JP2009150667A - 検査装置,検査装置のアライメント方法及び校正用ファントムの製作方法 - Google Patents

検査装置,検査装置のアライメント方法及び校正用ファントムの製作方法 Download PDF

Info

Publication number
JP2009150667A
JP2009150667A JP2007326662A JP2007326662A JP2009150667A JP 2009150667 A JP2009150667 A JP 2009150667A JP 2007326662 A JP2007326662 A JP 2007326662A JP 2007326662 A JP2007326662 A JP 2007326662A JP 2009150667 A JP2009150667 A JP 2009150667A
Authority
JP
Japan
Prior art keywords
detector
radiation source
calibration phantom
radiation
detection surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007326662A
Other languages
English (en)
Other versions
JP5011085B2 (ja
Inventor
Atsushi Nukaga
淳 額賀
Yasushi Nagumo
靖 名雲
Hiroshi Kamimura
博 上村
Noriyuki Sadaoka
紀行 定岡
Kojiro Kodaira
小治郎 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2007326662A priority Critical patent/JP5011085B2/ja
Publication of JP2009150667A publication Critical patent/JP2009150667A/ja
Application granted granted Critical
Publication of JP5011085B2 publication Critical patent/JP5011085B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】
本発明では装置の高精度な位置決めを可能とし、高分解能な画像再構成を得ることを目的とする。
【解決手段】
本発明は、放射線を照射する放射線源と、該放射線源から照射された放射線を検出する検出器とを備えた検査装置であって、前記放射線源と前記検出器との間に配置され、前記検出器の検出面に対して垂直方向に設けられた垂直細線を内部に備えた校正用ファントムを有したことを特徴とする。
【効果】
本発明によれば、装置の高精度な位置決めを可能とし、高分解能な画像再構成を得ることが出来る。
【選択図】図1

Description

本発明は、検査装置,検査装置のアライメント方法及び校正用ファントムの製作方法に関する。
発電所等で長期間使用されている配管には、内部減肉が生じる。この内部減肉は、配管内の壁面に流体が繰り返し衝突することにより、壁面が機械的に損傷を受け、その一部が脱離する現象(エロージョン)と、化学的作用による腐食する現象(コロージョン)との相互作用により発生する。特に曲がり個所,オリフィスなど流体の流れに乱れが生じる個所において、減肉は顕著に見られる。この減肉量が限界値を超えると運転時の圧力に配管が耐えられず配管損傷が生じ、重大事故が発生する。
配管の減肉量を検査するため、放射線源と検出器の組合せによる配管内部検査は配管に保温材が被覆された状態でも内部状況検査が可能であり、検査の効率化に有効な手段である。そこで、放射線源と検出器を平行移動することで被検体の断層像を求め、立体情報を得るCL(Computed Laminography)と言われる方式による検査手法が開発されている(非特許文献1)。
また、検査装置の放射線源と検出器の位置関係を把握するため、アライメント誤差を算出する手法として、エッヂチャートを使用した技術が特許文献1に開示されている。
特開2004−81331号公報 S.Gondrom, S.Schropfer :"Digital computed laminography and tomosynthesis - functional principles and industrial applications"Proceedings BB 67-CD, Computerized Tomography for Industrial Applications and Image Processing in Radiography (1999)
上記CL方式においては、放射線源と検出器を平行移動することで検査対象物の様々な角度からの透過データを得る。この透過データを再構成することで検査対象物の断層像を得る。しかしながら、CL方式は通常のCTと異なり、回転動作によるデータ取得を行っていない。通常のCTでは回転中心が求まれば、各検出素子と放射線源とを結ぶ線分と中心軸との距離と角度により、検出素子ごとの透過データの再配置が可能になる。一方、CL方式では回転中心がないために、放射線源と検出器の各検出素子とを結ぶ線分の幾何配置をあらかじめ正確に認識しなければ画像再構成ができない。
また、特許文献1ではエッヂチャートに設けた丸孔を通過した放射線によって、楕円形の孔画像を形成する。但し、孔画像にはボケが生じるため、楕円形の孔画像における扁平率を厳密に算出することは困難であり、放射線源と検出器の高精度な位置決めが困難であった。
そのため、本発明では装置の高精度な位置決めを可能とし、高分解能な画像再構成を得ることを目的とする。
本発明は、前記放射線源と前記検出器との間に配置され、前記検出器の検出面に対して垂直方向に設けられた垂直細線を内部に備えた校正用ファントムを有したことを特徴とする。
本発明によれば、装置の高精度な位置決めを可能とし、高分解能な画像再構成を得ることが出来る。
放射線源と検出器を有する検査装置において、放射線源と検出器間に校正用ファントムを設置し、校正用ファントム内に有する細線の配置と、細線の透過像を用いることで、検出面における放射線源の2次元配置と、放射線源と検出器の検出面との距離が求まり、装置の幾何配置が決定される。これにより高分解能な画像再構成が可能となる。
図1は、本発明の実施例における校正用ファントムの側面図・平面図を示す。校正用ファントム101は、アクリルなど剛性が高く、かつ比較的放射線の減衰率が小さい平板で形成されている。校正用ファントム101の内部には、タングステンなど放射線の減衰率が大きい部材を垂直に配置した垂直細線102が設けられている。校正用ファントム101の上面には水平かつ平行に配置した2本一組の水平細線103aが配置され、同部材の下面には水平かつ平行に配置した2本一組の水平細線103bが配置されている。垂直細線102は校正用ファントム101の上面又は下面に対して垂直に配置される。校正用ファントム101の上面と下面は平滑かつ平行な面となっていることが望ましい。なお、X線源から照射された放射線の照射方向において、X線が最初に入射する面を校正用ファントムの上面、上面に対向する面を下面とする。
図2は、本実施例の校正用ファントムを実機に使用したときの構成例である。本実施例では、放射線源としてX線源を使用する。X線源201を内部に有したX線管202と、2次元平面素子の検出器203は、検査対象物230を挟んで対向するように配置している。それぞれは、支持部材231により相対位置を固定され、移動機構232により検査対象物230に対して移動する。本実施例では、検査対象物230は配管を示しており、装置は配管長手方向(即ち、紙面に対して垂直方向)に移動する。
検出器203はシンチレータやシリコンなどの薄膜で形成され、X線を検出すると可視光を出す。この光をフォトダイオードにより電気信号へと変換する。検出器の検出面は、検出器203の上面とする。フォトダイオードを含む電子回路221は検出器下部に配置され、検出面を保護するカバー材220が検出器上面に設けられている。
校正用ファントム101はX線源201と検出器203の間に配置される。本実施例では検出器203の上面にカバー材220を被せ、カバー材220の上面に校正用ファントム101を密着させている。カバー材220の上面に校正用ファントム101を密着させることで、検出器203の検出面と校正用ファントム101の垂直細線102とを垂直に位置決めすることが容易となる。
また、校正用ファントム101の上面・下面は検出器203の検出面と平行であり、かつX線源201から照射されたX線204によって校正用ファントム内部の垂直細線102や水平細線103a,103bの透過像が検出器203にて検出できる位置に校正用ファントム101が設置される。
X線管202は高圧電源205と冷却器206に接続されており、X線管システム制御部207により安定した管電圧と管電流が供給される。検出器203では、検出器制御部208から命令されたデータ取り込みタイミングに応じて、データ収集が実施される。X線管システム制御部207及び検出器制御部208は、中央制御部209に接続されており、各機器の動作タイミング調整や、制御部内部にある演算装置にてデータ処理が実施される。装置の動作状態や、検査結果はモニタ210にて表示される。
本実施例の装置構成においては、X線源201と検出器203が同時あるいはいずれか一方のみが並進して検査対象物230の透過データを取得し、透過データを再構成することで断層像を得るものである。図3に示すように、画像再構成領域を格子301とすると、画像再構成を実施するには、X線源201と検出器203の各検出素子とを結ぶ線分が通過する格子301の位置及び格子301を通過する線分の長さについて、正確に把握することが必要になる。そして、線分が通過する格子301の位置及び線分の長さを把握するためには、X線源201と検出器203との相対的な位置関係を算出する必要がある。しかし、本実施例の装置では通常のCT装置のような回転運動を行わないために、X線源201と検出器203との幾何配置を回転中心からの相対位置によって導出することができない。従って、検出器203の検出面に対するX線源201の2次元配置及びX線源201と検出器203の検出面との距離を知ることが必須である。
図4(a)は、本実施例における垂直細線の透過像を示したものである。本実施例において検出器203は2次元検出面を有しているため、透過像は平面像として得られる。図4(a)において、垂直細線102が4本の場合である。なお、垂直細線102をX線源から見た場合、小さな点で表されるため、図4では垂直細線102を中抜きの丸印で表記する。
X線源201は1mm未満の微小な大きさであり、X線を放射状に照射している。そのため、垂直細線102の透過像401は、垂直細線102からX線源201を見込んだ方向の反対側に投影される。よって、図4(b)に示すように、それぞれの垂直細線102の透過像401a,401b,401c,401dを延長した線分402a,402b,402c,402dの交点403によって、検出面におけるX線源201の2次元配置を求めることができる。即ち、交点403から検出面の垂直方向(交点403の上部)にX線源201が位置する。なお、垂直細線102は、少なくとも2本以上あればX線源201の2次元配置を導出できる。但し、垂直細線102が2本の場合、2本の垂直細線102を結ぶ線分上にX線源201が位置しないことが必要条件となる。2本の垂直細線102を結ぶ線分上にX線源201が位置する場合、透過像を延長した2本の線分は同一軸となり、交点が現れないためである。
また、垂直細線102の透過像によりX線源201の2次元配置を導出するため、像の幅は極力細い方が望ましく、誤差を小さくすることが可能である。幅としては検出器203の素子程度が望ましい。よって、細線径も同様に検出器203の素子大きさと同程度とすることが望ましい。
本実施例において、垂直細線102を丸孔にした場合、孔画像にボケが生じるため、楕円形の孔画像における扁平率を厳密に算出することは困難である。そこで、細線にすることで、細線の透過像から透過像を延長した線分の向きを正確に把握することができ、X線源201の2次元配置を導出して、高精度な位置決めが可能である。
なお、垂直細線102の数を増加することで位置精度を向上させることができる。具体的には、細線の数をn本とした場合、統計誤差は1/√nで減少する。
図5は、本実施例において垂直細線102によりX線源201と検出器203の検出面との距離を導出するための概念図を示している。ここで、X線源201と検出器203の検出面又は垂直細線102との距離は、検出器203の検出面に対して垂直方向の軸におけるX線源201と検出器203の検出面又は垂直細線102との距離とする。垂直細線102を任意の2本選択し、細線の下端間の距離をL1、上端間の距離をL2とする。また、細線の高さをDとする。これら3つの数値は、校正用ファントム製作時に精密に調整可能である。また、X線源201から垂直細線102下端部までの距離をZ1、X線源201から垂直細線102上端部までの距離をZ2とし、X線源201と検出器203の検出面までの距離をHとする。これら3つの数値は未知数である。さらに、検出器203で得られた垂直細線102の透過像から、2つの下端部透過像の距離をL1′、上端部透過像の距離をL2′とする。
透過像の拡大率を下端部でr1、上端部でr2とすると、それぞれ下式のように表される。
Figure 2009150667
Figure 2009150667
これらを変形すると、
Figure 2009150667
Figure 2009150667
細線高さDはZ1とZ2の差であるから
Figure 2009150667
これにより、既知の数値からX線源201と検出器203の検出面間の距離Hが導出される。垂直細線のL1′,L2′は、細線透過像の頂点から導出している。
図6(a)に示すように、水平細線103a,103bの透過像から両者の間隔を算出し、X線源と検出器の検出面との距離を求めることも可能である。この場合、図6(b)に示すように、平行に配置した細線間隔からL1′,L2′を導出できるため、平行線の複数個所から導出した数値を平均化することでL1′とL2′の誤差を減少させることが可能である。また、透過像(即ち、X線減衰量)は縁の部分でボケを有している。ボケはX線の透過距離や、X線源の大きさに由来する。垂直細線の場合、垂直細線102の上端・下端部の透過像から距離L1′とL2′を導出しており、透過データの減衰曲線が急激かつ不均一に変化するため、精度よく距離を導出することが難しい。それに対し、水平細線103a,103bを用いると細線径方向のボケとなるため、透過距離は細線の軸中心から縁部に向けて連続的に減少し、X線減衰量701は滑らかな変化をする(図7)。それゆえ透過像での細線中央軸を高精度に導出可能となり、細線の透過像の平行間隔L1′,L2′を高精度に導くことができる。このL1′,L2′を上式(1)から(5)に適用して距離Hを求めることが可能である。
また、図6(a)より、校正用ファントムの上面に設けた水平細線103aと下面に設けた水平細線103bは、両者の投影像が重ならないようにすることが望ましい。両者の投影像が重なると、透過像の平行間隔L1′,L2′を正確に求めることが困難な場合があるからである。
図8は、本実施例における検査フローを示したものである。まず、現地にて装置を組立てる(手順801)。次に、校正用ファントムを検出器前面に取り付け、検出器に対する校正用ファントムの角度を調整する(手順802)。ファントム中の垂直細線と水平細線がそれぞれ検出器の検出面に対して垂直方向,水平方向となるようにファントムは取り付けられる。X線を照射してファントム内の垂直細線及び水平細線の透過像を取得(手順803)した後に、各垂直細線の透過像を延長して交点座標を導出する(手順804)。次に、校正用ファントム上面と下面それぞれの水平細線の透過像の間隔を求める(手順805)。垂直細線又は水平細線の間隔、及び垂直細線又は水平細線による透過像の間隔とを用いてX線源と検出器検出面間の距離を導出する(手順806)。そして、手順804により求められた検出面に対するX線源の2次元配置及び手順806により求められた放射線源と検出器の検出面との距離に基づき、検出器の各検出素子とX線源との幾何配置を決定する(手順807)。その後校正用ファントムを取り外し(手順808)、配管を撮像する(手順809)。配管撮像はX線源と検出器の並進移動によりデータ収集がなされる。アライメントにより導出した幾何配置により、取得データから画像を再構成し、配管断層像を得る(手順810)。
図9は、本実施例における校正用ファントムの製作方法を示す。図9(a),(b)は、校正用ファントムを構成する3つの部材について、側面図を示す。ここで、校正用ファントムを構成する部材901a及び901bは、校正用ファントムに設けられた垂直細線102の中心軸を通る平面で切断することにより、3つの部材に分割されている。部材901aの側面には、部材901aの上面に対して垂直方向に垂直細線102が接着されている。また、2つの部材901bの側面には、垂直細線102を収納できる程度の溝902が設けられている。図9(c)に示すように、垂直細線102が溝902に嵌め込まれるように部材901a及び901bを接合することで、一つの校正用ファントムを容易に製作することが出来る。また、垂直細線の位置精度や、角度精度が保持できる。
なお、本実施例では検出器203のカバー材220と校正用ファントム101を密着させている。しかし、検出器203のカバー材220と校正用ファントム101との間に空間を設けていても良い。検出器203の検出面に対して校正用ファントム101の垂直細線102が略垂直となっていれば、前述の数式と同様の考え方でX線源の2次元配置及びX線源と検出器との距離を求めることができる。
図10は、本実施例において垂直細線102によりX線源201と検出器203との距離を導出するための概念図を示している。実施例1との相違点は、検出器203上部にカバー材220を取り付けていない構造となっている。そのため、垂直細線102の下端部の間隔L1は、検出器の検出面における透過像の間隔L1′と等しくなる。
この場合、L1=L1′となり、式(5)が
Figure 2009150667
と表される。従って、本実施例では式(6)によって、X線源と検出器検出面との距離を導出することが可能である。
本発明は放射線を用いた配管検査装置のアライメントに利用でき、プラントにおける配管の減肉検査や3次元形状データ取得に活用できる。
本発明の校正用ファントムを示した図である。 本発明の校正用ファントムを用いた装置の模式図である。 本発明の検査装置の画像再構成領域を示した模式図である。 垂直細線の透過像からX線源の2次元配置を導出する手法を示す模式図である。 実施例1において、垂直細線の透過像を用いてX線源と検出器検出面との距離を導出する手法を示す模式図である。 水平細線の透過像を用いてX線源と検出器検出面との距離を導出する手法を示す模式図である。 水平細線の透過像における細線径方向のX線減衰量を示す模式図である。 本発明の検査装置による配管検査方法を示す図である。 校正用ファントムの製作方法を示す模式図である。 実施例2において、垂直細線の透過像を用いてX線源と検出器検出面との距離を導出する手法を示す模式図である。
符号の説明
101 校正用ファントム
102 垂直細線
103 水平細線
201 X線源
220 カバー材
221 電子回路

Claims (5)

  1. 放射線を照射する放射線源と、
    該放射線源から照射された放射線を検出する検出器とを備えた検査装置であって、
    前記放射線源と前記検出器との間に配置され、前記検出器の検出面に対して垂直方向に設けられた垂直細線を内部に備えた校正用ファントムを有したことを特徴とする検査装置。
  2. 検査対象物に放射線を照射する放射線源と、
    該検査対象物を透過した放射線を検出する検出器とを備えた検査装置であって、
    前記放射線源と前記検出器との間に配置され、前記検出器の検出面に対して垂直方向に設けられた垂直細線と、前記検出器の検出面に対して水平方向に配置された水平細線とを備えた校正用ファントムを有したことを特徴とする検査装置。
  3. 検査対象物に放射線を照射する放射線源と、
    該検査対象物を挟んで該放射線源の反対側に配置された2次元平面検出器とを備えた検査装置であって、
    前記放射線源と前記検出器との間に校正用ファントムが配置され、
    該校正用ファントムは、前記検出器の検出面に対して垂直方向に設けられた垂直細線と、前記検出器の上面及び下面にそれぞれ検出面に対して平行に配置した2本一組の水平細線とを備えたことを特徴とする検査装置。
  4. 放射線を照射する放射線源と、
    該放射線源から照射された放射線を検出する検出器と、
    前記放射線源と前記検出器との間に設けられた校正用ファントムと、
    該校正用ファントムの内部に、前記検出器の検出面に対して垂直に設けられた複数の垂直細線とを備えた検査装置のアライメント方法であって、
    前記校正用ファントムを前記検査装置に取り付ける第一の工程と、
    前記放射線源から放射線を照射し、前記検出器で前記垂直細線の透過像を検出する第二の工程と、
    前記検出器の検出面における前記垂直細線の透過像の延長線同士の交点を算出する第三の工程とを備えたことを特徴とする検査装置のアライメント方法。
  5. 放射線を照射する放射線源と、
    該放射線源から照射された放射線を検出する検出器とを備えた検査装置に使用する校正用ファントムの製作方法であって、
    第一の平板の側面に、該平板の上面に対して垂直方向の溝を設ける第一の工程と、
    第二の平板の側面に、該平板の上面に対して垂直方向の細線を設ける第二の工程と、
    該溝に該細線をはめ込むように、前記第一の平板と前記第二の平板を結合し、校正用ファントムを製作する第三の工程とを備えたことを特徴とする校正用ファントムの製作方法。
JP2007326662A 2007-12-19 2007-12-19 検査装置,検査装置のアライメント方法及び校正用ファントムの製作方法 Expired - Fee Related JP5011085B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326662A JP5011085B2 (ja) 2007-12-19 2007-12-19 検査装置,検査装置のアライメント方法及び校正用ファントムの製作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326662A JP5011085B2 (ja) 2007-12-19 2007-12-19 検査装置,検査装置のアライメント方法及び校正用ファントムの製作方法

Publications (2)

Publication Number Publication Date
JP2009150667A true JP2009150667A (ja) 2009-07-09
JP5011085B2 JP5011085B2 (ja) 2012-08-29

Family

ID=40919959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326662A Expired - Fee Related JP5011085B2 (ja) 2007-12-19 2007-12-19 検査装置,検査装置のアライメント方法及び校正用ファントムの製作方法

Country Status (1)

Country Link
JP (1) JP5011085B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058983A (ja) * 2009-09-11 2011-03-24 Hitachi Ltd 放射線断層撮影装置の撮影方法
JP2011104095A (ja) * 2009-11-17 2011-06-02 Fujifilm Corp バイオプシ用ファントム
WO2012073433A1 (ja) * 2010-11-30 2012-06-07 富士フイルム株式会社 放射線照射角度測定用ファントムおよびそのファントムを用いた放射線照射角度測定方法並びに立体視画像取得方法
WO2016190218A1 (ja) * 2015-05-26 2016-12-01 株式会社島津製作所 測定方法および放射線撮影装置
US10765387B2 (en) 2017-12-27 2020-09-08 Toshiba Energy Systems & Solutions Corporation Position adjustment device for flat panel detector, position adjustment method for flat panel detector, and radiotherapy apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321219A (ja) * 1999-05-13 2000-11-24 Shimadzu Corp X線ct装置
JP2003061944A (ja) * 2001-08-29 2003-03-04 Shimadzu Corp 断層撮影装置の校正方法
JP2003180666A (ja) * 2001-11-16 2003-07-02 Koninkl Philips Electronics Nv 感磁性な撮像デバイスを較正するため及びかかる撮像デバイスの手段によって画像化するための方法及び装置
JP2005058309A (ja) * 2003-08-08 2005-03-10 Hitachi Medical Corp コーンビームx線ct装置及びそれに用いるファントム
JP2005195530A (ja) * 2004-01-09 2005-07-21 National Institute Of Advanced Industrial & Technology 校正器、及び、校正方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321219A (ja) * 1999-05-13 2000-11-24 Shimadzu Corp X線ct装置
JP2003061944A (ja) * 2001-08-29 2003-03-04 Shimadzu Corp 断層撮影装置の校正方法
JP2003180666A (ja) * 2001-11-16 2003-07-02 Koninkl Philips Electronics Nv 感磁性な撮像デバイスを較正するため及びかかる撮像デバイスの手段によって画像化するための方法及び装置
JP2005058309A (ja) * 2003-08-08 2005-03-10 Hitachi Medical Corp コーンビームx線ct装置及びそれに用いるファントム
JP2005195530A (ja) * 2004-01-09 2005-07-21 National Institute Of Advanced Industrial & Technology 校正器、及び、校正方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058983A (ja) * 2009-09-11 2011-03-24 Hitachi Ltd 放射線断層撮影装置の撮影方法
JP2011104095A (ja) * 2009-11-17 2011-06-02 Fujifilm Corp バイオプシ用ファントム
WO2012073433A1 (ja) * 2010-11-30 2012-06-07 富士フイルム株式会社 放射線照射角度測定用ファントムおよびそのファントムを用いた放射線照射角度測定方法並びに立体視画像取得方法
WO2016190218A1 (ja) * 2015-05-26 2016-12-01 株式会社島津製作所 測定方法および放射線撮影装置
US10765387B2 (en) 2017-12-27 2020-09-08 Toshiba Energy Systems & Solutions Corporation Position adjustment device for flat panel detector, position adjustment method for flat panel detector, and radiotherapy apparatus

Also Published As

Publication number Publication date
JP5011085B2 (ja) 2012-08-29

Similar Documents

Publication Publication Date Title
US6960020B2 (en) Image positioning method and system for tomosynthesis in a digital X-ray radiography system
JP3860979B2 (ja) ガンマカメラ装置
US7186023B2 (en) Slice image and/or dimensional image creating method
US6435714B1 (en) X-ray diagnostic device
KR101149000B1 (ko) 제한각 이동형 산업용 감마선 단층촬영장치
US8699659B2 (en) Systems and methods for focal spot motion correction
JP4959223B2 (ja) 断層撮影装置
US20130230150A1 (en) Measurement arrangement for a computed tomography scanner
KR20150134364A (ko) 고해상도 컴퓨터 단층 촬영
JP2008298762A (ja) 断層撮影の検査システムおよびその方法
JP6106809B2 (ja) 可動式格子を含む微分位相コントラスト撮像装置
JP2005021675A (ja) 断層撮影装置
JP5011085B2 (ja) 検査装置,検査装置のアライメント方法及び校正用ファントムの製作方法
JPWO2019008620A1 (ja) X線ct装置
EP2457112A2 (en) X-ray imaging apparatus and x-ray imaging method
US20170003233A1 (en) X-ray imaging apparatus and x-ray imaging method
JP4818695B2 (ja) 放射線画像撮像条件の補正装置
JP2010204060A (ja) X線検査装置及びx線検査装置の検査方法
JP2011125669A (ja) X線撮像装置およびx線撮像方法
JP2009276142A (ja) 放射線検査システム及び放射線検査の撮像方法
US9341582B2 (en) Method of getting tomogram used by X-ray computed tomography and X-ray computed tomography system based on its method
JP2014155508A (ja) 放射線撮影システム
CN104132950B (zh) 基于原始投影信息的cl扫描装置投影旋转中心标定方法
JP2012037345A (ja) 放射線検査装置及びそのアライメント方法
JP4479503B2 (ja) 断層撮影装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees