JP2009153236A - Rotor for rotating electrical machines and rotating electrical machine - Google Patents

Rotor for rotating electrical machines and rotating electrical machine Download PDF

Info

Publication number
JP2009153236A
JP2009153236A JP2007326322A JP2007326322A JP2009153236A JP 2009153236 A JP2009153236 A JP 2009153236A JP 2007326322 A JP2007326322 A JP 2007326322A JP 2007326322 A JP2007326322 A JP 2007326322A JP 2009153236 A JP2009153236 A JP 2009153236A
Authority
JP
Japan
Prior art keywords
radial
rotor
rotating electrical
circumferential
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007326322A
Other languages
Japanese (ja)
Inventor
Sachihiro Mizuno
祥宏 水野
Kisaburo Hayakawa
喜三郎 早川
Hiroyuki Nishizawa
博幸 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2007326322A priority Critical patent/JP2009153236A/en
Publication of JP2009153236A publication Critical patent/JP2009153236A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor for rotating electrical machines whose resistance to centrifugal force can be enhanced and to provide a rotating electrical machine. <P>SOLUTION: The rotor 12 of a rotating electrical machine 10 includes a magnetic steel sheet laminate 16 obtained by laminating multiple magnetic steel sheets 14 in the axial direction. Each magnetic steel sheet is provided with a void 22 in a position away outward from the rotation center in the radial direction. Each magnetic steel sheet 14 has a radial bridge portion 26 extending in the radial direction between voids 22 arranged side by side in the circumferential direction. Residual compressive stress is applied to rounded portions R 32, 34 at both ends of each radial bridge portion 26 in the radial direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回転電機の回転子及び回転電機に係り、特に電磁鋼板が軸方向に複数積層された電磁鋼板積層体を有する回転子及びこの回転子を備えた回転電機に関する。   The present invention relates to a rotor of a rotating electrical machine and a rotating electrical machine, and more particularly to a rotor having an electrical steel sheet laminate in which a plurality of electrical steel sheets are stacked in the axial direction, and a rotating electrical machine including the rotor.

従来、この種の回転電機の回転子及び回転電機としては、次のものが知られている(例えば、特許文献1、特許文献2参照)。   Conventionally, the following are known as a rotor and a rotary electric machine of this kind of rotary electric machine (for example, refer to patent documents 1 and 2).

例えば、特許文献1、特許文献2に記載の例では、円形鋼板における開口部の端縁であって遠心力が作用したことに伴って応力の集中する部分が塑性変形されることによって加工硬化されている。
特開2005−185081号公報 特開2005−130604号公報
For example, in the examples described in Patent Document 1 and Patent Document 2, work hardening is performed by plastically deforming a portion where the stress is concentrated at the edge of the opening in the circular steel plate and the centrifugal force is applied. ing.
JP 2005-185081 A JP 2005-130604 A

しかしながら、特許文献1、特許文献2に記載の例では、円形鋼板における応力の集中する部分が加工硬化されることで、この部分の降伏点が向上するものの、遠心力に対する耐性を向上させるためには改善の余地がある。   However, in the examples described in Patent Document 1 and Patent Document 2, in order to improve the resistance to centrifugal force, the yield point of this part is improved by the work hardening of the stress-concentrated part in the circular steel plate. There is room for improvement.

本発明は、上記課題に鑑みてなされたものであって、遠心力に対する耐性を向上させることができる回転電機の回転子及び回転電機を提供することを目的とする。   This invention is made | formed in view of the said subject, Comprising: It aims at providing the rotor of a rotary electric machine and rotary electric machine which can improve the tolerance with respect to a centrifugal force.

前記課題を解決するために、請求項1に記載の回転電機の回転子は、回転中心部に対し径方向外側に離間した位置に空隙が設けられた電磁鋼板が軸方向に複数積層された電磁鋼板積層体を有する回転電機の回転子において、前記電磁鋼板は、前記空隙を形成している縁部を含み回転時に遠心力が作用したことに伴って引張応力が生じ得る部位に、残留圧縮応力が付加された構成とされている、ことを特徴とする。   In order to solve the above-described problem, the rotor of the rotating electrical machine according to claim 1 is an electromagnetic in which a plurality of electromagnetic steel sheets each having a gap provided at a position spaced radially outward with respect to the rotation center are stacked in the axial direction. In a rotor of a rotating electrical machine having a steel sheet laminate, the electromagnetic steel sheet includes a peripheral portion that forms the air gap, and a residual compressive stress at a site where a tensile stress can occur due to centrifugal force acting during rotation. It is the structure to which is added.

請求項1に記載の回転電機の回転子によれば、電磁鋼板において空隙を形成している縁部を含む部位に、電磁鋼板の回転時に遠心力が作用したことに伴って引張応力が生じた場合でも、この部位には、残留圧縮応力が予め付加されているので、この部位の引張応力を緩和できる。これにより、遠心力に対する耐性を向上させることができる。   According to the rotor of the rotating electrical machine according to claim 1, tensile stress is generated in the part including the edge part forming the gap in the electromagnetic steel sheet, due to the centrifugal force acting when the electromagnetic steel sheet rotates. Even in this case, since the residual compressive stress is preliminarily applied to this part, the tensile stress at this part can be relaxed. Thereby, the tolerance with respect to a centrifugal force can be improved.

請求項2に記載の回転電機の回転子は、請求項1に記載の回転電機の回転子において、前記電磁鋼板は、周方向に並んで配置された前記空隙間に、径方向に延びる径方向ブリッジ部を有すると共に、前記径方向ブリッジ部の径方向端部に残留圧縮応力が付加された構成とされている、ことを特徴とする。   The rotor of the rotating electrical machine according to claim 2 is the rotor of the rotating electrical machine according to claim 1, wherein the electromagnetic steel sheet extends in a radial direction between the gaps arranged side by side in the circumferential direction. In addition to having a bridge portion, a residual compressive stress is added to the radial end portion of the radial bridge portion.

請求項2に記載の回転電機の回転子によれば、電磁鋼板において周方向に並んで配置された空隙間に形成された径方向ブリッジ部の径方向端部に、電磁鋼板の回転時に遠心力が作用したことに伴って引張応力が生じた場合でも、この部位には、残留圧縮応力が予め付加されているので、この部位の引張応力を緩和できる。これにより、遠心力に対する耐性を向上させることができる。   According to the rotor of the rotating electrical machine according to claim 2, centrifugal force is applied to the radial end portion of the radial bridge portion formed between the gaps arranged in the circumferential direction in the electromagnetic steel plate when the electromagnetic steel plate rotates. Even when a tensile stress is generated due to the action of the residual stress, a residual compressive stress is preliminarily applied to this part, so that the tensile stress at this part can be relaxed. Thereby, the tolerance with respect to a centrifugal force can be improved.

請求項3に記載の回転電機の回転子は、請求項2に記載の回転電機の回転子において、前記電磁鋼板は、外周部が径方向に拘束されると共に、前記径方向ブリッジ部における径方向中央側の部位が周方向に拘束された状態で、前記径方向ブリッジ部における径方向中央側の部位が軸方向に塑性変形されることで、前記径方向ブリッジ部の径方向端部に残留圧縮応力が付加された構成とされている、ことを特徴とする。   The rotor of the rotating electrical machine according to claim 3 is the rotor of the rotating electrical machine according to claim 2, wherein the electromagnetic steel sheet is constrained in the radial direction at the outer peripheral portion and the radial direction in the radial bridge portion. In a state where the central portion is constrained in the circumferential direction, the radial central portion of the radial bridge portion is plastically deformed in the axial direction, so that residual compression is applied to the radial end portion of the radial bridge portion. It is characterized by a configuration in which stress is applied.

請求項3に記載の回転電機の回転子によれば、電磁鋼板を形成する際に、電磁鋼板の外周部を径方向に拘束すると共に、径方向ブリッジ部における径方向中央側の部位を周方向に拘束した状態で、径方向ブリッジ部における径方向中央側の部位を軸方向に塑性変形させるので、径方向ブリッジ部の径方向端部に残留圧縮応力を付加することができる。   According to the rotor of the rotating electrical machine according to claim 3, when forming the electromagnetic steel sheet, the outer peripheral part of the electromagnetic steel sheet is constrained in the radial direction, and the part on the radial center side in the radial bridge part is set in the circumferential direction. In this state, the portion on the radial center side in the radial bridge portion is plastically deformed in the axial direction, so that residual compressive stress can be applied to the radial end portion of the radial bridge portion.

請求項4に記載の回転電機の回転子は、請求項2に記載の回転電機の回転子において、前記電磁鋼板は、複数積層された状態で、前記径方向ブリッジ部における径方向中央側の部位が周方向に塑性変形されることで、前記径方向ブリッジ部の径方向端部に残留圧縮応力が付加された構成とされている、ことを特徴とする。   The rotor of the rotating electrical machine according to claim 4 is the rotor of the rotating electrical machine according to claim 2, wherein a plurality of the electromagnetic steel sheets are stacked, and the portion on the radial center side in the radial bridge portion. Is characterized in that residual compressive stress is applied to the radial end portion of the radial bridge portion by being plastically deformed in the circumferential direction.

請求項4に記載の回転電機の回転子によれば、電磁鋼板を形成する際に、電磁鋼板を複数積層させた状態で、径方向ブリッジ部における径方向中央側の部位を周方向に塑性変形させるので、径方向ブリッジ部の径方向端部に残留圧縮応力を付加することができる。   According to the rotor of the rotating electrical machine according to claim 4, when forming the electromagnetic steel sheet, a plurality of the electromagnetic steel sheets are laminated, and the radially central portion of the radial bridge portion is plastically deformed in the circumferential direction. Therefore, the residual compressive stress can be applied to the radial end portion of the radial bridge portion.

また、この構成とすれば、電磁鋼板を形成する際に、複数の電磁鋼板を同時に加工することができるので、製造コストを低減できる。   Moreover, if it is set as this structure, when forming an electromagnetic steel plate, since a several electromagnetic steel plate can be processed simultaneously, manufacturing cost can be reduced.

請求項5に記載の回転電機の回転子は、請求項1〜請求項4のいずれか一項に記載の回転電機の回転子において、前記電磁鋼板は、前記空隙と外周部との間に、周方向に延びる周方向ブリッジ部を有すると共に、前記周方向ブリッジ部の周方向端部に残留圧縮応力が付加された構成とされている、ことを特徴とする。   The rotor of the rotating electrical machine according to claim 5 is the rotor of the rotating electrical machine according to any one of claims 1 to 4, wherein the electromagnetic steel sheet is between the gap and the outer peripheral portion. A circumferential bridge portion extending in the circumferential direction is provided, and a residual compressive stress is applied to the circumferential end portion of the circumferential bridge portion.

請求項5に記載の回転電機の回転子によれば、電磁鋼板において空隙と外周部との間に形成された周方向ブリッジ部の径方向端部に、電磁鋼板の回転時に遠心力が作用したことに伴って引張応力が生じた場合でも、この部位には、残留圧縮応力が予め付加されているので、この部位の引張応力を緩和できる。これにより、遠心力に対する耐性を向上させることができる。   According to the rotor of the rotating electrical machine according to claim 5, centrifugal force is applied to the radial end portion of the circumferential bridge portion formed between the gap and the outer peripheral portion in the electromagnetic steel plate when the electromagnetic steel plate rotates. Even if a tensile stress is generated along with this, since the residual compressive stress is preliminarily added to this part, the tensile stress at this part can be relaxed. Thereby, the tolerance with respect to a centrifugal force can be improved.

請求項6に記載の回転電機の回転子は、請求項5に記載の回転電機の回転子において、前記電磁鋼板は、前記周方向ブリッジ部における周方向中央側の部位が径方向に拘束された状態で、前記周方向ブリッジ部における周方向中央側の部位が軸方向に塑性変形されることで、前記周方向ブリッジ部の周方向端部に残留圧縮応力が付加された構成とされている、ことを特徴とする。   The rotor of the rotating electrical machine according to claim 6 is the rotor of the rotating electrical machine according to claim 5, wherein the electromagnetic steel sheet is constrained in a radial direction at a circumferentially central portion of the circumferential bridge portion. In the state, a portion of the circumferential bridge portion on the circumferential center side is plastically deformed in the axial direction so that residual compressive stress is applied to the circumferential end portion of the circumferential bridge portion. It is characterized by that.

請求項6に記載の回転電機の回転子によれば、電磁鋼板を形成する際に、電磁鋼板の周方向ブリッジ部における周方向中央側の部位を径方向に拘束された状態で、周方向ブリッジ部における周方向中央側の部位を軸方向に塑性変形させるので、周方向ブリッジ部の周方向端部に残留圧縮応力を付加することができる。   According to the rotor of the rotating electrical machine according to claim 6, when forming the electromagnetic steel sheet, the circumferential bridge is radially constrained in a circumferentially central portion of the circumferential bridge portion of the electromagnetic steel sheet. Since the circumferentially central portion of the portion is plastically deformed in the axial direction, residual compressive stress can be applied to the circumferential end of the circumferential bridge portion.

また、前記課題を解決するために、請求項7に記載の回転電機は、請求項1〜請求項6のいずれか一項に記載の回転電機の回転子を備えた、ことを特徴とする。   Moreover, in order to solve the said subject, the rotary electric machine of Claim 7 was equipped with the rotor of the rotary electric machine as described in any one of Claims 1-6.

請求項7に記載の回転電機によれば、請求項1〜請求項6のいずれか一項に記載の回転電機の回転子を備えているので、遠心力に対する耐性を向上させることができる。   According to the rotating electrical machine according to claim 7, since the rotor of the rotating electrical machine according to any one of claims 1 to 6 is provided, resistance to centrifugal force can be improved.

以上詳述したように、本発明によれば、電磁鋼板において空隙を形成している縁部を含み回転時に遠心力が作用したことに伴って引張応力が生じ得る部位の引張応力を緩和できるので、これにより、遠心力に対する耐性を向上させることができる。   As described above in detail, according to the present invention, the tensile stress can be relieved at a portion where a tensile stress can occur due to the centrifugal force acting at the time of rotation including the edge portion forming the gap in the magnetic steel sheet. Thereby, the tolerance with respect to a centrifugal force can be improved.

以下、図面を参照しながら、本発明の回転電機の一実施形態について説明する。   Hereinafter, an embodiment of a rotating electrical machine of the present invention will be described with reference to the drawings.

図1には、本発明の一実施形態に係る回転電機10の要部構成が示されている。回転電機10は、例えば、電気自動車やハイブリッド自動車等の駆動モータとして好適に使用されるものであり、回転磁界を形成する図示しない固定子と、この固定子の径方向内側に回転可能に配置された回転子12と、を備えて構成されている。   FIG. 1 shows a main configuration of a rotating electrical machine 10 according to an embodiment of the present invention. The rotating electrical machine 10 is preferably used as a drive motor of, for example, an electric vehicle or a hybrid vehicle, and is disposed so as to be rotatable on the radially inner side of the stator (not shown) that forms a rotating magnetic field. And the rotor 12.

回転子12は、電磁鋼板14が軸方向に複数積層された電磁鋼板積層体16を有して構成されている。各電磁鋼板14には、回転中心部に対し径方向外側に離間した位置に、周方向に並ぶ一対の磁石挿入孔部18が設けられている。一対の磁石挿入孔部18は、V字状を成しており、各磁石挿入孔部18には、永久磁石20が挿入されている。   The rotor 12 includes an electromagnetic steel sheet laminate 16 in which a plurality of electromagnetic steel sheets 14 are stacked in the axial direction. Each electromagnetic steel sheet 14 is provided with a pair of magnet insertion holes 18 arranged in the circumferential direction at positions spaced radially outward from the rotation center. The pair of magnet insertion holes 18 has a V shape, and a permanent magnet 20 is inserted into each magnet insertion hole 18.

また、各電磁鋼板14において、永久磁石20の両側には、磁石挿入孔部18の内壁部と永久磁石20の両壁部とで空隙22,24がそれぞれ形成されている。そして、周方向に並んで配置された一対の空隙22間は、径方向に延びる径方向ブリッジ部26とされており、空隙24と外周部28との間は、周方向に延びる周方向ブリッジ部30とされている。この径方向ブリッジ部26の径方向両端部と、周方向ブリッジ部30の周方向両端部には、R部32,34がそれぞれ形成されている。   In each electromagnetic steel sheet 14, gaps 22 and 24 are formed on both sides of the permanent magnet 20 by the inner wall portion of the magnet insertion hole 18 and both wall portions of the permanent magnet 20, respectively. A pair of gaps 22 arranged side by side in the circumferential direction is a radial bridge portion 26 extending in the radial direction, and a gap between the gap 24 and the outer peripheral portion 28 is a circumferential bridge portion extending in the circumferential direction. 30. R portions 32 and 34 are formed at both radial end portions of the radial bridge portion 26 and circumferential end portions of the circumferential bridge portion 30, respectively.

なお、R部32が、本発明における、空隙22を形成している縁部(内壁部)を含み電磁鋼板14の回転時に遠心力が作用したことに伴って引張応力が生じ得る部位に相当する。また、R部34が、本発明における、空隙24を形成している縁部(内壁部)を含み電磁鋼板14の回転時に遠心力が作用したことに伴って引張応力が生じ得る部位に相当する。   Note that the R portion 32 corresponds to a portion in the present invention that includes an edge portion (inner wall portion) forming the gap 22 and where tensile stress can occur due to the centrifugal force acting when the electromagnetic steel sheet 14 rotates. . In addition, the R portion 34 corresponds to a portion in the present invention that includes an edge portion (inner wall portion) that forms the gap 24 and can generate tensile stress due to centrifugal force acting when the electromagnetic steel sheet 14 rotates. .

ここで、図2には、上述の電磁鋼板14を形成するための加工装置36が示されている、また、図3には、この加工装置36により加工される際の電磁鋼板14における拘束位置と塑性変形位置が示されている。   Here, FIG. 2 shows a processing apparatus 36 for forming the above-described electromagnetic steel sheet 14, and FIG. 3 shows a restrained position in the electromagnetic steel sheet 14 when processed by this processing apparatus 36. And the plastic deformation position is shown.

図2に示されるように、加工装置36は、パンチ38とダイ40により構成されている。パンチ38は、磁石挿入孔部18を打抜くための打抜き用パンチ部42と、径方向ブリッジ部26における径方向中央側の部位(図3における斜線部位)を塑性変形させるための塑性変形用パンチ部44と、を有し、ダイ40に対し電磁鋼板14の母材である被加工材46の板厚方向に移動可能とされている。   As shown in FIG. 2, the processing device 36 includes a punch 38 and a die 40. The punch 38 is a punch for punching for punching the magnet insertion hole 18 and a punch for plastic deformation for plastically deforming a radially central portion of the radial bridge portion 26 (shaded portion in FIG. 3). And a portion 44, which is movable with respect to the die 40 in the thickness direction of the workpiece 46 that is the base material of the electromagnetic steel plate 14.

また、パンチ38は、打抜き用パンチ部42によって磁石挿入孔部18を打抜くと同時に、図3に示されるように、電磁鋼板14における外周部28を電磁鋼板14の径方向に拘束すると共に、径方向ブリッジ部26における径方向中央側の部位(斜線部位)を電磁鋼板14の周方向に拘束した状態で(図3の一点鎖線部分が拘束部)、塑性変形用パンチ部44によって径方向ブリッジ部26における径方向中央側の部位(斜線部位)を電磁鋼板14の軸方向(板厚方向)に塑性変形させる構成とされている。   In addition, the punch 38 punches the magnet insertion hole 18 by the punching punch portion 42 and simultaneously restrains the outer peripheral portion 28 of the electromagnetic steel plate 14 in the radial direction of the electromagnetic steel plate 14 as shown in FIG. In a state where the radially central portion (shaded portion) in the radial bridge portion 26 is constrained in the circumferential direction of the electromagnetic steel sheet 14 (the one-dot chain line portion in FIG. 3 is the constrained portion), the plastic deformation punch portion 44 causes the radial bridge. A portion (hatched portion) on the radial center side of the portion 26 is configured to be plastically deformed in the axial direction (plate thickness direction) of the electromagnetic steel sheet 14.

なお、パンチ38が、電磁鋼板14における外周部28を電磁鋼板14の径方向に拘束することに加え、電磁鋼板14における内周部を電磁鋼板14の径方向に拘束する構成とされていると、電磁鋼板14を径方向により拘束することができ好適である。   The punch 38 is configured to restrain the outer peripheral portion 28 of the electromagnetic steel plate 14 in the radial direction of the electromagnetic steel plate 14 in addition to restricting the outer peripheral portion 28 of the electromagnetic steel plate 14 in the radial direction of the electromagnetic steel plate 14. It is preferable that the electromagnetic steel sheet 14 can be restrained in the radial direction.

図4には、上述の加工装置36により加工された電磁鋼板14が示されている。この図に示されるように、電磁鋼板14は、上述の如く加工装置36によって加工されることで、径方向ブリッジ部26に径方向に変形力Fが作用され、径方向ブリッジ部26の径方向両端部(一点鎖線の楕円で囲まれた部分)に遠心力の作用方向と同一方向に残留圧縮応力が付加された構成とされている。   FIG. 4 shows the electromagnetic steel sheet 14 processed by the processing apparatus 36 described above. As shown in this figure, the electromagnetic steel sheet 14 is processed by the processing device 36 as described above, so that the deformation force F is applied to the radial bridge portion 26 in the radial direction, and the radial direction of the radial bridge portion 26 is increased. It is set as the structure by which the residual compressive stress was added to the both ends (part enclosed by the ellipse of the dashed-dotted line) in the same direction as the action direction of centrifugal force.

そして、上記構成からなる回転電機10によれば、以下の特有な効果を奏する。   And according to the rotary electric machine 10 which consists of the said structure, there exist the following peculiar effects.

すなわち、本発明の一実施形態に係る回転電機10によれば、電磁鋼板14を形成する際に、電磁鋼板14の外周部28を径方向に拘束すると共に、径方向ブリッジ部26における径方向中央側の部位(図3における斜線部位)を周方向に拘束した状態で、この径方向ブリッジ部26における径方向中央側の部位を軸方向に塑性変形させるので、径方向ブリッジ部26の径方向両端部に遠心力の作用方向と同一方向に残留圧縮応力を付加することができる。   That is, according to the rotating electrical machine 10 according to the embodiment of the present invention, when the electromagnetic steel sheet 14 is formed, the outer peripheral portion 28 of the electromagnetic steel sheet 14 is constrained in the radial direction, and the radial center of the radial bridge portion 26 is constrained. In the state where the side portion (shaded portion in FIG. 3) is constrained in the circumferential direction, the radially central portion of the radial bridge portion 26 is plastically deformed in the axial direction. Residual compressive stress can be applied to the part in the same direction as the direction of centrifugal force.

従って、電磁鋼板14において周方向に並んで配置された空隙22間に形成された径方向ブリッジ部26の径方向両端部に、電磁鋼板14の回転時に遠心力が作用したことに伴って引張応力が生じた場合でも、この部位の引張応力を緩和できる。これにより、遠心力に対する耐性を向上させることができる。   Accordingly, the tensile stress is generated in response to the centrifugal force acting on the both ends in the radial direction of the radial bridge portion 26 formed between the gaps 22 arranged side by side in the circumferential direction in the electromagnetic steel plate 14. Even when this occurs, the tensile stress at this portion can be relaxed. Thereby, the tolerance with respect to a centrifugal force can be improved.

ここで、図5には、電磁鋼板14についてのFEMによる解析結果であって、電磁鋼板14における塑性加工時の加工圧力と、回転子12の回転時における径方向ブリッジ部26の径方向両端部の最大応力との関係が示されている。   Here, FIG. 5 shows an analysis result by FEM for the electromagnetic steel sheet 14, which is a processing pressure at the time of plastic working in the electromagnetic steel sheet 14 and both radial ends of the radial bridge portion 26 at the time of rotation of the rotor 12. The relationship with the maximum stress is shown.

この図から明らかなように、塑性加工時の加工圧力が大きくなるほど径方向ブリッジ部26の径方向両端部に付加された圧縮残留応力が増加するため、回転子12の回転時における径方向ブリッジ部26の径方向両端部の最大応力が低減される。この解析では、塑性加工をしない場合に比して最大応力が約30%以上低減されている。   As is clear from this figure, the compressive residual stress applied to both ends in the radial direction of the radial bridge portion 26 increases as the processing pressure during plastic processing increases, so that the radial bridge portion when the rotor 12 rotates. The maximum stress at both radial ends of 26 is reduced. In this analysis, the maximum stress is reduced by about 30% or more compared to the case where plastic working is not performed.

また、図6には、径方向ブリッジ部26の径方向両端部に形成されたR部32の応力解析における節点位置1〜7が示されており、図7(A)には、径方向ブリッジ部26の径方向両端部に残留圧縮応力が付加された場合のR部32の各節点1〜7についての応力計算結果であって、R部32の各節点1〜7に作用する応力が回転子12の回転時と停止時について示されている。   Further, FIG. 6 shows the node positions 1 to 7 in the stress analysis of the R portion 32 formed at both radial ends of the radial bridge portion 26, and FIG. 7A shows the radial bridge. FIG. 6 is a stress calculation result for the nodes 1 to 7 of the R portion 32 when residual compressive stress is applied to both ends in the radial direction of the portion 26, and the stress acting on the nodes 1 to 7 of the R portion 32 rotates. It shows when the child 12 is rotating and when it is stopped.

なお、図7(B)には、参考として、径方向ブリッジ部26の径方向両端部に残留圧縮応力が付加されていない場合のR部32の各節点1〜7についての応力計算結果であって、R部32の各節点1〜7に作用する応力が回転子12の回転時と停止時について示されている。   FIG. 7B shows stress calculation results for the nodes 1 to 7 of the R portion 32 when no residual compressive stress is applied to both ends in the radial direction of the radial bridge portion 26 for reference. The stress acting on the nodes 1 to 7 of the R portion 32 is shown when the rotor 12 is rotating and when it is stopped.

図7(B)に示されるように、径方向ブリッジ部26の径方向両端部に残留圧縮応力が付加されていない場合、回転子12の停止時では、応力がゼロとなるが、回転子12の回転に伴い、応力が増加する。   As shown in FIG. 7B, when no residual compressive stress is applied to both ends in the radial direction of the radial bridge portion 26, the stress becomes zero when the rotor 12 is stopped. The stress increases with the rotation of.

これに対し、図7(A)に示されるように、径方向ブリッジ部26の径方向両端部に残留圧縮応力が付加された場合、回転子12の停止時では、マイナスの応力(残留圧縮応力)が作用しているため、回転子12の回転時には、このマイナスの応力(残留圧縮応力)の分だけ応力が緩和される。   On the other hand, as shown in FIG. 7A, when residual compressive stress is applied to both ends in the radial direction of the radial bridge portion 26, negative stress (residual compressive stress) is generated when the rotor 12 is stopped. Therefore, when the rotor 12 rotates, the stress is relieved by the negative stress (residual compressive stress).

このように、本発明の一実施形態に係る回転電機10によれば、電磁鋼板14における径方向ブリッジ部26のうち応力集中部とされる径方向両端部の引張応力を緩和できる。これにより、遠心力に対する耐性を向上させることができる。   Thus, according to the rotary electric machine 10 which concerns on one Embodiment of this invention, the tensile stress of the radial direction both ends used as a stress concentration part among the radial bridge parts 26 in the electromagnetic steel plate 14 can be relieved. Thereby, the tolerance with respect to a centrifugal force can be improved.

以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において種々変形して実施することが可能であることは勿論である。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited above, Of course, it can change and implement variously within the range which does not deviate from the main point. .

例えば、上記実施形態では、電磁鋼板14を形成する際に、電磁鋼板14の外周部28を径方向に拘束すると共に、径方向ブリッジ部26における径方向中央側の部位(図3における斜線部位)を周方向に拘束した状態で、この径方向ブリッジ部26における径方向中央側の部位を軸方向に塑性変形させていたが、次のようにしても良い。   For example, in the above embodiment, when the electromagnetic steel plate 14 is formed, the outer peripheral portion 28 of the electromagnetic steel plate 14 is constrained in the radial direction, and the radial center portion of the radial bridge portion 26 (shaded portion in FIG. 3). In a state in which the radial direction is constrained in the circumferential direction, the radially central portion of the radial bridge portion 26 is plastically deformed in the axial direction.

すなわち、図8に示されるように、電磁鋼板14を形成する際に、電磁鋼板14を複数積層させることで電磁鋼板14の全体を軸方向に拘束した状態で(図8の一点鎖線部分が拘束部)、径方向ブリッジ部26における径方向中央側の部位を周方向に塑性変形させても良い。   That is, as shown in FIG. 8, when the electromagnetic steel sheet 14 is formed, a plurality of the electromagnetic steel sheets 14 are stacked to restrain the entire electromagnetic steel sheet 14 in the axial direction (the one-dot chain line portion in FIG. Part), the radial center portion of the radial bridge 26 may be plastically deformed in the circumferential direction.

このようにしても、電磁鋼板14を、径方向ブリッジ部26の径方向両端部に残留圧縮応力が付加された構成とすることができる。   Even in this case, the electromagnetic steel sheet 14 can be configured such that residual compressive stress is applied to both radial ends of the radial bridge portion 26.

また、この構成とすれば、電磁鋼板14を形成する際に、複数の電磁鋼板14を同時に加工することができるので、製造コストを低減できる。   Moreover, if it is set as this structure, since the several electromagnetic steel plate 14 can be processed simultaneously when forming the electromagnetic steel plate 14, manufacturing cost can be reduced.

また、上記実施形態において、電磁鋼板14は、径方向ブリッジ部26の径方向両端部に残留圧縮応力が付加された構成とされていたが、次のように構成されていても良い。   Moreover, in the said embodiment, although the electromagnetic steel plate 14 was set as the structure by which the residual compressive stress was added to the radial direction both ends of the radial bridge part 26, you may be comprised as follows.

すなわち、電磁鋼板14は、電磁鋼板14における外周部28が電磁鋼板14の径方向に拘束されると共に、空隙24の内壁部が拘束されることで(図9の一点鎖線部分が拘束部)、周方向ブリッジ部30における周方向中央側の部位(図9における斜線部位)が径方向に拘束され、この状態で、この周方向ブリッジ部30における周方向中央側の部位が軸方向に塑性変形されることで、周方向ブリッジ部30の周方向両端部のR部34に残留圧縮応力が付加された構成とされていても良い。このようにしても、遠心力に対する耐性を向上させることができる。   That is, the magnetic steel sheet 14 is such that the outer peripheral portion 28 of the electromagnetic steel sheet 14 is constrained in the radial direction of the magnetic steel sheet 14 and the inner wall portion of the gap 24 is constrained (the dashed line portion in FIG. 9 is the constrained portion). The circumferentially central portion of the circumferential bridge portion 30 (shaded portion in FIG. 9) is constrained in the radial direction, and in this state, the circumferentially central portion of the circumferential bridge portion 30 is plastically deformed in the axial direction. Thus, the configuration may be such that residual compressive stress is applied to the R portions 34 at both ends in the circumferential direction of the circumferential bridge portion 30. Even if it does in this way, the tolerance with respect to a centrifugal force can be improved.

また、電磁鋼板14は、径方向ブリッジ部26の径方向両端部と、周方向ブリッジ部30の周方向端部とに残留圧縮応力がそれぞれ付加された構成とされていても良い。このようにすると、遠心力に対する耐性をより向上させることができる。   Further, the electromagnetic steel sheet 14 may be configured such that residual compressive stress is added to both the radial end portions of the radial bridge portion 26 and the circumferential end portion of the circumferential bridge portion 30. If it does in this way, the tolerance with respect to a centrifugal force can be improved more.

また、上記実施形態において、回転電機10は、固定子の径方向内側に回転子12を備えた、いわゆるインナロータモータとされていたが、固定子の径方向外側に回転子12を備えた、いわゆるアウタロータモータとされていても良い。   Moreover, in the said embodiment, although the rotary electric machine 10 was made into what is called an inner rotor motor provided with the rotor 12 at the radial inside of the stator, it was equipped with the rotor 12 at the radial outside of the stator. It may be a so-called outer rotor motor.

また、上記実施形態において、回転電機10は、回転子12に永久磁石20を備えた、いわゆる永久磁石モータとされていたが、回転子12に永久磁石20を備えない、いわゆるシンクロナスリランクタンスモータとされていても良い。   In the above embodiment, the rotating electrical machine 10 is a so-called permanent magnet motor in which the rotor 12 is provided with the permanent magnet 20. It may be said.

本発明の一実施形態に係る回転電機の要部構成を示す図である。It is a figure which shows the principal part structure of the rotary electric machine which concerns on one Embodiment of this invention. 電磁鋼板を形成するための加工装置を示す図である。It is a figure which shows the processing apparatus for forming an electromagnetic steel plate. 加工装置により加工される際の電磁鋼板における拘束位置と塑性変形位置を示す図である。It is a figure which shows the restraint position and plastic deformation position in an electromagnetic steel plate at the time of processing with a processing apparatus. 加工装置により加工された電磁鋼板を示す図である。It is a figure which shows the electromagnetic steel plate processed with the processing apparatus. 電磁鋼板についてのFEMによる解析結果を示す図である。It is a figure which shows the analysis result by FEM about an electromagnetic steel plate. 径方向ブリッジ部の径方向両端部に形成されたR部の応力解析における節点位置を示す図である。It is a figure which shows the node position in the stress analysis of the R part formed in the radial direction both ends of a radial bridge part. (A)は径方向ブリッジ部の径方向両端部に残留圧縮応力が付加された場合のR部の各節点についての応力計算結果を示す図、(B)は径方向ブリッジ部の径方向両端部に残留圧縮応力が付加されていない場合のR部の各節点についての応力計算結果を示す図である。(A) is a figure which shows the stress calculation result about each node of R part when a residual compressive stress is added to the radial direction both ends of a radial bridge part, (B) is the radial direction both ends of a radial bridge part It is a figure which shows the stress calculation result about each node of R part when the residual compressive stress is not added to. 電磁鋼板の径方向ブリッジ部を塑性加工する際の変形例を示す図である。It is a figure which shows the modification at the time of carrying out plastic working of the radial direction bridge | bridging part of an electromagnetic steel plate. 電磁鋼板の周方向ブリッジ部を塑性加工する変形例を示す図である。It is a figure which shows the modification which plastically processes the circumferential direction bridge | bridging part of an electromagnetic steel plate.

符号の説明Explanation of symbols

10 回転電機
12 回転子
14 電磁鋼板
16 電磁鋼板積層体
22,24 空隙
26 径方向ブリッジ部
28 外周部
30 周方向ブリッジ部
DESCRIPTION OF SYMBOLS 10 Rotating electrical machine 12 Rotor 14 Electrical steel plate 16 Electrical steel plate laminated body 22, 24 Air gap 26 Radial direction bridge part 28 Outer part 30 Circumferential direction bridge part

Claims (7)

回転中心部に対し径方向外側に離間した位置に空隙が設けられた電磁鋼板が軸方向に複数積層された電磁鋼板積層体を有する回転電機の回転子において、
前記電磁鋼板は、前記空隙を形成している縁部を含み回転時に遠心力が作用したことに伴って引張応力が生じ得る部位に、残留圧縮応力が付加された構成とされている、
ことを特徴とする回転電機の回転子。
In a rotor of a rotating electrical machine having an electrical steel sheet laminate in which a plurality of electrical steel sheets provided with gaps in the radial direction with respect to the rotation center portion are laminated in the axial direction,
The electromagnetic steel sheet is configured such that residual compressive stress is added to a portion where tensile stress can occur due to centrifugal force acting at the time of rotation including an edge portion forming the gap.
A rotor of a rotating electrical machine characterized by that.
前記電磁鋼板は、周方向に並んで配置された前記空隙間に、径方向に延びる径方向ブリッジ部を有すると共に、前記径方向ブリッジ部の径方向端部に残留圧縮応力が付加された構成とされている、
ことを特徴とする請求項1に記載の回転電機の回転子。
The electromagnetic steel sheet has a radial bridge portion extending in the radial direction between the gaps arranged side by side in the circumferential direction, and a configuration in which residual compressive stress is added to a radial end portion of the radial bridge portion; Being
The rotor for a rotating electrical machine according to claim 1.
前記電磁鋼板は、外周部が径方向に拘束されると共に、前記径方向ブリッジ部における径方向中央側の部位が周方向に拘束された状態で、前記径方向ブリッジ部における径方向中央側の部位が軸方向に塑性変形されることで、前記径方向ブリッジ部の径方向端部に残留圧縮応力が付加された構成とされている、
ことを特徴とする請求項2に記載の回転電機の回転子。
The electromagnetic steel sheet has a radially central portion in the radial bridge portion in a state in which a peripheral portion is constrained in the radial direction and a radially central portion in the radial bridge portion is constrained in the circumferential direction. It is configured such that residual compressive stress is applied to the radial end portion of the radial bridge portion by being plastically deformed in the axial direction.
The rotor for a rotating electrical machine according to claim 2.
前記電磁鋼板は、複数積層された状態で、前記径方向ブリッジ部における径方向中央側の部位が周方向に塑性変形されることで、前記径方向ブリッジ部の径方向端部に残留圧縮応力が付加された構成とされている、
ことを特徴とする請求項2に記載の回転電機の回転子。
In a state where a plurality of the electromagnetic steel sheets are stacked, a residual compressive stress is generated at a radial end portion of the radial bridge portion by plastically deforming a radial central portion of the radial bridge portion in the circumferential direction. It is supposed to be added configuration,
The rotor for a rotating electrical machine according to claim 2.
前記電磁鋼板は、前記空隙と外周部との間に、周方向に延びる周方向ブリッジ部を有すると共に、前記周方向ブリッジ部の周方向端部に残留圧縮応力が付加された構成とされている、
ことを特徴とする請求項1〜請求項4のいずれか一項に記載の回転電機の回転子。
The electromagnetic steel sheet has a circumferential bridge portion extending in the circumferential direction between the gap and the outer peripheral portion, and a residual compressive stress is applied to a circumferential end portion of the circumferential bridge portion. ,
The rotor for a rotating electrical machine according to any one of claims 1 to 4, wherein the rotor is a rotating electrical machine.
前記電磁鋼板は、前記周方向ブリッジ部における周方向中央側の部位が径方向に拘束された状態で、前記周方向ブリッジ部における周方向中央側の部位が軸方向に塑性変形されることで、前記周方向ブリッジ部の周方向端部に残留圧縮応力が付加された構成とされている、
ことを特徴とする請求項5に記載の回転電機の回転子。
The electromagnetic steel sheet is plastically deformed in the axial direction at the circumferential central portion of the circumferential bridge portion in a state where the circumferential central portion of the circumferential bridge portion is constrained in the radial direction. Residual compressive stress is added to the circumferential end of the circumferential bridge portion.
The rotor for a rotating electrical machine according to claim 5.
請求項1〜請求項6のいずれか一項に記載の回転電機の回転子を備えた、
ことを特徴とする回転電機。
A rotating electrical machine rotor according to any one of claims 1 to 6,
Rotating electric machine characterized by that.
JP2007326322A 2007-12-18 2007-12-18 Rotor for rotating electrical machines and rotating electrical machine Pending JP2009153236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326322A JP2009153236A (en) 2007-12-18 2007-12-18 Rotor for rotating electrical machines and rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326322A JP2009153236A (en) 2007-12-18 2007-12-18 Rotor for rotating electrical machines and rotating electrical machine

Publications (1)

Publication Number Publication Date
JP2009153236A true JP2009153236A (en) 2009-07-09

Family

ID=40921688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326322A Pending JP2009153236A (en) 2007-12-18 2007-12-18 Rotor for rotating electrical machines and rotating electrical machine

Country Status (1)

Country Link
JP (1) JP2009153236A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029524A (en) * 2010-07-27 2012-02-09 Fuji Electric Co Ltd Permanent-magnet rotating machine
JP2012039775A (en) * 2010-08-09 2012-02-23 Hitachi Ltd Permanent magnet type rotary electric machine
JP2015173582A (en) * 2014-02-24 2015-10-01 株式会社三井ハイテック Method for punching iron core piece, and laminated iron core obtained by laminating the iron core pieces
DE102016209709A1 (en) * 2016-06-02 2017-12-21 Volkswagen Aktiengesellschaft rotor core

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029524A (en) * 2010-07-27 2012-02-09 Fuji Electric Co Ltd Permanent-magnet rotating machine
JP2012039775A (en) * 2010-08-09 2012-02-23 Hitachi Ltd Permanent magnet type rotary electric machine
JP2015173582A (en) * 2014-02-24 2015-10-01 株式会社三井ハイテック Method for punching iron core piece, and laminated iron core obtained by laminating the iron core pieces
US9948153B2 (en) 2014-02-24 2018-04-17 Mitsui High-Tec, Inc. Stacked core having a plurality of core pieces and a bridge portion
US10784732B2 (en) 2014-02-24 2020-09-22 Mitsui High-Tec, Inc. Method of punching a core piece having a bridge
DE102016209709A1 (en) * 2016-06-02 2017-12-21 Volkswagen Aktiengesellschaft rotor core

Similar Documents

Publication Publication Date Title
JP4886375B2 (en) Laminated core manufacturing method
JP6683428B2 (en) Method for manufacturing laminated core processed body and method for manufacturing laminated core
JP2008199831A (en) Motor manufacturing method, and motor, compressor and vehicle using the manufacturing method
JP2008086187A (en) End plate of electric motor
JP6798572B2 (en) Manufacturing method of stator, rotary electric machine, steel plate, and manufacturing method of stator
JPWO2016093267A1 (en) Stator manufacturing method, rotating electrical machine manufacturing method, and iron core block
JP2009153236A (en) Rotor for rotating electrical machines and rotating electrical machine
JP5190318B2 (en) Permanent magnet type laminated iron core and manufacturing method thereof
JP2011030320A (en) Dynamo-electric machine and method of manufacturing the same
JP6655409B2 (en) Laminated core and method of manufacturing laminated core
JP5638705B2 (en) Electric motor laminated core
JP2017208986A (en) Method for manufacturing laminated iron core for rotary electric machine
JP5899683B2 (en) Rotor and rotating electric machine equipped with rotor
JP6499528B2 (en) Rotating electrical machine rotor
JP6630123B2 (en) Laminated core and method of manufacturing the same
JP5495045B2 (en) Rotating electrical machine rotor
JP2011254699A (en) Method and device for manufacturing lamination core
JP5333502B2 (en) Rotating electrical machine rotor
JP4912088B2 (en) Manufacturing method and manufacturing apparatus of laminated iron core
JP2010110123A (en) Laminate core and manufacturing method thereof
JP5297147B2 (en) Manufacturing method of magnet mounted rotor core
JP2009095109A (en) Rotor for rotating electrical machines and rotating electrical machine
JP6456753B2 (en) Method and apparatus for manufacturing rotor laminated core
JP2017022849A (en) Rotor of rotary electric machine
JP5903545B2 (en) Core material, stator core, and motor including the stator core