JP2009152364A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2009152364A
JP2009152364A JP2007328672A JP2007328672A JP2009152364A JP 2009152364 A JP2009152364 A JP 2009152364A JP 2007328672 A JP2007328672 A JP 2007328672A JP 2007328672 A JP2007328672 A JP 2007328672A JP 2009152364 A JP2009152364 A JP 2009152364A
Authority
JP
Japan
Prior art keywords
semiconductor region
semiconductor
insulating film
electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007328672A
Other languages
Japanese (ja)
Other versions
JP5098630B2 (en
Inventor
Arata Shiomi
新 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2007328672A priority Critical patent/JP5098630B2/en
Priority to CN2008801110162A priority patent/CN101821853B/en
Priority to US12/682,383 priority patent/US8207612B2/en
Priority to EP08847499.4A priority patent/EP2209142B1/en
Priority to PCT/JP2008/067009 priority patent/WO2009060670A1/en
Publication of JP2009152364A publication Critical patent/JP2009152364A/en
Application granted granted Critical
Publication of JP5098630B2 publication Critical patent/JP5098630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which eliminates breakage withstand is ensured, breakage of an interlayer dielectric and an electrode associated with bonding, while ensuring bonding strength, and improves electrical characteristics, and also to provide a method of manufacturing such semiconductor device. <P>SOLUTION: A semiconductor element 1 mounted on the semiconductor device includes an interlayer dielectric 12 having an extending section 121, a connecting section 122 and an opening 123. The extending section 121 covers a gate electrode 116 and extends in a second direction. The connecting section 122 connects, at fixed intervals in the second direction, the extending sections 121 which are adjacent to each other in a firsts direction. The opening 123 has its opening shape defined by the extending section 121 and the connecting section 122 and exposes the main surface of a base region 112 and the main surface of an emitter region 113. A second width dimension 122W in the second direction below the connecting section 122 is set larger than a first width dimension 121W in the first direction in the emitter region 113 below the extending section 121 of the interlayer dielectric 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体装置及びその製造方法に関し、特に半導体素子の電極に外部配線が接続される半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device in which external wiring is connected to an electrode of a semiconductor element and a manufacturing method thereof.

IGBT(insulated gate bipolar transistor)、パワーMOSFET(metal oxide semiconductor field effect transistor)等の半導体素子(半導体チップ)は半導体装置に組み込まれる。この種の半導体素子は大電流を高速に制御することができるスイッチングデバイスである。   Semiconductor elements (semiconductor chips) such as IGBTs (insulated gate bipolar transistors) and power MOSFETs (metal oxide semiconductor field effect transistors) are incorporated in semiconductor devices. This type of semiconductor element is a switching device that can control a large current at high speed.

半導体素子例えばIGBTは、コレクタ領域と、ベース領域と、エミッタ領域と、ゲート絶縁膜と、ゲート電極とを備えている。コレクタ領域は、基板の一方の主面上にエピタキシャル成長又は基板の一方の主面部に拡散等により形成されている。ベース領域は、基板の他方の主面部に形成されている。エミッタ領域は、ベース領域の表面部に形成されている。ゲート絶縁膜は少なくともベース領域の表面に形成されており、ゲート電極はゲート絶縁膜上に形成されている。   A semiconductor element such as an IGBT includes a collector region, a base region, an emitter region, a gate insulating film, and a gate electrode. The collector region is formed by epitaxial growth on one main surface of the substrate or diffusion or the like on one main surface portion of the substrate. The base region is formed on the other main surface portion of the substrate. The emitter region is formed on the surface portion of the base region. The gate insulating film is formed at least on the surface of the base region, and the gate electrode is formed on the gate insulating film.

ゲート電極がストライプ状に形成されることにより、高耐圧でかつゲート容量を小さくすることができる。この構造を採用するIGBTにおいては、ゲート電極がゲート長方向に向かって基板主面上を延伸し、このゲート電極がゲート幅方向に一定間隔において複数配列され、上方から見てゲート幅方向にゲート電極を挟み込むようにエミッタ領域及びベース領域の表面の一部がゲート長方向にストライプ状に露出する。この表面が露出されたエミッタ領域及びベース領域にはエミッタ電極(エミッタ配線)が電気的に接続される。エミッタ電極はゲート電極との間に挟まれた層間絶縁膜上に形成されており、層間絶縁膜はゲート電極上を覆うとともに上述のエミッタ領域及びベース領域の一部が露出した領域上(に対応する箇所)においてゲート長方向にストライプ状の開口(コンタクト開口)を備えている。つまり、ゲート幅方向に切断した断面において、上述の開口によって隣り合う層間絶縁膜同士に隙間を有する凸状の層間絶縁膜の平面形状はゲート電極の平面形状と同様にストライプ形状になる。このようなストライプ構造を採用するIGBTは、エミッタ領域及びベース領域とエミッタ電極との間のコンタクト面積を増加し、電流容量を増大することができるので、電界集中の発生を減少し、大電流化並びに高耐圧化を実現することができる。   By forming the gate electrode in a stripe shape, a high breakdown voltage and a small gate capacitance can be achieved. In an IGBT employing this structure, the gate electrode extends on the main surface of the substrate in the gate length direction, and a plurality of gate electrodes are arranged at regular intervals in the gate width direction. A part of the surface of the emitter region and the base region is exposed in a stripe shape in the gate length direction so as to sandwich the electrode. An emitter electrode (emitter wiring) is electrically connected to the emitter region and the base region where the surface is exposed. The emitter electrode is formed on an interlayer insulating film sandwiched between the gate electrode, and the interlayer insulating film covers the gate electrode and corresponds to a region where the above-mentioned emitter region and base region are partially exposed (corresponding to Striped openings (contact openings) in the gate length direction. That is, in the cross-section cut in the gate width direction, the planar shape of the convex interlayer insulating film having a gap between adjacent interlayer insulating films due to the above-described opening is a stripe shape similar to the planar shape of the gate electrode. An IGBT adopting such a stripe structure can increase the contact area between the emitter region and the base region and the emitter electrode and increase the current capacity, thereby reducing the occurrence of electric field concentration and increasing the current. In addition, a high breakdown voltage can be realized.

IGBTのエミッタ電極はボンディングワイヤを通してエミッタ用リード(外部端子)に電気的に接続され、ゲート電極にも同様にボンディングワイヤを通してゲート用リードが電気的に接続される。コレクタ領域は例えば基板の他方の主面に設けられたコレクタ電極がコレクタ用リードに電気的に接続される。ボンディングワイヤは、一般的にワイヤボンディング装置を使用し、超音波振動を併用した熱圧着によりボンディングされている。そして、IGBTは各リードのインナー部とともに樹脂封止され、半導体装置として組み立てられる。   The emitter electrode of the IGBT is electrically connected to the emitter lead (external terminal) through a bonding wire, and the gate lead is also electrically connected to the gate electrode through the bonding wire. In the collector region, for example, a collector electrode provided on the other main surface of the substrate is electrically connected to a collector lead. Bonding wires are generally bonded by thermocompression bonding using ultrasonic vibration using a wire bonding apparatus. The IGBT is resin-sealed together with the inner part of each lead and assembled as a semiconductor device.

なお、この種の半導体装置に関しては、例えば下記特許文献1及び特許文献2に記載されている。
特開平10−22322号公報 特開2002−222826号公報
This type of semiconductor device is described in, for example, Patent Document 1 and Patent Document 2 below.
Japanese Patent Laid-Open No. 10-22322 JP 2002-222826 A

しかしながら、前述の半導体装置においては、以下の点について配慮がなされていなかった。ストライプ構造を有するIGBTの直上のエミッタ電極に直接ボンディングワイヤが超音波振動のエネルギによりボンディングされると、層間絶縁膜やその下のIGBT(セル)のゲート電極に剥がれや破壊が生じる。詳細には、IGBTにおいては、ゲート電極及び層間絶縁膜の平面形状がゲート長方向に細長いストライプ形状を備えているので、ゲート電極及び層間絶縁膜の機械的強度が弱く、かつ下地との接着面積が少なく、しかも基板主面から突出した形状であるために、ボンディングワイヤがボンディングされた際に、層間絶縁膜やゲート電極に剥がれや破壊が生じる。特に、層間絶縁膜にゲート幅方向の応力が生じると上記問題が生じ易い。   However, in the semiconductor device described above, no consideration has been given to the following points. When a bonding wire is bonded directly to the emitter electrode directly above the IGBT having a stripe structure by the energy of ultrasonic vibration, the interlayer insulating film and the gate electrode of the IGBT (cell) below it are peeled off or broken. Specifically, in the IGBT, since the planar shape of the gate electrode and the interlayer insulating film has a stripe shape elongated in the gate length direction, the mechanical strength of the gate electrode and the interlayer insulating film is weak, and the bonding area with the base In addition, since the shape protrudes from the main surface of the substrate, the interlayer insulating film and the gate electrode are peeled off or broken when the bonding wire is bonded. In particular, the above problem is likely to occur when stress in the gate width direction is generated in the interlayer insulating film.

本発明は上記課題を解決するためになされたものである。従って、本発明は、破壊耐量を確保することができるとともに、ボンディング強度を確保しつつ、ボンディングに伴う層間絶縁膜の破壊や電極の破壊を防止することができる半導体装置及びその製造方法を提供することである。更に、本発明は、半導体素子の電気的特性が良好な半導体装置及びその製造方法を提供することである。更に、本発明は、製造コストを削減することができる半導体装置及びその製造方法を提供することである。   The present invention has been made to solve the above problems. Accordingly, the present invention provides a semiconductor device and a method for manufacturing the same that can ensure breakdown resistance and can prevent breakdown of an interlayer insulating film and electrodes due to bonding while ensuring bonding strength. That is. Furthermore, this invention is providing the semiconductor device with the favorable electrical property of a semiconductor element, and its manufacturing method. Furthermore, this invention is providing the semiconductor device which can reduce manufacturing cost, and its manufacturing method.

上記課題を解決するために、本発明の実施の形態に係る第1の特徴は、半導体装置において、第1の導電型の第1の半導体領域と、第1の方向に複数配設され、第1の主面を露出し、第1の導電型と反対導電型の第2の導電型を有する第2の半導体領域と、第2の半導体領域内において第1の方向に複数配設され、かつ第2の半導体領域内に第2の主面が露出され、第1の導電型を有する第3の半導体領域と、第2の半導体領域の第3の半導体領域と第1の方向に隣り合う他の第2の半導体領域の他の第3の半導体領域との間に渡って配設された制御電極と、制御電極上を覆い第1の方向と交差する第2の方向に延伸する延伸部、第1の方向に隣り合う延伸部同士を第2の方向に一定間隔において連結する連結部及び延伸部と連結部とにより開口形状が規定され第2の半導体領域の第1の主面と第3の半導体領域の第2の主面とを露出する開口部を有する層間絶縁膜と、層間絶縁膜上に配設され、層間絶縁膜の開口部を通して第2の半導体領域の第1の主面及び第3の半導体領域の第2の主面に電気的に接続された電極と、を備え、延伸部下における第3の半導体領域の第1の方向の第1の幅寸法に比べて、連結部下における第3の半導体領域の第2の方向の第2の幅寸法が大きいことである。   In order to solve the above-described problem, a first feature according to an embodiment of the present invention is that a semiconductor device includes a first semiconductor region of a first conductivity type and a plurality of first semiconductor regions arranged in a first direction. A plurality of second semiconductor regions having a second conductivity type opposite to the first conductivity type and having a second conductivity type opposite to the first conductivity type, and a plurality of layers disposed in the first direction in the second semiconductor region; The second main surface is exposed in the second semiconductor region, the third semiconductor region having the first conductivity type, and the third semiconductor region of the second semiconductor region adjacent to each other in the first direction. A control electrode disposed between the second semiconductor region and the other third semiconductor region, and an extending portion covering the control electrode and extending in a second direction intersecting the first direction, By the connecting part and the extending part and the connecting part that connect the extending parts adjacent to each other in the first direction at a constant interval in the second direction. An interlayer insulating film having a mouth shape and having an opening exposing the first main surface of the second semiconductor region and the second main surface of the third semiconductor region, and disposed on the interlayer insulating film; An electrode electrically connected to the first main surface of the second semiconductor region and the second main surface of the third semiconductor region through the opening of the interlayer insulating film, and a third semiconductor under the extending portion The second width dimension in the second direction of the third semiconductor region under the connecting portion is larger than the first width dimension in the first direction of the region.

また、第1の特徴に係る半導体装置において、開口部が第3の半導体領域を貫通していることが好ましい。   In the semiconductor device according to the first feature, it is preferable that the opening portion penetrates the third semiconductor region.

また、第1の特徴に係る半導体装置において、第1の幅寸法と第2の幅寸法とが、
第2の幅寸法 < 2.0×第1の幅寸法〜2.6×第1の幅寸法
の関係式を満たすことが好ましい。
In the semiconductor device according to the first feature, the first width dimension and the second width dimension are:
It is preferable that the relational expression of the second width dimension <2.0 × first width dimension−2.6 × first width dimension is satisfied.

また、第1の特徴に係る半導体装置において、第2の半導体領域の第3の半導体領域と第1の方向に隣り合う他の第2の半導体領域の他の第3の半導体領域との間において、第2の半導体領域の第1の主面から第1の半導体領域側に第2の半導体領域を貫通して配設され、第2の方向に延伸する穴と、穴の側面及び穴の底面に配設された絶縁膜と、を更に備え、制御電極は、穴に絶縁膜を介在して埋設されることが好ましい。   In the semiconductor device according to the first feature, between the third semiconductor region of the second semiconductor region and another third semiconductor region of another second semiconductor region adjacent in the first direction. A hole extending through the second semiconductor region from the first main surface of the second semiconductor region to the first semiconductor region side and extending in the second direction, a side surface of the hole, and a bottom surface of the hole It is preferable that the control electrode is embedded in the hole with the insulating film interposed therebetween.

また、第1の特徴に係る半導体装置において、層間絶縁膜の連結部は電極のボンディングエリアの直下の領域に配設されていることが好ましい。   Moreover, in the semiconductor device according to the first feature, the connecting portion of the interlayer insulating film is preferably disposed in a region immediately below the bonding area of the electrode.

本発明の実施の形態に係る第2の特徴は、半導体装置の製造方法において、第1の導電型の第1の半導体領域と、第1の方向に複数配設され、第1の主面を露出し、第1の導電型と反対導電型の第2の導電型を有する第2の半導体領域と、第2の半導体領域内において第1の方向に複数配設され、かつ第2の半導体領域内に第2の主面が露出され、第1の導電型を有する第3の半導体領域と、第2の半導体領域の第3の半導体領域と第1の方向に隣り合う他の第2の半導体領域の他の第3の半導体領域との間に渡って配設された制御電極と、を形成する工程と、制御電極上を覆い第1の方向と交差する第2の方向に延伸する延伸部、ボンディングエリアの直下の領域に第1の方向に隣り合う延伸部同士を第2の方向に一定間隔において連結する連結部、及び延伸部と連結部とにより開口形状が規定され、第2の半導体領域の第1の主面と第3の半導体領域の第2の主面とを露出する開口部を有し、開口部により延伸部下における第3の半導体領域の第1の方向の第1の幅寸法に比べて連結部下における第3の半導体領域の第2の方向の第2の幅寸法を大きくする層間絶縁膜を形成する工程と、層間絶縁膜上に配設され、層間絶縁膜の開口部を通して第2の半導体領域の第1の主面及び第3の半導体領域の第2の主面に電気的に接続された電極を形成する工程と、ボンディングエリアにおいて電極上にこの電極に電気的に接続される外部配線を形成する工程とを備える。   A second feature according to the embodiment of the present invention is that, in the method of manufacturing a semiconductor device, a plurality of first semiconductor regions of the first conductivity type and a plurality of first semiconductor regions are arranged in the first direction. A second semiconductor region exposed and having a second conductivity type opposite to the first conductivity type, and a plurality of second semiconductor regions disposed in the first direction in the second semiconductor region, and the second semiconductor region A second semiconductor surface having a second main surface exposed therein and having a first conductivity type; and another second semiconductor adjacent to the third semiconductor region of the second semiconductor region in the first direction. Forming a control electrode disposed between the other third semiconductor region and the extending portion extending over the control electrode and extending in a second direction that intersects the first direction The extending portions adjacent to each other in the first direction are connected to the region immediately below the bonding area in the second direction at regular intervals. An opening shape is defined by the connecting portion and the extending portion and the connecting portion, and has an opening that exposes the first main surface of the second semiconductor region and the second main surface of the third semiconductor region, An interlayer insulating film that increases the second width dimension in the second direction of the third semiconductor region under the coupling portion by using the opening compared to the first width dimension in the first direction of the third semiconductor region under the extension portion. And electrically connecting to the first main surface of the second semiconductor region and the second main surface of the third semiconductor region through the opening of the interlayer insulating film. Forming a formed electrode, and forming an external wiring electrically connected to the electrode on the electrode in the bonding area.

本発明によれば、破壊耐量を比較的確保しつつ、ボンディング強度を確保し、ボンディングに伴う層間絶縁膜の破壊や電極の剥がれや破壊を防止することができる半導体装置及びその製造方法を提供することができる。更に、本発明によれば、半導体素子の電気的特性が良好な半導体装置及びその製造方法を提供することができる。更に、本発明によれば、製造コストを削減することができる半導体装置及びその製造方法を提供することができる。   According to the present invention, there are provided a semiconductor device and a method for manufacturing the same that can ensure a bonding strength while ensuring a relatively high breakdown strength and can prevent a breakdown of an interlayer insulating film, an electrode peeling and a breakdown due to bonding. be able to. Furthermore, according to the present invention, it is possible to provide a semiconductor device having good electrical characteristics of a semiconductor element and a method for manufacturing the same. Furthermore, according to the present invention, it is possible to provide a semiconductor device and a manufacturing method thereof that can reduce manufacturing costs.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、現実のものとは異なる。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic and different from actual ones. In addition, there may be a case where the dimensional relationships and ratios are different between the drawings.

また、以下に示す実施の形態はこの発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は各構成部品の配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。   Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is to arrange the components and the like as follows. Not specific. The technical idea of the present invention can be variously modified within the scope of the claims.

(第1の実施の形態)
本発明の第1の実施の形態は、トレンチ構造を有するIGBTからなる半導体素子を搭載した電力用半導体装置及びその製造方法に本発明を適用した例を説明するものである。
(First embodiment)
The first embodiment of the present invention describes an example in which the present invention is applied to a power semiconductor device on which a semiconductor element made of IGBT having a trench structure is mounted and a manufacturing method thereof.

[半導体素子(IGBT)のデバイス構造]
図1乃至図6に示すように、第1の実施の形態に係る半導体装置に搭載された半導体素子(半導体チップ)1は、第1の方向(X方向)に延伸する第1の辺101及びそれと対向する第2の辺102と第1の方向と交差する第2の方向(Y方向)に延伸する第3の辺103及びそれに対向する第4の辺104とを有し、第1の主面を露出し、かつ第1の導電型を有する第1の半導体領域(基板)111(特に図3及び図6参照。)と、第1の半導体領域111上において第1の方向に複数配設され、かつ第2の主面を露出して配設され、第1の導電型とは反対の第2の導電型を有する第2の半導体領域112と、第2の半導体領域112内において第1の方向に複数配設され、かつ第2の半導体領域112の第2の主面側に第3の主面が露出され、第1の導電型を有する第3の半導体領域(エミッタ領域)113と、第2の半導体領域112内の第3の半導体領域113と第1の方向に隣り合う他の第2の半導体領域112内の他の第3の半導体領域113との間に渡って配設されたゲート電極(制御電極)116と、ゲート電極116上を覆い第2の方向に延伸する延伸部121、第1の方向に隣り合う延伸部121同士を第2の方向に一定間隔において連結する連結部122及び延伸部121と連結部122とにより開口形状が規定され第2の半導体領域112の第2の主面と第3の半導体領域113の第3の主面とを露出する開口部123を有する層間絶縁膜12と、層間絶縁膜12上から層間絶縁膜12に配設された開口部123を通して第2の半導体領域112の第2の主面及び第3の半導体領域113の第3の主面に電気的に接続された電極(エミッタ電極)13とを備える。
[Device structure of semiconductor element (IGBT)]
As shown in FIGS. 1 to 6, the semiconductor element (semiconductor chip) 1 mounted on the semiconductor device according to the first embodiment includes a first side 101 extending in a first direction (X direction) and A second side 102 opposite to the first side; a third side 103 extending in a second direction (Y direction) intersecting the first direction; and a fourth side 104 opposite to the third side 103. A first semiconductor region (substrate) 111 having a surface exposed and having a first conductivity type (see FIGS. 3 and 6 in particular) and a plurality of semiconductor regions arranged in the first direction on the first semiconductor region 111 A second semiconductor region 112 having a second conductivity type opposite to the first conductivity type, the first main surface being exposed in the second semiconductor region 112. And a third main surface is exposed on the second main surface side of the second semiconductor region 112. A third semiconductor region (emitter region) 113 having the first conductivity type, and another second semiconductor region adjacent to the third semiconductor region 113 in the second semiconductor region 112 in the first direction. 112, the gate electrode (control electrode) 116 disposed between the other third semiconductor regions 113 in the 112, the extending portion 121 covering the gate electrode 116 and extending in the second direction, the first The extending portions 121 adjacent to each other in the direction are connected to each other in the second direction at regular intervals, and the opening shape is defined by the extending portions 121 and the connecting portions 122, and the second main surface of the second semiconductor region 112. The second semiconductor through the interlayer insulating film 12 having the opening 123 exposing the third main surface of the third semiconductor region 113 and the opening 123 provided in the interlayer insulating film 12 from above the interlayer insulating film 12. Second of region 112 And a third main surface electrode electrically connected to (emitter electrode) 13 side and the third semiconductor region 113.

そして、層間絶縁膜12をマスクとして第3の半導体領域113を貫通するように開口部123が続いている。図1及び図2に示すように、延伸部121下における或いは延伸部121と接触する第3の半導体領域113の第1の方向の第1の幅寸法121Wに比べて、連結部122下における或いは連結部122に接触する第3の半導体領域113の第2の方向の第2の幅寸法122Wが大きく設定されている。図1に示すように、第3の半導体領域113が貫通するまでエッチングされているため、第3の半導体領域113の第1の幅寸法121Wは、層間絶縁膜12の延伸部121の開口部123側の端部からゲート絶縁膜115までの間の寸法である。また、第3の半導体領域113の第2の幅寸法122Wは、連結部122の第3の半導体領域113と接触する主面側の幅寸法に相当する。   Then, an opening 123 continues through the third semiconductor region 113 using the interlayer insulating film 12 as a mask. As shown in FIG. 1 and FIG. 2, below the connecting portion 122, compared to the first width dimension 121 W in the first direction of the third semiconductor region 113 below the extending portion 121 or in contact with the extending portion 121. The second width dimension 122W in the second direction of the third semiconductor region 113 that is in contact with the connecting portion 122 is set to be large. As shown in FIG. 1, since etching is performed until the third semiconductor region 113 penetrates, the first width dimension 121 </ b> W of the third semiconductor region 113 is the opening 123 of the extending portion 121 of the interlayer insulating film 12. This is the dimension between the end portion on the side and the gate insulating film 115. Further, the second width dimension 122W of the third semiconductor region 113 corresponds to the width dimension of the main surface side of the connecting portion 122 that contacts the third semiconductor region 113.

半導体素子1はIGBT11であり、このIGBT11は、図3及び図4に示すように、第1の実施の形態において、トレンチゲート構造を有するIGBTにより構成されている。すなわち、IGBT11は、コレクタ領域(又はドレイン領域)であるp型の第4の半導体領域110(以下、コレクタ領域110という。)と、n型ベース領域でありかつn型の半導体領域である第1の半導体領域111(以下、ベース領域111という。)と、p型ベース領域であるp型の第2の半導体領域112(以下、ベース領域112という。)と、エミッタ領域であるn型の第3の半導体領域113(以下、エミッタ領域113という。)と、穴(トレンチ)114と、ゲート絶縁膜115と、ゲート電極116と、コレクタ領域110の下面全体に設けられたコレクタ電極(第1の電極)と、エミッタ電極(第2の電極)13とを備えて構成されている。ここで、「ゲート電極」とは、主電流の流れを制御することができる電極という意味において使用され、主電流の流れを制御することができる電極であれば、不純物が添加されたシリコン多結晶膜だけでなく、半導体領域、拡散領域、金属膜等の電極が少なくとも含まれる。   The semiconductor element 1 is an IGBT 11, and the IGBT 11 is composed of an IGBT having a trench gate structure in the first embodiment, as shown in FIGS. 3 and 4. That is, the IGBT 11 includes a p-type fourth semiconductor region 110 (hereinafter referred to as a collector region 110) that is a collector region (or a drain region) and a first n-type semiconductor region that is an n-type base region. Semiconductor region 111 (hereinafter referred to as base region 111), p-type second semiconductor region 112 (hereinafter referred to as base region 112) which is a p-type base region, and n-type third region as an emitter region. Semiconductor region 113 (hereinafter referred to as emitter region 113), hole (trench) 114, gate insulating film 115, gate electrode 116, and collector electrode (first electrode) provided on the entire lower surface of collector region 110. ) And an emitter electrode (second electrode) 13. Here, the “gate electrode” is used in the sense of an electrode capable of controlling the flow of the main current, and if it is an electrode capable of controlling the flow of the main current, silicon polycrystal doped with impurities In addition to the film, at least electrodes such as a semiconductor region, a diffusion region, and a metal film are included.

ベース領域(基板)111は、図6に示すように、第2の方向において対向する第1の辺101及び第2の辺102と、第1の方向において対向する第3の辺103及び第4の辺104とを有し、平面方形状により構成されている。ベース領域111は、この半導体素子1の製造プロセスにおいて、シリコン単結晶ウエーハによりIGBT(セル)11を製作した後に、ダイシング工程により切り出されたものであり、半導体チップである。ベース領域111の平面形状は必ずしもこの平面形状に限定されるものではないが、例えば、ベース領域111は第1の辺101及び第2の辺102を長辺、第3の辺103及び第4の辺104を短辺とする平面長方形により構成されている。   As shown in FIG. 6, the base region (substrate) 111 includes a first side 101 and a second side 102 that face each other in the second direction, and a third side 103 and a fourth side that face each other in the first direction. The side 104 is configured by a planar rectangular shape. The base region 111 is a semiconductor chip that is cut out by a dicing process after the IGBT (cell) 11 is manufactured by a silicon single crystal wafer in the manufacturing process of the semiconductor element 1. The planar shape of the base region 111 is not necessarily limited to this planar shape. For example, the base region 111 has the first side 101 and the second side 102 as the long side, the third side 103 and the fourth side. It is comprised by the plane rectangle which makes the edge | side 104 a short side.

ここで、第1の実施の形態において、「第1の方向」とは、図2中、図4中、図5中及び図6中の左右方向であり、「X方向」である。また、「第2の方向」とは、同図中の上下方向であり、「Y方向」である。   Here, in the first embodiment, the “first direction” is the left-right direction in FIGS. 2, 4, 5, and 6, and is the “X direction”. Further, the “second direction” is the vertical direction in the figure and is the “Y direction”.

図1乃至図6に示すように、第1の実施の形態に係る層間絶縁膜12の平面形状は、第1の電極13のボンディングエリア内において、第1の方向に一定間隔において配列され第2の方向に延伸する第2の電極13とゲート電極116との間に設けられた延伸部121と、それに隣り合う延伸部121を連結する連結部122と、開口部123とを有するメッシュ形状である。また、層間絶縁膜12の平面形状は、第1の電極13のボンディングエリア外において、第2の電極13とゲート電極116との間に設けられた延伸部121のみが形成されたストライプ形状である。   As shown in FIGS. 1 to 6, the planar shape of the interlayer insulating film 12 according to the first embodiment is arranged in the bonding direction of the first electrode 13 and arranged in the first direction at regular intervals. It has a mesh shape having an extending portion 121 provided between the second electrode 13 extending in the direction of the gate electrode 116 and the gate electrode 116, a connecting portion 122 connecting the extending portions 121 adjacent thereto, and an opening 123. . In addition, the planar shape of the interlayer insulating film 12 is a stripe shape in which only the extending portion 121 provided between the second electrode 13 and the gate electrode 116 is formed outside the bonding area of the first electrode 13. .

層間絶縁膜12の「メッシュ形状」とは、ゲート電極116(穴114)上に配設され、このゲート電極116が延在する第2の方向と同一方向に延在し、ゲート電極116と同様に第1の方向に一定間隔に配列した、平面形状がストライプ形状を有する延伸部121と、第1の方向において隣り合う延伸部121の間を相互に連結し一体に構成された連結部122と、第1の方向において隣り合う2本の延伸部121と第2の方向において隣接する2本の連結部122とに囲まれた領域内に形成された開口部123とを備えている。連結部122は第1の方向に隣り合う延伸部121間を第2の方向に一定間隔において連結しているので、第2の電極13のボンディングエリア内において層間絶縁膜12の延伸部121及びその直下のゲート電極116の機械的強度を向上することができる。特に、ボンディングの際に発生する応力(例えば超音波振動エネルギ)に対して、層間絶縁膜12の延伸部121及びその直下のゲート電極116の割れや剥がれを防止することができる。一方、層間絶縁膜12の連結部122は、第1の方向において隣り合う延伸部121間に設けられているが、連結部122が設けられているのは少なくともボンディングエリア内であるが、ボンディングエリア内においてメッシュ形状による開口123が配設されているので、エミッタ領域113と第2の電極13との間のコンタクト面積及び電流容量の減少を抑制しつつ、ボンディング強度を確保し、ボンディングに伴う層間絶縁膜12やゲート電極116の破壊や剥がれを防止することができる。また、これらの効果を層間絶縁膜12の開口パターンを変更することだけで達成することができ、製造プロセスを追加することがないため、製造が容易でありかつ製造コストが高くならない。第1の実施の形態において、層間絶縁膜12には具体的にシリコン酸化膜や燐ガラス(PSG)膜を実用的に使用することができ、この燐ガラス膜の膜厚は例えば0.5 μm−3.0 μmに設定されている。   The “mesh shape” of the interlayer insulating film 12 is disposed on the gate electrode 116 (hole 114), extends in the same direction as the second direction in which the gate electrode 116 extends, and is similar to the gate electrode 116. Extending portions 121 having a stripe shape in a planar shape, arranged at regular intervals in the first direction, and connecting portions 122 integrally connected to each other between adjacent extending portions 121 in the first direction. And an opening 123 formed in a region surrounded by two extending portions 121 adjacent in the first direction and two connecting portions 122 adjacent in the second direction. Since the connecting portion 122 connects the extending portions 121 adjacent in the first direction at a constant interval in the second direction, the extending portion 121 of the interlayer insulating film 12 and its extension within the bonding area of the second electrode 13. The mechanical strength of the gate electrode 116 immediately below can be improved. In particular, it is possible to prevent the extending portion 121 of the interlayer insulating film 12 and the gate electrode 116 immediately below it from being cracked or peeled off due to stress generated during bonding (for example, ultrasonic vibration energy). On the other hand, the connecting portion 122 of the interlayer insulating film 12 is provided between the extending portions 121 adjacent to each other in the first direction, but the connecting portion 122 is provided at least in the bonding area. Since the mesh-shaped opening 123 is disposed inside, the bonding area is secured while suppressing the reduction of the contact area and the current capacity between the emitter region 113 and the second electrode 13, and the interlayer accompanying the bonding. The insulating film 12 and the gate electrode 116 can be prevented from being broken or peeled off. In addition, these effects can be achieved only by changing the opening pattern of the interlayer insulating film 12, and a manufacturing process is not added, so that the manufacturing is easy and the manufacturing cost does not increase. In the first embodiment, a silicon oxide film or a phosphor glass (PSG) film can be practically used as the interlayer insulating film 12, and the film thickness of the phosphor glass film is, for example, 0.5 μm−3.0. It is set to μm.

ここで、層間絶縁膜12の開口部123の開口比率と不良発生率との因果関係が図7に示すように存在する。図7中、横軸は層間絶縁膜12の開口部123の開口比率、左縦軸はアバランシェ破壊による不良率(%)、右縦軸はワイヤボンディングのダメージによる不良率(%)である。ここで、層間絶縁膜12の開口部123をマスクとして第3の半導体領域113を貫通するエッチングを行っているので、開口比率は、図1及び図2に示す第3の半導体領域113の第1の幅寸法121Wに相当する層間絶縁膜12の延伸部121の第1の方向の幅寸法(=第1の幅寸法121W:延伸部121のゲート絶縁膜114の一端から最短距離にある開口部123端までの寸法)を、第3の半導体領域113の第2の幅寸法122Wに相当する連結部122の第2の方向の幅寸法(=第2の幅寸法122W)で割った値である。   Here, a causal relationship between the opening ratio of the opening 123 of the interlayer insulating film 12 and the defect occurrence rate exists as shown in FIG. In FIG. 7, the horizontal axis represents the opening ratio of the opening 123 of the interlayer insulating film 12, the left vertical axis represents the defect rate (%) due to avalanche breakdown, and the right vertical axis represents the defect rate (%) due to wire bonding damage. Here, since the etching is performed through the third semiconductor region 113 using the opening 123 of the interlayer insulating film 12 as a mask, the opening ratio is the first of the third semiconductor region 113 shown in FIGS. The width dimension in the first direction of the extended portion 121 of the interlayer insulating film 12 corresponding to the width dimension 121W (= first width dimension 121W: the opening 123 at the shortest distance from one end of the gate insulating film 114 of the extended portion 121. This is a value obtained by dividing the dimension to the end by the width dimension in the second direction of the connecting portion 122 (= second width dimension 122W) corresponding to the second width dimension 122W of the third semiconductor region 113.

層間絶縁膜12の開口部123の開口比率が増加する、つまり延伸部121の第1の幅寸法121Wに対して連結部122の第2の幅寸法122Wが増加すると、ワイヤボンディングのダメージに起因する不良率を減少することができる。図7に示す曲線Aにおいては開口比率が2.2、曲線Bにおいては開口比率が2.0で不良率が実効的にゼロになる。すなわち、層間絶縁膜12の延伸部121及びその直下のゲート電極116の割れや剥がれを防止することができる。曲線Aのワイヤボンディングの条件は、ボンディング荷重が1200 g/cm2、超音波振動エネルギ(超音波パワー)がファースト側で145 Hz、セカンド側で190 Hz、超音波振動時間がファースト側で120 msec、セカンド側で170 msecである。また、曲線Bのワイヤボンディングの条件は、ボンディング荷重が1200 g/cm2、超音波振動エネルギ(超音波パワー)がファースト側で145 Hz、セカンド側で180 Hz、超音波振動時間がファースト側で120 msec、セカンド側で170 msecである。 When the opening ratio of the opening 123 of the interlayer insulating film 12 increases, that is, when the second width 122W of the connecting portion 122 increases with respect to the first width 121W of the extending portion 121, it results from wire bonding damage. The defective rate can be reduced. In the curve A shown in FIG. 7, the aperture ratio is 2.2, and in the curve B, the aperture ratio is 2.0 and the defect rate is effectively zero. That is, the extension portion 121 of the interlayer insulating film 12 and the gate electrode 116 immediately below the extension portion 121 can be prevented from cracking or peeling. The wire bonding conditions of curve A are: bonding load is 1200 g / cm 2 , ultrasonic vibration energy (ultrasonic power) is 145 Hz on the first side, 190 Hz on the second side, ultrasonic vibration time is 120 msec on the first side The second side is 170 msec. Also, the wire bonding conditions of curve B are as follows. Bonding load is 1200 g / cm 2 , ultrasonic vibration energy (ultrasonic power) is 145 Hz on the first side, 180 Hz on the second side, and ultrasonic vibration time is on the first side. 120 msec, 170 msec on the second side.

一方、層間絶縁膜12の開口部123の開口比率が増加する、つまり延伸部121の第1の幅寸法121Wに対して連結部122の第2の幅寸法122Wが増加すると、曲線Cに示すように開口比率が2.6を境にアバランシェ破壊に起因する不良率が増大する。これは、開口部123において第3の半導体領域113が露出した領域上ではボンディングワイヤからの電流通路は最短となるが、連結部122の中央(例えば図2に符号Kで示す。)から第3の半導体領域113までの電流通路は長くなり、電流の動特性的なタイムラグが大きくなるためである。アバランシェ耐量は印加したエネルギをより広い部分に分散させて電流集中を緩和してかつ寄生トランジスタをONさせないことが重要である。その中で、第3の半導体領域113直下の第2の半導体領域112の抵抗を下げることが有効である。層間絶縁膜12をマスクとして第3の半導体領域113の一部を貫通するまでエッチングしているので、開口部123と第3の半導体領域113直下の第2の半導体領域112の抵抗とは密接な関係を有する。つまり、図7に示す因果関係に基づき、層間絶縁膜12の延伸部121の第1の幅寸法121Wに対して連結部122の第2の幅寸法122Wを大きく(第1の幅寸法121W<第2の幅寸法122W)設定すれば、ワイヤボンディングのダメージに起因する不良率を減少することができる。更に、ワイヤボンディングのダメージに起因する不良率を減少しつつ、アバランシェ破壊に起因する不良率を減少するには、層間絶縁膜12の延伸部121の第1の幅寸法121Wと連結部122の第2の幅寸法122Wとが以下の関係式を満たす必要がある。   On the other hand, when the opening ratio of the opening 123 of the interlayer insulating film 12 increases, that is, when the second width 122W of the connecting portion 122 increases with respect to the first width 121W of the extending portion 121, the curve C indicates On the other hand, the defect rate due to avalanche destruction increases when the opening ratio is 2.6. This is because the current path from the bonding wire is the shortest on the region where the third semiconductor region 113 is exposed in the opening 123, but the third from the center of the connecting portion 122 (for example, indicated by symbol K in FIG. 2). This is because the current path to the semiconductor region 113 becomes longer, and the current dynamic characteristic time lag increases. In the avalanche resistance, it is important to disperse the applied energy over a wider part to alleviate current concentration and not to turn on the parasitic transistor. Among them, it is effective to reduce the resistance of the second semiconductor region 112 immediately below the third semiconductor region 113. Since the etching is performed until part of the third semiconductor region 113 is penetrated using the interlayer insulating film 12 as a mask, the opening 123 and the resistance of the second semiconductor region 112 immediately below the third semiconductor region 113 are intimate. Have a relationship. That is, based on the causal relationship shown in FIG. 7, the second width dimension 122W of the connecting portion 122 is made larger than the first width dimension 121W of the extending portion 121 of the interlayer insulating film 12 (first width dimension 121W <first width dimension). If the width dimension 122W is set to 2, the defect rate due to wire bonding damage can be reduced. Furthermore, in order to reduce the defect rate due to the avalanche breakdown while reducing the defect rate due to the wire bonding damage, the first width dimension 121W of the extending portion 121 of the interlayer insulating film 12 and the first of the connecting portion 122 are reduced. The second width dimension 122W needs to satisfy the following relational expression.

第2の幅寸法 < 2.0×第1の幅寸法〜2.6×第1の幅寸法
上記式を満足する本発明の第1の実施の形態に係る他の寸法は、例えば以下の通りである(図2参照。)。
Second width dimension <2.0 × first width dimension to 2.6 × first width dimension Other dimensions according to the first embodiment of the present invention that satisfy the above formula are, for example, as follows (see FIG. 2).

1.穴114の穴幅(a):0.5 μm
2.穴114の配列ピッチ(b):2.0 μm
3.層間絶縁膜12の延伸部121の幅(121W):0.5 μm
4.層間絶縁膜12の連結部122の幅(122W):1.0 μm
5.連結部122の第1の方向の配列ピッチ(c):9.0 μm
6.穴114の穴の長さ(d):8.0 μm
7.第2の半導体領域112の不純物密度:6.0 ×1017 atoms/cm2
8.第2の半導体領域112の接合深さ:1.4 μm
9.第3の半導体領域113の不純物密度:5.0 ×1019 atoms/cm2
10.第3の半導体領域113の接合深さ:0.3 μm
11.ゲート電極116の幅寸法:0.5 μm
第1の実施の形態において、更に層間絶縁膜12の平面形状には、図5に示すように、第2の方向に一定間隔に配列された開口123と、それに対して第1の方向側に隣り合う開口123とがオフセットされたメッシュ形状となるように採用されることが望ましい。オフセット量は例えば2分の1配列ピッチである。
1. Hole width (a) of hole 114: 0.5 μm
2. Arrangement pitch of holes 114 (b): 2.0 μm
3. The width (121W) of the extending portion 121 of the interlayer insulating film 12: 0.5 μm
4). The width (122W) of the connecting portion 122 of the interlayer insulating film 12: 1.0 μm
5. Arrangement pitch (c) of connecting portions 122 in the first direction: 9.0 μm
6). Length of hole 114 (d): 8.0 μm
7). Impurity density of the second semiconductor region 112: 6.0 × 10 17 atoms / cm 2
8). Junction depth of the second semiconductor region 112: 1.4 μm
9. Impurity density of the third semiconductor region 113: 5.0 × 10 19 atoms / cm 2
10. Junction depth of the third semiconductor region 113: 0.3 μm
11. Width dimension of the gate electrode 116: 0.5 μm
In the first embodiment, the planar shape of the interlayer insulating film 12 further includes openings 123 arranged at regular intervals in the second direction, as shown in FIG. It is desirable that the adjacent openings 123 be adopted so as to have an offset mesh shape. The offset amount is, for example, a half arrangement pitch.

ここで、層間絶縁膜12の平面形状がメッシュ形状に設定される「第2の電極13のボンディングエリア」とは、第2の電極(エミッタ電極)13とエミッタ用リード(外部端子)とを電気的に接続するボンディングワイヤ(32)がボンディングされる領域である。第2の電極13上には保護膜14が配設され、図3に示すように保護膜14にはボンディングワイヤ(32)を第2の電極13と電気的に接続させるための開口141が配設されており、第2の電極13のボンディングエリアはこの保護膜14に配設される開口141の領域内である。   Here, the “bonding area of the second electrode 13” in which the planar shape of the interlayer insulating film 12 is set to a mesh shape means that the second electrode (emitter electrode) 13 and the emitter lead (external terminal) are electrically connected. This is the region where the bonding wire (32) to be connected is bonded. A protective film 14 is disposed on the second electrode 13, and an opening 141 for electrically connecting the bonding wire (32) to the second electrode 13 is disposed on the protective film 14 as shown in FIG. 3. The bonding area of the second electrode 13 is in the region of the opening 141 provided in the protective film 14.

第2の電極13のボンディングエリア外において層間絶縁膜12の平面形状はストライプ形状である。詳細には、層間絶縁膜12は、ゲート電極116(若しくは穴114)上に配設されこのゲート電極116が延在する第2の方向と同一方向に延在し、ゲート電極116の配列間隔と同様に第1の方向に一定間隔において複数配列された、平面形状がストライプ形状を有する延伸部121と、第1の方向において隣り合う延伸部121の間に挟まれ、第1の方向に一定間隔において複数配列された、平面ストライプ形状を有する開口部124とを備えている。第2の電極13のボンディングエリア外においては、ボンディングの際に発生する応力に対する機械的強度を高める必要はないので、第1の方向において隣り合う延伸部121間に連結部122は配設しなくてもよい。連結部122が配設されていない結果、開口部124の開口面積を増加することができるので、エミッタ領域113と第2の電極13との間のコンタクト面積及び電流容量を確保し、電界集中を防止することができる。   Outside the bonding area of the second electrode 13, the planar shape of the interlayer insulating film 12 is a stripe shape. Specifically, the interlayer insulating film 12 is disposed on the gate electrode 116 (or the hole 114) and extends in the same direction as the second direction in which the gate electrode 116 extends. Similarly, a plurality of arrayed portions 121 arranged in the first direction at constant intervals and sandwiched between the extending portions 121 whose planar shapes are stripe-shaped and adjacent extending portions 121 in the first direction, are spaced at constant intervals in the first direction. And a plurality of openings 124 having a planar stripe shape. Outside the bonding area of the second electrode 13, there is no need to increase the mechanical strength against the stress generated during bonding, so the connecting portion 122 is not disposed between the extending portions 121 adjacent in the first direction. May be. As a result of not providing the connecting portion 122, the opening area of the opening portion 124 can be increased, so that the contact area and the current capacity between the emitter region 113 and the second electrode 13 are ensured, and the electric field concentration is reduced. Can be prevented.

つまり、第2の電極(エミッタ電極)13は層間絶縁膜12上に配設されるとともに、第2の電極13のボンディングエリア内においては、第2の電極13は層間絶縁膜12の開口123を通してIGBT11に接続されている。第2の電極13のボンディングエリア外においては、第2の電極13は層間絶縁膜12の開口部124を通してIGBT11に接続されている。第2の電極13はエミッタ電極(又はソース電極)として使用され、この第2の電極13には例えばアルミニウム合金膜を使用することができる。アルミニウム合金膜は、アロイスパイクを防止するSi、マイグレーションを防止するCu等の添加物を添加したアルミニウムである。   That is, the second electrode (emitter electrode) 13 is disposed on the interlayer insulating film 12, and the second electrode 13 passes through the opening 123 of the interlayer insulating film 12 in the bonding area of the second electrode 13. It is connected to the IGBT 11. Outside the bonding area of the second electrode 13, the second electrode 13 is connected to the IGBT 11 through the opening 124 of the interlayer insulating film 12. The second electrode 13 is used as an emitter electrode (or source electrode), and an aluminum alloy film can be used for the second electrode 13, for example. The aluminum alloy film is aluminum to which additives such as Si for preventing alloy spikes and Cu for preventing migration are added.

図3に示すように、保護膜14は基板10の主面上の全域において第2の電極13上に配設されている。保護膜14には、図3乃至図6に示すように、素子領域において第2の電極13上のボンディングエリアに開口141が配設されている。また、保護膜14には、図6に示すように、素子領域において、IGBT11のゲート電極116に電気的に接続させるためのボンディング電極13Gが保護膜14の開口142によって露出されている。ゲート電極116のボンディング電極13Gは、第2の電極13と同一導電層において同一導電性材料により構成されている。保護膜14の開口141は図6に示すようにベース領域(基板)111の中央部分に配設され、開口142はベース領域111の第3の辺103の近傍に配設されている。開口142の平面面積は開口141の平面面積に比べて小さい。保護膜14には、例えばPIF(poly-imide film)等の樹脂膜やPSG膜を実用的に使用することができる。   As shown in FIG. 3, the protective film 14 is disposed on the second electrode 13 in the entire region on the main surface of the substrate 10. As shown in FIGS. 3 to 6, the protective film 14 has an opening 141 in a bonding area on the second electrode 13 in the element region. Further, as shown in FIG. 6, a bonding electrode 13 </ b> G for electrically connecting to the gate electrode 116 of the IGBT 11 is exposed through the opening 142 of the protective film 14 in the protective film 14. The bonding electrode 13 </ b> G of the gate electrode 116 is made of the same conductive material in the same conductive layer as the second electrode 13. As shown in FIG. 6, the opening 141 of the protective film 14 is disposed in the central portion of the base region (substrate) 111, and the opening 142 is disposed in the vicinity of the third side 103 of the base region 111. The planar area of the opening 142 is smaller than the planar area of the opening 141. For the protective film 14, for example, a resin film such as PIF (poly-imide film) or a PSG film can be used practically.

[半導体装置の組立構造]
図6に示すように、半導体装置201は、半導体素子1と、半導体素子1を搭載するダイボンディング領域21Dを有し第1の方向(X方向)に延在する第1のリード(コレクタ用外部端子)21と、第1のリード21の左側に配設され第2の方向に延在する第2のリード(ゲート用外部端子)22と、第1のリード21の右側に配設され第2の方向に延在する第3のリード(エミッタ用外部端子)23と、第2のリード22と半導体素子1のボンディング電極13Gとの間を電気的に接続するボンディングワイヤ31と、第3のリード23と半導体素子1の第2の電極13のボンディングエリアとの間を電気的に接続するボンディングワイヤ32と、封止体4とを備えている。
[Assembly structure of semiconductor device]
As shown in FIG. 6, the semiconductor device 201 includes a semiconductor element 1 and a first lead (collector external) having a die bonding region 21 </ b> D on which the semiconductor element 1 is mounted and extending in a first direction (X direction). Terminal) 21, a second lead (gate external terminal) 22 disposed on the left side of the first lead 21 and extending in the second direction, and a second lead disposed on the right side of the first lead 21. A third lead (external emitter terminal) 23 extending in the direction of, a bonding wire 31 for electrically connecting the second lead 22 and the bonding electrode 13G of the semiconductor element 1, and a third lead And a sealing body 4 and a bonding wire 32 that electrically connects the bonding area of the second electrode 13 of the semiconductor element 1 to the bonding area of the second electrode 13 of the semiconductor element 1.

第1のリード21、第2のリード22及び第3のリード23にはCu板、Fe−Ni合金板等を使用することができる。Cu板の表面にはNiめっきが施されていてもよい。   For the first lead 21, the second lead 22, and the third lead 23, a Cu plate, an Fe—Ni alloy plate, or the like can be used. The surface of the Cu plate may be plated with Ni.

図3及び図6には詳細に図示していないが、第1のリード21のダイボンディング領域21Dには導電性接着材を介在させて半導体素子1の裏面の第1の電極が電気的かつ機械的に接続されている。   Although not shown in detail in FIGS. 3 and 6, a conductive adhesive is interposed in the die bonding region 21D of the first lead 21 so that the first electrode on the back surface of the semiconductor element 1 is electrically and mechanically. Connected.

ボンディングワイヤ31は半導体素子1の保護膜14に形成された開口142を通してボンディング電極13Gに電気的に接続されている。同様に、ボンディングワイヤ32は基板10上の保護膜14に形成された開口141を通して電極13に電気的に接続されている。ボンディングワイヤ31及び32には例えばAu、Lu、Al等のワイヤを実用的に使用することができ、このワイヤはボンディング装置を用い超音波振動に熱圧着を併用してボンディングされる。   The bonding wire 31 is electrically connected to the bonding electrode 13G through the opening 142 formed in the protective film 14 of the semiconductor element 1. Similarly, the bonding wire 32 is electrically connected to the electrode 13 through the opening 141 formed in the protective film 14 on the substrate 10. For example, a wire such as Au, Lu, or Al can be practically used as the bonding wires 31 and 32, and this wire is bonded by using ultrasonic bonding together with ultrasonic vibration using a bonding apparatus.

封止体4には例えばエポキシ系樹脂が使用されている。このエポキシ系樹脂は例えばモールド法により成型される。封止体4の内部には半導体素子1、第1のリード21、第2のリード22及び第3のリード23のそれぞれのインナー部(一部)、ボンディングワイヤ31及び32が気密封止される。封止体4の外部には第1のリード21、第2のリード22及び第3のリード23のそれぞれのアウター部(一部)が突出する。   For example, an epoxy resin is used for the sealing body 4. This epoxy resin is molded by, for example, a molding method. Inside the sealing body 4, the semiconductor element 1, the first lead 21, the second lead 22, the third lead 23, the inner portions (part) of each, and the bonding wires 31 and 32 are hermetically sealed. . Outer portions (parts) of the first lead 21, the second lead 22, and the third lead 23 protrude outside the sealing body 4.

半導体装置201の組立手順は以下の通りである。まず、IGBT11、層間絶縁膜12、第2の電極13、保護膜14のそれぞれが順次形成された半導体素子1が製造される。次に、第1のリード21のダイボンディング領域21D上に半導体素子1が実装される。次に、ボンディングワイヤ31及び32がボンディングされる。そして、半導体素子1等が封止体4によりモールドされることにより、第1の実施の形態に係る半導体装置201が完成する。   The assembly procedure of the semiconductor device 201 is as follows. First, the semiconductor element 1 in which the IGBT 11, the interlayer insulating film 12, the second electrode 13, and the protective film 14 are sequentially formed is manufactured. Next, the semiconductor element 1 is mounted on the die bonding region 21 </ b> D of the first lead 21. Next, bonding wires 31 and 32 are bonded. Then, the semiconductor device 201 according to the first embodiment is completed by molding the semiconductor element 1 and the like with the sealing body 4.

[半導体装置の特徴]
図1乃至図6に示すように、第1の実施の形態に係る半導体装置201においては、ボンディングエリア内の層間絶縁膜12の平面構造がメッシュ形状に構成され、層間絶縁膜12の第1の方向に隣り合う延伸部121が連結部122により機械的な強度を増強しているので、ボンディングの際の層間絶縁膜12のボンディング強度を確保しつつ、ボンディングに伴う層間絶縁膜12の破壊や電極(例えばゲート電極116や第2の電極13)の破壊を防止することができる。
[Features of semiconductor devices]
As shown in FIGS. 1 to 6, in the semiconductor device 201 according to the first embodiment, the planar structure of the interlayer insulating film 12 in the bonding area is configured in a mesh shape, and the first of the interlayer insulating film 12 is formed. Since the extending portions 121 adjacent to each other in the direction enhance the mechanical strength by the connecting portion 122, the bonding strength of the interlayer insulating film 12 at the time of bonding is secured, and the breakdown of the interlayer insulating film 12 due to bonding and the electrodes Destruction of the gate electrode 116 or the second electrode 13 can be prevented, for example.

更に、第1の実施の形態に係る半導体装置201においては、層間絶縁膜12の連結部122を第2の方向に一定間隔において配設しているので、開口部123の平面面積を十分に確保することができる。従って、ストライプ構造を有するIGBT11の本来の特性であるコンタクト面積を十分に確保することができるので、電界集中を減少することができ、十分な耐圧を確保することができ、半導体素子1の電気的特性が良好な半導体装置201を提供することができる。   Furthermore, in the semiconductor device 201 according to the first embodiment, since the connecting portions 122 of the interlayer insulating film 12 are arranged at regular intervals in the second direction, a sufficient planar area of the opening 123 is ensured. can do. Therefore, a sufficient contact area, which is an original characteristic of the IGBT 11 having a stripe structure, can be sufficiently ensured, electric field concentration can be reduced, a sufficient breakdown voltage can be ensured, and the electrical resistance of the semiconductor element 1 can be secured. A semiconductor device 201 with favorable characteristics can be provided.

更に、第1の実施の形態に係る半導体装置201においては、第3の半導体領域113の延伸部121下における(又は延伸部121)の第1の幅寸法121Wと第3の半導体領域113の連結部122下における(又は連結部122)の第2の幅寸法122Wとの比率を適正な範囲に設定したので、ボンディングの際の層間絶縁膜12のボンディング強度を確保しつつ、十分な耐圧を確保することができる。   Furthermore, in the semiconductor device 201 according to the first embodiment, the connection between the first width dimension 121W of the third semiconductor region 113 under the extension portion 121 (or the extension portion 121) and the third semiconductor region 113 is performed. Since the ratio of the second width dimension 122W under the portion 122 (or the connecting portion 122) is set to an appropriate range, a sufficient breakdown voltage is secured while securing the bonding strength of the interlayer insulating film 12 during bonding. can do.

また、第1の実施の形態に係る半導体装置201においては、ボンディングエリア外の層間絶縁膜12の平面形状がストライプ形状により構成されているので、前述のように半導体素子1の電気的特性を確保することができる。   Further, in the semiconductor device 201 according to the first embodiment, since the planar shape of the interlayer insulating film 12 outside the bonding area is configured by a stripe shape, the electrical characteristics of the semiconductor element 1 are ensured as described above. can do.

また、第1の実施の形態に係る半導体装置201においては、このような作用効果を奏するための層間絶縁膜12の平面形状は製造用マスクのパターンを変更するだけで対応することができるので、特に製造工程数を増加する必要がなく、製造コストを減少することができる。更に、第2の電極13、ボンディング電極13Gの膜厚は、ボンディングのために厚くする必要がないので、この点においても製造コストを減少することができる。   Further, in the semiconductor device 201 according to the first embodiment, the planar shape of the interlayer insulating film 12 for producing such an effect can be dealt with by simply changing the pattern of the manufacturing mask. In particular, it is not necessary to increase the number of manufacturing steps, and the manufacturing cost can be reduced. Furthermore, the film thickness of the second electrode 13 and the bonding electrode 13G does not need to be increased for bonding, so that the manufacturing cost can be reduced also in this respect.

[変形例]
第1の実施の形態の変形例に係る半導体装置201においては、IGBT11の層間絶縁膜12の特にボンディングエリア内の平面形状が、図8に示すように、第2の方向に一定間隔に配列された開口123と、それに対して第1の方向側に隣り合う開口123とが同一の直線上となるように随時形成されたメッシュ形状により構成されている。すなわち、連結部122を第1の方向に見ると一直線上に形成され、第2の方向に見ると一定間隔に繰り返し形成されている。変形例に係る層間絶縁膜12の平面形状は、連結部122及び開口123の配列ピッチをアンオフセットしている。
[Modification]
In the semiconductor device 201 according to the modification of the first embodiment, the planar shape of the interlayer insulating film 12 of the IGBT 11, particularly in the bonding area, is arranged at regular intervals in the second direction as shown in FIG. 8. The opening 123 and the opening 123 adjacent to the first direction side with respect to the opening 123 are configured by a mesh shape formed as needed so as to be on the same straight line. That is, when the connection part 122 is seen in the 1st direction, it forms in a straight line, and when it sees in the 2nd direction, it forms repeatedly at fixed intervals. In the planar shape of the interlayer insulating film 12 according to the modification, the arrangement pitch of the connecting portions 122 and the openings 123 is offset.

このように構成される変形例に係る半導体装置201においては、前述の第1の実施の形態に係る半導体装置201により得られる効果と同様の効果を奏することができる。   In the semiconductor device 201 according to the modified example configured as described above, the same effect as that obtained by the semiconductor device 201 according to the first embodiment described above can be obtained.

なお、第1の実施の形態に係る半導体装置201においては、半導体素子1のボンディングエリア内のみ層間絶縁膜12の平面形状をメッシュ形状としているが、本発明は、このような構造に限定されるものではなく、ボンディングエリア内外の層間絶縁膜12の平面形状をメッシュ形状としてもよい。   In the semiconductor device 201 according to the first embodiment, the planar shape of the interlayer insulating film 12 is a mesh shape only in the bonding area of the semiconductor element 1, but the present invention is limited to such a structure. Instead, the planar shape of the interlayer insulating film 12 inside and outside the bonding area may be a mesh shape.

(第2の実施の形態)
本発明の第2の実施の形態は、プレーナ構造を有するIGBTからなる半導体素子を搭載した電力用半導体装置及びその製造方法に本発明を適用した例を説明するものである。
(Second Embodiment)
In the second embodiment of the present invention, an example in which the present invention is applied to a power semiconductor device on which a semiconductor element made of IGBT having a planar structure is mounted and a method for manufacturing the power semiconductor device will be described.

[半導体素子(IGBT)のデバイス構造]
第2の実施の形態に係る半導体装置201に搭載された半導体素子1は、図9に示すように、プレーナ構造を有するIGBT11により構成されている。すなわち、IGBT11は、コレクタ領域(p型の第4の半導体領域)110と、n型ベース領域(n型の第1の半導体領域又は基板)111と、p型ベース領域(p型の第2の半導体領域)112と、エミッタ領域(n型の第3の半導体領域)113と、ゲート絶縁膜115と、ゲート電極116と、コレクタ電極(第1の電極)と、エミッタ電極(第2の電極)13とを備えて構成されている。基本的な半導体素子1の断面構造は前述の第1の実施の形態に係る半導体装置201の半導体素子1の断面構造と同一であるが、図1及び図3に示す穴114が配設されていない。つまり、半導体素子1は、ベース領域111の主面上にゲート絶縁膜115を介在してゲート電極116をプレーナ構造において配設し、ゲート電極116をマスクとして二重拡散構造によりベース領域112及びエミッタ領域113が配設されている。
[Device structure of semiconductor element (IGBT)]
As shown in FIG. 9, the semiconductor element 1 mounted on the semiconductor device 201 according to the second embodiment is composed of an IGBT 11 having a planar structure. That is, the IGBT 11 includes a collector region (p-type fourth semiconductor region) 110, an n-type base region (n-type first semiconductor region or substrate) 111, and a p-type base region (p-type second semiconductor region). Semiconductor region) 112, emitter region (n-type third semiconductor region) 113, gate insulating film 115, gate electrode 116, collector electrode (first electrode), emitter electrode (second electrode) 13. The basic cross-sectional structure of the semiconductor element 1 is the same as the cross-sectional structure of the semiconductor element 1 of the semiconductor device 201 according to the first embodiment, but the hole 114 shown in FIGS. 1 and 3 is provided. Absent. That is, in the semiconductor element 1, the gate electrode 116 is disposed in a planar structure on the main surface of the base region 111 with the gate insulating film 115 interposed therebetween, and the base region 112 and the emitter are formed by a double diffusion structure using the gate electrode 116 as a mask. A region 113 is provided.

(第3の実施の形態)
本発明の第3の実施の形態は、前述の第1の実施の形態及び第2の実施の形態に係る半導体装置201において、半導体素子1と第2のリード22及び第3のリード23との間の接続方法を代えた例を説明するものである。
(Third embodiment)
The third embodiment of the present invention relates to the semiconductor device 201 according to the first embodiment and the second embodiment described above, and includes the semiconductor element 1, the second lead 22, and the third lead 23. An example in which the connection method between them is changed will be described.

第3の実施の形態に係る半導体装置201は、図10及び図11に示すように、半導体素子1のボンディング電極13Gと第2のリード22との間がクリップリード22Cにより電気的に接続され、第2の電極13と第3のリード23との間がクリップリード23Cにより電気的に接続されている。クリップリード22Cとボンディング電極13G、第2のリード22のそれぞれとの間の接続には半田ペースト35が使用され、双方の間は電気的かつ機械的に接続される。同様に、クリップリード23Cと第2の電極13、第3のリード23のそれぞれとの間の接続には半田ペースト36が使用され、双方の間は電気的かつ機械的に接続される。   As shown in FIGS. 10 and 11, the semiconductor device 201 according to the third embodiment is electrically connected between the bonding electrode 13G of the semiconductor element 1 and the second lead 22 by a clip lead 22C. The second electrode 13 and the third lead 23 are electrically connected by the clip lead 23C. A solder paste 35 is used for connection between the clip lead 22C and each of the bonding electrode 13G and the second lead 22, and the both are electrically and mechanically connected. Similarly, a solder paste 36 is used for connection between the clip lead 23C and each of the second electrode 13 and the third lead 23, and both are electrically and mechanically connected.

クリップリード22C及び23Cには例えばCu板等の金属板やFe−Ni合金板等の合金板を使用することができる。半田ペースト35及び36には例えばPb−Sn半田、又はSn−3 wt% Ag−0.5 wt% Cu等のPbフリー半田を使用することができる。ボンディング電極13Gに半田ペースト35を介したクリップリード22Cの接続、第2のリード22に半田ペースト35を介したクリップリード22Cの接続には、ボンディングワイヤ31のボンディングと同様に、超音波振動に熱圧着を併用したボンディング法により行われる。同様に、第2の電極13に半田ペースト36を介したクリップリード23Cの接続、第3のリード23に半田ペースト36を介したクリップリード23Cの接続には、ヒータ等による加熱法、又はボンディングワイヤ32のボンディングと同様に、超音波振動に熱圧着を併用したボンディング法が使用される。   For the clip leads 22C and 23C, for example, a metal plate such as a Cu plate or an alloy plate such as an Fe-Ni alloy plate can be used. For the solder pastes 35 and 36, for example, Pb-Sn solder or Pb-free solder such as Sn-3 wt% Ag-0.5 wt% Cu can be used. In the connection of the clip lead 22C via the solder paste 35 to the bonding electrode 13G and the connection of the clip lead 22C via the solder paste 35 to the second lead 22, as in the bonding of the bonding wire 31, heat is applied to ultrasonic vibration. It is carried out by a bonding method using pressure bonding together. Similarly, for the connection of the clip lead 23C via the solder paste 36 to the second electrode 13 and the connection of the clip lead 23C via the solder paste 36 to the third lead 23, a heating method using a heater or the like, or a bonding wire Similar to the bonding of 32, a bonding method using ultrasonic vibration in combination with thermocompression bonding is used.

また、ボンディング電極13Gと半田ペースト35とのボンダビリティを向上するため、同様に第2の電極13と半田ペースト36とのボンダビリティを向上するため、ボンディング電極13G、第2の電極13のそれぞれの表面上に濡れ性向上膜を形成してもよい。この濡れ性向上膜には例えばTi層上にNi層を積層した複合層を実用的に使用することができる。   Further, in order to improve the bondability between the bonding electrode 13G and the solder paste 35, and similarly improve the bondability between the second electrode 13 and the solder paste 36, each of the bonding electrode 13G and the second electrode 13 is provided. A wettability improving film may be formed on the surface. As this wettability improving film, for example, a composite layer in which a Ni layer is laminated on a Ti layer can be used practically.

このように構成される第3の実施の形態に係る半導体装置201においては、前述の第1の実施の形態及び第2の実施の形態に係る半導体装置201により得られる効果と同様の効果を奏することができる。   The semiconductor device 201 according to the third embodiment configured as described above has the same effect as that obtained by the semiconductor device 201 according to the first embodiment and the second embodiment described above. be able to.

更に、クリップリード22C及び23Cの金属板や合金板の抵抗成分並びにインダクタンス成分はワイヤ配線のそれに比べて小さい特徴がある。反面、金属板や合金板とボンディングエリアとの接合部に生じる応力が大きくなるが、第3の実施の形態においては、第2の電極13のボンディングエリアにおいて層間絶縁膜12に連結部122を備えているので、第2の電極13のボンディングエリアにおける機械的強度を高めることができる。従って、半導体装置201においては、抵抗成分並びにインダクタンス成分を小さくしつつ、層間絶縁膜12の剥がれやゲート電極116の剥がれを防止することができる。   Furthermore, the resistance component and the inductance component of the metal plates and alloy plates of the clip leads 22C and 23C are characterized by being smaller than that of the wire wiring. On the other hand, although the stress generated at the joint between the metal plate or alloy plate and the bonding area increases, in the third embodiment, the connecting portion 122 is provided in the interlayer insulating film 12 in the bonding area of the second electrode 13. Therefore, the mechanical strength in the bonding area of the second electrode 13 can be increased. Therefore, in the semiconductor device 201, it is possible to prevent the interlayer insulating film 12 and the gate electrode 116 from peeling while reducing the resistance component and the inductance component.

(その他の実施の形態)
上記のように、本発明を第1の実施の形態、その変形例、第2の実施の形態及び第3の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものでない。本発明は様々な代替実施の形態、実施例及び運用技術に適用することができる。例えば、前述の実施の形態等においては、IGBT11からなる半導体素子1が搭載された半導体装置201を例に説明したが、本発明は、IGBT11に限定されるものではなく、パワートランジスタ(パワーMOSFET)からなる半導体素子及びそれを搭載する半導体装置に適用することができる。また、トレンチ構造だけでなく、プレーナ構造を有するパワートランジスタからなる半導体素子及びそれを搭載した半導体装置に本発明は適用することができる。また、前述の層間絶縁膜12の開口部123の角部は丸みをおびていてもよい。
(Other embodiments)
As described above, the present invention has been described with reference to the first embodiment, its modifications, the second embodiment, and the third embodiment. However, the discussion and the drawings that form a part of this disclosure are the present invention. It does not limit. The present invention can be applied to various alternative embodiments, examples, and operational technologies. For example, in the above-described embodiment and the like, the semiconductor device 201 on which the semiconductor element 1 made of the IGBT 11 is mounted has been described as an example. However, the present invention is not limited to the IGBT 11 and is a power transistor (power MOSFET). The present invention can be applied to a semiconductor element comprising the above and a semiconductor device on which the semiconductor element is mounted. Further, the present invention can be applied not only to a trench structure but also to a semiconductor element composed of a power transistor having a planar structure and a semiconductor device having the semiconductor element mounted thereon. Further, the corners of the opening 123 of the interlayer insulating film 12 described above may be rounded.

本発明の第1の実施の形態に係る半導体装置に搭載された半導体素子の要部拡大斜視図である。It is a principal part expansion perspective view of the semiconductor element mounted in the semiconductor device which concerns on the 1st Embodiment of this invention. 図1に示す半導体素子の要部拡大平面図である。FIG. 2 is an enlarged plan view of a main part of the semiconductor element shown in FIG. 1. 図1に示す半導体素子にボンディングワイヤを設けたときの要部拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a main part when a bonding wire is provided in the semiconductor element shown in FIG. 1. 図3に示す半導体素子の要部(図3における保護膜、ボンディングワイヤ、第2の電極及び層間絶縁膜を省いたIGBTの一部)の拡大平面図である。FIG. 4 is an enlarged plan view of a main part of the semiconductor element shown in FIG. 3 (a part of the IGBT excluding the protective film, bonding wire, second electrode, and interlayer insulating film in FIG. 3). 図3に示す半導体素子において層間絶縁膜の要部の拡大平面図である。FIG. 4 is an enlarged plan view of a main part of an interlayer insulating film in the semiconductor element shown in FIG. 3. 本発明の第1の実施の形態に係る半導体装置の内部構造を示す平面図である。1 is a plan view showing an internal structure of a semiconductor device according to a first embodiment of the present invention. 第1の実施の形態に係る層間絶縁膜の開口比率と不良率との関係を示す図である。It is a figure which shows the relationship between the opening ratio of the interlayer insulation film which concerns on 1st Embodiment, and a defect rate. 第1の実施の形態の変形例に係る半導体素子において層間絶縁膜の要部の拡大平面図である。It is an enlarged plan view of the principal part of an interlayer insulation film in the semiconductor element concerning the modification of a 1st embodiment. 本発明の第2の実施の形態に係る半導体装置に搭載された半導体素子にボンディングワイヤを設けたときの要部拡大断面図である。It is a principal part expanded sectional view when a bonding wire is provided in the semiconductor element mounted in the semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る半導体装置の内部構造を示す平面図である。It is a top view which shows the internal structure of the semiconductor device which concerns on the 3rd Embodiment of this invention. 図7に示す半導体装置の半導体素子にクリップリードを設けたときの要部拡大断面図である。FIG. 8 is an enlarged cross-sectional view of a main part when a clip lead is provided in the semiconductor element of the semiconductor device shown in FIG. 7.

符号の説明Explanation of symbols

201…半導体装置
110…コレクタ領域又は第4の半導体領域
101…第1の辺
102…第2の辺
103…第3の辺
104…第4の辺
1…半導体素子
11…IGBT
111…第1の半導体領域又は基板
112…第2の半導体領域又はベース領域
113…第3の半導体領域又はエミッタ領域
114…穴
115…ゲート絶縁膜
116…ゲート電極
12…層間絶縁膜
121…延伸部
121W…第1の幅寸法
122…連結部
122W…第2の幅寸法
123、124…開口部
13…第2の電極
13G…ボンディング電極
14…保護膜
141、142…開口
21…第1のリード
22…第2のリード
23…第3のリード
31、32…ボンディングワイヤ
22C、23C…クリップリード
35、36…半田ペースト
4…封止体
DESCRIPTION OF SYMBOLS 201 ... Semiconductor device 110 ... Collector area | region or 4th semiconductor region 101 ... 1st edge | side 102 ... 2nd edge | side 103 ... 3rd edge | side 104 ... 4th edge | side 1 ... Semiconductor element 11 ... IGBT
DESCRIPTION OF SYMBOLS 111 ... 1st semiconductor region or board | substrate 112 ... 2nd semiconductor region or base region 113 ... 3rd semiconductor region or emitter region 114 ... Hole 115 ... Gate insulating film 116 ... Gate electrode 12 ... Interlayer insulating film 121 ... Extension part 121W ... first width dimension 122 ... connecting portion 122W ... second width dimension 123, 124 ... opening 13 ... second electrode 13G ... bonding electrode 14 ... protective film 141, 142 ... opening 21 ... first lead 22 ... 2nd lead 23 ... 3rd lead 31, 32 ... Bonding wire 22C, 23C ... Clip lead 35, 36 ... Solder paste 4 ... Sealing body

Claims (6)

第1の導電型の第1の半導体領域と、
第1の方向に複数配設され、第1の主面を露出し、前記第1の導電型と反対導電型の第2の導電型を有する第2の半導体領域と、
前記第2の半導体領域内において前記第1の方向に複数配設され、かつ前記第2の半導体領域内に第2の主面が露出され、前記第1の導電型を有する第3の半導体領域と、
前記第2の半導体領域の前記第3の半導体領域と前記第1の方向に隣り合う他の前記第2の半導体領域の他の前記第3の半導体領域との間に渡って配設された制御電極と、
前記制御電極上を覆い前記第1の方向と交差する第2の方向に延伸する延伸部、前記第1の方向に隣り合う前記延伸部同士を前記第2の方向に一定間隔において連結する連結部及び前記延伸部と前記連結部とにより開口形状が規定され前記第2の半導体領域の前記第1の主面と前記第3の半導体領域の前記第2の主面とを露出する開口部を有する層間絶縁膜と、
前記層間絶縁膜上に配設され、前記層間絶縁膜の前記開口部を通して前記第2の半導体領域の前記第1の主面及び前記第3の半導体領域の前記第2の主面に電気的に接続された電極と、を備え、
前記延伸部下における前記第3の半導体領域の前記第1の方向の第1の幅寸法に比べて、前記連結部下における前記第3の半導体領域の前記第2の方向の第2の幅寸法が大きいことを特徴とする半導体装置。
A first semiconductor region of a first conductivity type;
A plurality of second semiconductor regions disposed in a first direction, exposing a first main surface, and having a second conductivity type opposite to the first conductivity type;
A plurality of third semiconductor regions disposed in the second direction in the second semiconductor region and having a second main surface exposed in the second semiconductor region and having the first conductivity type When,
Control disposed between the third semiconductor region of the second semiconductor region and the other third semiconductor region of the other second semiconductor region adjacent to the first direction. Electrodes,
An extending portion that covers the control electrode and extends in a second direction intersecting the first direction, and a connecting portion that connects the extending portions adjacent to each other in the first direction at a constant interval. And an opening is defined by the extending portion and the connecting portion, and has an opening that exposes the first main surface of the second semiconductor region and the second main surface of the third semiconductor region. An interlayer insulating film;
Electrically disposed on the interlayer insulating film and electrically through the opening of the interlayer insulating film to the first main surface of the second semiconductor region and the second main surface of the third semiconductor region. Connected electrodes, and
The second width dimension in the second direction of the third semiconductor region under the coupling portion is larger than the first width dimension in the first direction of the third semiconductor region under the extension portion. A semiconductor device.
前記開口部が前記第3の半導体領域を貫通していることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the opening penetrates the third semiconductor region. 前記第1の幅寸法と前記第2の幅寸法とが、
第2の幅寸法 < 2.0×第1の幅寸法〜2.6×第1の幅寸法
の関係式を満たすことを特徴とする請求項1又は請求項2に記載の半導体装置。
The first width dimension and the second width dimension are:
3. The semiconductor device according to claim 1, wherein the relational expression of second width dimension <2.0 × first width dimension to 2.6 × first width dimension is satisfied.
前記第2の半導体領域の前記第3の半導体領域と前記第1の方向に隣り合う他の前記第2の半導体領域の他の前記第3の半導体領域との間において、前記第2の半導体領域の前記第1の主面から前記第1の半導体領域側に前記第2の半導体領域を貫通して配設され、前記第2の方向に延伸する穴と、
前記穴の側面及び前記穴の底面に配設された絶縁膜と、を更に備え、
前記制御電極は、前記穴に前記絶縁膜を介在して埋設されたことを特徴とする請求項1乃至請求項3のいずれかに記載の半導体装置。
The second semiconductor region between the third semiconductor region of the second semiconductor region and the other third semiconductor region of the other second semiconductor region adjacent to the first direction. A hole extending through the second semiconductor region from the first main surface to the first semiconductor region side and extending in the second direction;
An insulating film disposed on a side surface of the hole and a bottom surface of the hole, and
The semiconductor device according to claim 1, wherein the control electrode is embedded in the hole with the insulating film interposed therebetween.
前記層間絶縁膜の前記連結部は前記電極のボンディングエリアの直下の領域に配設されていることを特徴とする請求項1乃至請求項4のいずれかに記載の半導体装置。   5. The semiconductor device according to claim 1, wherein the connecting portion of the interlayer insulating film is disposed in a region immediately below a bonding area of the electrode. 第1の導電型の第1の半導体領域と、第1の方向に複数配設され、第1の主面を露出し、前記第1の導電型と反対導電型の第2の導電型を有する第2の半導体領域と、前記第2の半導体領域内において前記第1の方向に複数配設され、かつ前記第2の半導体領域内に第2の主面が露出され、前記第1の導電型を有する第3の半導体領域と、前記第2の半導体領域の前記第3の半導体領域と前記第1の方向に隣り合う他の前記第2の半導体領域の他の前記第3の半導体領域との間に渡って配設された制御電極と、を形成する工程と、
前記制御電極上を覆い前記第1の方向と交差する第2の方向に延伸する延伸部、ボンディングエリアの直下の領域に前記第1の方向に隣り合う前記延伸部同士を前記第2の方向に一定間隔において連結する連結部、及び前記延伸部と前記連結部とにより開口形状が規定され、前記第2の半導体領域の前記第1の主面と前記第3の半導体領域の前記第2の主面とを露出する開口部を有し、前記開口部により前記延伸部下における前記第3の半導体領域の前記第1の方向の第1の幅寸法に比べて前記連結部下における前記第3の半導体領域の前記第2の方向の第2の幅寸法を大きくする層間絶縁膜を形成する工程と、
前記層間絶縁膜上に配設され、前記層間絶縁膜の前記開口部を通して前記第2の半導体領域の前記第1の主面及び前記第3の半導体領域の前記第2の主面に電気的に接続された電極を形成する工程と、
前記ボンディングエリアにおいて前記電極上にこの電極に電気的に接続される外部配線を形成する工程と、
を備えたことを特徴とする半導体装置の製造方法。
A plurality of first semiconductor regions of the first conductivity type and a plurality of semiconductor regions disposed in the first direction, exposing the first main surface, and having a second conductivity type opposite to the first conductivity type. A plurality of second semiconductor regions and a plurality of second semiconductor regions disposed in the first direction in the second semiconductor region, and a second main surface exposed in the second semiconductor region; And a third semiconductor region of the second semiconductor region and another third semiconductor region of the second semiconductor region adjacent to the second semiconductor region in the first direction. Forming a control electrode disposed therebetween;
An extending portion that covers the control electrode and extends in a second direction intersecting the first direction, and the extending portions adjacent to each other in the first direction in a region immediately below the bonding area in the second direction An opening shape is defined by the connecting portion connected at a constant interval, and the extending portion and the connecting portion, and the first main surface of the second semiconductor region and the second main surface of the third semiconductor region. A third semiconductor region under the connecting portion as compared to a first width dimension in the first direction of the third semiconductor region under the extended portion by the opening. Forming an interlayer insulating film for enlarging the second width dimension in the second direction;
Electrically disposed on the interlayer insulating film and electrically through the opening of the interlayer insulating film to the first main surface of the second semiconductor region and the second main surface of the third semiconductor region. Forming a connected electrode;
Forming an external wiring electrically connected to the electrode on the electrode in the bonding area;
A method for manufacturing a semiconductor device, comprising:
JP2007328672A 2007-11-09 2007-12-20 Semiconductor device and manufacturing method thereof Active JP5098630B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007328672A JP5098630B2 (en) 2007-12-20 2007-12-20 Semiconductor device and manufacturing method thereof
CN2008801110162A CN101821853B (en) 2007-11-09 2008-09-19 Semiconductor device and manufacturing method thereof
US12/682,383 US8207612B2 (en) 2007-11-09 2008-09-19 Semiconductor device and manufacturing method thereof
EP08847499.4A EP2209142B1 (en) 2007-11-09 2008-09-19 Semiconductor device and manufacturing method thereof
PCT/JP2008/067009 WO2009060670A1 (en) 2007-11-09 2008-09-19 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007328672A JP5098630B2 (en) 2007-12-20 2007-12-20 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009152364A true JP2009152364A (en) 2009-07-09
JP5098630B2 JP5098630B2 (en) 2012-12-12

Family

ID=40921175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328672A Active JP5098630B2 (en) 2007-11-09 2007-12-20 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5098630B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091086A (en) * 2009-10-20 2011-05-06 Mitsubishi Electric Corp Semiconductor device
JP2012186317A (en) * 2011-03-05 2012-09-27 Shindengen Electric Mfg Co Ltd Resin-sealed semiconductor device
EP3104399A4 (en) * 2014-02-04 2017-02-22 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method for semiconductor device
WO2019049572A1 (en) * 2017-09-05 2019-03-14 富士電機株式会社 Silicon carbide semiconductor device and silicon carbide semiconductor device production method
CN110729342A (en) * 2018-07-17 2020-01-24 上海宝芯源功率半导体有限公司 Semiconductor switch device and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022322A (en) * 1996-06-28 1998-01-23 Denso Corp Semiconductor device
JP2003069021A (en) * 2001-08-29 2003-03-07 Sanken Electric Co Ltd Semiconductor device and method of manufacturing the same
JP2005303218A (en) * 2004-04-16 2005-10-27 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2006140263A (en) * 2004-11-11 2006-06-01 Sanken Electric Co Ltd Semiconductor element and manufacturing method thereof
JP2007165635A (en) * 2005-12-14 2007-06-28 Sanken Electric Co Ltd Semiconductor device of trench structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022322A (en) * 1996-06-28 1998-01-23 Denso Corp Semiconductor device
JP2003069021A (en) * 2001-08-29 2003-03-07 Sanken Electric Co Ltd Semiconductor device and method of manufacturing the same
JP2005303218A (en) * 2004-04-16 2005-10-27 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2006140263A (en) * 2004-11-11 2006-06-01 Sanken Electric Co Ltd Semiconductor element and manufacturing method thereof
JP2007165635A (en) * 2005-12-14 2007-06-28 Sanken Electric Co Ltd Semiconductor device of trench structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091086A (en) * 2009-10-20 2011-05-06 Mitsubishi Electric Corp Semiconductor device
JP2012186317A (en) * 2011-03-05 2012-09-27 Shindengen Electric Mfg Co Ltd Resin-sealed semiconductor device
EP3104399A4 (en) * 2014-02-04 2017-02-22 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method for semiconductor device
US9614039B2 (en) 2014-02-04 2017-04-04 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of manufacturing semiconductor device
WO2019049572A1 (en) * 2017-09-05 2019-03-14 富士電機株式会社 Silicon carbide semiconductor device and silicon carbide semiconductor device production method
CN110383489A (en) * 2017-09-05 2019-10-25 富士电机株式会社 The manufacturing method of manufacturing silicon carbide semiconductor device and manufacturing silicon carbide semiconductor device
JPWO2019049572A1 (en) * 2017-09-05 2019-12-26 富士電機株式会社 Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US11145724B2 (en) 2017-09-05 2021-10-12 Fuji Electric Co., Ltd. Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
CN110383489B (en) * 2017-09-05 2023-07-04 富士电机株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
CN110729342A (en) * 2018-07-17 2020-01-24 上海宝芯源功率半导体有限公司 Semiconductor switch device and manufacturing method thereof

Also Published As

Publication number Publication date
JP5098630B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
US8207612B2 (en) Semiconductor device and manufacturing method thereof
US8324726B2 (en) Semiconductor device, electrode member and electrode member fabrication method
US8222651B2 (en) Semiconductor device
JP5729126B2 (en) Manufacturing method of semiconductor device
JP7452597B2 (en) Semiconductor device and its manufacturing method
JP4984485B2 (en) Semiconductor device
US7847316B2 (en) Semiconductor device and its manufacture
JP5605095B2 (en) Semiconductor device
JP6885175B2 (en) Semiconductor device
KR20080096483A (en) Semiconductor device
JP5098630B2 (en) Semiconductor device and manufacturing method thereof
US20040016979A1 (en) Semiconductor device
US6605870B2 (en) Pressure-contact type semiconductor device
JP4293272B2 (en) Semiconductor device
JP4706551B2 (en) Power semiconductor element and power module
JP2009164288A (en) Semiconductor element and semiconductor device
JP2003188378A (en) Semiconductor device
JP7419781B2 (en) semiconductor module
WO2023090137A1 (en) Semiconductor element and semiconductor device
US11646249B2 (en) Dual-side cooling semiconductor packages and related methods
US20240112991A1 (en) Semiconductor module, semiconductor device, and vehicle
CN109994445B (en) Semiconductor element and semiconductor device
JP2024054535A (en) Semiconductor Device
JP2023087383A (en) Semiconductor device
JP2023118481A (en) Semiconductor device and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250