JP2001200399A - Surface working method for fluid dynamic pressure bearing member - Google Patents

Surface working method for fluid dynamic pressure bearing member

Info

Publication number
JP2001200399A
JP2001200399A JP2000009185A JP2000009185A JP2001200399A JP 2001200399 A JP2001200399 A JP 2001200399A JP 2000009185 A JP2000009185 A JP 2000009185A JP 2000009185 A JP2000009185 A JP 2000009185A JP 2001200399 A JP2001200399 A JP 2001200399A
Authority
JP
Japan
Prior art keywords
workpiece
processing
dynamic pressure
bearing member
fluid dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000009185A
Other languages
Japanese (ja)
Inventor
Tadao Iwaki
岩城  忠雄
Kazuaki Oguchi
和明 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2000009185A priority Critical patent/JP2001200399A/en
Publication of JP2001200399A publication Critical patent/JP2001200399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute surface finishing prior to dynamic pressure groove working of a fluid dynamic pressure bearing member at a low cost. SOLUTION: In a surface working method prior to dynamic pressure groove working of the fluid dynamic pressure bearing member, the surface 1A of a workpiece 1 is first roughly worked by cutting and thereafter the required surface machining quantity ΔS for working the workpiece 1 to a desired size is calculated and the workpiece 1 is disposed to face a smooth circumferential surface 23A of an electrode 23 for working via an electrolyte 21. Pulse current is passed between the workpiece 1 and the electrode 23 for working, by which the surface 1A of the workpiece 1 is worked by electrolytic etching by as much as the required surface machining quantity ΔS and a required surface state is attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体動圧軸受のシ
ャフト、スリーブ等の流体動圧軸受部材の溝加工前の表
面加工方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for machining a surface of a fluid dynamic bearing member such as a shaft and a sleeve of a fluid dynamic bearing before machining a groove.

【0002】[0002]

【従来の技術】潤滑油等を用いた流体動圧軸受には動圧
発生用の微小な動圧溝を形成する必要がある。このた
め、従来においては、シャフト、スリーブ等の如き流体
動圧軸受部材を加工する場合、金属の塑性変形を利用し
た転造、化学エッチング、電解エッチングなどの方法が
採用されてきている。
2. Description of the Related Art A fluid dynamic pressure bearing using lubricating oil or the like needs to form minute dynamic pressure grooves for generating dynamic pressure. For this reason, conventionally, when processing a fluid dynamic bearing member such as a shaft or a sleeve, methods such as rolling, chemical etching, and electrolytic etching utilizing plastic deformation of metal have been adopted.

【0003】このうち、特に電解エッチングを用いた微
小溝の加工方法は、高速で溝形成が可能であること、加
工面が滑らかで高品質の加工が可能であること、エッチ
ング液が人体に安全な中性塩を用いることができ安全性
に優れていることなどから近年特に注目を集めてきてい
る。
[0003] Among them, a method of forming a micro-groove using electrolytic etching is particularly capable of forming a groove at a high speed, capable of forming a high-quality processing with a smooth processing surface, and ensuring that the etching solution is safe for the human body. In recent years, it has attracted particular attention because it can use a neutral salt and is excellent in safety.

【0004】例えば、特開平9−192932号公報に
は、所定の微小溝形状が電解加工される被加工物と、当
該被加工物に加工される微小溝形状に対応した微小溝形
状の電極露出部を有する電極工具と、を互いに近接して
対向配置するとともに、これら被加工物及び電極工具を
電極加工用電源の負極及び正極にそれぞれ接続し、電極
工具と被加工物との間に所定の電解液を流動させながら
通電することによって上記被加工物を前記微小溝形状に
対応して溶出させ微小溝の電解加工を行う場合に、上記
電極工具及び被加工物を所定の加工間隙をもって相対的
に不動状態に固定するとともに、前記電極加工用電源か
ら所定の時間間隔でパルス状電圧を出力し、当該電解加
工用電源から与えられた総電気量を制御することによっ
て、被加工物における微小溝形状の電解加工量を制御
し、これによって、電解微小溝加工を行う方法が開示さ
れている。
For example, Japanese Unexamined Patent Application Publication No. 9-192932 discloses a process in which a predetermined micro-groove shape is electrolytically processed and an electrode exposure of a micro-groove shape corresponding to the micro-groove shape to be processed in the workpiece. And an electrode tool having a portion are disposed close to each other and opposed to each other, and the workpiece and the electrode tool are respectively connected to the negative electrode and the positive electrode of an electrode processing power source, and a predetermined distance is provided between the electrode tool and the workpiece. In the case where the workpiece is eluted in accordance with the shape of the micro-groove by applying an electric current while flowing the electrolytic solution to perform electro-machining of the micro-groove, the electrode tool and the workpiece are relatively separated with a predetermined processing gap. And a pulsed voltage is output from the power source for electrode processing at predetermined time intervals to control the total amount of electricity supplied from the power source for electrolytic processing. That controls the electrolytic processing amount of the fine groove shape, thereby, a method of performing electrolysis microgrooves machining is disclosed.

【0005】ところで、流体動圧軸受のシャフト、スリ
ーブ等の加工においては、動圧溝そのものが微小である
から、その溝深さ等も非常に小さいものとなる。このた
め、従来においては、動圧溝加工前に被加工材の表面を
仕上げ加工する場合、仕上げ面がその後に行われる溝加
工のための加工深さに比べて充分な面粗度となるように
機械加工により表面仕上げを行うのが一般的である。
In machining a shaft, a sleeve, and the like of a fluid dynamic pressure bearing, since the dynamic pressure groove itself is minute, the groove depth and the like are very small. For this reason, conventionally, when the surface of the workpiece is finished before the dynamic pressure groove processing, the finished surface has a sufficient surface roughness as compared with the processing depth for the groove processing performed thereafter. It is common to finish the surface by machining.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た従来の加工方法によると、所定の加工仕上げ面精度を
実現するためには、切削、研削、場合によっては研磨工
程を要するため、加工時間がかかると同時に加工不良も
多くなり、結果的には加工コストが高くなるという問題
点を有していた。
However, according to the conventional processing method described above, cutting, grinding, and, in some cases, a polishing step are required in order to achieve a predetermined finished surface accuracy, so that processing time is required. At the same time, there is a problem that machining defects increase, resulting in an increase in machining cost.

【0007】本発明の目的は、従来技術における上述の
問題点を解決することができるようにした、流体動圧軸
受部材の動圧溝加工前の表面加工方法を提供することに
ある。
An object of the present invention is to provide a method of processing a surface of a fluid dynamic bearing member before processing a dynamic pressure groove, which can solve the above-mentioned problems in the prior art.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明によれば、流体動圧軸受部材の動圧溝加工前
の表面加工方法であって、所与の被加工材をまず切削で
荒加工した後、前記被加工材を目的寸法とするための所
要の加工量を算出し、前記被加工材を電解液を介して加
工電極の滑らかな表面と対向させ、前記被加工材と前記
加工電極との間にパルス電流を流し、これにより前記被
加工材の表面を前記所要の表面加工量だけ電解エッチン
グにより加工すると共に所要の面粗さ状態とするように
した方法が提案される。
According to the present invention, there is provided a method of machining a surface of a fluid dynamic bearing member before machining a dynamic pressure groove, the method comprising first cutting a given workpiece. After roughing in the, the required amount of processing for calculating the target material to the target dimensions is calculated, the workpiece is opposed to the smooth surface of the processing electrode via the electrolyte, and the workpiece and A method is proposed in which a pulse current is passed between the processing electrode and the workpiece so that the surface of the workpiece is processed by electrolytic etching by the required surface processing amount and the surface is brought into a required surface roughness state. .

【0009】荒加工により得られた被加工材の実測寸法
と目的とする寸法との差分を算出し、この差分に相当す
る加工を電解液を用いた電解エッチングにより行うの
で、被加工材を精度よく所要の寸法値に加工することが
できる上に、被加工材の表面粗さも同時に所要の値とす
ることができる。このように、シャフト、スリーブ等の
軸受部材の仕上げ寸法と仕上げ面粗度とを同時に制御し
ながら加工できるので、軸受部材を高品質で安定に加工
することができる。
The difference between the actually measured dimension of the workpiece obtained by the rough machining and the target dimension is calculated, and the processing corresponding to the difference is performed by electrolytic etching using an electrolytic solution. In addition to being able to work to the required dimensional value well, the surface roughness of the workpiece can also be set to the required value at the same time. As described above, since the finishing dimension and the finished surface roughness of the bearing member such as the shaft and the sleeve can be processed while being simultaneously controlled, the bearing member can be stably processed with high quality.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態の一例につき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.

【0011】図1は、本発明による流体動圧軸受のシャ
フトの加工工程を説明するため、その加工工程の一部を
示した工程図である。
FIG. 1 is a process diagram showing a part of the working process for explaining a working process of a shaft of a fluid dynamic bearing according to the present invention.

【0012】図1の(A)に示すように、シャフトとし
て加工すべきステンレス鋼材から成る円柱状の被加工材
1を用意する。被加工材1の外径寸法S1は、目的外径
寸法S0よりも充分に大きく、その表面1Aの面粗度
は、例えば10μm乃至100μm程度のものとするこ
とができる。
As shown in FIG. 1A, a columnar workpiece 1 made of stainless steel to be processed as a shaft is prepared. The outer diameter dimension S1 of the workpiece 1 is sufficiently larger than the target outer diameter dimension S0, and the surface roughness of the surface 1A can be, for example, about 10 μm to 100 μm.

【0013】次に、図1の(B)に示すように、切削加
工装置11を用い、被加工材1の表面1Aを切削加工
し、所定の同軸度及び同芯度であり、且つその外径寸法
が目的外径寸法S0に対して5〜10μm程度大きくな
るように荒加工する。この荒加工により得られた被加工
材1の表面粗さは山谷間で約2.5μm程度にする。す
なわち、このときの表面粗さは、目的外径寸法S0に対
する削り代よりも大きくならないことが必要である。
Next, as shown in FIG. 1B, the surface 1A of the workpiece 1 is cut using a cutting device 11 so as to have a predetermined coaxiality and concentricity. Roughing is performed so that the diameter dimension is about 5 to 10 μm larger than the target outer diameter dimension S0. The surface roughness of the workpiece 1 obtained by this roughing is set to about 2.5 μm between the peaks and valleys. That is, it is necessary that the surface roughness at this time does not become larger than the cutting allowance for the target outer diameter dimension S0.

【0014】このように、図1の(A)〜(B)に示し
た工程によって、原材料である被加工材1を切削加工し
て、外径寸法が最終目標寸法値に近いがそれよりは若干
大きい値のS2であり、表面粗さが数μmオーダーのシ
ャフト用の被加工材1が得られる。
As described above, the workpiece 1 as a raw material is cut by the steps shown in FIGS. 1A and 1B so that the outer diameter dimension is close to the final target dimension value. S2 is a slightly larger value, and a workpiece 1 for a shaft having a surface roughness of the order of several μm is obtained.

【0015】しかる後、図1の(C)に示すように被加
工材1の表面1Aを充分に洗浄し、図1の(D)に示す
ように触針式の外径測定器12を用いて荒加工後の被加
工材1の外径寸法S2を測定する。そして、被加工材1
を目的外径寸法S0とするために必要である表面1Aの
表面加工量S2−S0(=ΔS)を計算する。ここで、
外径測定器12としては触針式のもの以外にも、レーザ
方式のもの、静電容量方式のものなどを用いることが出
来る。また、測定箇所としては1箇所ではなく、被加工
材1の軸方向に沿った複数点を同時に計測できるように
するのが好ましい。
Thereafter, as shown in FIG. 1C, the surface 1A of the workpiece 1 is sufficiently washed, and a stylus type outer diameter measuring device 12 is used as shown in FIG. 1D. The outer diameter S2 of the workpiece 1 after the roughing is measured. And the work material 1
Calculates the surface processing amount S2-S0 (= ΔS) of the surface 1A necessary to make the target outer diameter dimension S0. here,
As the outer diameter measuring device 12, besides the stylus type, a laser type, a capacitance type, and the like can be used. In addition, it is preferable that a plurality of points along the axial direction of the workpiece 1 can be measured at the same time, instead of one measurement point.

【0016】図2には、上述の如くして得られた荒加工
後の被加工材1の表面1Aを電界エッチングにより表面
加工量ΔSだけ加工し、その外径寸法を目的外径寸法S
0とすると共に、表面1Aの面粗さを所定の値に仕上げ
るための仕上げ加工装置が示されている。
FIG. 2 shows that the surface 1A of the workpiece 1 after the rough processing obtained as described above is processed by a surface processing amount ΔS by electric field etching, and its outer diameter is set to the target outer diameter S.
A finishing device for finishing the surface roughness of the surface 1A to a predetermined value while setting the surface roughness to 0 is shown.

【0017】仕上げ加工装置20は、電解液21が満た
されている加工タンク22を有しており、加工タンク2
2内に設けられている円筒状の加工用電極23内に被加
工材1がセットされている。加工用電極23は内周面2
3Aが円筒面となっており、被加工材1の表面1Aは加
工用電極23の内周面23Aに囲まれ、且つ表面1Aと
内周面23Aとの間に形成される加工間隙Gの間隙幅W
が全周に亘って均一となるよう、図示しない固定用治具
を用いて被加工材1が加工用電極23内に同軸配置され
ている。
The finishing apparatus 20 has a processing tank 22 filled with an electrolytic solution 21.
The workpiece 1 is set in a cylindrical machining electrode 23 provided in the workpiece 2. The processing electrode 23 is the inner peripheral surface 2
3A is a cylindrical surface, the surface 1A of the workpiece 1 is surrounded by the inner peripheral surface 23A of the processing electrode 23, and the gap of the processing gap G formed between the surface 1A and the inner peripheral surface 23A. Width W
The workpiece 1 is coaxially arranged in the processing electrode 23 by using a fixing jig (not shown) so that is uniform over the entire circumference.

【0018】被加工材1及び加工用電極23は電解液2
1内に浸漬されているので、加工間隙G内も電解液21
によって満たされている。
The workpiece 1 and the processing electrode 23 are made of an electrolyte 2
1 so that the electrolytic solution 21
Is satisfied by

【0019】加工間隙Gに加工のために必要な加工用パ
ルス電圧を与えるため、直流電源24がスイッチ25を
介して図2に示す如く電気的に接続されている。すなわ
ち、直流電源24の負極は加工用電極23に直接接続さ
れ、直流電源24の正極は被加工材1にスイッチ25を
介して接続されている。
A DC power supply 24 is electrically connected through a switch 25 as shown in FIG. 2 to apply a processing pulse voltage required for processing to the processing gap G. That is, the negative electrode of the DC power supply 24 is directly connected to the processing electrode 23, and the positive electrode of the DC power supply 24 is connected to the workpiece 1 via the switch 25.

【0020】スイッチ25を周期的にオン、オフ動作さ
せるため、オン/オフコントローラ26が設けられてお
り、オン/オフコントローラ26からのオン/オフ制御
信号Sに応答してスイッチ25がオン/オフを繰り返
し、これにより加工間隙Gに加工用パルス電圧が繰り返
し印加される構成である。ここで、スイッチ25は、例
えばトランジスタの如き半導体スイッチング素子とする
ことができる。
An on / off controller 26 is provided for periodically turning on and off the switch 25, and the switch 25 is turned on / off in response to an on / off control signal S from the on / off controller 26. Is repeated, whereby the machining pulse voltage is repeatedly applied to the machining gap G. Here, the switch 25 can be a semiconductor switching element such as a transistor, for example.

【0021】符号27で示されるのは、加工タンク22
内の電解液21を浄化処理し、浄化処理された電解液を
再び加工タンク22内に戻すための電解液再処理装置で
ある。電解液再処理装置27は、ドレインパイプ27A
を介して加工タンク内の電解液21を取り込み、再生処
理された電解液を供給パイプ27Bを介して加工タンク
22内に戻す公知の構成の電解液のための再生処理装置
であるから、その詳細について説明するのを省略する。
Reference numeral 27 denotes the processing tank 22.
This is an electrolytic solution reprocessing device for purifying the electrolytic solution 21 therein and returning the purified electrolytic solution to the inside of the processing tank 22 again. The electrolyte reprocessing device 27 includes a drain pipe 27A.
This is a regenerating processing apparatus for an electrolytic solution having a known configuration in which the electrolytic solution 21 in the processing tank is taken in through the processing tank and the regenerated electrolytic solution is returned into the processing tank 22 through the supply pipe 27B. The description of is omitted.

【0022】符号28で示されるのは、電解液21を加
圧して加工間隙G内に送り込み、これにより加工間隙G
内に電解液21の流れを作り、加工速度及び加工の安定
性を向上させるための電解液噴流装置である。電解液噴
流装置28は、加工タンク22内の電解液21を取入パ
イプ28Aを介して取り込み、図示しない加圧ポンプに
よって電解液21を加圧し、加圧された電解液21を噴
射ノズル28Bから加工間隙Gに向けて送り出す公知の
構成となっている。電解液21の送出圧力は、送給パイ
プ28Cに取り付けられている流量調整弁28Dによっ
て調整することができ、圧力計28Eによりその送出圧
力を知ることができる構成となっている。
Reference numeral 28 indicates that the electrolytic solution 21 is pressurized and sent into the machining gap G, thereby
This is an electrolytic solution jetting device for creating a flow of the electrolytic solution 21 therein to improve the processing speed and the processing stability. The electrolytic solution jetting device 28 takes in the electrolytic solution 21 in the processing tank 22 through an intake pipe 28A, pressurizes the electrolytic solution 21 by a pressurizing pump (not shown), and pressurizes the electrolytic solution 21 from an injection nozzle 28B. It has a well-known configuration in which it is fed toward the processing gap G. The delivery pressure of the electrolytic solution 21 can be adjusted by a flow control valve 28D attached to the delivery pipe 28C, and the delivery pressure can be known by the pressure gauge 28E.

【0023】なお、図2では、噴射ノズル28Bが唯一
つだけ設けられている構成が示されているが、噴射ノズ
ル28Bを加工間隙Gに沿って複数個配設し、加工間隙
Gの開口に対して均等に電解液21を加工間隙G内に向
けて送り出すようにすることもできる。
FIG. 2 shows a configuration in which only one injection nozzle 28B is provided. However, a plurality of injection nozzles 28B are provided along the processing gap G and On the other hand, the electrolytic solution 21 can be evenly sent out into the processing gap G.

【0024】次に、電解加工装置20による具体的加工
例について説明する。本実施の形態では、電解液21と
してNaCl水溶液が用いられており、加工用パルス電
圧の印加により加工間隙Gに電流を所定の時間流して被
加工材1の表面1Aの加工を行った。
Next, a specific processing example by the electrolytic processing apparatus 20 will be described. In the present embodiment, an aqueous solution of NaCl is used as the electrolytic solution 21. The surface 1A of the workpiece 1 is processed by applying a current to the processing gap G for a predetermined time by applying a processing pulse voltage.

【0025】このときの電圧値と印加時間は、間隙幅
W、電解液21の濃度および温度、加工溝の深さと加工
面積とに依存して決定される。
At this time, the voltage value and the application time are determined depending on the gap width W, the concentration and temperature of the electrolytic solution 21, the depth of the processing groove, and the processing area.

【0026】例えば、30°Cで35%のNaCl水溶
液を電解液21として用い、間隙幅Wの値を500μm
としたとき、2V×1Aでデューティー1/5のパルス
電圧を印加したところステンレス鋼材である被加工材1
を略毎秒2μmの速さで加工できた。
For example, a 35% NaCl aqueous solution at 30 ° C. is used as the electrolyte 21 and the value of the gap width W is set to 500 μm.
When a pulse voltage with a duty of 1/5 was applied at 2V × 1A, the work material 1 which was a stainless steel material
Was processed at a speed of about 2 μm per second.

【0027】この実施例においても、加工時間はおよそ
5秒以内であった。また、加工後の被加工材1の目的と
する加工寸法との差は±0.3μm以内であった。さら
に、最初山谷間で約2.5μmであった表面粗さも約
0.1μm程度となり研磨加工としての効果も得られ
た。
Also in this example, the processing time was about 5 seconds or less. Further, the difference from the target processing dimension of the workpiece 1 after the processing was within ± 0.3 μm. Furthermore, the surface roughness, which was initially about 2.5 μm between the peaks and valleys, became about 0.1 μm, and an effect as a polishing process was obtained.

【0028】以上、図1及び図2を参照してシャフトの
加工の一例を説明したが、スリーブの加工及びスラスト
板の如き円盤状の部材の加工についてもこれと同様の方
法で加工することができる。そして、いずれの場合にお
いても次のような利点を得ることができる。
While an example of processing a shaft has been described with reference to FIGS. 1 and 2, processing of a sleeve and processing of a disk-shaped member such as a thrust plate can be performed in the same manner. it can. In any case, the following advantages can be obtained.

【0029】切削等の機械的加工により軸受部材をその
溝加工前に略目的とする寸法及び表面粗さに荒加工して
おき、その後の仕上げ加工を、滑らかな表面の加工電極
と前記被加工材とを対向させ、その間隙に電解液を介在
させてパルス電流を所定の時間流すことにより表面加工
することにより行い、これにより、溝加工前の被加工材
の目標加工寸法と目標表面粗さとを同時に実現するよう
にしたので、全ての工程を機械的な切削や研磨等により
行う従来の方法に比べ、動圧軸受部材の溝加工前の表面
加工を短時間で且つ高精度にて行うことが出来ると同時
に、加工面である被加工材の表面が均一で滑らかに加工
できるので、品質の安定した動圧軸受の提供が可能とな
る。
The bearing member is roughly machined to a substantially desired size and surface roughness before machining the groove by mechanical machining such as cutting, and the subsequent finishing is performed by machining the smooth surface machining electrode and the workpiece. The surface is processed by passing a pulse current for a predetermined period of time with an electrolyte interposed in the gap between the material and the gap, thereby achieving the target processing dimensions and target surface roughness of the workpiece before groove processing. The surface processing before groove processing of the hydrodynamic bearing member is performed in a short time and with high precision compared to the conventional method in which all processes are performed by mechanical cutting, polishing, etc. At the same time, the surface of the workpiece, which is the processing surface, can be processed uniformly and smoothly, so that it is possible to provide a dynamic pressure bearing with stable quality.

【0030】[0030]

【発明の効果】本発明によれば、 切削等の機械的加工
により軸受部材をその溝加工前に略目的とする寸法及び
表面粗さに荒加工しておき、その後の仕上げ加工を、滑
らかな表面の加工電極と前記被加工材とを対向させ、そ
の間隙に電解液を介在させてパルス電流を所定の時間流
すことにより表面加工することにより行い、これによ
り、溝加工前の被加工材の目標加工寸法と目標表面粗さ
とを同時に実現するようにしたので、全ての工程を機械
的な切削や研磨等により行う従来の方法に比べ、動圧軸
受部材の溝加工前の表面加工を短時間で且つ高精度にて
行うことが出来ると同時に、加工面である被加工材の表
面が均一で滑らかに加工できるので、品質の安定した動
圧軸受の提供が可能となる。
According to the present invention, the bearing member is roughly machined to a substantially desired size and surface roughness before machining the groove by mechanical machining such as cutting, and the subsequent finishing is performed smoothly. The surface processing electrode and the material to be processed are opposed to each other, and the surface is processed by flowing a pulse current for a predetermined time with an electrolyte interposed therebetween, thereby performing the surface processing of the material before the groove processing. Since the target processing dimensions and target surface roughness are realized at the same time, compared to the conventional method in which all processes are performed by mechanical cutting, polishing, etc., the surface processing before groove processing of the dynamic pressure bearing member is shorter. And at the same time, it is possible to provide a dynamic pressure bearing with stable quality, because the surface of the material to be processed can be processed uniformly and smoothly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法によるシャフトの加工工程の一部
を説明するための工程図。
FIG. 1 is a process chart for explaining a part of a shaft machining process according to a method of the present invention.

【図2】図1に示す工程により得られたシャフトを電解
エッチングによる表面仕上げ加工するための工程で使用
する仕上げ加工装置の一例を一部断面して示す概略構成
図。
FIG. 2 is a schematic cross-sectional view showing a part of an example of a finishing apparatus used in a step of finishing a shaft obtained by the step shown in FIG. 1 by electrolytic etching.

【符号の説明】[Explanation of symbols]

1 被加工材 1A 表面 11 切削加工装置 12 外径測定器 20 仕上げ加工装置 21 電解液 23 加工用電極 23A 内周面 24 直流電源 26 オン/オフコントローラ 27 電解液再処理装置 28 電解液噴流装置 S0 目的外径寸法 S1 外径寸法 S2 外径寸法 DESCRIPTION OF SYMBOLS 1 Workpiece material 1A Surface 11 Cutting device 12 Outer diameter measuring device 20 Finishing device 21 Electrolyte 23 Processing electrode 23A Inner peripheral surface 24 DC power supply 26 On / off controller 27 Electrolyte solution reprocessing device 28 Electrolyte jet device S0 Target outer diameter S1 Outer diameter S2 Outer diameter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16C 33/14 F16C 33/14 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) F16C 33/14 F16C 33/14 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流体動圧軸受部材の動圧溝加工前の表面
加工方法であって、 所与の被加工材の表面をまず切削で荒加工した後、前記
被加工材を目的寸法とするための所要の表面加工量を算
出し、前記被加工材を電解液を介して加工電極の滑らか
な表面と対向させ、前記被加工材と前記加工電極との間
にパルス電流を流し、これにより前記被加工材の表面を
前記所要の表面加工量だけ電解エッチングにより加工す
ると共に所要の面粗さ状態とすることを特徴とする流体
動圧軸受部材の表面加工方法。
1. A surface machining method for a fluid dynamic pressure bearing member before machining a dynamic pressure groove, wherein a surface of a given workpiece is first roughened by cutting, and then the workpiece is set to a target dimension. Calculate the required surface processing amount for, facing the workpiece to the smooth surface of the processing electrode via the electrolyte, passing a pulse current between the workpiece and the processing electrode, thereby A surface processing method for a fluid dynamic bearing member, wherein the surface of the workpiece is processed by electrolytic etching by the required surface processing amount and the surface is brought into a required surface roughness state.
【請求項2】 前記被加工材が流体動圧軸受を構成する
シャフトであることを特徴とする流体動圧軸受部材の表
面加工方法。
2. A method for processing a surface of a fluid dynamic bearing member, wherein the workpiece is a shaft constituting a fluid dynamic bearing.
JP2000009185A 2000-01-18 2000-01-18 Surface working method for fluid dynamic pressure bearing member Pending JP2001200399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000009185A JP2001200399A (en) 2000-01-18 2000-01-18 Surface working method for fluid dynamic pressure bearing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000009185A JP2001200399A (en) 2000-01-18 2000-01-18 Surface working method for fluid dynamic pressure bearing member

Publications (1)

Publication Number Publication Date
JP2001200399A true JP2001200399A (en) 2001-07-24

Family

ID=18537364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000009185A Pending JP2001200399A (en) 2000-01-18 2000-01-18 Surface working method for fluid dynamic pressure bearing member

Country Status (1)

Country Link
JP (1) JP2001200399A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148873A (en) * 2007-11-28 2009-07-09 Denso Corp Processing method of fluid device
JP2012112534A (en) * 2012-03-16 2012-06-14 Alphana Technology Co Ltd Method of manufacturing fluid dynamic pressure bearing, fluid dynamic pressure bearing, motor, and disc driver
US8776377B2 (en) 2009-02-04 2014-07-15 Samsung Electro-Mechanics Japan Advanced Technology Co., Ltd. Method for manufacturing a fluid dynamic bearing, a fluid dynamic bearing, a motor, and a disk drive device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148873A (en) * 2007-11-28 2009-07-09 Denso Corp Processing method of fluid device
JP4502046B2 (en) * 2007-11-28 2010-07-14 株式会社デンソー Processing method of fluid equipment
US8776377B2 (en) 2009-02-04 2014-07-15 Samsung Electro-Mechanics Japan Advanced Technology Co., Ltd. Method for manufacturing a fluid dynamic bearing, a fluid dynamic bearing, a motor, and a disk drive device
JP2012112534A (en) * 2012-03-16 2012-06-14 Alphana Technology Co Ltd Method of manufacturing fluid dynamic pressure bearing, fluid dynamic pressure bearing, motor, and disc driver

Similar Documents

Publication Publication Date Title
Rajurkar et al. New developments in electro-chemical machining
Schöpf et al. ECDM (electro chemical discharge machining), a new method for trueing and dressing of metal bonded diamond grinding tools
US20070246372A1 (en) Electrochemical Machining Tool and Method for Machining a Product Using the Same
Wang et al. Micro wire electrochemical machining with an axial electrolyte flow
JP2006123065A (en) Control device for wire electric discharge machine
Qi et al. Investigation of electrochemical micromachining of tungsten microtools
US20200070249A1 (en) Method and apparatus for finishing complex and curved surfaces using a conformal approach for additively manufactured products and other parts, and the resultant products
Liu et al. Elimination of the over cut from a repaired turbine blade tip post-machined by electrochemical machining
Moon et al. A study on electrochemical micromachining for fabrication of microgrooves in an air-lubricated hydrodynamic bearing
Sanchez et al. Electrical discharge truing of metal-bonded CBN wheels using single-point electrode
Song et al. Development of strip EDM
JP2001200399A (en) Surface working method for fluid dynamic pressure bearing member
KR100782934B1 (en) Eletrolytic machining apparatus and method
El-Taweel et al. Enhancing the performance of electrical-discharge machining via various planetary modes
JP4526325B2 (en) Electrolyte jet processing method
JP4369583B2 (en) Micro-groove machining method and fluid dynamic pressure bearing manufacturing method
Dhake et al. Machining of axisymmetric forms and helical profiles on cylindrical workpiece using wire cut EDM
Singh et al. Role of the power supply and inter-electrode gap in electrochemical honing process
RU2586936C1 (en) Method of making gear wheel
이평안 et al. Fabrication of micro column array by micro EDM using eccentric tool electrodes
Parthiban et al. Development of rotary axis for wire electrical discharge machining (WEDM)
JPS594255B2 (en) Method for removing sludge from the surface of a roll-shaped workpiece
JP2002254247A (en) High efficient hole forming method by diesinking micro electrical discharge machining
JP3241299B2 (en) Method and apparatus for micro-electrochemical machining of inner surface of hole
Spieser Development of an electrochemical micromachining (μECM) machine

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Effective date: 20080730

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Effective date: 20090527

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630