JP2009148873A - Processing method of fluid device - Google Patents

Processing method of fluid device Download PDF

Info

Publication number
JP2009148873A
JP2009148873A JP2008158977A JP2008158977A JP2009148873A JP 2009148873 A JP2009148873 A JP 2009148873A JP 2008158977 A JP2008158977 A JP 2008158977A JP 2008158977 A JP2008158977 A JP 2008158977A JP 2009148873 A JP2009148873 A JP 2009148873A
Authority
JP
Japan
Prior art keywords
processing
acute angle
passage
intersection
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008158977A
Other languages
Japanese (ja)
Other versions
JP4502046B2 (en
Inventor
Naoya Tamai
直哉 玉井
Toshikazu Watanabe
寿和 渡辺
Akinori Iwao
昭則 岩男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008158977A priority Critical patent/JP4502046B2/en
Priority to DE102008044022A priority patent/DE102008044022A1/en
Priority to CN2008101779807A priority patent/CN101444861B/en
Publication of JP2009148873A publication Critical patent/JP2009148873A/en
Application granted granted Critical
Publication of JP4502046B2 publication Critical patent/JP4502046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the damage of a section where two passages intersect in a fluid device in which two passages flowing a fluid obliquely intersect. <P>SOLUTION: When inserting a processing electrode 50 into one passage 13a and performing electrolytic processing of an acute angle side 130x of the intersection part, the electrolytic processing of another passage 13c side where the processing electrode 50 is not inserted cannot be performed because the passage 13C side is far from the processing electrode 50, and surface roughening is generated. The acute angle side 130x of the intersection part is apt to be damaged making this surface roughened part as a starting point. Therefore, the electrolytic processing of the acute angle side 130x of the intersection part is performed using a first processing electrode 50 inserted into the first passage 13a and a second processing electrode 51 inserted into the second passage 13c. By this way, surface roughness can be made small in whole acute angle side 130x of the intersection part since the distance between the processing electrodes 50, 51 is small in whole acute angel side 130x of the intersection part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高圧の流体が流通する通路を有する流体機器の加工方法に関する。   The present invention relates to a processing method of a fluid device having a passage through which a high-pressure fluid flows.

圧縮着火式内燃機関に燃料を噴射するための燃料噴射装置は、燃料を加圧してコモンレールに供給するサプライポンプを備えている。そのサプライポンプは、シリンダにプランジャ挿入孔が形成され、このプランジャ挿入孔にプランジャが挿入され、シリンダとプランジャによってポンプ室が形成されている。そして、シリンダ内でプランジャが往復動してポンプ室内の燃料が加圧され、シリンダに形成された吐出通路を介して高圧燃料がコモンレール側に吐出されるようになっている。   A fuel injection device for injecting fuel into a compression ignition type internal combustion engine includes a supply pump that pressurizes the fuel and supplies it to a common rail. In the supply pump, a plunger insertion hole is formed in a cylinder, a plunger is inserted into the plunger insertion hole, and a pump chamber is formed by the cylinder and the plunger. The plunger reciprocates in the cylinder to pressurize the fuel in the pump chamber, and high pressure fuel is discharged to the common rail side through a discharge passage formed in the cylinder.

このサプライポンプは、ポンプ室内の燃料が加圧されると、シリンダは燃料圧力によりシリンダ径方向(以下、径方向と略す)外側に膨らむため、ポンプ室に臨むシリンダ内周面にはシリンダ周方向(以下、周方向と略す)の引張応力が発生する。ここで、図7は、従来のサプライポンプにおけるプランジャ挿入孔が形成された部位のシリンダ内周面の展開図であり、図中の多数の矢印は、ポンプ室内の燃料が加圧されたときに発生する引張応力の方向を示している。   In this supply pump, when the fuel in the pump chamber is pressurized, the cylinder swells outward in the radial direction of the cylinder (hereinafter abbreviated as the radial direction) due to the fuel pressure, so the cylinder inner circumferential surface facing the pump chamber has a cylinder circumferential direction. A tensile stress (hereinafter abbreviated as “circumferential direction”) is generated. Here, FIG. 7 is a developed view of a cylinder inner peripheral surface of a portion where a plunger insertion hole is formed in a conventional supply pump, and a number of arrows in the figure indicate when fuel in the pump chamber is pressurized. The direction of the generated tensile stress is shown.

そして、この図7に示すように、プランジャ挿入孔(通路に相当)と吐出通路13cとが交差する交差部13xには、周方向の引張応力が集中して高応力が発生し、この高応力部を起点に疲労破壊が起こり、交差部13xの破損が生じる虞がある。   As shown in FIG. 7, a tensile stress in the circumferential direction is concentrated at the intersection 13x where the plunger insertion hole (corresponding to the passage) and the discharge passage 13c intersect, and this high stress is generated. There is a risk that fatigue failure will occur starting from the portion, and the intersection 13x may be damaged.

一方、特許文献1では、交差する2つの通路を有するアキュムレータ(すなわち、コモンレール)において、一方の通路に加工電極を挿入して電解加工を行い、2つの通路が交差する公差部に丸みを持たせることにより、交差部の面粗度の向上(すなわち、面粗度を小さくする)及び応力の分散を図って交差部の破損を防ぐ方法が提案されている。
特表2003−512559号公報
On the other hand, in Patent Document 1, in an accumulator (that is, a common rail) having two intersecting passages, a machining electrode is inserted into one passage to perform electrolytic processing, and a tolerance portion where the two passages intersect is rounded. Thus, there has been proposed a method for preventing breakage of the intersecting portion by improving the surface roughness of the intersecting portion (that is, reducing the surface roughness) and dispersing the stress.
Special table 2003-512559 gazette

しかしながら、特許文献1に記載の方法は、2つの通路が垂直に交差する場合には交差部の破損対策として有効であるが、2つの通路が斜めに交差する場合には交差部の破損対策として充分ではなかった。   However, the method described in Patent Document 1 is effective as a countermeasure against damage at an intersection when two passages intersect perpendicularly, but as a countermeasure against damage at an intersection when two passages intersect diagonally. It was not enough.

すなわち、図8に示すように、2つの通路13a、13cが斜めに交差する場合には、交差部13xのうち鋭角側交差部130xに特に高い応力が発生するため、2つの通路が垂直に交差する場合よりも交差部の破損が発生しやすくなる。   That is, as shown in FIG. 8, when the two passages 13a and 13c intersect diagonally, particularly high stress is generated at the acute-angle side intersection 130x of the intersections 13x, so the two passages intersect perpendicularly. It is easier to break the intersection than if you do.

また、一方の通路13aに加工電極50を挿入して鋭角側交差部130xの電解加工を行う場合、加工電極50を挿入していない他方の通路13c側は加工電極50から遠いため電解加工ができず面あれを発生し、この面あれ部132xを起点として鋭角側交差部130xが破損するという問題が生じている。   Further, when the machining electrode 50 is inserted into one passage 13a and the electrolytic processing of the acute angle crossing portion 130x is performed, the other passage 13c side where the machining electrode 50 is not inserted is far from the machining electrode 50, so that the electrolytic machining can be performed. There arises a problem that a rough surface is generated, and the acute angle side crossing portion 130x is damaged starting from the rough surface portion 132x.

本発明は上記点に鑑みて、流体が流通する2つの通路が斜めに交差する流体機器において、2つの通路が交差する部位の破損を防止することを目的とする。   In view of the above points, an object of the present invention is to prevent breakage of a portion where two passages intersect in a fluid device in which two passages through which a fluid flows obliquely intersect.

本発明は、斜めに交差する第1通路(13a)と第2通路(13c)との交差部(13x)のうち鋭角側交差部(130x)を、第1通路(13a)に挿入される第1加工電極(50)と第2通路(13c)に挿入される第2加工電極(51)とを用いて電解加工することを特徴とする。   According to the present invention, an acute angle side crossing portion (130x) among the crossing portions (13x) between the first passage (13a) and the second passage (13c) that obliquely cross each other is inserted into the first passage (13a). Electrolytic machining is performed using one machining electrode (50) and a second machining electrode (51) inserted into the second passage (13c).

このようにすれば、鋭角側交差部(130x)全体において加工電極(50、51)との距離が近いため、鋭角側交差部(130x)全体において電解加工が可能になり、鋭角側交差部(130x)全体において面粗度を小さくすることができるとともに、鋭角側交差部(130x)の応力を分散させることができ、ひいては鋭角側交差部(130x)の破損を防止することができる。   In this way, since the distance from the machining electrodes (50, 51) is short in the entire acute angle intersection (130x), electrolytic machining is possible in the entire acute angle intersection (130x), and the acute angle intersection ( 130x) The overall surface roughness can be reduced, the stress at the acute angle intersection (130x) can be dispersed, and damage to the acute angle intersection (130x) can be prevented.

この場合、一方の加工電極のみを用いて電解加工した後に、2つの加工電極(50、51)を用いて電解加工することができる。   In this case, electrolytic processing can be performed using two processing electrodes (50, 51) after electrolytic processing using only one processing electrode.

ところで、電解加工の条件によっては(例えば、加工の時間が長い場合)、主に一方の加工電極で電解加工される領域と主に他方の加工電極で電解加工される領域との境界部に、図4に示すような先端が先細りした形状の凸部60が形成されることがある。この場合には凸部に応力が集中しやすくなるため、鋭角側交差部(130x)の破損を防止するうえで望ましくない。   By the way, depending on the conditions of the electrolytic processing (for example, when the processing time is long), at the boundary between the region that is mainly electrolytically processed by one processing electrode and the region that is mainly electrolytically processed by the other processing electrode, A convex portion 60 having a tapered tip as shown in FIG. 4 may be formed. In this case, stress tends to concentrate on the convex portion, which is not desirable for preventing breakage of the acute angle side intersection (130x).

そこで、一方の加工電極のみを用いて電解加工して、鋭角側交差部(130x)における先端角部(すなわち、凸部が形成される部位の近傍)の材料を予め除去することにより、その後2つの加工電極(50、51)を用いて電解加工した際に凸部が形成され難くなり、鋭角側交差部(130x)の応力を分散させることができる。   Therefore, by performing electrolytic processing using only one of the processing electrodes, the material at the tip corner (that is, in the vicinity of the portion where the convex portion is formed) in the acute angle side intersection (130x) is removed in advance, and then 2 When electrolytic processing is performed using the two processing electrodes (50, 51), it becomes difficult to form a convex portion, and the stress at the acute angle side intersection (130x) can be dispersed.

また、鋭角側交差部(130x)における先端角部(131x)を切削加工にて除去した後に、2つの加工電極(50、51)を用いて電解加工することができる。   Moreover, after removing the front-end | tip corner | angular part (131x) in an acute angle side cross | intersection part (130x) by cutting, it can electrolytically process using two process electrodes (50, 51).

これによると、鋭角側交差部(130x)における先端角部(131x)の材料を予め除去することにより、その後2つの加工電極(50、51)を用いて電解加工した際に凸部が形成され難くなり、鋭角側交差部(130x)の応力を分散させることができる。   According to this, by removing the material of the tip corner portion (131x) at the acute angle side intersection portion (130x) in advance, a convex portion is formed when electrolytic processing is performed using the two processing electrodes (50, 51) thereafter. It becomes difficult to disperse the stress at the acute angle side intersection (130x).

また、電解加工を行う際、基材(13)と加工電極(50、51)間に断続的に通電することができる。   Moreover, when performing an electrolytic process, it can electrically supply between a base material (13) and a process electrode (50, 51) intermittently.

ところで、基材(13)と加工電極(50、51)間に連続的に通電する場合は、溶解した材料が鋭角側交差部(130x)に残って面荒れが発生しやすいが、基材(13)と加工電極(50、51)間に断続的に通電した場合は、通電時に溶解した材料は非通電時に電解液によって鋭角側交差部(130x)から他の部位に流されるため、鋭角側交差部(130x)の面荒れが発生し難い。   By the way, when energizing continuously between a base material (13) and a processing electrode (50, 51), although the melt | dissolved material remains in an acute angle side cross | intersection (130x), surface roughness tends to generate | occur | produce, 13) When the material is intermittently energized between the processing electrodes (50, 51), the material dissolved at the time of energization is caused to flow from the acute angle intersection (130x) to other parts by the electrolyte when not energized. Surface roughness of the intersection (130x) hardly occurs.

また、第1通路(13a)から第2通路(13c)に向かって電解液を流しつつ、2つの加工電極(50、51)のうち第1加工電極(50)のみを用いて電解加工した後に、2つの加工電極(50、51)を用いて電解加工することができる。   In addition, after electrolytic processing is performed using only the first processing electrode (50) of the two processing electrodes (50, 51) while flowing the electrolytic solution from the first passage (13a) toward the second passage (13c). Electrochemical machining can be performed using two machining electrodes (50, 51).

これによると、第1加工電極(50)のみを用いて電解加工する際、第1加工電極(50)から発生した陰イオンが電解液によって鋭角側交差部(130x)側に導かれるため、鋭角側交差部(130x)における先端角部の材料が確実に除去される。したがって、その後2つの加工電極(50、51)を用いて電解加工した際に凸部が形成され難くなり、鋭角側交差部(130x)の応力を分散させることができる。   According to this, when electrolytic machining is performed using only the first machining electrode (50), the anion generated from the first machining electrode (50) is guided to the acute angle crossing portion (130x) side by the electrolytic solution. The material at the corners at the side crossing (130x) is reliably removed. Accordingly, when electrolytic processing is performed thereafter using the two processing electrodes (50, 51), it becomes difficult to form a convex portion, and the stress at the acute angle side intersection (130x) can be dispersed.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in a claim and this column shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
本発明の第1実施形態について説明する。図1(a)は本実施形態に係る加工方法を適用したポンプの電解加工前の状態を示す要部の断面図、図1(b)は電解加工後の状態を示す要部の断面図である。このポンプは、圧縮着火式内燃機関に燃料を噴射するための燃料噴射装置において、高圧の燃料を蓄えるコモンレールに高圧の燃料を供給するサプライポンプとして用いられる。
(First embodiment)
A first embodiment of the present invention will be described. 1A is a cross-sectional view of a main part showing a state before electrolytic processing of a pump to which the processing method according to the present embodiment is applied, and FIG. 1B is a cross-sectional view of the main part showing a state after electrolytic processing. is there. This pump is used as a supply pump for supplying high-pressure fuel to a common rail that stores high-pressure fuel in a fuel injection device for injecting fuel into a compression ignition type internal combustion engine.

図1に示すように、金属製のシリンダ13には、円柱状のプランジャ挿入孔13aが形成されており、このプランジャ挿入孔13aに、円柱状のプランジャ(図示せず)が往復動自在に挿入される。そして、プランジャの上端面とシリンダ13の内周面とによりポンプ室15が形成される。なお、シリンダ13は、本発明の基材に相当する。また、プランジャ挿入孔13aは、本発明の第1通路に相当する。   As shown in FIG. 1, a cylindrical plunger insertion hole 13a is formed in the metal cylinder 13, and a cylindrical plunger (not shown) is reciprocally inserted into the plunger insertion hole 13a. Is done. A pump chamber 15 is formed by the upper end surface of the plunger and the inner peripheral surface of the cylinder 13. The cylinder 13 corresponds to the base material of the present invention. The plunger insertion hole 13a corresponds to the first passage of the present invention.

シリンダ13の側面には、ポンプ室15に常時連通する吐出通路13cが形成されている。そして、ポンプ室15は、この吐出通路13cおよび図示しない高圧燃料配管を介して図示しないコモンレールに接続されている。   A discharge passage 13 c that always communicates with the pump chamber 15 is formed on the side surface of the cylinder 13. The pump chamber 15 is connected to a common rail (not shown) via the discharge passage 13c and a high-pressure fuel pipe (not shown).

吐出通路13cは、プランジャ挿入孔13aに対して斜めに交差しており、このプランジャ挿入孔13aと吐出通路13cとが交差する交差部13xは、電解加工によって金属材料が除去される(詳細後述)。なお、吐出通路13cは、本発明の第2通路に相当する。   The discharge passage 13c obliquely intersects the plunger insertion hole 13a, and the intersection 13x where the plunger insertion hole 13a and the discharge passage 13c intersect each other has a metal material removed by electrolytic processing (details will be described later). . The discharge passage 13c corresponds to the second passage of the present invention.

次に、交差部13xの電解加工について説明する。吐出通路13cはプランジャ挿入孔13aに対して斜めに交差しているため、プランジャ挿入孔13aと吐出通路13cとが交差する交差部13xの一部は、鋭角な交差部となる。以下、この鋭角な交差部を鋭角側交差部130xという。   Next, electrolytic processing of the intersection 13x will be described. Since the discharge passage 13c crosses the plunger insertion hole 13a obliquely, a part of the intersection 13x where the plunger insertion hole 13a and the discharge passage 13c intersect becomes an acute intersection. Hereinafter, this acute intersection is referred to as an acute angle intersection 130x.

本実施形態では、図1(a)に示すように、2つの加工電極50、51を用いて、鋭角側交差部130xの電解加工を行う。第1加工電極50の一端は、プランジャ挿入孔13aに挿入され、鋭角側交差部130xにおけるプランジャ挿入孔13a側の面に対向して配置される。第2加工電極51の一端は、吐出通路13cに挿入され、鋭角側交差部130xにおける吐出通路13c側の面に対向して配置される。   In the present embodiment, as shown in FIG. 1A, electrolytic processing of the acute angle side intersection 130x is performed using the two processing electrodes 50 and 51. One end of the first machining electrode 50 is inserted into the plunger insertion hole 13a and is disposed to face the surface on the plunger insertion hole 13a side at the acute angle side intersection 130x. One end of the second machining electrode 51 is inserted into the discharge passage 13c and is disposed to face the surface on the discharge passage 13c side at the acute angle side intersection 130x.

そして、図示しない直流電源の−極に2つの加工電極50、51の他端を接続し、直流電源の+極にシリンダ13を接続して、2つの加工電極50、51とシリンダ13間に電圧を加えるとともに、鋭角側交差部130xに電解液を流すことにより、図1(b)に示すように、鋭角側交差部130xの金属材料が溶解される。なお、この電解加工を行う際、2つの加工電極50、51とシリンダ13間に連続的に通電してもよいし、あるいは、2つの加工電極50、51とシリンダ13間に断続的に通電してもよい(所謂、パルス電解加工でもよい)。   Then, the other ends of the two machining electrodes 50 and 51 are connected to the negative pole of a DC power source (not shown), and the cylinder 13 is connected to the positive pole of the DC power source, so that a voltage is generated between the two machining electrodes 50 and 51 and the cylinder 13. In addition, as shown in FIG. 1B, the metal material of the acute angle side intersection 130x is dissolved by flowing an electrolyte through the acute angle side intersection 130x. When performing this electrolytic processing, the two machining electrodes 50 and 51 and the cylinder 13 may be energized continuously, or the two machining electrodes 50 and 51 and the cylinder 13 may be intermittently energized. (So-called pulse electrolytic processing may be used).

ここで、鋭角側交差部130x全体(すなわち、鋭角側交差部130xにおけるプランジャ挿入孔13a側の領域および鋭角側交差部130xにおける吐出通路13c側の領域)において加工電極50、51との距離が近いため、鋭角側交差部130x全体において電解加工が確実に行われる。これにより、鋭角側交差部130x全体において面粗度が小さくなるとともに、鋭角側交差部130xの応力が分散されるため、鋭角側交差部130xの破損を防止することができる。   Here, the distance between the machining electrodes 50 and 51 is short in the entire acute angle intersection 130x (that is, the region on the plunger insertion hole 13a side in the acute angle intersection 130x and the region on the discharge passage 13c side in the acute angle intersection 130x). Therefore, the electrolytic processing is reliably performed in the entire acute angle side intersection 130x. Thereby, the surface roughness is reduced in the entire acute angle intersection 130x and the stress of the acute angle intersection 130x is dispersed, so that the acute angle intersection 130x can be prevented from being damaged.

また、2つの加工電極50、51とシリンダ13間に連続的に通電する場合は、溶解した金属材料が鋭角側交差部130xに残って面荒れが発生しやすいが、2つの加工電極50、51とシリンダ13間に断続的に通電した場合は、通電時に溶解した金属材料は非通電時に電解液によって鋭角側交差部130xから他の部位に流されるため、鋭角側交差部130xの面荒れが発生し難い。   In addition, when energizing continuously between the two machining electrodes 50 and 51 and the cylinder 13, the melted metal material remains in the acute angle side intersection 130x, and surface roughness is likely to occur. When the energization is intermittently conducted between the cylinder 13 and the cylinder 13, the metal material dissolved during energization is caused to flow from the acute angle intersection 130x to other parts by the electrolyte during non-energization, resulting in surface roughness of the acute angle intersection 130x. It is hard to do.

(第2実施形態)
本発明の第2実施形態について説明する。図2(a)は本実施形態に係る加工方法における電解加工前の状態を示す断面図、図2(b)は電解加工の中間状態を示す断面図、図2(c)は電解加工後の状態を示す断面図である。第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
(Second Embodiment)
A second embodiment of the present invention will be described. 2A is a cross-sectional view showing a state before electrolytic processing in the processing method according to the present embodiment, FIG. 2B is a cross-sectional view showing an intermediate state of electrolytic processing, and FIG. 2C is a view after electrolytic processing. It is sectional drawing which shows a state. The same or equivalent parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

ところで、電解加工の条件によっては(例えば、加工の時間が長い場合)、図3に示すように、主に第1加工電極50で電解加工される領域と主に第2加工電極51で電解加工される領域との境界部に、先端が先細りした形状の凸部60が形成されることがある。この場合には凸部60に応力が集中しやすくなるため、鋭角側交差部130xの破損を防止するうえで望ましくない。本実施形態は、このような凸部60が形成されることを防止するようにしたものである。   By the way, depending on the conditions of the electrolytic processing (for example, when the processing time is long), as shown in FIG. 3, the region processed mainly by the first processing electrode 50 and the electrolytic processing mainly by the second processing electrode 51 are used. A convex portion 60 having a tapered tip may be formed at the boundary with the region to be formed. In this case, stress tends to concentrate on the convex portion 60, which is not desirable for preventing breakage of the acute angle side crossing portion 130x. In the present embodiment, the formation of such a convex portion 60 is prevented.

本実施形態では、以下述べるように、2つの加工電極50、51のうち第1加工電極50のみを用いて鋭角側交差部130xの電解加工を行った後に、2つの加工電極50、51を用いて鋭角側交差部130xの電解加工を行う。   In the present embodiment, as described below, after the electrolytic processing of the acute angle crossing portion 130x is performed using only the first processing electrode 50 of the two processing electrodes 50 and 51, the two processing electrodes 50 and 51 are used. Then, electrolytic processing of the acute angle side intersection 130x is performed.

まず、第1加工電極50の一端を、プランジャ挿入孔13aに挿入し、鋭角側交差部130xにおけるプランジャ挿入孔13a側の面に対向して配置する(図2(a)参照)。   First, one end of the first machining electrode 50 is inserted into the plunger insertion hole 13a, and is arranged to face the surface on the plunger insertion hole 13a side at the acute angle side intersection 130x (see FIG. 2A).

続いて、第1加工電極50とシリンダ13間に電圧を加えるとともに、鋭角側交差部130xに電解液を流して、第1電解加工工程を実施する。これにより、図2(b)に示すように、鋭角側交差部130xにおけるプランジャ挿入孔13a側の面の金属材料が溶解され、鋭角側交差部130xにおける先端角部131x(すなわち、凸部60が形成される部位の近傍)の金属材料も除去される。   Then, while applying a voltage between the 1st process electrode 50 and the cylinder 13, an electrolyte solution is poured through the acute angle side cross | intersection 130x, and a 1st electrolytic process process is implemented. Thereby, as shown in FIG. 2B, the metal material of the surface on the plunger insertion hole 13a side in the acute angle side intersection 130x is dissolved, and the tip corner 131x (that is, the convex portion 60) in the acute angle side intersection 130x is dissolved. The metal material in the vicinity of the part to be formed is also removed.

続いて、図2(c)に示すように、第2加工電極51の一端を、吐出通路13cに挿入し、鋭角側交差部130xにおける吐出通路13c側の面に対向して配置する。そして、2つの加工電極50、51とシリンダ13間に電圧を加えるとともに、鋭角側交差部130xに電解液を流して、第2電解加工工程を実施する。これにより、鋭角側交差部130xの金属材料が溶解される。   Subsequently, as shown in FIG. 2 (c), one end of the second machining electrode 51 is inserted into the discharge passage 13c and disposed opposite to the surface on the discharge passage 13c side in the acute angle side intersection 130x. And while applying a voltage between the two process electrodes 50 and 51 and the cylinder 13, an electrolyte solution is poured through the acute angle side cross | intersection 130x, and a 2nd electrolytic processing process is implemented. Thereby, the metal material of the acute angle side intersection 130x is dissolved.

そして、第1電解加工工程にて鋭角側交差部130xにおける先端角部131xの金属材料が予め除去されているため、第2電解加工工程を実施した際に凸部60が形成され難くなる。   And since the metal material of the front-end | tip corner | angular part 131x in the acute angle side cross | intersection part 130x is previously removed at the 1st electrolytic processing process, when implementing a 2nd electrolytic processing process, it becomes difficult to form the convex part 60. FIG.

なお、本実施形態の第1電解加工工程では、第1加工電極50の代わりに第2加工電極51を用い、第2加工電極51を吐出通路13cに挿入して電解加工を行ってもよい。この場合においても、第1電解加工工程にて鋭角側交差部130xにおける先端角部131xの金属材料が予め除去されるため、第2電解加工工程を実施した際に凸部60が形成され難くなる。   In the first electrolytic machining process of the present embodiment, the second machining electrode 51 may be used instead of the first machining electrode 50, and the second machining electrode 51 may be inserted into the discharge passage 13c to perform the electrochemical machining. Even in this case, since the metal material of the tip corner portion 131x at the acute angle side crossing portion 130x is removed in advance in the first electrolytic processing step, the convex portion 60 is hardly formed when the second electrolytic processing step is performed. .

(第3実施形態)
本発明の第3実施形態について説明する。図4は本実施形態に係る加工方法を示す断面図である。第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
(Third embodiment)
A third embodiment of the present invention will be described. FIG. 4 is a cross-sectional view showing a processing method according to this embodiment. The same or equivalent parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態では、まず図4(a)に示すように、図示しないドリル盤に装着したドリル70の一端をプランジャ挿入孔13aに挿入し、図4(b)に示すようにドリル70による切削加工にて鋭角側交差部130xにおける先端角部131xを除去する。   In the present embodiment, first, as shown in FIG. 4A, one end of a drill 70 mounted on a drilling machine (not shown) is inserted into the plunger insertion hole 13a, and cutting with the drill 70 is performed as shown in FIG. 4B. The tip corner portion 131x at the acute angle side intersection portion 130x is removed.

続いて、図4(c)に示すように、第1加工電極50の一端を、プランジャ挿入孔13aに挿入し、鋭角側交差部130xにおけるプランジャ挿入孔13a側の面に対向して配置するとともに、第2加工電極51の一端を、吐出通路13cに挿入し、鋭角側交差部130xにおける吐出通路13c側の面に対向して配置する。そして、2つの加工電極50、51とシリンダ13間に電圧を加えるとともに、鋭角側交差部130xに電解液を流して、電解加工工程を実施する。これにより、鋭角側交差部130xの金属材料が溶解される。   Subsequently, as shown in FIG. 4 (c), one end of the first machining electrode 50 is inserted into the plunger insertion hole 13a and disposed opposite to the surface on the plunger insertion hole 13a side at the acute angle side intersection 130x. One end of the second machining electrode 51 is inserted into the discharge passage 13c and is disposed to face the surface on the discharge passage 13c side at the acute angle side intersection 130x. And while applying a voltage between the two process electrodes 50 and 51 and the cylinder 13, an electrolytic solution is poured into the acute angle side crossing part 130x, and an electrolytic processing process is implemented. Thereby, the metal material of the acute angle side intersection 130x is dissolved.

そして、切削加工工程にて鋭角側交差部130xにおける先端角部131xの金属材料が予め除去されているため、電解加工工程を実施した際に凸部60が形成され難くなる。   And since the metal material of the front-end | tip corner | angular part 131x in the acute angle | corner side cross | intersection 130x is removed previously by the cutting process, when the electrolytic processing process is implemented, it becomes difficult to form the convex part 60.

なお、切削加工工程では鋭角側交差部130xにおける先端角部131xの金属材料が除去されればよいため、プランジャ挿入孔13aの軸線に対する先端角部131xの切削面の角度(すなわち、プランジャ挿入孔13aの軸線に対するドリル70の軸線の角度)は任意に設定することができる。   In the cutting process, since the metal material of the tip corner 131x at the acute angle crossing portion 130x may be removed, the angle of the cutting surface of the tip corner 131x with respect to the axis of the plunger insertion hole 13a (that is, the plunger insertion hole 13a). The angle of the axis of the drill 70 with respect to the other axis can be arbitrarily set.

(第4実施形態)
本発明の第4実施形態について説明する。図5は本実施形態に係る加工方法を示す断面図である。第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
(Fourth embodiment)
A fourth embodiment of the present invention will be described. FIG. 5 is a sectional view showing a processing method according to the present embodiment. The same or equivalent parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態では、まず図5(a)に示すように図示しないスロッターに装着したスロッターバイト80の一端をプランジャ挿入孔13aに挿入し、図5(b)に示すようにスロッターバイト80による切削加工にて鋭角側交差部130xにおける先端角部131xを除去する。   In this embodiment, first, as shown in FIG. 5A, one end of a slotter cutting tool 80 attached to a slotter (not shown) is inserted into the plunger insertion hole 13a, and cutting with the slotter cutting tool 80 is performed as shown in FIG. 5B. The tip corner portion 131x at the acute angle side intersection portion 130x is removed.

続いて、図5(c)に示すように、第1加工電極50の一端を、プランジャ挿入孔13aに挿入し、鋭角側交差部130xにおけるプランジャ挿入孔13a側の面に対向して配置するとともに、第2加工電極51の一端を、吐出通路13cに挿入し、鋭角側交差部130xにおける吐出通路13c側の面に対向して配置する。そして、2つの加工電極50、51とシリンダ13間に電圧を加えるとともに、鋭角側交差部130xに電解液を流して、電解加工工程を実施する。これにより、鋭角側交差部130xの金属材料が溶解される。   Subsequently, as shown in FIG. 5 (c), one end of the first machining electrode 50 is inserted into the plunger insertion hole 13a and disposed opposite the surface on the plunger insertion hole 13a side at the acute angle side intersection 130x. One end of the second machining electrode 51 is inserted into the discharge passage 13c and is disposed to face the surface on the discharge passage 13c side at the acute angle side intersection 130x. And while applying a voltage between the two process electrodes 50 and 51 and the cylinder 13, an electrolytic solution is poured into the acute angle side crossing part 130x, and an electrolytic processing process is implemented. Thereby, the metal material of the acute angle side intersection 130x is dissolved.

そして、切削加工工程にて鋭角側交差部130xにおける先端角部131xの金属材料が予め除去されているため、電解加工工程を実施した際に凸部60が形成され難くなる。   And since the metal material of the front-end | tip corner | angular part 131x in the acute angle | corner side cross | intersection 130x is removed previously by the cutting process, when the electrolytic processing process is implemented, it becomes difficult to form the convex part 60.

なお、切削加工工程では鋭角側交差部130xにおける先端角部131xの金属材料が除去されればよいため、プランジャ挿入孔13aの軸線に対する先端角部131xの切削面の角度は任意に設定することができる。   In the cutting process, since the metal material of the tip corner 131x at the acute angle crossing portion 130x may be removed, the angle of the cutting surface of the tip corner 131x with respect to the axis of the plunger insertion hole 13a can be set arbitrarily. it can.

(第5実施形態)
本発明の第5実施形態について説明する。図6(a)は本実施形態に係る加工方法における電解加工前の状態を示す断面図、図6(b)は電解加工の中間状態を示す断面図である。第1実施形態と同一もしくは均等部分には同一の符号を付し、その説明を省略する。
(Fifth embodiment)
A fifth embodiment of the present invention will be described. FIG. 6A is a cross-sectional view showing a state before electrolytic processing in the processing method according to the present embodiment, and FIG. 6B is a cross-sectional view showing an intermediate state of electrolytic processing. The same or equivalent parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態は、第2実施形態における第1電解加工工程、すなわち、第1加工電極50のみを用いて鋭角側交差部130xの電解加工を行う工程での、電解液の流れ向きを規定したものである。   This embodiment defines the flow direction of the electrolytic solution in the first electrolytic processing step in the second embodiment, that is, the step of performing electrolytic processing of the acute angle side intersection 130x using only the first processing electrode 50. It is.

本実施形態では、図6(a)に矢印Aで示すように、プランジャ挿入孔13a側から吐出通路13cに向かって電解液を流すようにしている。そして、第1加工電極50の一端を、電解液の流入側であるプランジャ挿入孔13aに挿入し、鋭角側交差部130xにおけるプランジャ挿入孔13a側の面に対向して配置する。   In the present embodiment, as indicated by an arrow A in FIG. 6A, the electrolytic solution is caused to flow from the plunger insertion hole 13a side toward the discharge passage 13c. Then, one end of the first machining electrode 50 is inserted into the plunger insertion hole 13a on the electrolyte inflow side, and is disposed to face the surface on the plunger insertion hole 13a side in the acute angle side intersection 130x.

続いて、プランジャ挿入孔13a側から吐出通路13cに向かって電解液を流しつつ、第1加工電極50とシリンダ13間に電圧を加えて、第1電解加工工程を実施する。ここで、電解加工においては、加工電極から発生した陰イオンが電解液を通って移動し、その陰イオンがワークに到達すると陰イオンとワークが反応してワークが溶解される。そして、本実施形態では、第1加工電極50を、電解液の流入側であるプランジャ挿入孔13aに挿入しているため、第1加工電極50から発生した陰イオンは電解液によって鋭角側交差部130x側に導かれる。したがって、図6(b)に示すように、鋭角側交差部130xにおける先端角部131x(図6(a)参照)の金属材料が確実に除去される。   Subsequently, a voltage is applied between the first machining electrode 50 and the cylinder 13 while flowing the electrolyte from the plunger insertion hole 13a toward the discharge passage 13c, and the first electrolytic machining process is performed. Here, in electrolytic machining, the anion generated from the machining electrode moves through the electrolytic solution, and when the anion reaches the workpiece, the anion and the workpiece react to dissolve the workpiece. In the present embodiment, since the first machining electrode 50 is inserted into the plunger insertion hole 13a on the electrolyte inflow side, the anions generated from the first machining electrode 50 are caused to cross the acute angle side by the electrolyte. Guided to the 130x side. Therefore, as shown in FIG. 6B, the metal material at the tip corner 131x (see FIG. 6A) at the acute angle crossing portion 130x is reliably removed.

続いて、第2実施形態と同様に、2つの加工電極50、51を用いて第2電解加工工程を実施する。そして、第1電解加工工程にて鋭角側交差部130xにおける先端角部131xの金属材料が予め除去されているため、第2電解加工工程を実施した際に凸部60(図3参照)が形成され難くなる。   Subsequently, as in the second embodiment, the second electrolytic processing step is performed using the two processing electrodes 50 and 51. Then, since the metal material of the tip corner portion 131x at the acute angle side crossing portion 130x is removed in advance in the first electrolytic processing step, the convex portion 60 (see FIG. 3) is formed when the second electrolytic processing step is performed. It becomes difficult to be done.

(他の実施形態)
上記各実施形態では、燃料噴射装置のサプライポンプに本発明を適用した例を示したが、高圧の流体が流通する通路を有する流体機器に本発明を適用することができる。
(Other embodiments)
In each of the above embodiments, the example in which the present invention is applied to the supply pump of the fuel injection device has been described. However, the present invention can be applied to a fluid device having a passage through which a high-pressure fluid flows.

(a)は本発明の第1実施形態に係る加工方法における電解加工前の状態を示す断面図、(b)は電解加工後の状態を示す断面図である。(A) is sectional drawing which shows the state before the electrolytic processing in the processing method which concerns on 1st Embodiment of this invention, (b) is sectional drawing which shows the state after electrolytic processing. (a)は本発明の第2実施形態に係る加工方法における電解加工前の状態を示す断面図、(b)は電解加工の中間状態を示す断面図、(c)は電解加工後の状態を示す断面図である。(A) is sectional drawing which shows the state before the electrolytic processing in the processing method which concerns on 2nd Embodiment of this invention, (b) is sectional drawing which shows the intermediate state of electrolytic processing, (c) is the state after electrolytic processing. It is sectional drawing shown. 電解加工後に凸部60が残る例を示す断面図である。It is sectional drawing which shows the example in which the convex part 60 remains after electrolytic processing. 本発明の第3実施形態に係る加工方法を示す断面図である。It is sectional drawing which shows the processing method which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る加工方法を示す断面図である。It is sectional drawing which shows the processing method which concerns on 4th Embodiment of this invention. (a)は本発明の第5実施形態に係る加工方法における電解加工前の状態を示す断面図、(b)は電解加工の中間状態を示す断面図である。(A) is sectional drawing which shows the state before the electrolytic processing in the processing method which concerns on 5th Embodiment of this invention, (b) is sectional drawing which shows the intermediate state of electrolytic processing. 従来のサプライポンプにおけるシリンダ内周面の展開図である。It is an expanded view of the cylinder internal peripheral surface in the conventional supply pump. 課題の説明に供するための流体機器の加工方法を示す断面図である。It is sectional drawing which shows the processing method of the fluid apparatus for using for description of a subject.

符号の説明Explanation of symbols

13 シリンダ(基材)
13a プランジャ挿入孔(第1通路)
13c 吐出通路(第2通路)
13x 交差部
50 第1加工電極
51 第2加工電極
130x 鋭角側交差部
13 Cylinder (base material)
13a Plunger insertion hole (first passage)
13c Discharge passage (second passage)
13x intersection 50 first machining electrode 51 second machining electrode 130x acute angle intersection

Claims (6)

流体が流通する第1通路(13a)と第2通路(13c)が斜めに交差して形成された基材(13)を有する流体機器の加工方法であって、
前記第1通路(13a)と前記第2通路(13c)との交差部(13x)のうち鋭角側交差部(130x)を、前記第1通路(13a)に挿入される第1加工電極(50)と前記第2通路(13c)に挿入される第2加工電極(51)とを用いて電解加工することを特徴とする流体機器の加工方法。
A processing method of a fluid device having a base material (13) formed by obliquely intersecting a first passage (13a) and a second passage (13c) through which a fluid flows,
Of the intersecting portion (13x) between the first passage (13a) and the second passage (13c), an acute angle side intersecting portion (130x) is inserted into the first passage (13a). ) And the second machining electrode (51) inserted into the second passage (13c).
前記2つの加工電極(50、51)のうち一方の加工電極のみを用いて電解加工した後に、前記2つの加工電極(50、51)を用いて電解加工することを特徴とする請求項1に記載の流体機器の加工方法。   2. The electrolytic processing using the two processing electrodes (50, 51) after the electrolytic processing using only one processing electrode of the two processing electrodes (50, 51). The processing method of the fluid apparatus as described. 前記鋭角側交差部(130x)における先端角部(131x)を切削加工にて除去した後に、前記2つの加工電極(50、51)を用いて電解加工することを特徴とする請求項1に記載の流体機器の加工方法。   2. The electrolytic processing using the two processing electrodes (50, 51) is performed after the tip end corner portion (131 x) at the acute angle side crossing portion (130 x) is removed by cutting. Method of fluid equipment. 前記電解加工を行う際、前記基材(13)と前記加工電極(50、51)間に断続的に通電することを特徴とする請求項1ないし3のいずれか1つに記載の流体機器の加工方法。   4. The fluidic device according to claim 1, wherein when the electrolytic processing is performed, current is intermittently supplied between the base material (13) and the processing electrode (50, 51). 5. Processing method. 前記第1通路(13a)から前記第2通路(13c)に向かって電解液を流しつつ、前記2つの加工電極(50、51)のうち前記第1加工電極(50)のみを用いて電解加工した後に、前記2つの加工電極(50、51)を用いて電解加工することを特徴とする請求項1に記載の流体機器の加工方法。   Electrolytic machining is performed using only the first machining electrode (50) of the two machining electrodes (50, 51) while flowing an electrolytic solution from the first passage (13a) toward the second passage (13c). 2. The method for processing a fluid device according to claim 1, wherein the two processing electrodes (50, 51) are used for electrolytic processing after the processing. 請求項1ないし5のいずれか1つに記載の流体機器の加工方法を用いて流体機器を製造することを特徴とする流体機器の製造方法。   A fluid device manufacturing method, wherein the fluid device is manufactured using the fluid device processing method according to claim 1.
JP2008158977A 2007-11-28 2008-06-18 Processing method of fluid equipment Active JP4502046B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008158977A JP4502046B2 (en) 2007-11-28 2008-06-18 Processing method of fluid equipment
DE102008044022A DE102008044022A1 (en) 2007-11-28 2008-11-24 Method for machining fluid device entails machining pointed section of boundary region between first and second inner walls by electromechanical machining using first and second machining electrodes in respective flow passages
CN2008101779807A CN101444861B (en) 2007-11-28 2008-11-26 Method for machining fluid device including two inclined intersect flow passages

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007307203 2007-11-28
JP2008158977A JP4502046B2 (en) 2007-11-28 2008-06-18 Processing method of fluid equipment

Publications (2)

Publication Number Publication Date
JP2009148873A true JP2009148873A (en) 2009-07-09
JP4502046B2 JP4502046B2 (en) 2010-07-14

Family

ID=40740909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008158977A Active JP4502046B2 (en) 2007-11-28 2008-06-18 Processing method of fluid equipment

Country Status (2)

Country Link
JP (1) JP4502046B2 (en)
CN (1) CN101444861B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030586A1 (en) * 2010-06-28 2011-12-29 Robert Bosch Gmbh Metallic component for high pressure applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740145A (en) * 1993-07-29 1995-02-10 Ishikawajima Harima Heavy Ind Co Ltd Electrolytic working device for blade having shroud
JPH08232802A (en) * 1994-12-16 1996-09-10 Perkins Ltd Relaxing method of stress in connecting section of high-pressure fluid flow path and connecting section formed by said method
JP2001200399A (en) * 2000-01-18 2001-07-24 Seiko Instruments Inc Surface working method for fluid dynamic pressure bearing member
JP2005288659A (en) * 2004-04-05 2005-10-20 Denso Corp Electrolytic processing method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740145A (en) * 1993-07-29 1995-02-10 Ishikawajima Harima Heavy Ind Co Ltd Electrolytic working device for blade having shroud
JPH08232802A (en) * 1994-12-16 1996-09-10 Perkins Ltd Relaxing method of stress in connecting section of high-pressure fluid flow path and connecting section formed by said method
JP2001200399A (en) * 2000-01-18 2001-07-24 Seiko Instruments Inc Surface working method for fluid dynamic pressure bearing member
JP2005288659A (en) * 2004-04-05 2005-10-20 Denso Corp Electrolytic processing method and device

Also Published As

Publication number Publication date
CN101444861A (en) 2009-06-03
CN101444861B (en) 2011-01-12
JP4502046B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
US10677240B2 (en) Method for remanufacturing fluid end block
JP4434058B2 (en) EDM method
JP4801653B2 (en) Housing with cross passage
EP1888286B1 (en) Machining method
US6557786B1 (en) Method for producing a high pressure fuel accumulator
JP2001295723A (en) Pressure accumulation type fuel injection device
JP4502046B2 (en) Processing method of fluid equipment
US6612289B1 (en) Common rail and method for producing a common rail
EP1780415A1 (en) A component for high-pressure fluid applications and method for its manufacture
KR101063260B1 (en) Deburring device and deburring method using same
JP2013534871A (en) Metal parts for high pressure applications
JP2012255478A (en) Sealing system and sealing method
CN106944685B (en) Electrolytic machining method for ball nut raceway outlet
JP2006509644A (en) Method for machining corners of high pressure resistant parts, especially water erodible chamfering method for corners, and apparatus therefor
JP4274026B2 (en) Electrolytic processing method
DE102008044022A1 (en) Method for machining fluid device entails machining pointed section of boundary region between first and second inner walls by electromechanical machining using first and second machining electrodes in respective flow passages
JP6153811B2 (en) Dimple processing method
Osipenko et al. Improved methodology for calculating the processes of surface anodic dissolution of spark eroded recast layer at electrochemical machining with wire electrode
JP4645694B2 (en) Electrolytic processing method
JP5130697B2 (en) Electrolytic processing method and method for manufacturing component having uneven surface
CN107297580A (en) A kind of corner connection welding method
JP2008012651A (en) Electric discharge machining method and electric discharge machining device
CN110948068A (en) Fuel distributing pipe and processing method of connecting hole thereof
JP2012130976A (en) Electrochemical machining method, and electrochemical machining device
KR20120028728A (en) Apparatus for electrical discharge machining using spray

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R151 Written notification of patent or utility model registration

Ref document number: 4502046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250