any one of sulfuric acid, hydrochloric acid, acetic acid, and hydrogen peroxide to tap water, well water, seawater, pure water, and ultrapure water. It is an ozone aqueous solution.

請求項8に記載の発明は、
請求項2に記載のオゾン水生成方法を用い、
前記オゾンガスに、少なくとも酸素、水素、窒素、ヘリウム、アンモニアのいずれかのガスを任意に混合または含有せしめ、それを請求項3の水や、請求項4の液に吸引導入させて、気液混合して生成したことを特徴とするオゾン水である。
The invention according to claim 8 provides:
Using the ozone water generation method according to claim 2,
The ozone gas is arbitrarily mixed or contained with at least one of oxygen, hydrogen, nitrogen, helium, and ammonia, and it is sucked and introduced into the water of claim 3 or the liquid of claim 4 for gas-liquid mixing. It is ozone water characterized by being produced.

請求項9に記載の発明は、
請求項2に記載のオゾン水生成方法を用い、
前記オゾンガスに、少なくとも酸素、水素、窒素、ヘリウム、アンモニアのいずれかのガスを任意に混合または含有せしめ、それを請求項3の水や、請求項4の液に吸引導入させて、気液混合して生成したことを特徴とするオゾン水またはオゾン水溶液である。
The invention according to claim 9 is:
Using the ozone water generation method according to claim 2,
The ozone gas is arbitrarily mixed or contained with at least one of oxygen, hydrogen, nitrogen, helium, and ammonia, and it is sucked and introduced into the water of claim 3 or the liquid of claim 4 for gas-liquid mixing. It is ozone water or ozone aqueous solution characterized by producing | generating.

前記構成により、この発明は、以下のような効果を有する。With the above configuration, the present invention has the following effects.

この発明によれば、多大なエネルギーを必要とする液冷却でなく、熱交換効率の極めて高いガス冷却により極めて高効率なオゾン水またはオゾン水溶液の生成が可能となる。  According to the present invention, it is possible to generate ozone water or an ozone aqueous solution with extremely high efficiency by gas cooling with extremely high heat exchange efficiency rather than liquid cooling that requires a large amount of energy.

故に、オゾン水生成装置の小型化が可能となり、また高効率化により装置製造コストも削減できることから、用途を拡大して広く普及することが可能となる。  Therefore, it is possible to reduce the size of the ozone water generating device, and to reduce the device manufacturing cost due to high efficiency. Therefore, it is possible to expand the application and widely spread.

以下、この発明のオゾン水生成装置、オゾン水生成方法、オゾン水、オゾン水溶液、及びオゾン水またはオゾン水溶液の実施の形態について説明する。この発明の実施の形態は、発明の最も好ましい形態を示すものであり、この発明はこれに限定されない。  Hereinafter, embodiments of an ozone water generating device, an ozone water generating method, ozone water, an ozone aqueous solution, and ozone water or an ozone aqueous solution according to the present invention will be described. The embodiment of the present invention shows the most preferable mode of the present invention, and the present invention is not limited to this.

オゾンは低温であればあるほど安定して自己分解が少なく、高い温度に曝されると早い速度で分解して酸素に戻る性質を持っている。オゾン水を効率よく生成し、結果高濃度のオゾン水を生成するために、これまでオゾン発生の為の放電の上流において原料ガスを冷却する方法や、一方でオゾンガスを混合する水や水溶液を、冷却保持して分解を抑制する方法が提案され、また実用化されてきた。しかし、オゾンガス冷却は、放電により再度一定の高温に戻されてしまう結果、冷却したまま混合されることは難しかった。水や水溶液の冷却については0℃付近までを限界としてそれより低い水温への冷却は不可能で、十分なオゾン安定化効果を奏することはできなかった。  Ozone is more stable and less self-decomposing at lower temperatures, and has the property of decomposing and returning to oxygen at a faster rate when exposed to high temperatures. In order to efficiently generate ozone water and consequently generate high-concentration ozone water, a method of cooling the raw material gas upstream of the discharge for generating ozone until now, on the other hand, water and aqueous solution mixed with ozone gas, Methods have been proposed and put into practical use for holding down cooling and suppressing decomposition. However, ozone gas cooling is returned to a constant high temperature again by electric discharge, so that it is difficult to mix while cooling. Regarding cooling of water and aqueous solution, it was impossible to cool to a lower water temperature up to around 0 ° C., and a sufficient ozone stabilizing effect could not be achieved.

図1に示すエジェクターやインジェクター1を用いてオゾンガスを水中に溶存させる方式では、加圧送水により送水された水は、エジェクターやインジェクター1のエジェクター上流入水路1aから逆放射状に流路を絞られて高い加圧作用を受け、オリフィス部16を通過する水流となり、オリフィス部16で極めて高速な流速に到達し、加圧状態のまま瞬時にオリフィス部16を通過した後、下流排水路1bに向けて流れ、次には放射状に開放する流路により強い真空にさらされてキャビテーションを発生させられる。  In the system in which ozone gas is dissolved in water using the ejector or injector 1 shown in FIG. 1, the water fed by pressurized water is squeezed from the inflow water channel 1a on the ejector of the ejector or injector 1 in a reverse radial manner. It receives a high pressurizing action and becomes a water flow that passes through the orifice portion 16, reaches an extremely high flow velocity at the orifice portion 16, passes through the orifice portion 16 instantaneously in a pressurized state, and then toward the downstream drainage channel 1 b. The cavitation is caused by exposure to a strong vacuum through the flow and then the radially open channels.

同時に真空作用によりオリフィス部16近傍に設けられたガス吸引導入管20から、オゾンガスが適量に調整されて吸入せられ、オリフィス部16またはガス吸引導入管4接続部を通過する構造となっている。上記過程に置いては、次の様な現象が起こっていると予想される。すなわち連続する2段階の圧壊作用あるいはソノルミネッセンス作用である。この作用を図1に示している。  At the same time, ozone gas is adjusted to an appropriate amount from the gas suction introduction pipe 20 provided in the vicinity of the orifice section 16 by a vacuum action, and is passed through the orifice section 16 or the gas suction introduction pipe 4 connecting portion. In the above process, the following phenomenon is expected to occur. That is, a continuous two-stage crushing action or sonoluminescence action. This effect is shown in FIG.

エジェクター入水路では急速に水圧が高まり、圧力の最も高い地点であるオリフィス部16で吸引導入されたオゾンガスと激しく混合される。この瞬間に極めて強い加圧衝撃波が発生して水と気泡群に作用するが、加圧の衝撃波により圧壊と称される気泡圧縮の現象が起こる。圧壊で圧縮された微細気泡は、数百気圧以上という内部圧力にまで圧縮され、さらに微細な気泡径へと分子間密度を高めながら小形化する。  In the ejector inlet channel, the water pressure rapidly increases and is vigorously mixed with the ozone gas sucked and introduced at the orifice portion 16 which is the highest pressure point. At this moment, a very strong pressure shock wave is generated and acts on the water and the bubbles, but the phenomenon of bubble compression called collapse is caused by the pressure shock wave. The fine bubbles compressed by crushing are compressed to an internal pressure of several hundred atmospheres or more, and further reduced in size to a fine bubble diameter while increasing the intermolecular density.

次に、圧壊作用部すなわち加圧衝撃波域と重なりあって下流側で作用する強い真空により、オリフィス部16直近の下流で気泡が強い真空に曝されてキャビテーションを発生させる。キャビテーション作用の衝撃で、気泡は変形させられ、真球の形ではなく、歪に変形する。すでに圧壊で小形化された気泡には極めて高い水圧がかかっているが、キャビテーションによる変形により気泡表面の圧力分布に不均衡が発生し、内部圧力に最も弱い箇所に局所的に更なる高圧が掛って気泡の分断が起こる。又、分断された微細気泡は更に強い加圧衝撃波を受けて気泡内部に作用し、小形化を繰返し、高濃度に溶存せしめられる。機械的気泡せん断の微細化モデルを図2に示し、圧壊およびキャビテーションによる気泡の細分化モデルを(図3)に示す。  Next, due to the strong vacuum acting on the crushing action portion, that is, the pressure shock wave region and acting on the downstream side, the bubbles are exposed to the strong vacuum immediately downstream of the orifice portion 16 to generate cavitation. Due to the impact of the cavitation action, the bubbles are deformed and deformed into a strain rather than a true sphere. Bubbles that have already been crushed and reduced in size are subject to extremely high water pressures, but due to deformation caused by cavitation, an imbalance occurs in the pressure distribution on the surface of the bubbles, and additional high pressure is locally applied to the weakest part of the internal pressure. The bubbles break up. Further, the divided fine bubbles are subjected to a stronger pressure shock wave and act on the inside of the bubbles to be repeatedly miniaturized and dissolved at a high concentration. A refinement model of mechanical bubble shearing is shown in FIG. 2, and a fragmentation model of bubbles by crushing and cavitation is shown in (FIG. 3).

しかし、ここで重要なのは熱エネルギーである。1993年以降、例えば20kHz〜1MHzの超音波を微細気泡に照射して強制的に収縮させた場合、収縮する気泡内に球面状の衝撃波が発生し、気泡内温度は7,000Kから20,000K以上にまで達し、気体のプラズマ化により気泡が発光する現象さえ見られることが報告されている。    However, what is important here is thermal energy. After 1993, for example, when fine bubbles are forcibly contracted by irradiating ultrasonic waves of 20 kHz to 1 MHz, spherical shock waves are generated in the contracting bubbles, and the temperature in the bubbles is changed from 7,000 K to 20,000 K. It has been reported that even a phenomenon in which bubbles are emitted due to the gasification of the gas is observed.

この現象をソノルミネッセンスというが収縮した気泡内部での高温高圧の持続時間はナノ秒以下であるとされている。気泡に収縮を与える原理が超音波とは異なるものの、オリフィス部16直近の上流部で発生する加圧衝撃波は圧壊に匹敵するものであり、さらにオリフィス部16から直近下流の放射状経路で真空により大量なキャビテーションが起こり、気泡が分断されて後に2段階目の圧壊作用が連続して発生していると思われる。高速でオリフィス部16を水と気泡が通過する短い間隙において、圧壊を起こす加圧衝撃波と、真空によるキャビテーションの衝撃波をナノ秒に近い状態で作用させられることにより大量の微細気泡に対してソノルミネッセンス作用が施されているとするとその発生場所たるオリフィス部16とその下流では瞬間で水と熱交換されるとは云え、プラズマ化して発光する程の極めて高い熱エネルギーが気泡内に発生して、オゾンは多量に分解させていることが予想された。    This phenomenon is called sonoluminescence, but the duration of high temperature and high pressure inside the contracted bubble is said to be nanoseconds or less. Although the principle of contracting bubbles is different from that of ultrasonic waves, the pressure shock wave generated in the upstream portion immediately adjacent to the orifice portion 16 is comparable to crushing, and further, a large amount of vacuum is generated in a radial path immediately downstream from the orifice portion 16 by vacuum. It seems that the second stage of crushing action is continuously generated after the cavitation occurs and the bubbles are divided. Sonoluminescence is applied to a large number of fine bubbles by applying a pressure shock wave that causes crushing and a shock wave of cavitation by vacuum in a short gap where water and bubbles pass through the orifice portion 16 at high speed. If the action is applied, although the heat is exchanged instantaneously with water in the orifice part 16 and its downstream where it is generated, extremely high heat energy is generated in the bubbles so that it is converted into plasma and emits light, It was expected that ozone was decomposed in large quantities.

そこで、発明者らはオゾンガスをオリフィス部16へと吸引導入する直前に急速冷却して0℃以下、さらに望ましくはマイナス数十℃以下に冷却して低温保持してエジェクター吸引導入部に供給し、ソノルミネッセンスによるプラズマ発光と発熱によるオゾン分解のダメージを軽減することが重要と考え、それを実施したところオゾン水の生成効率が向上できることを発見した。    Therefore, the inventors rapidly cooled the ozone gas immediately before introducing it into the orifice part 16 and cooled it to 0 ° C. or less, more preferably minus tens of degrees C. or less, and kept it at a low temperature to supply it to the ejector suction introducing part. We thought it was important to reduce the damage of ozone decomposition caused by sonoluminescence and plasma emission, and found that the efficiency of ozone water generation could be improved.

すなわち、図4に示すように、オゾナイザー3からエジェクター1に至るガス吸引導入管経路内でオゾンガスを、0℃以下の低温に冷却してエジェクター内に導入するための、ガス冷却装置2を具備した。    That is, as shown in FIG. 4, a gas cooling device 2 is provided for cooling ozone gas to a low temperature of 0 ° C. or lower and introducing it into the ejector in the gas suction introduction pipe path from the ozonizer 3 to the ejector 1. .

尚、ガス冷却装置2はエジェクターのガス吸引導入部に直接接続していることが望ましいが、同吸引導入部より上流でガス冷却装置2とガス導入路で接続され、相互の間が十分な保温効果のある材料で被覆断熱された形態のものでも可能である。    It is desirable that the gas cooling device 2 is directly connected to the gas suction introducing portion of the ejector, but the gas cooling device 2 is connected to the gas cooling device 2 by a gas introduction path upstream from the suction introducing portion, and sufficient heat insulation is provided between them. It is also possible to have a form in which the material is coated and insulated with an effective material.

尚、実施例ではガス冷却装置2にペルチェ式を用いたが、十分なオゾンガス冷却ができるものであれば、装置方式に制限をするものではない。また、混合装置としてのエジェクターやインジェクター1等混合機構についてその構造に制限をするもではなく、気液混合をキャビテーション作用を伴って行うもであればどの様な混合装置にでも適用が可能なものである。図4は、この発明のガス冷却混合法によるオゾン水生成装置のフロー図である。    In the embodiment, the Peltier type is used for the gas cooling device 2. However, the device type is not limited as long as sufficient ozone gas cooling is possible. In addition, the structure of the mixing mechanism such as the ejector or injector 1 as a mixing device is not limited to the structure, but can be applied to any mixing device as long as gas-liquid mixing is performed with a cavitation action. It is. FIG. 4 is a flow chart of an ozone water generating apparatus by the gas cooling and mixing method of the present invention.

また、原水が、少なくとも水道水、井戸水、海水、純水、超純水のいずれかの添加物を含まない水を、原水とすることで、オゾン水を生成することができる。  Moreover, ozone water can be produced | generated when raw | natural water uses as raw water the water which does not contain at least any one of tap water, well water, seawater, pure water, and ultrapure water.

また、原水が、少なくとも水道水、井戸水、海水、純水、超純水に、少なくとも硫酸、塩酸、酢酸、過酸化水素のいずれかの添加物を加えた液を、原水とすることで、オゾン水溶液を生成することができる。  In addition, the raw water can be converted into raw water by using at least tap water, well water, seawater, pure water, ultrapure water and at least one additive of sulfuric acid, hydrochloric acid, acetic acid, or hydrogen peroxide as raw water. An aqueous solution can be produced.

また、オゾンガスに、少なくとも酸素、水素、窒素、ヘリウム、アンモニアのいずれかのガスを任意に混合または含有せしめ、それを前記した水や、前記した液に吸引導入させて、気液混合することで、オゾン水またはオゾン水溶液を生成することができる。  In addition, at least any gas of oxygen, hydrogen, nitrogen, helium, and ammonia is arbitrarily mixed or contained in ozone gas, and it is sucked and introduced into the above-mentioned water or the above-mentioned liquid, and gas-liquid mixed. Ozone water or an aqueous ozone solution can be produced.

実施例について、図7に示す実証試験機フロー図を基に、実施形態とその効果について詳細を説明する。実証試験機は以下に示す仕様のものを、同じく示す条件にて運転してオゾン水を生成した。用いた水は水道水(東京都世田谷区内)である。まず実容量55リットルのタンク5満槽に給水し、0.4kw/hのカスケード式循環ポンプ6により加圧送水してオリフィス径2.5φのエジェクター1に毎分10リットル通水し、圧力調整バルブ15で循環経路内を0.45MPaになる条件で循環させた。  About an Example, embodiment and its effect are demonstrated in detail based on the verification test machine flowchart shown in FIG. The demonstration test machine was operated under the same conditions as shown below to generate ozone water. The water used was tap water (in Setagaya-ku, Tokyo). First, water is supplied to a full tank of tank 5 having an actual capacity of 55 liters, pressurized and fed by a cascade circulation pump 6 of 0.4 kw / h, and 10 liters per minute is passed through an ejector 1 having an orifice diameter of 2.5φ to adjust pressure. The valve 15 was circulated in the circulation path under the condition of 0.45 MPa.

エジェクター1内の水圧を適正にするために圧力計11で確認しながら調整した。圧力調整バルブ15より下流でタンク5に戻る経路は大気圧となる。タンク上部からは未溶存で脱気するオゾンガスの排出経路を設け、排オゾン分解装置を経て機外に排出した。一方、酸素濃度95%に調整した酸素ガスを毎分4リットルでオゾナイザー3に供給し、放電をしてオゾンガスとしてエジェクター1に吸引導入した。この時のオゾンガス濃度は4.8g/Nmであった。In order to make the water pressure in the ejector 1 appropriate, it was adjusted while confirming with the pressure gauge 11. The path returning to the tank 5 downstream from the pressure adjustment valve 15 is atmospheric pressure. From the upper part of the tank, an undissolved ozone gas discharge path was provided, and it was discharged out of the machine through an exhaust ozone decomposition device. On the other hand, oxygen gas adjusted to an oxygen concentration of 95% was supplied to the ozonizer 3 at 4 liters per minute, discharged, and sucked into the ejector 1 as ozone gas. The ozone gas concentration at this time was 4.8 g / Nm 3 .

オゾンガスがエジェクター1に導入される経路はテフロン製チューブであったが、チューブを直接冷却する構造にしてペルチェ式ガス冷却装置2を配置し凡そマイナス10℃にオゾンガス温度が安定する様に調整した。循環に伴って溶存オゾン濃度は上昇するが、循環ポンプ6からエジェクター1に向かう経路よりサンプリング液を採取できる経路を設け、紫外線吸収式による溶存オゾン濃度計12を用いて連続的に濃度を計測した。尚、対象となる水(およびオゾン水)の水温は400wのチラー7を2台の自動温度調整により一律プラス15℃に維持した。  The path through which the ozone gas was introduced into the ejector 1 was a Teflon tube. However, the tube was directly cooled, and the Peltier-type gas cooling device 2 was arranged so as to adjust the ozone gas temperature to about minus 10 ° C. Although the dissolved ozone concentration increases with the circulation, a path through which the sampling solution can be collected from the path from the circulation pump 6 to the ejector 1 is provided, and the concentration is continuously measured using the dissolved ozone concentration meter 12 by the ultraviolet absorption type. . The water temperature of the target water (and ozone water) was maintained at a constant plus 15 ° C. by automatically adjusting the temperature of two chillers 7 of 400 w.

この運転条件にて、先ず溶存オゾン濃度の上昇について、ガス冷却によりマイナス10℃に冷却したオゾンガスを導入した場合と、ガス冷却を行わずにプラス35℃にてガス導入を行った場合を比較した。図8の表1に示す通り、吸引導入されるオゾンガス温度のみ異なる比較によれば、冷却したオゾンを用いた場合に30%もの有意な濃度上昇が認められた。この結果により、気液混合部上流でオゾンガスを冷却すると、熱エネルギーにより自己分解して失われるオゾンが、分解抑制されて多く残存することが判る。  Under these operating conditions, first, the rise in dissolved ozone concentration was compared between the case where ozone gas cooled to minus 10 ° C by gas cooling was introduced and the case where gas introduction was performed at plus 35 ° C without gas cooling. . As shown in Table 1 of FIG. 8, according to the comparison in which only the ozone gas temperature introduced and introduced is different, a significant increase in concentration by 30% was observed when cooled ozone was used. From this result, it can be seen that when ozone gas is cooled upstream of the gas-liquid mixing section, a large amount of ozone that is lost by self-decomposition due to thermal energy remains suppressed.

前述濃度上昇に関する試験に引き続き、装置停止後にそれぞれオゾンガスの供給を停止して、濃度低下の推移を計測して濃度低下率に関する比較試験を実施した。装置は、オゾン供給ラインを停止するとともに、循環経路の電磁弁13を閉止し、循環ポンプ6の出力をインバーター14により10%以下に低下させ、溶存オゾン濃度計12へのサンプル液供給のみ可能な状態で維持した。濃度低下率試験の際にも水温は15℃、タンク5内の圧力は大気圧であった。タンク5には、排オゾン分解装置10が接続されている。  Subsequent to the test related to the concentration increase, the supply of ozone gas was stopped after the apparatus was stopped, the transition of concentration decrease was measured, and a comparative test regarding the concentration decrease rate was performed. The apparatus stops the ozone supply line, closes the solenoid valve 13 in the circulation path, reduces the output of the circulation pump 6 to 10% or less by the inverter 14, and can only supply the sample solution to the dissolved ozone concentration meter 12. Maintained in a state. Also during the concentration reduction rate test, the water temperature was 15 ° C., and the pressure in the tank 5 was atmospheric pressure. An exhaust ozone decomposing apparatus 10 is connected to the tank 5.

結果は、図9の表2の通り、オゾンガスを冷却して混合した場合には5時間経過後にも極めて安定したオゾン濃度が維持され、冷却しない場合とは著しい違いが生じた。この結果から、オゾンの分解がガス冷却により抑制されたことに加え、圧壊やソノルミネッセンス作用を強く受ける気泡径の微細なオゾンに効果が及んだことにより、浮上しにくいマイクロバブルが高濃度オゾンにより満たされたことと予想された。オゾンの高濃度化技術として、また同時に安定化技術として、このガス冷却混合法が極めて有効であることを確認し、発明を完了した。  As a result, as shown in Table 2 of FIG. 9, when ozone gas was cooled and mixed, an extremely stable ozone concentration was maintained even after 5 hours, which was significantly different from the case of not cooling. From this result, in addition to the fact that ozone decomposition was suppressed by gas cooling, microbubbles that are hard to rise due to the effect of crushing and sonoluminescence were strongly affected, so that high-concentration Was expected to be met. The gas cooling mixing method was confirmed to be extremely effective as a technique for increasing the concentration of ozone and at the same time as a stabilization technique, and the invention was completed.

この発明は、原水に、オゾンガスを流入させ、気液混合してオゾン水またはオゾン水溶液を生成するオゾン水生成装置及びオゾン水生成方法に適用可能であり、オゾンガスを水又は水溶液中に溶存させ、混合時に発生するソノルミネッセンス作用による熱エネルギーにより、気泡内オゾン分子が自己分解することを抑制して、溶存効率と到達濃度を高めることを目的とし、エジェクターに吸引導入されるオゾン含有ガスを冷却し、低温保持できるガス冷却装置を備え、オゾン水生成装置の小型化や、効果の高い高濃度オゾン水の生成が可能となる。  The present invention is applicable to an ozone water generating apparatus and an ozone water generating method in which ozone gas is introduced into raw water and gas-liquid mixed to generate ozone water or an aqueous ozone solution. The ozone gas is dissolved in water or an aqueous solution, Cooling the ozone-containing gas sucked and introduced into the ejector with the aim of suppressing the self-decomposition of ozone molecules in the bubbles by the thermal energy generated by the sonoluminescence action during mixing and increasing the dissolution efficiency and the concentration reached. In addition, a gas cooling device capable of maintaining a low temperature is provided, and the ozone water generating device can be downsized and highly effective ozone water can be generated.

エジェクター内の作用を示した図である。It is the figure which showed the effect | action in an ejector. 機械的せん断による気泡微細化のモデル図である。It is a model figure of bubble refinement | miniaturization by mechanical shearing. 圧壊およびキャビテーション作用による気泡微細化のモデル図である。It is a model figure of bubble refinement | miniaturization by crushing and a cavitation action. ガス冷却混合法(当発明技術)によるオゾン水生成装置フロー図である。It is an ozone water generating apparatus flow chart by a gas cooling mixing method (technique of the present invention). 従来式/水冷式オゾン水生成装置フロー図である。It is a flowchart of a conventional / water-cooled ozone water generator. 従来式/原料ガス冷却式オゾン水生成装置フロー図である。It is a flowchart of a conventional / raw material gas cooled ozone water generator. 図7は、実証試験機フロー図である。FIG. 7 is a flow chart of the verification test machine. 溶存オゾン濃度上昇率計測データである。It is dissolved ozone concentration rise rate measurement data. 溶存オゾン濃度低下率計測データである。It is dissolved ozone concentration reduction rate measurement data.

符号の説明Explanation of symbols

1 エジェクターまたはインジェクター
2 ガス冷却装置
3 オゾナイザー
4 ガス吸引導入管
5 タンク
6 循環ポンプ
7 チラー
8 水冷却ポンプ
9 原料ガス冷却装置
10 排オゾン分解装置
11 圧力計
12 溶存オゾン濃度計
13 電磁弁
14 インバーター
15 圧力調整バルブ
16 オリフィス部
DESCRIPTION OF SYMBOLS 1 Ejector or injector 2 Gas cooling device 3 Ozonizer 4 Gas suction introduction pipe 5 Tank 6 Circulation pump 7 Chiller 8 Water cooling pump 9 Raw material gas cooling device 10 Exhaust ozone decomposition device 11 Pressure gauge 12 Dissolved ozone concentration meter 13 Solenoid valve 14 Inverter 15 Pressure adjustment valve 16 Orifice

Claims (9)

エジェクター上流入水路からオリフィス部またはガス吸引導入管接続部を通過して下流排水路へと、通過する水、又は液の原水に、前記オリフィス部近傍に接続した吸引導入管よりオゾンガスを流入させ、気液混合してオゾン水またはオゾン水溶液を生成するオゾン水生成装置であり、
オゾナイザーからエジェクターに至るガス吸引導入管経路内でオゾンガスを、0℃以下の低温に冷却して前記エジェクター内に導入するための、ガス冷却装置を具備したことを特徴とするオゾン水生成装置。
From the inflow water channel on the ejector to the downstream drainage channel through the orifice part or the gas suction introduction pipe connection part, the ozone gas is caused to flow from the suction introduction pipe connected in the vicinity of the orifice part to the passing water or raw liquid water, An ozone water generator that generates ozone water or an aqueous ozone solution by gas-liquid mixing.
An ozone water generating device comprising a gas cooling device for cooling ozone gas to a low temperature of 0 ° C. or lower and introducing it into the ejector in a gas suction introduction pipe path from the ozonizer to the ejector.
エジェクター上流入水路からオリフィス部またはガス吸引導入管接続部を通過して下流排水路へと、通過する水、又は液の原水に、前記オリフィス部近傍に接続した吸引導入管よりオゾンガスを流入させ、気液混合してオゾン水またはオゾン水溶液を生成するオゾン水生成方法であり、
ガス冷却装置を具備し、オゾナイザーからエジェクターに至るガス吸引導入管経路内でオゾンガスを、0℃以下の低温に冷却して前記エジェクター内に導入することを特徴とするオゾン水生成方法。
From the inflow water channel on the ejector to the downstream drainage channel through the orifice part or the gas suction introduction pipe connection part, the ozone gas is caused to flow from the suction introduction pipe connected in the vicinity of the orifice part to the passing water or raw liquid water, It is an ozone water generation method that generates ozone water or an ozone aqueous solution by gas-liquid mixing.
A method for generating ozone water, comprising a gas cooling device, wherein ozone gas is cooled to a low temperature of 0 ° C. or less in a gas suction introduction pipe path from an ozonizer to an ejector and introduced into the ejector.
前記原水が、少なくとも水道水、井戸水、海水、純水、超純水のいずれかの添加物を含まない水を、原水とし、
前記オゾン水を生成することを特徴とする請求項2に記載のオゾン水生成方法。
The raw water is water that does not contain at least one of tap water, well water, seawater, pure water, and ultrapure water as raw water,
The ozone water generation method according to claim 2, wherein the ozone water is generated.
前記原水が、少なくとも水道水、井戸水、海水、純水、超純水に、少なくとも硫酸、塩酸、酢酸、過酸化水素のいずれかの添加物を加えた液を、原水とし、
前記オゾン水溶液を生成することを特徴とする請求項2に記載のオゾン水生成方法。
The raw water is at least tap water, well water, seawater, pure water, ultrapure water, and a solution obtained by adding at least one of sulfuric acid, hydrochloric acid, acetic acid, and hydrogen peroxide as raw water,
The ozone water generation method according to claim 2, wherein the ozone aqueous solution is generated.
前記オゾンガスに、少なくとも酸素、水素、窒素、ヘリウム、アンモニアのいずれかのガスを任意に混合または含有せしめ、それを請求項3の水や、請求項4の液に吸引導入させて、気液混合し、
前記オゾン水または前記オゾン水溶液を生成することを特徴とする請求項2に記載のオゾン水生成方法。
The ozone gas is arbitrarily mixed or contained with at least one of oxygen, hydrogen, nitrogen, helium, and ammonia, and it is sucked and introduced into the water of claim 3 or the liquid of claim 4 for gas-liquid mixing. And
The ozone water generation method according to claim 2, wherein the ozone water or the ozone aqueous solution is generated.
請求項2に記載のオゾン水生成方法を用い、
前記原水が、少なくとも水道水、井戸水、海水、純水、超純水のいずれかの添加物を含まない水を、原水として生成したことを特徴とするオゾン水。
Using the ozone water generation method according to claim 2,
Ozone water characterized in that the raw water is produced as raw water containing at least tap water, well water, seawater, pure water, or ultrapure water.
請求項2に記載のオゾン水生成方法を用い、
前記原水が、少なくとも水道水、井戸水、海水、純水、超純水に、少なくとも硫酸、塩酸、酢酸、過酸化水素のいずれかの添加物を加えた液を、原水として生成したことを特徴とするオゾン水溶液。
Using the ozone water generation method according to claim 2,
The raw water is produced as a raw water by adding at least any one of sulfuric acid, hydrochloric acid, acetic acid, and hydrogen peroxide to tap water, well water, seawater, pure water, and ultrapure water. Aqueous ozone solution.
請求項2に記載のオゾン水生成方法を用い、
前記オゾンガスに、少なくとも酸素、水素、窒素、ヘリウム、アンモニアのいずれかのガスを任意に混合または含有せしめ、それを請求項3の水や、請求項4の液に吸引導入させて、気液混合して生成したことを特徴とするオゾン水。
Using the ozone water generation method according to claim 2,
The ozone gas is arbitrarily mixed or contained with at least one of oxygen, hydrogen, nitrogen, helium, and ammonia, and it is sucked and introduced into the water of claim 3 or the liquid of claim 4 for gas-liquid mixing. Ozone water characterized by being produced as a result.
請求項2に記載のオゾン水生成方法を用い、
前記オゾンガスに、少なくとも酸素、水素、窒素、ヘリウム、アンモニアのいずれかのガスを任意に混合または含有せしめ、それを請求項3の水や、請求項4の液に吸引導入させて、気液混合して生成したことを特徴とするオゾン水またはオゾン水溶液。
Using the ozone water generation method according to claim 2,
The ozone gas is arbitrarily mixed or contained with at least one of oxygen, hydrogen, nitrogen, helium, and ammonia, and it is sucked and introduced into the water of claim 3 or the liquid of claim 4 for gas-liquid mixing. Ozone water or an aqueous ozone solution produced by
JP2007341966A 2007-12-28 2007-12-28 Ozone water forming apparatus, ozone water forming method, ozone water, ozone aqueous solution, and ozone water or ozone aqueous solution Pending JP2009160508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007341966A JP2009160508A (en) 2007-12-28 2007-12-28 Ozone water forming apparatus, ozone water forming method, ozone water, ozone aqueous solution, and ozone water or ozone aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007341966A JP2009160508A (en) 2007-12-28 2007-12-28 Ozone water forming apparatus, ozone water forming method, ozone water, ozone aqueous solution, and ozone water or ozone aqueous solution

Publications (1)

Publication Number Publication Date
JP2009160508A true JP2009160508A (en) 2009-07-23

Family

ID=40963734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007341966A Pending JP2009160508A (en) 2007-12-28 2007-12-28 Ozone water forming apparatus, ozone water forming method, ozone water, ozone aqueous solution, and ozone water or ozone aqueous solution

Country Status (1)

Country Link
JP (1) JP2009160508A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403305B2 (en) 2006-08-21 2013-03-26 Eiji Matsumura Gas/liquid mixing device
CN105435697A (en) * 2015-12-30 2016-03-30 上海水谷环保技术有限公司 Mobile gas-liquid nano mixing equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372995A (en) * 1989-08-11 1991-03-28 Senichi Masuda Ozone water manufacturing device
JP2002085947A (en) * 2000-09-18 2002-03-26 Sumitomo Precision Prod Co Ltd Method and device for producing ozonized water
JP2003024746A (en) * 2001-07-19 2003-01-28 Mitsubishi Electric Corp Exhaust gas treatment method
JP2003145169A (en) * 2001-11-08 2003-05-20 Sumitomo Precision Prod Co Ltd Wastewater treatment method
JP2005039238A (en) * 2003-06-23 2005-02-10 Jfe Steel Kk Method of forming external electrode of magnetic cell and external electrode structure
JP2005131453A (en) * 2003-10-28 2005-05-26 Osaka Sanitary Kinzoku Kogyo Kyodo Kumiai Method and apparatus for washing container, piping, or the like, using ozone
JP2007203147A (en) * 2006-01-31 2007-08-16 Ehime Univ Water treatment process and ozone water
JP2007275893A (en) * 2007-06-20 2007-10-25 Eiji Matsumura Method for producing gas-liquid mixture, and the gas-liquid mixture
JP2008093634A (en) * 2006-10-16 2008-04-24 Sumitomo Heavy Ind Ltd Apparatus and method for producing high concentration ozone water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372995A (en) * 1989-08-11 1991-03-28 Senichi Masuda Ozone water manufacturing device
JP2002085947A (en) * 2000-09-18 2002-03-26 Sumitomo Precision Prod Co Ltd Method and device for producing ozonized water
JP2003024746A (en) * 2001-07-19 2003-01-28 Mitsubishi Electric Corp Exhaust gas treatment method
JP2003145169A (en) * 2001-11-08 2003-05-20 Sumitomo Precision Prod Co Ltd Wastewater treatment method
JP2005039238A (en) * 2003-06-23 2005-02-10 Jfe Steel Kk Method of forming external electrode of magnetic cell and external electrode structure
JP2005131453A (en) * 2003-10-28 2005-05-26 Osaka Sanitary Kinzoku Kogyo Kyodo Kumiai Method and apparatus for washing container, piping, or the like, using ozone
JP2007203147A (en) * 2006-01-31 2007-08-16 Ehime Univ Water treatment process and ozone water
JP2008093634A (en) * 2006-10-16 2008-04-24 Sumitomo Heavy Ind Ltd Apparatus and method for producing high concentration ozone water
JP2007275893A (en) * 2007-06-20 2007-10-25 Eiji Matsumura Method for producing gas-liquid mixture, and the gas-liquid mixture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403305B2 (en) 2006-08-21 2013-03-26 Eiji Matsumura Gas/liquid mixing device
CN105435697A (en) * 2015-12-30 2016-03-30 上海水谷环保技术有限公司 Mobile gas-liquid nano mixing equipment

Similar Documents

Publication Publication Date Title
JP5779321B2 (en) High concentration ozone water manufacturing method and high concentration ozone water manufacturing apparatus
JP6184645B1 (en) Ozone supply device and ozone supply method
JP5079141B2 (en) Carbon dioxide separation apparatus and carbon dioxide separation method
JPH10338507A (en) Ozonizer and ozone producing method
JP4513122B2 (en) Ozone water supply method and ozone water supply device
JP2008237950A (en) Production method for hydroxyl radical-containing water and hydroxyl radical-containing water
JP2008221121A (en) Cavitation reaction acceleration method and method of producing metallic nanoparticle using the same
EP2630089A2 (en) Enhanced water electrolysis apparatus and methods for hydrogen generation and other applications
JP2009297588A (en) Method of preparing heated ozone water
JP2009160508A (en) Ozone water forming apparatus, ozone water forming method, ozone water, ozone aqueous solution, and ozone water or ozone aqueous solution
JP2009112979A (en) Apparatus and method for producing ozone water
JP5675175B2 (en) Ozone supply device
JP6427455B2 (en) Ozone hydrate manufacturing apparatus and ozone hydrate manufacturing method
JP6629828B2 (en) Method of generating mechanical and electrochemical cavitation, method of changing surface geometry and electrochemical properties of material, method of stripping rare metal, and apparatus for generating mechanical and electrochemical cavitation
JP2011173790A (en) Apparatus for producing aerogel
CN113351041A (en) Linear rotational flow type high-energy ultra-fine bubble generator
JP2005334871A (en) Production method for porous material and apparatus therefor
JP2017029876A (en) Hollow particle made from bubbles and method for producing the same
WO2019198225A1 (en) Air bubble generation device
JP6557537B2 (en) Ozone hydrate manufacturing apparatus and ozone hydrate manufacturing method
TW201114681A (en) System and method for producing supercritical ozone
JP2004263152A (en) Method for producing gas hydrate by utilizing ultra fine bubble and gas hydrate obtained by the method
JP2011011126A (en) Apparatus for producing functional liquid
Azyazov et al. Efficient generation in a chemical oxygen—iodine laser with a low buffer-gas flow rate
JP3434136B2 (en) Ozone water production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

A131 Notification of reasons for refusal

Effective date: 20120717

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121225