JP2009155857A - Vibration control structure of building, and joint member - Google Patents

Vibration control structure of building, and joint member Download PDF

Info

Publication number
JP2009155857A
JP2009155857A JP2007333552A JP2007333552A JP2009155857A JP 2009155857 A JP2009155857 A JP 2009155857A JP 2007333552 A JP2007333552 A JP 2007333552A JP 2007333552 A JP2007333552 A JP 2007333552A JP 2009155857 A JP2009155857 A JP 2009155857A
Authority
JP
Japan
Prior art keywords
wall panel
viscoelastic body
joint
building
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007333552A
Other languages
Japanese (ja)
Inventor
Kaneo Akita
金男 秋田
Shigemi Numata
茂己 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP2007333552A priority Critical patent/JP2009155857A/en
Publication of JP2009155857A publication Critical patent/JP2009155857A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration control structure of a building, which enhances a vibration control effect by effectively transferring vibrational energy to a viscoelastic body arranged in a joint section between wall panels during earthquakes. <P>SOLUTION: In this vibration control structure of the building, joint members are mounted along the joint sections among the plurality of wall panels which constitute the building, respectively. In the joint member, a pair of holding members, which is composed of supporting surfaces, arranged in such a manner as to be almost flush with each other, and opposed bonding planes is integrated together by making the bonding planes face each other and using the viscoelastic body arranged between the bonding planes. The viscoelastic body is mounted on the wall panel in a position along the joint section. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、建築物の制振構造およびその構造に用いる目地部材に関するものである。   The present invention relates to a vibration damping structure for a building and a joint member used for the structure.

これまで、建築物の制振を目的として、建築物に対して、複数の壁パネルを目地長さ方向に相互に可動であるように隣接して取り付け、壁パネル相互の目地部に粘弾性体を配する構造として、特開平11−62058号公報(特許文献1)、特開2000−54679号公報(特許文献2)に記載された技術がある。
特許文献1に記載された建築物の制振構造は、壁パネルの長辺小口面の目地部に粘弾性体を狭着させた技術である。
また、特許文献2に記載された建築物の制振構造は、壁パネル面と略平行な方向で粘弾性体を保持する保持部材が、壁パネルの目地部を跨ぐように、粘弾性体を狭持した技術である。
Up to now, for the purpose of vibration control of buildings, a plurality of wall panels are attached adjacent to each other so as to be movable in the joint length direction, and viscoelastic bodies are attached to the joints between the wall panels. There are techniques described in JP-A-11-62058 (Patent Document 1) and JP-A-2000-54679 (Patent Document 2).
The vibration damping structure of a building described in Patent Document 1 is a technique in which a viscoelastic body is narrowly attached to a joint portion of a long side edge surface of a wall panel.
Moreover, the vibration damping structure of a building described in Patent Document 2 has a viscoelastic body so that the holding member that holds the viscoelastic body in a direction substantially parallel to the wall panel surface straddles the joint portion of the wall panel. It is a technology that has been held.

特許文献1、2にあるように、これらの技術は、複数の壁パネルを相互に可動であるように隣接して取り付け、壁パネル相互の目地部に粘弾性体を配することにより、地震時に、隣接する壁パネル間に目地長さ方向の相対変位が生じ、粘弾性体に振動エネルギーが伝達させることにより、粘弾性体の内部摩擦によって制振効果を発揮させようとするものである。
特開平11−62058号公報 特開2000−54679号公報
As described in Patent Documents 1 and 2, these techniques are used in the event of an earthquake by attaching a plurality of wall panels adjacent to each other so as to be movable and arranging a viscoelastic body on the joint between the wall panels. The relative displacement in the joint length direction is generated between the adjacent wall panels, and vibration energy is transmitted to the viscoelastic body, so that the damping effect is exerted by the internal friction of the viscoelastic body.
JP-A-11-62058 JP 2000-54679 A

しかし、特許文献1の技術では、粘弾性体を壁パネルの長辺小口面に直接接着するため、壁パネルの長辺小口面の性状によっては、粘弾性体に十分な振動エネルギーを伝達させるだけの接着力を確保するのが難しく、また、接着作業の品質管理が難しいという問題があった。
また、特許文献2の技術では、壁パネル面と略平行な方向で粘弾性体を保持する保持部材が、壁パネルの目地部を跨ぐように、粘弾性体を狭持しているため、隣接する壁パネルの面相互に段差がない場合には、保持部材と粘弾性体の接着力が確保できるように設計すれば、粘弾性体に十分な振動エネルギーを伝達させるだけの接着力を確保することに問題はない。しかし、壁パネルに反りがある場合などで、隣接する壁パネルの面相互に段差寸法が発生した場合には、壁パネル面と略平行な方向で粘弾性体が保持部材に保持されているため、所定厚みで設けることにより所要の性能を発揮させるべき粘弾性体に、隣接する壁パネルの面相互の段差寸法に応じた該粘弾性体の面に垂直方向の圧縮力あるいは引張力が発生し、該粘弾性体の厚さも変動する。圧縮が作用した場合には、特に変動率が大きく、例えば、2mm厚の粘弾性体の場合で、段差寸法が2mm以上あると、粘弾性体を2mm以上圧縮することが出来ず、保持部材が曲げられて粘弾性体から剥がれてしまう可能性がある。また、引張力が作用する場合も、一般に、同程度のせん断変形率の場合との比較で、限界歪みに至って粘弾性体の破損や接着面破断が生じやすい可能性がある。いずれにせよ、設計上の所要の性能が確保しにくいという問題があった。
However, in the technique of Patent Document 1, since the viscoelastic body is directly bonded to the long side edge surface of the wall panel, only sufficient vibration energy is transmitted to the viscoelastic body depending on the properties of the long side edge surface of the wall panel. It is difficult to ensure the adhesive strength of the adhesive and the quality control of the bonding work is difficult.
In the technique of Patent Document 2, the holding member that holds the viscoelastic body in a direction substantially parallel to the wall panel surface holds the viscoelastic body so as to straddle the joint portion of the wall panel. If there is no level difference between the surfaces of the wall panel to be designed, the adhesive force sufficient to transmit sufficient vibration energy to the viscoelastic body can be secured if it is designed to ensure the adhesive force between the holding member and the viscoelastic body. There is no problem. However, when there is a warp in the wall panel and there is a step size between adjacent wall panel surfaces, the viscoelastic body is held by the holding member in a direction substantially parallel to the wall panel surface. When a viscoelastic body is to be provided with a predetermined thickness, a compressive force or tensile force in the vertical direction is generated on the surface of the viscoelastic body according to the step size between the surfaces of adjacent wall panels. The thickness of the viscoelastic body also varies. When compression is applied, the fluctuation rate is particularly large. For example, in the case of a viscoelastic body having a thickness of 2 mm, if the step size is 2 mm or more, the viscoelastic body cannot be compressed by 2 mm or more, and the holding member It may be bent and peeled off from the viscoelastic body. Also, when a tensile force acts, generally, there is a possibility that the viscoelastic body is easily broken or the adhesive surface is ruptured due to the limit strain as compared with the case of the same degree of shear deformation rate. In any case, there is a problem that it is difficult to ensure the required performance in terms of design.

さらに、隣接する壁パネルの面相互の段差が一様ではなく、凹凸が目地長さ方向に変動する場合には、段差の変動に追随しにくいという問題もあった。
本発明は、前記課題を解決するものであり、その目的とするところは、地震時に、壁パネル相互の目地部に配された粘弾性体に、振動エネルギーを有効に伝達させ、制振効果を高めた建築物の制振構造を提供することである。
また、保持部材と粘弾性体との接着力の確保を容易にするとともに、施工時に、粘弾性体に不必要な面外の圧縮力や引張力が発生を抑え、その結果として粘弾性体の厚さが変動するのを回避し、保持部材からの粘弾性体の剥がれを防止し、所要の制振性能を発揮させることを目的としている。
Furthermore, when the steps of adjacent wall panels are not uniform and the unevenness fluctuates in the joint length direction, there is a problem that it is difficult to follow the change of the steps.
The present invention solves the above-mentioned problems, and its object is to effectively transmit vibration energy to a viscoelastic body arranged at the joint between the wall panels in the event of an earthquake, thereby achieving a damping effect. It is to provide an enhanced building vibration control structure.
In addition, it is easy to secure the adhesive force between the holding member and the viscoelastic body, and at the time of construction, the generation of unnecessary out-of-plane compressive force and tensile force is suppressed. The object is to avoid fluctuations in the thickness, to prevent the viscoelastic body from peeling off from the holding member, and to exhibit the required vibration damping performance.

前記目的を達成するための本発明に係る建築物の制振構造の第1構成は、建築物を構成する複数の壁パネルの目地部に沿って目地部材が取り付けられており、該目地部材は略同一面で配した支持面と対向する接着面とからなる一対の保持部材が該接着面を互いに対向させてその間に配された粘弾性体により一体化されてなり、該粘弾性体が目地部に沿う位置で壁パネルに取り付けられていることを特徴とする。
また、本発明に係る建築物の制振構造の第2構成は、第1構成の建築物の制振構造において、前記接着面は前記壁パネル面に対して垂直であることを特徴とする。
また、本発明に係る建築物の制振構造の第3構成は、第1又は第2構成の建築物の制振構造において、隣接する壁パネルの目地部に彫り込み部を形成し、対向する前記接着面および該接着面の間の粘弾性体を、前記彫り込み部に配したことを特徴とする。
In the first structure of the vibration damping structure for a building according to the present invention for achieving the above object, joint members are attached along joint portions of a plurality of wall panels constituting the building, and the joint member is A pair of holding members each consisting of a support surface arranged in substantially the same plane and an adhesive surface facing each other are integrated by a viscoelastic body disposed between the adhesive surfaces facing each other, and the viscoelastic body is a joint. It is attached to the wall panel at a position along the section.
The second structure of the building vibration control structure according to the present invention is characterized in that, in the building vibration control structure of the first structure, the adhesive surface is perpendicular to the wall panel surface.
Moreover, the 3rd structure of the damping structure of the building which concerns on this invention is a damping structure of the building of the 1st or 2nd structure, forms a carved part in the joint part of an adjacent wall panel, and opposes the said An adhesive surface and a viscoelastic body between the adhesive surfaces are arranged in the engraved portion.

また、本発明に係る建築物の制振構造の第4構成は、第1乃至第3構成の建築物の制振構造において、前記支持面に隙間無く貫通するアンカー部材を介して、前記保持部材を壁パネルに設けたことを特徴とする。
更に、本発明に係る建築物の制振構造の第5構成は、第1乃至第3構成の建築物の制振構造において、前記支持面に貫通孔を設け、該貫通孔を貫通するアンカー部材を介して、前記保持部材を壁パネルに設け、アンカー部材と該支持面を直接あるいは間接的に溶接接合したことを特徴とする。
次に、本発明に係る目地部材の第1構成は、略同一面で配した支持面と対向する接着面とを有する一対の保持部材が対向する接着面の間の粘弾性体により一体化されていることを特徴とする。
また、本発明に係る目地部材の第2構成は、第1構成の目地部材において、前記接着面は前記支持面に対して垂直であることを特徴とする
Further, the fourth structure of the building vibration control structure according to the present invention is the building vibration control structure of the first to third structures, wherein the holding member is interposed via an anchor member that penetrates the support surface without a gap. Is provided on the wall panel.
Furthermore, the fifth structure of the building damping structure according to the present invention is the building damping structure according to the first to third structures, wherein the support surface is provided with a through hole, and the anchor member penetrates the through hole. The holding member is provided on the wall panel via the anchor, and the anchor member and the support surface are directly or indirectly welded.
Next, the first structure of the joint member according to the present invention is integrated by a viscoelastic body between a pair of holding members having a pair of holding members having a supporting surface and a bonding surface facing each other, which are arranged on substantially the same surface. It is characterized by.
According to a second configuration of the joint member of the present invention, in the joint member of the first configuration, the adhesive surface is perpendicular to the support surface.

本発明の請求項1に係る建築物の制振構造の第1構成によれば、建築物を構成する複数の壁パネルの目地部に沿って目地部材が取り付けられており、該目地部材は略同一面で配した支持面と対向する接着面とからなる一対の保持部材が該接着面を互いに対向させてその間に配された粘弾性体により一体化されてなり、該粘弾性体が目地部に沿う位置で壁パネルに取り付けられているため、壁パネルに反りがある場合などで、隣接する壁パネルの面相互に段差寸法が発生した場合であっても、粘弾性体が対向する接着面に保持されているため、所定厚みで設けることにより所要の性能を発揮させるべき粘弾性体に、隣接する壁パネルの面相互の段差寸法に応じた該粘弾性体の面に垂直方向の圧縮力あるいは引張力が発生し難く、その結果として粘弾性体の厚さが変動するのを回避し、保持部材と粘弾性体との接着力の確保を容易にするとともに、所要の性能を発揮することが容易となる。   According to the 1st structure of the damping structure of the building which concerns on Claim 1 of this invention, the joint member is attached along the joint part of the several wall panel which comprises a building, This joint member is substantially A pair of holding members composed of a support surface arranged on the same surface and an adhesive surface facing each other are integrated by a viscoelastic body disposed between them with the adhesive surfaces facing each other, and the viscoelastic body is a joint portion. Because the wall panel is warped at a position along the wall surface, even if the wall panel is warped, even if there is a step size between the adjacent wall panel surfaces, the adhesive surface that the viscoelastic body faces Therefore, the compressive force in the direction perpendicular to the surface of the viscoelastic body corresponding to the step size between the surfaces of the adjacent wall panels is applied to the viscoelastic body that is to be provided with a predetermined thickness to exhibit the required performance. Or as a result, it is difficult to generate a tensile force. Avoiding the thickness of the elastic body to change, thereby facilitating the securing of the adhesive force between the holding member and the viscoelastic body, it is easy to exhibit the required performance.

さらに、隣接する壁パネルの面相互の段差寸法が特に大きくても、引張力が特に大きくなることを回避しやすく、粘弾性体が保持部材から剥がれてしまうということを回避することが容易となる。
これらの発明の効果により、地震時に、壁パネル相互の目地部に配された粘弾性体に、振動エネルギーを有効に伝達させ、制振効果を高めた建築物の制振構造を提供することが出来る。
なお、壁パネル面に対して対向する接着面の配される方向は、垂直(90度)方向が最も発明の効果が高く、方向が水平方向に近づく程、その効果は小さくなるが、壁パネル面に対する垂直成分に基づく角度分の効果を発揮することが可能である。壁パネル面に対して対向する接着面の配される方向は、30度以上150度以下とするのが良く、好ましくは45度以上135度以下、さらには、垂直(90度)方向に設定するのが最も好ましい。
Furthermore, even if the stepped dimension between adjacent wall panels is particularly large, it is easy to avoid that the tensile force is particularly large, and it is easy to avoid that the viscoelastic body is peeled off from the holding member. .
By virtue of the effects of these inventions, it is possible to provide a vibration control structure for a building that effectively transmits vibration energy to a viscoelastic body arranged at the joint between the wall panels in the event of an earthquake, thereby enhancing the vibration control effect. I can do it.
The vertical (90 degrees) direction of the direction in which the adhesive surface facing the wall panel surface is arranged is most effective. The closer the direction is to the horizontal direction, the smaller the effect is. An effect corresponding to an angle based on the vertical component with respect to the surface can be exhibited. The direction in which the adhesive surface facing the wall panel surface is arranged is preferably 30 degrees or more and 150 degrees or less, preferably 45 degrees or more and 135 degrees or less, and further set to a vertical (90 degrees) direction. Is most preferred.

なお、壁パネル面に対して対向する接着面の配される方向は、ベクトルにおいて、壁パネル面に平行な平行成分と、壁パネル面に垂直な垂直成分を合成した方向となる。
なお、第1構成では、保持部材は、プレートを曲げ加工して構成するのが、簡便で好ましいが、他に、形鋼などを切り出すなど、支持面と接着面を構成できれば、これらに限定されるものではない。
さらに、対向する接着面の間に接着して設ける粘弾性体の厚みは、特に限定されるものではないが、粘弾性体の力学的特性に応じて、かつ想定される隣接する壁パネルの面相互の段差寸法、ロッキングやスライド(スウェイ)による隣接する壁パネル間の目地長さ方向の相対変位も考慮して、適宜定めればよいが、隣接する壁パネルの面相互の段差寸法がほとんど無い場合では、0.5mm〜4mm程度の厚みが好適な範囲と考えられる。また、例えば、想定される隣接する壁パネル相互の目地長さ方向の相対変位が6mmの場合で、許容できるせん断歪みが300%の場合には、粘弾性体の厚みを2mm以上に設定するのが良い。
It should be noted that the direction in which the adhesive surface facing the wall panel surface is arranged is a direction in which the parallel component parallel to the wall panel surface and the vertical component perpendicular to the wall panel surface are combined in the vector.
In the first configuration, it is convenient and preferable that the holding member is formed by bending a plate. However, if the supporting surface and the adhesive surface can be configured such as cutting out a shape steel, the holding member is limited to these. It is not something.
Further, the thickness of the viscoelastic body provided by bonding between the opposed adhesive surfaces is not particularly limited, but it depends on the mechanical properties of the viscoelastic body and is assumed to be the surface of the adjacent wall panel. It may be determined appropriately considering mutual step size and relative displacement in the joint length direction between adjacent wall panels due to locking or sliding (sway), but there is almost no step size between surfaces of adjacent wall panels. In some cases, a thickness of about 0.5 mm to 4 mm is considered a suitable range. Further, for example, when the assumed relative displacement in the joint length direction between adjacent wall panels is 6 mm and the allowable shear strain is 300%, the thickness of the viscoelastic body is set to 2 mm or more. Is good.

第1構成で、壁パネルとは、軽量気泡コンクリートパネル、押出成型セメントパネル、金属複合サンドイッチパネルなどが該当し、パネル形状であり、複数の壁パネルを目地長さ方向に相互に可動であるように隣接して取り付けられるものであればよい。
本発明の請求項2に係る建築物の制振構造の第2構成によれば、壁パネル面に対して対向する接着面の配される方向が垂直方向であるため、壁パネルに反りがある場合などで、隣接する壁パネルの面相互に段差寸法が発生した場合であっても、粘弾性体に、該粘弾性体の面に垂直方向の圧縮力あるいは引張力は発生せず、その代わりに、隣接する壁パネルの面相互の段差寸法に応じた壁パネルに対して面外方向のせん断変形(せん断力)のみが発生する。せん断変形(せん断力)が発生しても、粘弾性体の厚みは設計どおりの所定厚みで設けることが出来、よって、所要の制振性能を発揮させることが出来る。この場合に、地震時に、粘弾性体に作用するせん断変形(せん断力)の方向は、隣接する壁パネルの面相互の段差寸法に応じて発生する壁パネルに対して面外方向のせん断変形(せん断力)の方向とは直交方向となり、壁パネルの目地長さ方向に沿うものであり、その意味でも、壁パネル面に対して対向する接着面の配される方向を壁パネル面に対して平行な(垂直成分を含まない)方向とした場合との比較で、制振性能への影響は小さい。
In the first configuration, the wall panel corresponds to a lightweight cellular concrete panel, an extrusion-molded cement panel, a metal composite sandwich panel, etc., and has a panel shape, so that a plurality of wall panels are movable in the joint length direction. What is necessary is just to be attached adjacent to.
According to the second configuration of the vibration damping structure for a building according to claim 2 of the present invention, the wall panel is warped because the direction in which the adhesive surface facing the wall panel surface is arranged is the vertical direction. In some cases, even when a step dimension is generated between the surfaces of adjacent wall panels, the viscoelastic body does not generate a compressive force or tensile force in the direction perpendicular to the surface of the viscoelastic body. In addition, only the shear deformation (shear force) in the out-of-plane direction occurs with respect to the wall panel corresponding to the step difference between the surfaces of the adjacent wall panels. Even if shear deformation (shearing force) occurs, the thickness of the viscoelastic body can be provided with a predetermined thickness as designed, and thus the required damping performance can be exhibited. In this case, the direction of the shear deformation (shear force) acting on the viscoelastic body during the earthquake is the shear deformation in the out-of-plane direction with respect to the wall panel generated according to the step size between the surfaces of the adjacent wall panels ( The direction of the shearing force) is perpendicular to the direction of the joint length of the wall panel. In this sense, the direction in which the adhesive surface facing the wall panel surface is arranged is relative to the wall panel surface. Compared to the parallel direction (not including the vertical component), the impact on the damping performance is small.

さらに、隣接する壁パネルの面相互の段差が一様ではなく、凹凸が目地長さ方向に変動する場合にも、段差の変動に追随しにくいという問題を回避することが容易である。実際には、粘弾性体には、目地長さ方向に変動する圧縮力や引張力の代わりに、目地長さ方向に変動する壁パネルに対して面外方向のせん断力が発生するわけであるが、目地長さ方向に変動する圧縮力や引張力に少々の曲げが作用することにより、簡単に粘弾性体が剥がれやすくなるのと比較で、目地長さ方向に変動する壁パネルに対して面外方向のせん断力の場合には、簡単に剥がれやすいということもない。
また、本発明の請求項3に係る建築物の制振構造の第3構成によれば、隣接する壁パネルの目地部に彫り込み部を形成し、対向する前記接着面および該接着面の間の粘弾性体を、前記彫り込み部に配したので、粘弾性体を含む保持部材が、壁パネルの面外へ孕みだす寸法を小さくして、納まりの良い構造とすることが出来る。
Furthermore, it is easy to avoid the problem that it is difficult to follow the change in the step even when the steps of the adjacent wall panels are not uniform and the unevenness fluctuates in the joint length direction. Actually, the viscoelastic body generates an out-of-plane shearing force against the wall panel changing in the joint length direction instead of compressive force and tensile force changing in the joint length direction. However, a little bending acts on the compressive force and tensile force that fluctuate in the joint length direction, which makes it easier for the viscoelastic body to peel off than the wall panel that fluctuates in the joint length direction. In the case of the shear force in the out-of-plane direction, it is not easy to peel off.
Moreover, according to the 3rd structure of the damping structure of the building which concerns on Claim 3 of this invention, a carved part is formed in the joint part of an adjacent wall panel, and between the said adhesion surface and this adhesion surface which oppose Since the viscoelastic body is arranged in the engraved portion, the holding member including the viscoelastic body can be reduced in the dimension that squeezes out of the surface of the wall panel, so that a structure with good fit can be obtained.

これによって、壁パネル面で、粘弾性体を含む保持部材を配した側に、仕上げを施す場合に、壁パネルの面外への孕み出し寸法が小さく、好適となる。例えば、壁パネルの面外への孕み出し寸法を10mm程度の寸法に抑えれば、石こうボード内装仕上げを厚30mm程度で行う場合(例えば、GL工法)に、GLボンドなどの接着部分厚みの中に、壁パネルの面外への孕み出し部分を納めることが出来る。
また、壁パネルの彫り込み部にも、粘弾性体を配することが出来るので、壁パネルの面外への孕み出し寸法を同じとすれば、壁パネルの単位長さあたりの比較で、粘弾性体の幅寸法(壁パネル厚方向の寸法)を大きくとることが可能で、より大きな制振効果を有する構造とすることが可能となる。例えば、100mm厚の壁パネルに対して、壁パネルの面外への孕み出し寸法が10mmで、壁パネルの面外で10mm幅の粘弾性体を配することが出来る場合、25mmの彫り込みを行って、彫り込み内で20mm幅の粘弾性体を配することが出来れば、合計で30mm幅の粘弾性体を配することが出来、彫り込みの無い場合との比較で、3倍の粘弾性体を配置することが出来、より大きな制振効果を有する構造とすることが可能となる。
Accordingly, when finishing is performed on the side of the wall panel on which the holding member including the viscoelastic body is disposed, the protruding dimension of the wall panel out of the surface is small, which is preferable. For example, if the wall panel squeeze out to about 10 mm, the gypsum board interior finish will be about 30 mm thick (for example, the GL method). In addition, the protruding part of the wall panel can be stored.
In addition, a viscoelastic body can also be arranged in the engraved part of the wall panel. Therefore, if the protruding dimensions of the wall panel out of the plane are the same, the viscoelasticity is compared with the unit length of the wall panel. The body width dimension (dimension in the wall panel thickness direction) can be increased, and a structure having a greater vibration damping effect can be obtained. For example, if a wall panel with a thickness of 100 mm has a protruding dimension of 10 mm out of the wall panel and a viscoelastic body with a width of 10 mm can be placed outside the wall panel, a 25 mm engraving is performed. If a viscoelastic body with a width of 20 mm can be arranged in the engraving, a viscoelastic body with a width of 30 mm in total can be arranged. Therefore, it is possible to provide a structure having a greater vibration damping effect.

なお、第3構成では、壁パネルとして、工場加工での彫り込みの容易さから、軽量気泡コンクリートパネルが特に好適である。しかし、押出成型セメントパネル、金属複合サンドイッチパネルなどであってもよい。
また、壁パネルの目地部への彫り込みは、隣接する壁パネルの両方に跨って設けてもよいが、片方の壁パネルのみに設けてあってもよい。目地中心にバランスよく配置することを考慮すると、隣接する壁パネルの両方を均等に彫り込むのが、美感上、好ましい。
また、本発明の請求項4に係る建築物の制振構造の第4構成によれば、前記支持面に隙間無く貫通するアンカー部材を介して、前記保持部材を壁パネルに設けたので、壁パネルと保持部材の面内ズレが生じにくい構造とすることが出来、地震時に、壁パネル相互の目地部に配された粘弾性体に、振動エネルギーを有効に伝達させることが可能となる。
In the third configuration, a lightweight cellular concrete panel is particularly suitable as the wall panel because of the ease of engraving in factory processing. However, it may be an extruded cement panel, a metal composite sandwich panel, or the like.
In addition, the engraving on the joint portion of the wall panel may be provided across both of the adjacent wall panels, but may be provided only on one of the wall panels. In consideration of arranging in a well-balanced manner at the center of the joint, it is preferable in terms of aesthetics to engrave both adjacent wall panels equally.
Moreover, according to the 4th structure of the vibration damping structure of the building which concerns on Claim 4 of this invention Since the said holding member was provided in the wall panel via the anchor member penetrated without a clearance gap to the said support surface, wall A structure in which in-plane misalignment between the panel and the holding member does not easily occur, and vibration energy can be effectively transmitted to the viscoelastic body disposed on the joint between the wall panels in the event of an earthquake.

ここに、「支持面に隙間無く貫通するアンカー部材」とは、無孔の支持面にアンカー部材を強制的に貫通させるか、アンカー部材の軸径より小さな下孔を開けてアンカー部材を貫通させることを意味している。アンカー部材として、釘、拡張釘(ツインネイル、ヒットネイルなど)など、打撃で打ち込むものが、最も隙間無く貫通出来、好ましいが、ネジ部材で、セルフタップビスなど、支持面を貫通する能力のあるビス(ねじ)も可能である。壁パネルが軽量気泡コンクリートパネルの場合、拡張釘が、最も好ましい。
なお、接着材を併用して、支持面を壁パネル面に接着することは、好ましい。また、壁パネル面にプライマー処理を行い、接着力の向上を図ることも、好ましい。
Here, “anchor member that penetrates the support surface without a gap” means that the anchor member is forcibly penetrated through the non-porous support surface, or a pilot hole smaller than the shaft diameter of the anchor member is made to penetrate the anchor member. It means that. As anchor members, nails, expansion nails (such as twin nails, hit nails, etc.) that are driven by striking can be penetrated without any gaps, but screws that are capable of penetrating the support surface, such as self-tapping screws, are preferred. (Screw) is also possible. Expansion nails are most preferred when the wall panel is a lightweight cellular concrete panel.
Note that it is preferable to bond the support surface to the wall panel surface using an adhesive. It is also preferable to perform primer treatment on the wall panel surface to improve the adhesion.

また、本発明の請求項5に係る建築物の制振構造の第5構成によれば、前記支持面に貫通孔を設け、該貫通孔を貫通するアンカー部材を介して、前記保持部材を壁パネルに設け、アンカー部材と支持面を直接あるいは間接的に溶接接合したので、第4構成と同様に、壁パネルと保持部材の面内ズレが生じにくい構造とすることが出来、地震時に、壁パネル相互の目地部に配された粘弾性体に、振動エネルギーを有効に伝達させることが可能となる。
ここに、「支持面に貫通孔を設け、該貫通孔を貫通するアンカー部材」とは、アンカー部材の軸径より大きな下孔を開けてアンカー部材を貫通させることを意味している。アンカー部材としては、ボルトが考えられるが、その他のアンカー部材であってもよい。アンカー部材と支持面は、例えば、ボルト頭を支持面に直接溶接接合するか、あるいは、ワッシャなどを介して間接的にボルト頭を支持面に溶接接合することにより、壁パネルと保持部材の面内ズレが生じにくい構造とすることが出来る。この場合、アンカー部材の施工性を向上させる意味で、貫通孔をルーズ孔とすることも可能である。
Moreover, according to the 5th structure of the vibration damping structure of the building which concerns on Claim 5 of this invention, a through-hole is provided in the said support surface, and the said holding member is wall-mounted via the anchor member which penetrates this through-hole. Since the anchor member and the support surface are welded directly or indirectly to the panel, it is possible to make a structure in which in-plane misalignment between the wall panel and the holding member hardly occurs, as in the fourth configuration. It is possible to effectively transmit vibration energy to the viscoelastic bodies arranged at the joints between the panels.
Here, “an anchor member that is provided with a through-hole on a support surface and penetrates the through-hole” means that a pilot hole larger than the shaft diameter of the anchor member is opened to allow the anchor member to penetrate. As the anchor member, a bolt is conceivable, but other anchor members may be used. For example, the anchor member and the support surface may be formed by directly welding the bolt head to the support surface or indirectly welding the bolt head to the support surface via a washer or the like, thereby It is possible to make a structure in which the internal deviation hardly occurs. In this case, in order to improve the workability of the anchor member, the through hole can be a loose hole.

軽量気泡コンクリートパネルの場合、予め、壁パネル内に、埋め込みのナットを設けたり、Oボルトをアンカー鋼棒で固定するなど、ロッキング構法に用いられるアンカー方式を流用することも可能である。
なお、接着材を併用して、支持面を壁パネル面に接着することは、好ましい。また、壁パネル面にプライマー処理を行い、接着力の向上を図ることも、好ましい。
また、本発明の請求項6に係る目地部材の第1構成によれば、略同一面で配した支持面と対向する接着面とを有する一対の保持部材が対向する接着面の間の粘弾性体により一体化されているため、建築物の制振構造の第1〜5構成に用いることが可能で、特に、建築物の制振構造の第1構成に記載の目的を容易に達成することが可能な目地部材を提供することが出来る。
In the case of a lightweight cellular concrete panel, it is also possible to divert the anchor method used for the rocking construction method, such as providing an embedded nut in the wall panel in advance or fixing the O bolt with an anchor steel rod.
Note that it is preferable to bond the support surface to the wall panel surface using an adhesive. It is also preferable to perform primer treatment on the wall panel surface to improve the adhesion.
Moreover, according to the 1st structure of the joint member which concerns on Claim 6 of this invention The viscoelasticity between the adhesive surfaces which a pair of holding member which has a support surface and the adhesive surface which opposes arranged on substantially the same surface opposes each other Since it is integrated by the body, it can be used for the first to fifth configurations of the building damping structure, and in particular, easily achieve the object described in the first configuration of the building damping structure. It is possible to provide a joint member that can be used.

なお、略同一面で配した支持面に対する対向する接着面の配される方向は、垂直(90度)方向が最も発明の効果が高く、方向が水平方向に近づく程、その効果は小さくなるが、壁パネル面に対する垂直成分に基づく角度分の効果を発揮することが可能である。壁パネル面に対して対向する接着面の配される方向は、30度以上150度以下とするのが良く、好ましくは45度以上135度以下、さらには、垂直(90度)方向に設定するのが最も好ましいのは、建築物の制振構造の第1構成で説明したのと同様である。
なお、目地部材の第1構成では、保持部材は、プレートを曲げ加工して構成するのが、簡便で好ましいが、他に、形鋼などを切り出すなど、支持面と接着面を構成できれば、これらに限定されるものではない。
The vertical (90 degree) direction is the most effective in the direction in which the opposing adhesive surface is arranged with respect to the support surface arranged in substantially the same plane, and the effect becomes smaller as the direction approaches the horizontal direction. It is possible to exert an effect corresponding to the angle based on the vertical component with respect to the wall panel surface. The direction in which the adhesive surface facing the wall panel surface is arranged is preferably 30 degrees or more and 150 degrees or less, preferably 45 degrees or more and 135 degrees or less, and further set to a vertical (90 degrees) direction. The most preferable is the same as that described in the first configuration of the vibration control structure for a building.
In the first configuration of the joint member, it is convenient and preferable that the holding member is formed by bending a plate. However, if the supporting surface and the bonding surface can be configured by cutting out a shape steel or the like, these can be used. It is not limited to.

さらに、対向する接着面の間に接着して設ける粘弾性体の厚みは、特に限定されるものではないが、粘弾性体の力学的特性に応じて、かつ想定される壁パネルの面相互の段差寸法、ロッキングやスライド(スウェイ)による壁パネル間の目地長さ方向の相対変位も考慮して、適宜定めればよいが、0.5mm〜4mm程度が好適な範囲と考えられる。
また、目地部材の第1構成では、予め、工場などで、粘弾性体を接着面の間に接着することが可能であるため、接着作業の品質管理が容易となり、接着の信頼性を上げ、地震時に、壁パネル相互の目地部に配された粘弾性体に、振動エネルギーを有効に伝達させ、制振効果を高めた建築物の制振構造にも信頼性を付与することが出来る。
Furthermore, the thickness of the viscoelastic body that is bonded and provided between the opposing adhesive surfaces is not particularly limited, but depends on the mechanical properties of the viscoelastic body and the surface of the assumed wall panel. It may be appropriately determined in consideration of the step size, the relative displacement in the joint length direction between the wall panels due to rocking or sliding (sway), but about 0.5 mm to 4 mm is considered to be a suitable range.
Further, in the first configuration of the joint member, since it is possible to bond the viscoelastic body between the bonding surfaces in advance in a factory or the like, quality control of the bonding work is facilitated, and the reliability of bonding is increased. In the event of an earthquake, the vibration energy can be effectively transmitted to the viscoelastic bodies arranged at the joints between the wall panels, and reliability can be imparted to the vibration control structure of the building that has improved the vibration control effect.

請求項7に係る目地部材の第2構成によれば、目地部材を壁パネルに取り付けたときに、壁パネル面に対して対向する接着面の配される方向が垂直方向となるため、壁パネルに反りがある場合などで、隣接する壁パネルの面相互に段差寸法が発生した場合であっても、粘弾性体に、該粘弾性体の面に垂直方向の圧縮力あるいは引張力は発生せず、その代わりに、隣接する壁パネルの面相互の段差寸法に応じた壁パネルに対して面外方向のせん断変形(せん断力)のみが発生する。せん断変形(せん断力)が発生しても、粘弾性体の厚みは設計どおりの所定厚みで設けることが出来、よって、所要の制振性能を発揮することが出来る。この場合に、地震時に、粘弾性体に作用するせん断変形(せん断力)の方向は、隣接する壁パネルの面相互の段差寸法に応じて発生する壁パネルに対して面外方向のせん断変形(せん断力)の方向とは直交方向となり、壁パネルの目地長さ方向に沿うものであり、その意味でも、壁パネル面に対して対向する接着面の配される方向を壁パネル面に対して平行な(垂直成分を含まない)方向とした場合との比較で、制振性能への影響は小さい。   According to the second configuration of the joint member according to claim 7, when the joint member is attached to the wall panel, the direction in which the adhesive surface facing the wall panel surface is arranged becomes the vertical direction. Even if there is a step between the surfaces of adjacent wall panels due to warpage, the viscoelastic body will not generate a compressive or tensile force perpendicular to the surface of the viscoelastic body. Instead, only the shear deformation (shear force) in the out-of-plane direction occurs with respect to the wall panel according to the step size between the surfaces of the adjacent wall panels. Even when shear deformation (shearing force) occurs, the thickness of the viscoelastic body can be provided with a predetermined thickness as designed, and thus the required damping performance can be exhibited. In this case, the direction of the shear deformation (shear force) acting on the viscoelastic body during the earthquake is the shear deformation in the out-of-plane direction with respect to the wall panel generated according to the step size between the surfaces of the adjacent wall panels ( The direction of the shearing force) is perpendicular to the direction of the joint length of the wall panel. In this sense, the direction in which the adhesive surface facing the wall panel surface is arranged is relative to the wall panel surface. Compared to the parallel direction (not including the vertical component), the impact on the damping performance is small.

さらに、隣接する壁パネルの面相互の段差が一様ではなく、凹凸が目地長さ方向に変動する場合にも、段差の変動に追随しにくいという問題を回避することが容易である。実際には、粘弾性体には、目地長さ方向に変動する圧縮力や引張力の代わりに、目地長さ方向に変動する壁パネルに対して面外方向のせん断力が発生するわけであるが、目地長さ方向に変動する圧縮力や引張力に少々の曲げが作用することにより、簡単に粘弾性体が剥がれやすくなるのと比較で、目地長さ方向に変動する壁パネルに対して面外方向のせん断力の場合には、簡単に剥がれやすいということもない。   Furthermore, it is easy to avoid the problem that it is difficult to follow the change in the step even when the steps of the adjacent wall panels are not uniform and the unevenness fluctuates in the joint length direction. Actually, the viscoelastic body generates an out-of-plane shearing force against the wall panel changing in the joint length direction instead of compressive force and tensile force changing in the joint length direction. However, a little bending acts on the compressive force and tensile force that fluctuate in the joint length direction, which makes it easier for the viscoelastic body to peel off than the wall panel that fluctuates in the joint length direction. In the case of the shear force in the out-of-plane direction, it is not easy to peel off.

図により、本発明に係る建築物の制振構造および目地部材の実施形態を具体的に説明する。図1は本発明に係る建築物の制振構造の第1実施例を示す斜視説明図、図2は図1に示した第1実施例の目地部を拡大して示す斜視説明図、図3は第1実施例の目地部を拡大して示す水平断面説明図、図4は第1実施例の目地部に段差があった場合の状態を拡大して示す水平断面説明図である。
また、図5は目地部に彫り込み部を形成し、該彫り込み部に粘弾性体を配した第2実施例の目地部を拡大して示す水平断面説明図である。
図6は目地部に彫り込み部を形成し、該彫り込み部に粘弾性体を配するとともに、壁パネルの面外へ孕み出して粘弾性体を配した第3実施例の目地部を拡大して示す水平断面説明図である。
図7は壁パネル面に対して対向する接着面の配される方向θを説明する第4実施例の目地部を拡大して示す水平断面説明図である。
また、図8は本発明に係る目地部材の3実施例を示す斜視説明図である。
Embodiments of the vibration damping structure and joint member of a building according to the present invention will be specifically described with reference to the drawings. FIG. 1 is a perspective explanatory view showing a first embodiment of a vibration damping structure for a building according to the present invention, FIG. 2 is a perspective explanatory view showing an enlarged joint portion of the first embodiment shown in FIG. FIG. 4 is an enlarged horizontal cross-sectional explanatory view showing the joint portion of the first embodiment, and FIG. 4 is an enlarged horizontal cross-sectional explanatory view showing a state where there is a step in the joint portion of the first embodiment.
FIG. 5 is an enlarged horizontal cross-sectional explanatory view of the joint portion of the second embodiment in which a carved portion is formed in the joint portion and a viscoelastic body is disposed in the carved portion.
FIG. 6 is an enlarged view of the joint part of the third embodiment in which a carved part is formed in the joint part, and a viscoelastic body is arranged in the carved part and the viscoelastic body is arranged by squeezing out of the surface of the wall panel. FIG.
FIG. 7 is a horizontal cross-sectional explanatory view showing, in an enlarged manner, the joint portion of the fourth embodiment for explaining the direction θ in which the adhesive surface facing the wall panel surface is arranged.
FIG. 8 is a perspective explanatory view showing a third embodiment of the joint member according to the present invention.

〔建築物の制振構造の第1実施例〕
図1〜図4において、建築物の制振構造の第1実施例について説明する。第1実施例は、鉄骨構造(鉄骨梁などは図示せず)で、壁パネル1を縦壁で使用した例であり、壁パネル取付部8によりロッキング構法で取り付けられている。地震時には、壁パネル1が上下の壁パネル取付部8を中心にしてロッキングすることにより、隣接する壁パネルは目地部2に目地長さ方向の相対変位を発生し、目地部2に跨るように設けられた目地部材7に振動エネルギーが伝達される。目地部材7には、接着面4aの間に粘弾性体3が接着されて設けられているため、目地部材7に伝達された振動エネルギーは、粘弾性体3で熱エネルギーに変えられることで、建築物に制振効果が生じる。
第1実施例では、壁パネル1の内面に対して垂直な方向で、対向する接着面4aが配されており、かつ、接着面4aの間に粘弾性体3が接着されて設けられているため、図4に示すように、目地部2に段差があった場合にも、粘弾性体3には、粘弾性体3の面に垂直方向の圧縮力あるいは引張力は発生せず、その結果として粘弾性体の厚さが変動するのを回避し、粘弾性体3の厚みは設計どおりの所定厚みで設けることが出来、保持部材4からの粘弾性体3の剥がれを防止し、所要の制振性能を発揮することが出来る。
[First example of vibration control structure of a building]
1-4, the 1st Example of the damping structure of a building is described. The first embodiment is an example of a steel structure (a steel beam or the like is not shown) and the wall panel 1 is used as a vertical wall, and is attached by a wall panel attaching portion 8 by a rocking construction method. In the event of an earthquake, the wall panel 1 is locked around the upper and lower wall panel mounting portions 8, so that the adjacent wall panel generates a relative displacement in the joint length direction in the joint portion 2, and straddles the joint portion 2. Vibration energy is transmitted to the joint member 7 provided. Since the viscoelastic body 3 is bonded to the joint member 7 between the bonding surfaces 4a, the vibration energy transmitted to the joint member 7 is changed into thermal energy by the viscoelastic body 3, Damping effect occurs in buildings.
In the first embodiment, opposing adhesive surfaces 4a are arranged in a direction perpendicular to the inner surface of the wall panel 1, and the viscoelastic body 3 is provided between the adhesive surfaces 4a. Therefore, as shown in FIG. 4, even when there is a step in the joint portion 2, the viscoelastic body 3 does not generate a compressive force or tensile force in the direction perpendicular to the surface of the viscoelastic body 3, and as a result, The thickness of the viscoelastic body 3 can be prevented from fluctuating, and the thickness of the viscoelastic body 3 can be provided at a predetermined thickness as designed, preventing the viscoelastic body 3 from peeling off from the holding member 4, Damping performance can be demonstrated.

この際に、粘弾性体3には、隣接する壁パネル1の面相互の段差寸法に応じた壁パネル1に対して面外方向のせん断変形が発生するが、地震時に、粘弾性体3に作用するせん断変形の方向は、壁パネル1の目地長さ方向に沿うものであり、段差寸法に応じて発生するせん断変形の方向と直交する方向であるため、その意味でも、壁パネル1の面に対して対向する接着面4aの配される方向を壁パネル1の面に対して平行な(垂直成分を含まない)方向とした場合との比較で、制振性能への影響は小さい。図4における段差寸法を大きめに5mmとしても、粘弾性体3の厚みを2mmと設定した場合で、粘弾性体3のせん断変形率は、250%に納まる。粘弾性体3の材質にもよるが、一般に、常温で、300%程度のせん断変形は可能であり、通常起こりうる壁パネル1の段差であれば、対応できると考えられる。 壁パネル1は、軽量気泡コンクリートパネルで、長さ3300mm、幅600mm、厚さ100mmとし、外面側の目地には、バックアップ材10とシーリング9を施した。   At this time, the viscoelastic body 3 undergoes shear deformation in the out-of-plane direction with respect to the wall panel 1 corresponding to the step difference between the surfaces of the adjacent wall panels 1. The direction of the shear deformation acting is along the joint length direction of the wall panel 1 and is a direction orthogonal to the direction of the shear deformation generated according to the step size. Compared with the case where the direction in which the adhesive surface 4a facing the surface is arranged is a direction parallel to the surface of the wall panel 1 (not including a vertical component), the influence on the vibration damping performance is small. Even when the step size in FIG. 4 is set to 5 mm, the shear deformation rate of the viscoelastic body 3 is 250% when the thickness of the viscoelastic body 3 is set to 2 mm. Although depending on the material of the viscoelastic body 3, generally, shear deformation of about 300% is possible at room temperature, and it is considered that any level difference of the wall panel 1 that can normally occur can be handled. The wall panel 1 is a lightweight cellular concrete panel having a length of 3300 mm, a width of 600 mm, and a thickness of 100 mm. A backup material 10 and a sealing 9 are applied to the joints on the outer surface side.

粘弾性体3の厚みは特に規定するものではないが、0.5mm〜4mm程度が好適な範囲と考えられる。ここでは、厚み2mmとした。また、幅は、23mmとした。
目地部材7は、長さ1750mm、幅102mmであり、目地部2に対して対称に配した。保持部材4は、板厚2mmの鋼板を曲げ可能したもので、幅25mmの接着面4aと幅50mmの支持面4bによりなり、2つの保持部材4を、接着面4aを対向させ、間に粘弾性体3を接着して設けることにより、一対の保持部材4が粘弾性体3により一体化されている目地部材7を形成した。
目地部材7を壁パネル1へ固定するために、アンカー部材5として、拡張釘5aを用い、支持面4bを隙間無く貫通させ、壁パネル1と保持部材4の面内ズレが生じにくい構造とすることが出来、地震時に、壁パネル1相互の目地部2に配された粘弾性体3に、振動エネルギーを有効に伝達させることが可能となった。ここに、拡張釘5aとして、軸径2.7mmの釘を2本組み合わせた長さ45mmのツインネイルを用いた。
The thickness of the viscoelastic body 3 is not particularly specified, but a range of about 0.5 mm to 4 mm is considered suitable. Here, the thickness was 2 mm. The width was 23 mm.
The joint member 7 has a length of 1750 mm and a width of 102 mm, and is arranged symmetrically with respect to the joint part 2. The holding member 4 is formed by bending a steel plate having a thickness of 2 mm. The holding member 4 includes an adhesive surface 4a having a width of 25 mm and a support surface 4b having a width of 50 mm. The two holding members 4 are opposed to each other with the adhesive surface 4a facing each other. By providing the elastic body 3 by bonding, a joint member 7 in which the pair of holding members 4 are integrated by the viscoelastic body 3 was formed.
In order to fix the joint member 7 to the wall panel 1, an extension nail 5 a is used as the anchor member 5, and the support surface 4 b is penetrated without a gap so that the in-plane displacement between the wall panel 1 and the holding member 4 is less likely to occur. In the event of an earthquake, vibration energy can be effectively transmitted to the viscoelastic body 3 disposed on the joint 2 between the wall panels 1. Here, as the extended nail 5a, a twin nail having a length of 45 mm in which two nails having a shaft diameter of 2.7 mm were combined was used.

アンカー部材5の間隔は、目地長さに沿って250mmとした。また、壁パネル1の長辺小口面側から、アンカー部材5を打ち込む位置までの距離を40mmとしたが、150mmくらいの距離をおいて打ち込み固定することでもよい。軽量気泡コンクリートパネルの場合、一般に、100mm以上の距離とすることにより、主筋の内側に、安定的にアンカー部材5を打ち込むことが可能となる。
また、接着材を併用して、支持面4bを壁パネル1の内面に接着した。
なお、図2、図3、図4において、拡張釘5a(ツインネイル)は、壁パネル1の長辺小口面側に向かって釘が開くように図示したが、便宜上だけのことであり、実際には、壁パネル1の目地長さ方向に釘が開くようにするのが、好ましい。
The interval between the anchor members 5 was 250 mm along the joint length. Further, although the distance from the long side edge surface side of the wall panel 1 to the position where the anchor member 5 is driven is 40 mm, it may be driven and fixed at a distance of about 150 mm. In the case of a lightweight cellular concrete panel, it is generally possible to drive the anchor member 5 stably inside the main bar by setting the distance to 100 mm or more.
Further, the support surface 4b was bonded to the inner surface of the wall panel 1 by using an adhesive.
2, 3, and 4, the extended nail 5 a (twin nail) is illustrated so that the nail opens toward the long side edge surface side of the wall panel 1. In this case, it is preferable that the nail is opened in the joint length direction of the wall panel 1.

〔建築物の制振構造の第2実施例〕
次に、図5において、建築物の制振構造の第2実施例について説明する。第2実施例も、壁パネル1として、パネル厚さ100mmの軽量気泡コンクリートパネルによる例であり、壁パネル1の目地部2に、幅20mm深さ25mmの彫り込み部1aを形成し、対向する接着面4aおよび接着面4aの間の粘弾性体3を彫り込み部1aに配したため、粘弾性体3を含む保持部材4が、壁パネル1の面外へ孕み出すこともなく、納まりの良い構造とすることが出来た。
彫り込み部1aの深さが25mmであるのに対して、粘弾性体3の幅は23mmであり、粘弾性体3全体を、彫り込み部1aの中に納めることが出来た。
彫り込み部1aは、目地長さに沿って、全長にわたって加工してもよいが、対向する接着面4aおよび接着面4aの間の粘弾性体3を配する部分など、目地長さの一部に彫り込み部1aを設ける構造であってもよい。
軽量気泡コンクリートパネルの場合、彫り込み部1aは、予め、工場で加工して、施工現場に搬入することが可能である。もちろん、施工現場で彫り込み部1aを加工してもよい。
[Second Example of Building Damping Structure]
Next, referring to FIG. 5, a second embodiment of the vibration damping structure for a building will be described. The second embodiment is also an example of a lightweight cellular concrete panel having a panel thickness of 100 mm as the wall panel 1, and a carved portion 1 a having a width of 20 mm and a depth of 25 mm is formed on the joint portion 2 of the wall panel 1 and facing adhesion Since the viscoelastic body 3 between the surface 4a and the adhesive surface 4a is arranged in the engraved portion 1a, the holding member 4 including the viscoelastic body 3 does not squeeze out of the surface of the wall panel 1 and has a good structure. I was able to do it.
While the depth of the engraved portion 1a is 25 mm, the width of the viscoelastic body 3 is 23 mm, and the entire viscoelastic body 3 can be accommodated in the engraved portion 1a.
The engraved portion 1a may be processed over the entire length along the joint length, but may be part of the joint length such as a portion where the opposing adhesive surface 4a and the viscoelastic body 3 between the adhesive surfaces 4a are arranged. The structure which provides the engraving part 1a may be sufficient.
In the case of a lightweight cellular concrete panel, the engraved portion 1a can be processed in advance in a factory and carried into a construction site. Of course, you may process the engraving part 1a in a construction site.

また、第2実施例では、彫り込み部1aの周囲が欠けるなどの欠損を防止する意味で、3mm寸法の面取りを設けた。
アンカー部材5として、ボルト5bを用い、予め、工場で設けられた埋込ナット5cにねじ止めした。支持面4bには、貫通孔4cが設けられ、貫通孔4cを通してボルト止めした後、溶接接合6をしたので、壁パネル1と保持部材4の面内ズレが生じにくい構造とすることが出来、地震時に、壁パネル1相互の目地部2に配された粘弾性体3に、振動エネルギーを有効に伝達させることが可能となった。ここに、ボルト5bとして、軸径12mmのものを用いた。
ここでは、バックアップ材10の代わりに、ボンドブレーカー10aを用いた。
Further, in the second embodiment, a chamfer with a dimension of 3 mm is provided in order to prevent a defect such as a lack of the periphery of the engraved portion 1a.
A bolt 5b was used as the anchor member 5 and was screwed in advance to an embedded nut 5c provided at the factory. Since the support surface 4b is provided with a through hole 4c and is bolted through the through hole 4c, and then welded and joined 6, the structure of the wall panel 1 and the holding member 4 is less likely to cause in-plane misalignment. At the time of the earthquake, vibration energy can be effectively transmitted to the viscoelastic body 3 disposed on the joint portion 2 between the wall panels 1. Here, a bolt having a shaft diameter of 12 mm was used as the bolt 5b.
Here, a bond breaker 10 a is used instead of the backup material 10.

〔建築物の制振構造の第3実施例〕
図6において、建築物の制振構造の第3実施例について説明する。第3実施例も、壁パネル1として、パネル厚さ100mmの軽量気泡コンクリートパネルによる例であり、壁パネル1の目地部2に、幅20mm深さ20mmの彫り込み部1aを形成し、対向する接着面4aおよび接着面4aの間の粘弾性体3を彫り込み部1aに配したため、粘弾性体3を含む保持部材4が、壁パネル1の面外へ孕み出すこともなく、納まりの良い構造とすることが出来た。
彫り込み部1aの深さが第2実施例より5mm浅く、20mmとしたため、粘弾性体3の幅23mm全体を、彫り込み部1aの中に納めることは出来なかったが、壁パネル1の面外へ孕み出し寸法は10mmであり、実用上問題のない納まりとすることが出来た。
[Third embodiment of building vibration control structure]
In FIG. 6, a third embodiment of the vibration damping structure for a building will be described. The third embodiment is also an example of a lightweight cellular concrete panel having a panel thickness of 100 mm as the wall panel 1, and a carved portion 1 a having a width of 20 mm and a depth of 20 mm is formed on the joint portion 2 of the wall panel 1 and facing adhesion Since the viscoelastic body 3 between the surface 4a and the adhesive surface 4a is arranged in the engraved portion 1a, the holding member 4 including the viscoelastic body 3 does not squeeze out of the surface of the wall panel 1 and has a good structure. I was able to do it.
Since the depth of the engraved portion 1a is 5 mm shallower than the second embodiment and 20 mm, the entire 23 mm width of the viscoelastic body 3 could not be accommodated in the engraved portion 1a. The squeeze-out dimension was 10 mm, and it was possible to achieve a practically no problem.

〔第4実施例〕
図7に示す第4実施例によって、壁パネル面に対して対向する接着面4aの配される方向θについて説明する。方向θは、垂直方向(90度)方向が最も発明の効果が高く、第1実施例で説明ずみであるが、垂直方向(90度)方向に限定されるものではなく、方向が水平方向に近づく程、その効果は小さくなるが、壁パネル1の面に対する垂直成分に基づく角度分の効果を発揮することが可能である。方向θは、30度以上150度以下とするのが良く、好ましくは45度以上135度以下、さらには、垂直(90度)方向に設定するのが最も好ましい。図7のように、方向θを約45度に設定した構成であっても、45度分の効果を発揮することは可能である。
[Fourth embodiment]
With reference to the fourth embodiment shown in FIG. 7, the direction θ in which the adhesive surface 4a facing the wall panel surface is disposed will be described. As for the direction θ, the vertical direction (90 degrees) direction has the highest effect of the invention and has been described in the first embodiment. However, the direction θ is not limited to the vertical direction (90 degrees) direction, and the direction is the horizontal direction. The closer the effect is, the smaller the effect is, but it is possible to exert an effect corresponding to the angle based on the vertical component with respect to the surface of the wall panel 1. The direction θ is preferably 30 degrees or more and 150 degrees or less, preferably 45 degrees or more and 135 degrees or less, and most preferably set in the vertical (90 degrees) direction. As shown in FIG. 7, even when the direction θ is set to about 45 degrees, the effect of 45 degrees can be exhibited.

〔目地部材の実施例〕
図8において、本発明に係る目地部材の3実施例について説明する。左図は、厚さ2mmの鋼板をL形状に折り曲げて保持部材4とし、2つの保持部材4を粘弾性体3を所定厚さ2mmで間に接着して一体として構成することにより、目地部材7としたものである。長さ1750mm、幅102mm、奥行き25mmとし、支持面4bの所定の位置に、下孔4dを、壁パネル1へのアンカー部材5の軸径より小さな径で設けた。下孔4dのピッチは、250mmとした。
目地部材7の長さは、1750mmに限定されるものではなく、重量などを加味し、施工現場での扱いやすさと、納まりから適宜定めればよいが、長尺過ぎると運搬時に、目地部材7が曲がり、粘弾性体3の接着が剥がれるなどの懸念もありうるため、運搬のしやすさなども考慮し、2000mm程度以下とするのが好ましい。
粘弾性体3の厚みも、特に規定するものではないが、0.5mm〜4mm程度が好適な範囲と考えられる。ここでは、厚み2mmとした。
また、粘弾性体3の幅は、23mmとしたが、これも特に限定されるものではなく、壁パネル1の目地部2への彫り込み部1aの寸法など、納まりを考慮して定めればよい。
[Examples of joint members]
In FIG. 8, three embodiments of the joint member according to the present invention will be described. In the left figure, a steel plate having a thickness of 2 mm is bent into an L shape to form a holding member 4, and the two holding members 4 are integrally formed by adhering a viscoelastic body 3 with a predetermined thickness of 2 mm to form a joint member. 7. The length was 1750 mm, the width was 102 mm, and the depth was 25 mm, and the lower hole 4 d was provided at a predetermined position on the support surface 4 b with a diameter smaller than the axial diameter of the anchor member 5 to the wall panel 1. The pitch of the prepared holes 4d was 250 mm.
The length of the joint member 7 is not limited to 1750 mm, and may be determined as appropriate from the ease of handling at the construction site and the fit in consideration of weight and the like. May be bent and the adhesion of the viscoelastic body 3 may be peeled off. Therefore, considering the ease of transportation, the thickness is preferably about 2000 mm or less.
The thickness of the viscoelastic body 3 is not particularly specified, but it is considered that a range of about 0.5 mm to 4 mm is a suitable range. Here, the thickness was 2 mm.
Moreover, although the width | variety of the viscoelastic body 3 was 23 mm, this is also not specifically limited, What is necessary is just to set in consideration of the accommodation, such as the dimension of the engraving part 1a to the joint part 2 of the wall panel 1. .

保持部材4は、厚さ2mmの鋼板をL形状に折り曲げて設けたが、これに限定されるものはなく、粘弾性体3に有効に振動エネルギーを伝達するだけの剛性が有る構造であればよい。
中図は、左図の実施例から下孔4dを省略したものである。ここでは図示していないが、壁パネル1へのアンカー部材5による貫通位置をマーキングして示した。このように、アンカー部材5による貫通位置をマーキングすることで、施工現場でのアンカー部材5の設置位置を明確にすることが出来る。
右図は、長さ250mmの短い寸法の目地部材7の実施例を、左図、中図との比較で、拡大して示したものである。このように長さの短いものを、適宜、壁パネル1の目地部2に分散して配するようにしてもよい。
The holding member 4 is formed by bending a steel plate having a thickness of 2 mm into an L shape. However, the holding member 4 is not limited to this, and may be any structure that has rigidity sufficient to effectively transmit vibration energy to the viscoelastic body 3. Good.
In the middle figure, the lower hole 4d is omitted from the embodiment of the left figure. Although not shown here, the penetration position by the anchor member 5 to the wall panel 1 is marked and shown. Thus, by marking the penetration position by the anchor member 5, the installation position of the anchor member 5 at the construction site can be clarified.
The right figure expands and shows the Example of the joint member 7 of a short dimension of length 250mm in comparison with the left figure and a middle figure. As described above, those having a short length may be appropriately distributed and arranged on the joint portion 2 of the wall panel 1.

本発明の活用例として、建築物の制振構造およびその構造に用いる目地部材として好適に利用できる。   As an application example of the present invention, it can be suitably used as a vibration damping structure of a building and a joint member used in the structure.

本発明に係る建築物の制振構造の第1実施例を示す斜視説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective explanatory view showing a first embodiment of a building vibration control structure according to the present invention. 第1実施例の目地部を拡大して示す斜視説明図である。It is a perspective explanatory view which expands and shows the joint part of the 1st example. 第1実施例の目地部を拡大して示す水平断面説明図である。It is horizontal cross-section explanatory drawing which expands and shows the joint part of 1st Example. 第1実施例の目地部に段差があった場合の状態を拡大して示す水平断面説明図である。It is horizontal sectional explanatory drawing which expands and shows the state when there exists a level | step difference in the joint part of 1st Example. 目地部に彫り込み部を形成し、該彫り込み部に粘弾性体を配した第2実施例の目地部を拡大して示す水平断面説明図である。It is horizontal sectional explanatory drawing which expands and shows the joint part of 2nd Example which formed the engraving part in the joint part and arranged the viscoelastic body in this engraving part. 目地部に彫り込み部を形成し、該彫り込み部に粘弾性体を配するとともに、壁パネルの面外へ孕み出して粘弾性体を配した第3実施例の目地部を拡大して示す水平断面説明図である。A horizontal section showing an enlarged joint part of the third embodiment in which a carved part is formed in the joint part, a viscoelastic body is arranged in the carved part, and the viscoelastic body is arranged by squeezing out of the surface of the wall panel. It is explanatory drawing. 壁パネル面に対して対向する接着面の配される方向θを説明する第4実施例の目地部を拡大して示す水平断面説明図である。It is horizontal cross-section explanatory drawing which expands and shows the joint part of 4th Example explaining direction (theta) by which the adhesion surface facing a wall panel surface is arranged. 本発明に係る目地部材の3実施例を示す斜視説明図である。It is perspective explanatory drawing which shows 3 Example of the joint member which concerns on this invention.

符号の説明Explanation of symbols

1 壁パネル
1a 彫り込み部
2 目地部
3 粘弾性体
4 保持部材
4a 接着面
4b 支持面
4c 貫通孔
4d 下孔
5 アンカー部材
5a 拡張釘
5b ボルト
5c 埋込ナット
6 溶接接合
7 目地部材
8 壁パネル取付部
9 シーリング材
10 バックアップ材
10a ボンドブレーカー
θ 壁パネル面に対して対向する接着面の配される方向
DESCRIPTION OF SYMBOLS 1 Wall panel 1a Carved part 2 Joint part 3 Viscoelastic body 4 Holding member 4a Adhesive surface 4b Support surface 4c Through-hole 4d Pilot hole 5 Anchor member 5a Expansion nail 5b Bolt 5c Embedded nut 6 Welded joint 7 Joint member 8 Wall panel attachment Part 9 Sealing material 10 Backup material 10a Bond breaker θ The direction in which the adhesive surface facing the wall panel surface is arranged

Claims (7)

建築物を構成する複数の壁パネルの目地部に沿って目地部材が取り付けられており、該目地部材は略同一面で配した支持面と対向する接着面とからなる一対の保持部材が該接着面を互いに対向させてその間に配された粘弾性体により一体化されてなり、該粘弾性体が目地部に沿う位置で壁パネルに取り付けられていることを特徴とする建築物の制振構造。   A joint member is attached along a joint portion of a plurality of wall panels constituting the building, and the joint member is formed by a pair of holding members having a support surface arranged on substantially the same surface and an adhesive surface facing each other. The structure is controlled by a viscoelastic body with the surfaces opposed to each other, and the viscoelastic body is attached to the wall panel at a position along the joint portion. . 前記接着面は前記壁パネル面に対して垂直であることを特徴とする請求項1に記載の建築物の制振構造。   The structure for damping a building according to claim 1, wherein the adhesive surface is perpendicular to the wall panel surface. 隣接する壁パネルの目地部に彫り込み部を形成し、対向する前記接着面および該接着面の間の粘弾性体を、前記彫り込み部に配したことを特徴とする請求項1又は2に記載の建築物の制振構造。   The engraved part is formed in the joint part of the adjacent wall panel, and the viscoelastic body between the adhesive surface and the adhesive surface facing each other is arranged in the engraved part. Damping structure of buildings. 前記支持面を隙間無く貫通するアンカー部材を介して、前記保持部材を壁パネルに設けたことを特徴とする請求項1乃至3に記載の建築物の制振構造。   The building damping structure according to any one of claims 1 to 3, wherein the holding member is provided on a wall panel through an anchor member that penetrates the support surface without a gap. 前記支持面に貫通孔を設け、該貫通孔を貫通するアンカー部材を介して、前記保持部材を壁パネルに設け、アンカー部材と該支持面を直接あるいは間接的に溶接接合したことを特徴とする請求項1乃至3に記載の建築物の制振構造。   The support surface is provided with a through hole, the holding member is provided on a wall panel via an anchor member penetrating the through hole, and the anchor member and the support surface are welded directly or indirectly. The building vibration control structure according to claim 1. 略同一面で配した支持面と対向する接着面とを有する一対の保持部材が対向する接着面の間の粘弾性体により一体化されていることを特徴とする目地部材。   A joint member characterized in that a pair of holding members each having a support surface arranged on substantially the same surface and an opposing adhesive surface are integrated by a viscoelastic body between the opposing adhesive surfaces. 前記接着面は前記支持面に対して垂直であることを特徴とする請求項6に記載の目地部材。   The joint member according to claim 6, wherein the adhesive surface is perpendicular to the support surface.
JP2007333552A 2007-12-26 2007-12-26 Vibration control structure of building, and joint member Pending JP2009155857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007333552A JP2009155857A (en) 2007-12-26 2007-12-26 Vibration control structure of building, and joint member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007333552A JP2009155857A (en) 2007-12-26 2007-12-26 Vibration control structure of building, and joint member

Publications (1)

Publication Number Publication Date
JP2009155857A true JP2009155857A (en) 2009-07-16

Family

ID=40960154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007333552A Pending JP2009155857A (en) 2007-12-26 2007-12-26 Vibration control structure of building, and joint member

Country Status (1)

Country Link
JP (1) JP2009155857A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510420B (en) * 2011-10-20 2015-12-01 Murata Machinery Ltd Automatic warehouse rack equipment
JP6379310B1 (en) * 2018-01-05 2018-08-22 住友ゴム工業株式会社 Damping unit, damping device and building
JP2021143558A (en) * 2020-03-13 2021-09-24 旭化成ホームズ株式会社 Vibration control wall structure and building

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510420B (en) * 2011-10-20 2015-12-01 Murata Machinery Ltd Automatic warehouse rack equipment
JP6379310B1 (en) * 2018-01-05 2018-08-22 住友ゴム工業株式会社 Damping unit, damping device and building
JP2019120050A (en) * 2018-01-05 2019-07-22 住友ゴム工業株式会社 Vibration control unit, vibration control device, and building
JP2021143558A (en) * 2020-03-13 2021-09-24 旭化成ホームズ株式会社 Vibration control wall structure and building
JP7421966B2 (en) 2020-03-13 2024-01-25 旭化成ホームズ株式会社 Damping wall structure and building

Similar Documents

Publication Publication Date Title
JP5430497B2 (en) Fastener
JP2006225878A (en) Reinforcement structure of masonry construction structure
JP2007217954A (en) Damping device with viscoelastic element, proof-stress wall with damping device which is provided with device, and execution method of stress wall
JP4277212B2 (en) Seismic reinforcement structure
JP2009155857A (en) Vibration control structure of building, and joint member
JP5038686B2 (en) Seismic reinforcement structure for existing buildings
WO2019203148A1 (en) Wooden building load-bearing wall structure and load-bearing wall construction method
JP2016169565A (en) In-plane shear bearing force structure, and roof structure, wall structure and floor structure having in-plane shear bearing force structure
JP2020094454A (en) Joining structure of steel materials
JP2011153481A (en) Structure reinforcing method and reinforcing structure
JP2009243251A (en) Wall panel structure and method for constructing wall panel
JP2006307568A (en) Structure and method for joining beam and column together
JP5603530B2 (en) Renovation structure of existing outer wall
JP5751551B2 (en) Indentation prevention structure
JP4972363B2 (en) Column beam connection structure and column beam connection method
JP2004084404A (en) Reinforcing structure for earthquake-resisting wall material
JP5019786B2 (en) Column beam connection structure in a wooden building and metal fittings for column beam connection used in the column beam connection structure
JP5535468B2 (en) High-rigidity load-bearing wall device for wooden buildings
JP5008116B2 (en) Column beam connection structure in a wooden building and metal fittings for column beam connection used in the column beam connection structure
JP5288696B2 (en) Member structure of wooden building
JP3909024B2 (en) Load-bearing wall panels and load-bearing walls
JP5062817B2 (en) Joint structure of wood members
JP2009074624A (en) Glass sheet jointing structure and its joining method
JP2005126955A (en) Anti-seismic strengthening structure and seismic strengthening method
JP3996744B2 (en) Structure for joining thin steel members