JP2009148805A - Dieless working method - Google Patents

Dieless working method Download PDF

Info

Publication number
JP2009148805A
JP2009148805A JP2007329843A JP2007329843A JP2009148805A JP 2009148805 A JP2009148805 A JP 2009148805A JP 2007329843 A JP2007329843 A JP 2007329843A JP 2007329843 A JP2007329843 A JP 2007329843A JP 2009148805 A JP2009148805 A JP 2009148805A
Authority
JP
Japan
Prior art keywords
workpiece
heating
dieless
work
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007329843A
Other languages
Japanese (ja)
Other versions
JP5069549B2 (en
Inventor
Narihiro Kawada
斉礼 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2007329843A priority Critical patent/JP5069549B2/en
Publication of JP2009148805A publication Critical patent/JP2009148805A/en
Application granted granted Critical
Publication of JP5069549B2 publication Critical patent/JP5069549B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dieless working method by which a workpiece can be deformed into a cross section of similar figure to the cross sectional shape before working even the workpiece is whatever shape. <P>SOLUTION: This invention is applied to a dieless working method by which the heated part of the workpiece is deformed by imparting tensile force or compressive force in the longitudinal direction by a moving means while heating a long size workpiece W from the outer periphery by a heating means. In this method, when heating the workpiece W, heat input quantity to the outer peripheral surface of the workpiece by the heating means is changed depending a position in the peripheral direction corresponding to the cross-sectional shape of the workpiece W. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、長尺なワークを断面方向に変形させるようにしたダイレス加工方法およびその関連技術に関する。   The present invention relates to a dieless machining method and a related technique for deforming a long workpiece in a cross-sectional direction.

従来、ダイスを使用せずに、押出材等の長尺なワークを縮径加工する技術として例えば、下記特許文献1に示すダイレス加工方法が周知である。   Conventionally, as a technique for reducing the diameter of a long workpiece such as an extruded material without using a die, for example, a dieless processing method shown in Patent Document 1 below is well known.

このダイレス加工方法は、押出材からなるワークを、所定位置において周方向全域から均一に加熱しつつ、軸心方向に引っ張ることにより、ワークの加熱部を縮径変形させるものである。
特開昭48−81761号(特許請求の範囲、図面)
In this dieless processing method, the heated portion of the workpiece is reduced in diameter by being pulled in the axial direction while uniformly heating the workpiece made of the extruded material from the entire circumferential direction at a predetermined position.
JP-A-48-81761 (Claims and Drawings)

しかしながら、上記特許文献1に示す従来のダイレス加工方法では、断面が非円形等の異形断面形状のワークを加工しようとした際に、加工前の断面形状に対して、相似形の断面に精度良く変形させることは困難であるという問題を抱えていた。   However, in the conventional dieless processing method shown in Patent Document 1, when trying to process a workpiece having an irregular cross-sectional shape such as a non-circular cross-section, the cross-sectional shape before the processing is accurate to a similar cross-section. There was a problem that it was difficult to deform.

この発明は、上記の課題に鑑みてなされたものであり、どのような断面のワークであっても、加工前の断面形状に対して、相似形の断面に精度良く変形させることができるダイレス加工方法およびその関連技術を提供することを目的とする。   The present invention has been made in view of the above-described problems, and can perform dieless machining that can accurately deform a cross-sectional shape before processing into a similar cross-section regardless of the cross-sectional shape before processing. The object is to provide a method and related techniques.

上記目的を達成するため、本発明は以下の構成を要旨とするものである。   In order to achieve the above object, the present invention has the following structure.

ここで本発明において、「長尺なワーク」とは、「ワーク断面の縦方向(高さ方向)および横方向(幅方向)のうち少なくともいずれかの寸法(断面方向寸法)に対し、軸心方向(長さ方向)の長さが長いワーク」を言い、中でも本発明においては、「断面方向寸法に対し軸心方向の長さが3倍以上のワーク」を、「長尺なワーク」として好適に用いることができる。   Here, in the present invention, the term “long work” refers to an “axial center with respect to at least one dimension (cross-sectional dimension) of the longitudinal direction (height direction) and lateral direction (width direction) of the work section. In the present invention, “a workpiece whose axial length is at least three times the cross-sectional dimension” is referred to as a “long workpiece”. It can be used suitably.

[1] 長尺なワークを外周から加熱手段によって加熱しつつ、長さ方向に引張力または圧縮力を付与することにより、ワークの加熱部を変形させるようにしたダイレス加工方法であって、
ワークを加熱する際に、ワークの断面形状に応じ、周方向の位置によって、加熱手段によるワーク外周面への入熱量を変化させるようにしたことを特徴とするダイレス加工方法。
[1] A dieless machining method in which a heating part of a workpiece is deformed by applying a tensile force or a compressive force in a length direction while heating a long workpiece from the outer periphery by a heating means,
A dieless machining method characterized in that, when a workpiece is heated, the amount of heat input to the workpiece outer peripheral surface by the heating means is changed according to the position in the circumferential direction according to the cross-sectional shape of the workpiece.

[2] ワークは、周方向の位置によって異なる熱容量を有し、熱容量に応じて加熱手段による入熱量を変化させるようにした前項1に記載のダイレス加工方法。   [2] The dieless machining method according to item 1, wherein the workpiece has a different heat capacity depending on the position in the circumferential direction, and the amount of heat input by the heating means is changed according to the heat capacity.

[3] ワークは、周方向の位置によって肉厚の異なる周壁を有し、周壁のうち肉厚の厚い部分には、薄い部分に比べて、加熱手段による入熱量を多くするようにした前項1または2に記載のダイレス加工方法。   [3] The workpiece has peripheral walls having different thicknesses depending on positions in the circumferential direction, and the thicker portion of the peripheral walls increases the amount of heat input by the heating means than the thin portion. Or the dieless processing method of 2.

[4] ワークは、多数の平坦な壁部が周方向に連接された断面多角形の周壁を有し、各壁部のうち断面積の大きい壁部には、断面積の小さい壁部に比べて、加熱手段による入熱量を多くするようにした前項1〜3のいずれかに記載のダイレス加工方法。   [4] The work has a peripheral wall having a polygonal cross section in which a large number of flat wall portions are connected in the circumferential direction. Among the wall portions, a wall portion having a large cross-sectional area is compared with a wall portion having a small cross-sectional area. The dieless processing method according to any one of the preceding items 1 to 3, wherein an amount of heat input by the heating means is increased.

[5] ワークの加熱部における断面状態での材料温度において、最高温度と最低温度との温度差が50℃以下に設定される前項1〜4のいずれかに記載のダイレス加工方法。   [5] The dieless processing method according to any one of the preceding items 1 to 4, wherein a temperature difference between the maximum temperature and the minimum temperature is set to 50 ° C. or less in the material temperature in a cross-sectional state in the heating portion of the workpiece.

[6] ワークの加熱部における温度が、450℃以上に設定される前項1〜5のいずれかに記載のダイレス加工方法。   [6] The dieless machining method according to any one of items 1 to 5, wherein the temperature in the heating part of the workpiece is set to 450 ° C. or higher.

[7] ワークは、多数の平坦な壁部が周方向に連接された断面多角形の周壁を有し、隣り合う壁部間の角部には、他の部分に比べて、加熱手段による入熱量を少なくするようにした前項1〜6のいずれかに記載のダイレス加工方法。   [7] The work has a peripheral wall having a polygonal cross section in which a large number of flat wall portions are connected in the circumferential direction, and a corner between adjacent wall portions is inserted by a heating means as compared with other portions. The dieless processing method according to any one of items 1 to 6, wherein the amount of heat is reduced.

[8] ワークの加熱部を、固溶体化温度まで上昇させる前項1〜7のいずれかに記載のダイレス加工方法。   [8] The dieless processing method according to any one of items 1 to 7, wherein the heating part of the workpiece is raised to a solid solution temperature.

[9] ワークとして、アルミニウム又はその合金製のものが用いられる前項1〜8のいずれかに記載のダイレス加工方法。   [9] The dieless processing method according to any one of items 1 to 8, wherein a workpiece made of aluminum or an alloy thereof is used.

[10] ワークとして、異形断面のものが用いられる前項1〜9のいずれかに記載のダイレス加工方法。   [10] The dieless machining method according to any one of items 1 to 9, wherein a workpiece having an irregular cross section is used.

[11] 長尺なワークを外周から加熱手段によって加熱しつつ、長さ方向に引張力または圧縮力を付与することにより、ワークの加熱部を変形させるようにしたダイレス加工装置であって、
加熱手段は、ワークの周方向の位置によって、ワーク外周面への入熱量を変更可能に構成されたことを特徴とするダイレス加工装置。
[11] A dieless machining apparatus configured to deform a heating part of a work by applying a tensile force or a compressive force in a length direction while heating a long work by a heating means from the outer periphery,
The dieless processing apparatus, wherein the heating means is configured to be able to change the amount of heat input to the outer peripheral surface of the workpiece depending on the position in the circumferential direction of the workpiece.

[12] 加熱手段は、ワークの外周に、周方向に並んで配置される複数の加熱器をもって構成される前項11に記載のダイレス加工装置。   [12] The dieless machining apparatus according to the above item 11, wherein the heating means includes a plurality of heaters arranged in the circumferential direction on the outer periphery of the workpiece.

[13] 各加熱器の出力熱量をそれぞれ個別に調整可能に構成される前項12に記載のダイレス加工装置。   [13] The dieless processing apparatus according to item 12, wherein the output heat amount of each heater is individually adjustable.

[14] 加熱器が、ワークに対し接離方向に移動可能に構成される前項12または13に記載のダイレス加工装置。   [14] The dieless processing apparatus according to item 12 or 13, wherein the heater is configured to be movable in a contact / separation direction with respect to the workpiece.

[15] 長尺なワークを外周から加熱手段によって加熱しつつ、長さ方向に引張力または圧縮力を付与することにより、ワークの加熱部を変形させるようにしたダイレス加工装置のワーク加熱方法であって、
ワークの断面形状に応じ、周方向の位置によって、加熱手段によるワーク外周面への入熱量を変化させるようにしたことを特徴とするダイレス加工装置のワーク加熱方法。
[15] A work heating method for a dieless machining apparatus in which a heating part of a work is deformed by applying a tensile force or a compressive force in a length direction while heating a long work by a heating means from the outer periphery. There,
A work heating method for a dieless machining apparatus, wherein a heat input amount to a work outer peripheral surface by a heating means is changed according to a position in a circumferential direction according to a cross-sectional shape of the work.

[16] 長尺なワークを外周から加熱しつつ、長さ方向に引張力または圧縮力を付与することにより、ワークの加熱部を変形させるようにしたダイレス加工装置のワーク加熱装置であって、
ワークの周方向の位置によって、ワーク外周面への入熱量を変更可能に構成されたことを特徴とするダイレス加工装置のワーク加熱装置。
[16] A workpiece heating apparatus for a dieless processing apparatus that deforms a heating section of a workpiece by applying a tensile force or a compressive force in a length direction while heating a long workpiece from the outer periphery,
A work heating device for a dieless machining apparatus, wherein the amount of heat input to the work outer peripheral surface can be changed depending on a position in a circumferential direction of the work.

発明[1]のダイレス加工方法によれば、どのような断面のワークであっても、加熱部の全周においてほぼ均一な温度に加熱することができるため、加工前の断面形状に対して、相似形の断面に精度良く変形させることができる。   According to the dieless machining method of the invention [1], any cross-sectional workpiece can be heated to a substantially uniform temperature over the entire circumference of the heating unit. It can be accurately deformed into a similar cross section.

発明[2]〜[7]のダイレス加工方法によれば、ワークを、より一層精度良く変形させることができる。   According to the dieless machining method of the invention [2] to [7], the workpiece can be deformed with higher accuracy.

発明[8]のダイレス加工方法によれば、焼入れ効果を得ることができ、ダイレス加工製品の品質を向上させることができる。   According to the dieless processing method of the invention [8], a quenching effect can be obtained and the quality of the dieless processed product can be improved.

発明[9]のダイレス加工方法によれば、高品質のアルミニウム製ダイレス加工製品を得ることができる。   According to the dieless processing method of the invention [9], a high-quality aluminum dieless processed product can be obtained.

発明[10]のダイレス加工方法によれば、異形断面で高品質のダイレス加工製品を得ることができる。   According to the dieless processing method of the invention [10], a high-quality dieless processed product can be obtained with an irregular cross section.

発明[11]のダイレス加工装置によれば、どのような断面のワークであっても、加熱部の全周においてほぼ均一な温度に加熱することができるため、加工前の断面形状に対して、相似形の断面に精度良く変形させることができる。   According to the dieless processing apparatus of the invention [11], any cross-sectional workpiece can be heated to a substantially uniform temperature over the entire circumference of the heating unit. It can be accurately deformed into a similar cross section.

発明[12]〜[14]のダイレス加工装置によれば、ワークを、より一層精度良く変形させることができる。   According to the dieless processing apparatus of the invention [12] to [14], the workpiece can be deformed with higher accuracy.

発明[15]によれば、上記と同様に、同様の効果を奏するダイレス加工装置のワーク加熱方法を提供することができる。   According to the invention [15], similarly to the above, it is possible to provide a work heating method for a dieless machining apparatus that exhibits the same effect.

発明[16]によれば、上記と同様に、同様の効果を奏するダイレス加工装置のワーク加熱装置を提供することができる。   According to the invention [16], similarly to the above, it is possible to provide a workpiece heating device for a dieless processing device that exhibits the same effect.

<第1実施形態>
図1はこの発明の第1実施形態であるダイレス加工装置を概略的に示す側面断面図、図2はそのダイレス加工装置のワーク加熱部を概略的に示す正面断面図である。両図に示すようにこのダイレス加工装置は、搬送経路(P)に沿って長尺なワーク(W)を長さ方向(軸心方向)に沿って下流側(搬送方向X)に搬送しつつ、加工するものであり、後述するように異形断面のワーク(W)が縮径加工されるようになっている。
<First Embodiment>
FIG. 1 is a side sectional view schematically showing a dieless machining apparatus according to a first embodiment of the present invention, and FIG. 2 is a front sectional view schematically showing a workpiece heating unit of the dieless machining apparatus. As shown in both figures, this dieless machining apparatus conveys a long workpiece (W) along the conveyance path (P) to the downstream side (conveyance direction X) along the length direction (axial direction). The workpiece (W) having a modified cross section is subjected to diameter reduction processing as will be described later.

このダイレス加工装置は、搬送経路(P)の上流側から順に、送給装置(1)、加熱装置(3)、冷却装置(4)および引張装置(2)を備えている。さらに搬送経路(P)上における加熱装置(3)から冷却装置(4)までの領域が、変形加工域(R)として構成され、この変形加工域(R)においてワーク(W)が変形加工される。   This dieless processing apparatus includes a feeding device (1), a heating device (3), a cooling device (4), and a tensioning device (2) in order from the upstream side of the transport path (P). Further, a region from the heating device (3) to the cooling device (4) on the transport path (P) is configured as a deformation processing region (R), and the workpiece (W) is deformed in the deformation processing region (R). The

送給装置(1)は、ワーク(W)の上流側端部(基端部)を把持可能なチャック(11)と、そのチャック(11)を搬送方向(X)に沿って移動させるチャック駆動手段(図示省略)とを備えている。そしてチャック(11)によってワーク(W)の基端部を把持(保持)した状態で、そのチャック(11)をチャック駆動手段によって搬送方向(X)に移動させることによって、ワーク(W)の基端部が搬送経路(P)に沿って下流側に押し込まれて搬送されるようになっている。   The feeding device (1) includes a chuck (11) capable of gripping the upstream end (base end) of the workpiece (W), and a chuck drive for moving the chuck (11) along the transport direction (X). Means (not shown). Then, in a state where the base end of the workpiece (W) is held (held) by the chuck (11), the chuck (11) is moved in the transport direction (X) by the chuck driving means, whereby the base of the workpiece (W) is obtained. The end portion is pushed and conveyed downstream along the conveyance path (P).

引張装置(2)は、ワーク(W)の下流側端部(先端部)を把持可能なチャック(21)と、そのチャック(21)を搬送方向(X)に沿って移動させるチャック駆動手段(図示省略)とを備えている。そしてチャック(21)によってワーク(W)の基端部を把持(保持)した状態で、そのチャック(21)をチャック駆動手段によって搬送方向(X)に移動させることによって、ワーク(W)の先端部が搬送経路(P)に沿って下流側に引き込まれて搬送されるようになっている。なお本実施形態においては、引張装置(2)が、ワーク(W)に対し引張力または圧縮力を付与する手段を構成している。   The tension device (2) includes a chuck (21) capable of gripping the downstream end (tip) of the work (W), and chuck driving means (moving the chuck (21) along the transport direction (X)). (Not shown). Then, with the chuck (21) gripping (holding) the base end portion of the workpiece (W), the chuck (21) is moved in the transport direction (X) by the chuck driving means, thereby leading the tip of the workpiece (W). The part is drawn and transported downstream along the transport path (P). In the present embodiment, the tension device (2) constitutes means for applying a tensile force or a compressive force to the workpiece (W).

本実施形態においては後述するように、送給装置(1)によるワーク(W)の押込速度(V1)よりも、引張装置(2)によるワーク(W)の引張速度(V2)が速く設定されることにより、ワーク(W)に長さ方向に沿った引張力を作用させて、その引張力によりワーク(W)の所定部(加熱部)を縮径薄肉変形させるものである。   In this embodiment, as will be described later, the tension speed (V2) of the workpiece (W) by the tension device (2) is set faster than the pushing speed (V1) of the workpiece (W) by the feeding device (1). Thus, a tensile force along the length direction is applied to the workpiece (W), and a predetermined portion (heating portion) of the workpiece (W) is reduced in diameter and thinly deformed by the tensile force.

なお本実施形態において、送給装置(1)および引張装置(2)によるワーク(W)の移動速度(V1)(V2)は、自在に調整できるように構成されており、例えば送給装置(1)によるワーク(W)の押込速度(V1)よりも、引張装置(2)によるワーク(W)の引張速度(V2)を遅く設定することによって、ワーク(W)に長さ方向に沿った圧縮力を作用させて、その圧縮力により、ワーク(W)の所定部(加熱部)を拡径増肉変形させることも可能である。   In the present embodiment, the moving speed (V1) (V2) of the work (W) by the feeding device (1) and the tensioning device (2) is configured to be freely adjustable. For example, the feeding device ( By setting the pulling speed (V2) of the work (W) by the pulling device (2) to be slower than the pushing speed (V1) of the work (W) by 1), the work (W) was along the length direction. It is also possible to apply a compressive force and cause the predetermined portion (heated portion) of the workpiece (W) to be expanded in diameter and increased by the compressive force.

変形加工域(R)の上流側端部に対応して配置される加熱装置(3)は、搬送経路(P)を中心にして上下左右(上下両側)の周囲四側面にそれぞれ1個ずつ配置された4個の加熱器(31)〜(34)を備え、各加熱器(31)〜(34)によって、ワーク(W)を外周から個別に加熱できるようになっている。   One heating device (3) arranged corresponding to the upstream end of the deformation processing area (R) is arranged on each of the four sides of the upper, lower, left, and right (upper and lower sides) around the conveyance path (P). The four heaters (31) to (34) are provided, and the work (W) can be individually heated from the outer periphery by the heaters (31) to (34).

各加熱器(31)〜(34)としては、火炎を利用して加熱する火炎式加熱手段、電磁誘導を利用して加熱する電磁誘導式加熱手段、プラズマを利用して加熱するプラズマ式加熱手段、レーザーを利用して加熱するレーザー式加熱手段等を好適に用いることができる。   As each heater (31)-(34), a flame type heating means for heating using a flame, an electromagnetic induction type heating means for heating using electromagnetic induction, a plasma type heating means for heating using plasma A laser heating means for heating using a laser can be suitably used.

さらに各加熱器(31)〜(34)は、ワーク(W)の外周面への入熱量(入力熱量)を調整できるように構成されている。例えば各加熱器(31)〜(34)として、出力熱量を変更できるものを採用して、出力熱量の変更によって入熱量を調整できるようになっている。つまり本実施形態においては、各加熱器(31)〜(34)の出力熱量を調整することにより、ワーク(W)の周囲四側面における各面に対し、それぞれ異なる熱量を与えることができるように構成されている。   Furthermore, each heater (31)-(34) is comprised so that the heat input amount (input heat amount) to the outer peripheral surface of a workpiece | work (W) can be adjusted. For example, as each of the heaters (31) to (34), one that can change the amount of output heat is adopted, and the amount of heat input can be adjusted by changing the amount of output heat. That is, in the present embodiment, by adjusting the output heat amount of each of the heaters (31) to (34), different amounts of heat can be given to the respective surfaces on the four side surfaces around the workpiece (W). It is configured.

なお本発明において、入熱量とは、単位時間当たりにワーク(W)の外周面に与えられる熱量(カロリー)のことである。   In the present invention, the heat input is the amount of heat (calories) given to the outer peripheral surface of the work (W) per unit time.

また本実施形態においては、加熱装置(3)が、加熱手段およびワーク加熱装置を構成している。   Moreover, in this embodiment, the heating apparatus (3) comprises the heating means and the workpiece | work heating apparatus.

冷却装置(4)は、ワーク(W)を、軸心方向に対して局部的に、かつ周方向に対して全域においてワーク(W)を急速に冷却できるように構成されている。   The cooling device (4) is configured to rapidly cool the work (W) locally in the axial direction and in the entire area in the circumferential direction.

この冷却装置(4)としては、ワーク(W)に、冷却油等の冷却液を吹き付ける水冷式冷却装置や、冷却エアー等を吹き付ける空冷式冷却装置等を好適に用いることができる。   As the cooling device (4), a water-cooled cooling device that blows a coolant such as cooling oil on the workpiece (W), an air-cooled cooling device that blows cooling air, or the like can be suitably used.

また本実施形態のダイレス加工装置においては、パーソナルコンピュータ等によって構成される制御装置(図示省略)が設けられており、この制御装置によって、送給装置(1)、引張装置(2)、加熱装置(3)および冷却装置(4)等の各駆動部の駆動が制御されて、以下に説明する動作が自動的に行われるようになっている。   Moreover, in the dieless processing apparatus of the present embodiment, a control device (not shown) constituted by a personal computer or the like is provided, and by this control device, a feeding device (1), a tension device (2), a heating device. The operations described below are automatically performed by controlling the driving of each drive unit such as (3) and the cooling device (4).

なお、本実施形態のダイレス加工装置によって加工されるワーク(W)は、その素材がアルミニウム(その合金を含む)等の金属によって構成されており例えば、押出成形により得られる押出材によって構成されている。さらにワーク(W)は非円形断面等の異形断面の形状を有するものであり、本実施形態においては図1に示すように、一側壁(W2)の肉厚が厚く、他の壁部、すなわち上下壁(W1)(W3)および他側壁(W4)の肉厚が薄く形成された矩形断面形状のワーク(W)を加工するものである。   In addition, the workpiece | work (W) processed with the dieless processing apparatus of this embodiment is comprised by metals, such as aluminum (including the alloy), for example, and is comprised by the extrusion material obtained by extrusion molding, for example. Yes. Furthermore, the workpiece (W) has a shape of an irregular cross section such as a non-circular cross section, and in this embodiment, as shown in FIG. 1, the thickness of one side wall (W2) is thick and the other wall portion, A workpiece (W) having a rectangular cross-sectional shape in which the upper and lower walls (W1) (W3) and the other side wall (W4) are formed thin is processed.

さらに本実施形態のダイレス加工装置において製造される加工製品は例えば、自動車をはじめとする輸送機器用部材や建築用部材等として用いられる。   Furthermore, the processed product manufactured by the dieless processing apparatus of this embodiment is used as a member for transportation equipment such as an automobile, a member for construction, or the like.

本実施形態においてワーク(W)を加工するにはまず、ワーク(W)をダイレス加工装置にセットする。すなわちワーク(W)の両端を送給装置(1)および引張装置(2)のチャック(11)(21)に保持させて、ワーク(W)を搬送経路(P)に沿って配置する。   In order to machine the workpiece (W) in the present embodiment, first, the workpiece (W) is set in a dieless machining apparatus. That is, both ends of the workpiece (W) are held by the chucks (11) and (21) of the feeding device (1) and the tension device (2), and the workpiece (W) is arranged along the transport path (P).

この状態において、ダイレス加工装置の動作を開始すると、ワーク(W)が送給装置(1)によって搬送方向(X)に押し込まれる一方、ワーク(W)の先端側が、引張装置(2)によって搬送方向(X)に引っ張られることにより、ワーク(W)が搬送経路(P)上に沿って搬送される。なおこの搬送時においては、送給装置(1)の押込速度(V1)に対し、引張装置(V2)の引張速度が速く設定されており、ワーク(W)に引張力が作用している。   In this state, when the operation of the dieless processing apparatus is started, the workpiece (W) is pushed in the conveyance direction (X) by the feeding device (1), while the tip side of the workpiece (W) is conveyed by the tension device (2). By being pulled in the direction (X), the work (W) is transported along the transport path (P). At the time of this conveyance, the tensile speed of the tension device (V2) is set faster than the pushing speed (V1) of the feeding device (1), and the tensile force acts on the workpiece (W).

こうしてワーク(W)が搬送されつつ、ワーク(3)が変形加工域(R)の上流側端部において加熱装置(3)によって全周から加熱される。   In this way, the workpiece (3) is heated from the entire circumference by the heating device (3) at the upstream end of the deformation processing zone (R) while the workpiece (W) is being conveyed.

この加熱時において本実施形態では、周方向の位置に応じて、加熱装置(3)によるワーク(W)への入熱量が適宜調整される。すなわちワーク(W)は既述したように、一側壁(W2)の肉厚が厚く、他の壁部(W1)(W3)(W4)の肉厚が薄く形成されているため、一側壁(W2)は、他の壁部(W1)(W3)(W4)よりも熱容量が大きくなっている。そして本実施形態においては、ワーク(W)の熱容量が大きい部分に対しては、加熱装置(3)による入熱量を大きく設定し、熱容量が小さい部分に対しては、加熱装置(3)による入熱量を小さく設定する。例えば加熱装置(3)のうち、ワーク(W)の一側壁(W2)に対応する加熱器(32)は、出力熱量を大きく設定するとともに、他の壁部(W1)(W3)(W4)に対応する加熱器(31)(33)(34)は、出力熱量を小さく設定する。このようにワーク(W)における周方向の熱容量に応じて、入熱量が適宜調整されるため、ワーク(W)は断面形状にかかわらず、断面状態で加熱部の材料全域がほぼ均一な温度となるように加熱される。   At the time of this heating, in this embodiment, the amount of heat input to the work (W) by the heating device (3) is appropriately adjusted according to the position in the circumferential direction. That is, as described above, since the workpiece (W) is formed such that the thickness of the one side wall (W2) is thick and the thickness of the other wall portions (W1) (W3) (W4) is thin, W2) has a larger heat capacity than the other wall portions (W1), (W3), and (W4). In the present embodiment, the heat input amount by the heating device (3) is set to be large for the portion where the heat capacity of the workpiece (W) is large, and the heat input amount by the heating device (3) is set for the portion where the heat capacity is small. Set the amount of heat small. For example, in the heating device (3), the heater (32) corresponding to one side wall (W2) of the work (W) sets the output heat amount to be large and the other wall portions (W1) (W3) (W4). The heaters (31), (33), and (34) corresponding to (1) set the output heat amount to be small. As described above, the amount of heat input is appropriately adjusted according to the heat capacity in the circumferential direction of the workpiece (W). Therefore, the workpiece (W) has a substantially uniform temperature in the entire area of the heating part in the sectional state regardless of the sectional shape. It is heated to become.

こうして加熱されて変形し易い状態となり、その状態で、ワーク(W)に作用する上記引張力によって、ワーク(W)の加熱部が変形加工域(R)において引き延ばされて、縮径および薄肉変形される。この変形時において、ワーク(W)は加熱部の材料全域がほぼ均一な温度に加熱されているため、材料全域においてバランス良く均一に変形し、加工前の断面形状に対し、正確な相似形状に精度良く変形加工される。   In this state, the heated portion is easily deformed, and in this state, the heated portion of the workpiece (W) is stretched in the deformation processing region (R) by the tensile force acting on the workpiece (W), and the reduced diameter and Thinly deformed. At the time of this deformation, since the whole area of the material of the heating part is heated to a substantially uniform temperature, the workpiece (W) is uniformly deformed in a well-balanced manner throughout the entire area of the material, so that the workpiece has an accurate similar shape to the sectional shape before processing. Deformed with high accuracy.

一方、変形加工域(R)で変形されて、ワーク(W)が冷却装置(4)の位置を通過する際には、その通過部分が冷却装置(4)によって冷却されて固結(凍結)され、変形抵抗が高く変形し難い状態(安定化状態)となる。   On the other hand, when the workpiece (W) passes through the position of the cooling device (4) after being deformed in the deformation processing region (R), the passing portion is cooled by the cooling device (4) and consolidated (freeze). As a result, the deformation resistance is high and the deformation is difficult (stabilized state).

このようにワーク(W)が変形加工域(R)に連続して送り込まれて順次、変形加工されて、ワーク(W)における中間の所要領域が連続して縮径および薄肉変形される。   In this way, the workpiece (W) is continuously fed into the deformation processing region (R) and sequentially deformed, and the intermediate required region in the workpiece (W) is continuously reduced in diameter and thinly deformed.

なお本実施形態において、加熱装置(3)によってワーク(W)を加熱する際に、ワーク(W)を固溶体化温度にまで加熱して、冷却装置(4)によって急冷して凍結(固結)する場合には、安定した焼入効果を確実に得ることができ、優れた硬度で高品質のダイレス加工製品を得ることができる。   In the present embodiment, when the workpiece (W) is heated by the heating device (3), the workpiece (W) is heated to the solid solution temperature, rapidly cooled by the cooling device (4), and frozen (consolidated). In this case, a stable quenching effect can be surely obtained, and a high-quality dieless processed product can be obtained with excellent hardness.

以上のように、本実施形態のダイレス加工装置によれば、加熱装置(3)を、周方向に沿って配列し、かつ個々に出力熱量を変更可能な複数の加熱器(31)〜(34)によって構成し、ワーク(W)の断面形状に応じて、周方向の位置毎に適宜入熱量を変化させるようにしている。つまりワーク(W)の周壁部分のうち、肉厚が厚くて、熱容量が大きい一側壁(W2)は、入熱量が多くなるように加熱するとともに、肉厚が薄くて、熱容量が小さい他の壁部(W1)(W3)(W4)は、入熱量が少なくなるように加熱しているため、異形断面のワーク(W)であっても、断面状態で加熱部の材料全域をほぼ均一な温度に加熱することができ、ワーク(W)に作用する引張力によって、ワーク(W)が全周においてバランス良く均一に縮径および薄肉変形し、加工前の断面形状に対し正確な相似形状に加工することができる。   As described above, according to the dieless processing apparatus of the present embodiment, the heating devices (3) are arranged along the circumferential direction, and the plurality of heaters (31) to (34) that can individually change the output heat amount. The amount of heat input is appropriately changed for each position in the circumferential direction according to the cross-sectional shape of the workpiece (W). That is, of the peripheral wall portion of the workpiece (W), one wall (W2) having a large wall thickness and a large heat capacity is heated to increase the amount of heat input, and the other wall having a small wall thickness and a small heat capacity is heated. The parts (W1), (W3), and (W4) are heated so that the amount of heat input is reduced. Therefore, even if the workpiece (W) has an irregular cross section, the entire area of the material of the heating section is almost uniform in the cross-sectional state. The workpiece (W) is uniformly reduced in diameter and thinly in a well-balanced manner around the entire circumference due to the tensile force acting on the workpiece (W), and is processed into an accurate similar shape to the cross-sectional shape before processing. can do.

しかも、ワーク(W)の周方向の熱容量に応じて、入熱量を適宜調整しているため、ワーク加熱部の材料全域を効率良く加熱することができ、変形加工に適した高い温度にまで短時間で加熱することができ、温度分布の偏りを解消しつつ、生産効率を向上させることができる。   In addition, since the amount of heat input is appropriately adjusted according to the heat capacity in the circumferential direction of the workpiece (W), the entire material of the workpiece heating part can be efficiently heated, and the temperature can be shortened to a high temperature suitable for deformation processing. It can be heated in time, and the production efficiency can be improved while eliminating the uneven temperature distribution.

ここで本実施形態においては後に詳述するように、ワーク(W)を加熱する際に、断面状態で加熱部の材料温度において、最高温度と最低温度との温度差を50℃以下、より好ましくは30℃以下に設定するのが良い。すなわちこの温度差を特定範囲内に調整した際には、ワーク(W)に作用する引張力によって、ワーク(W)が周方向全域においてバランス良く均等に変形し、加工前の断面形状に対し正確な相似形状に形成することが可能となる。換言すれば、上記温度差が大き過ぎると、つまり加熱部の温度分布にバラツキがあると、ワーク(W)に作用する引張力によって、ワーク(W)の変形量にバラツキが生じ、加工精度が低下して、加工前の断面形状に対し正確な相似形状に形成することが困難となるおそれがある。   Here, as described in detail later in this embodiment, when heating the workpiece (W), the temperature difference between the highest temperature and the lowest temperature is more preferably 50 ° C. or less in the material temperature of the heating portion in the cross-sectional state. Is preferably set to 30 ° C. or lower. That is, when this temperature difference is adjusted within a specific range, the workpiece (W) is deformed evenly in a well-balanced manner in the entire circumferential direction by the tensile force acting on the workpiece (W), and the cross-sectional shape before processing is accurate. It is possible to form a similar shape. In other words, if the temperature difference is too large, that is, if there is variation in the temperature distribution of the heating part, the amount of deformation of the workpiece (W) varies due to the tensile force acting on the workpiece (W), and the machining accuracy is reduced. It may be difficult to form an accurate similar shape with respect to the cross-sectional shape before processing.

さらに本実施形態においては、ワーク(W)を加熱する際に、その加熱温度を450℃以上、より好ましくは480℃以上に設定するのが良い。すわわち、加熱温度を特定以上に調整した際には、ワーク(W)の変形に必要な変形力(引張力)が小さくなり、ワーク(W)をスムーズに効率良く変形加工することができる。換言すれば、加熱温度が低過ぎる場合には、ワーク(W)の変形に必要な変形力が大きくなり、ワーク(W)を変形加工するのが困難になるおそれがある。   Furthermore, in this embodiment, when heating a workpiece | work (W), it is good to set the heating temperature to 450 degreeC or more, More preferably, it is 480 degreeC or more. In other words, when the heating temperature is adjusted beyond a specific level, the deformation force (tensile force) required for deformation of the workpiece (W) is reduced, and the workpiece (W) can be deformed smoothly and efficiently. . In other words, if the heating temperature is too low, the deformation force required for deformation of the workpiece (W) increases, and it may be difficult to deform the workpiece (W).

なお本発明においては、ワークの種類によって、周方向の位置毎の入熱量も異なるため、実際にダイレス加工を行う前に予め、後述するように有限要素法(FEM)等によるシミュレーションを行って、加工予定のワークに対し最も効率良く加熱できるような周方向の各部分での加熱条件(入熱量)を求めておき、その加熱条件に従って実際のダイレス加工を行うのが良い。   In the present invention, the amount of heat input for each position in the circumferential direction varies depending on the type of workpiece. Therefore, before actually performing dieless machining, a simulation by a finite element method (FEM) or the like is performed in advance as described later. It is preferable to obtain a heating condition (heat input amount) at each portion in the circumferential direction so that the workpiece to be machined can be heated most efficiently, and to perform actual dieless machining according to the heating condition.

ところで、本実施形態においては、ワーク(W)における周壁の熱容量に応じて、入熱量を調整するものであるが、熱容量は断面積に比例するものであるため、周壁の断面積に応じて、入熱量を調整することができる。例えば図3に示すように、ワーク(W)の各壁(W1)〜(W4)の各幅(高さ)を「H1」「H2」「H3」「H4」、各厚さを「T1」「T2」「T3」「T4」としたとき、「H1×T1」「H2×T2」「H3×T3」「H4×T4」のうち最も大きい壁部に対しては、入熱量を最も多くし、最も小さい壁部に対しては、入熱量を最も少なくする。同図において例えば、「H1×T1」>「H2×T2」>「H3×T3」>「H4×T4」であるならば、各壁部(W1)〜(W4)に対する入熱量(Q1)〜(Q4)は、「Q1」>「Q2」>「Q3」>「Q4」となるように調整するのが好ましい。   By the way, in the present embodiment, the amount of heat input is adjusted according to the heat capacity of the peripheral wall in the workpiece (W), but since the heat capacity is proportional to the cross-sectional area, according to the cross-sectional area of the peripheral wall, The amount of heat input can be adjusted. For example, as shown in FIG. 3, the width (height) of each wall (W1) to (W4) of the workpiece (W) is “H1”, “H2”, “H3”, “H4”, and each thickness is “T1”. When “T2”, “T3”, and “T4” are set, the heat input amount is maximized for the largest wall portion among “H1 × T1”, “H2 × T2”, “H3 × T3”, and “H4 × T4”. For the smallest wall, the heat input is minimized. For example, if “H1 × T1”> “H2 × T2”> “H3 × T3”> “H4 × T4”, the amount of heat input (Q1) to each wall (W1) to (W4) (Q4) is preferably adjusted so that “Q1”> “Q2”> “Q3”> “Q4”.

<第2実施形態>
図4はこの発明の第2実施形態であるダイレス加工装置のワーク加熱部を概略的に示す正面断面図である。同図に示すように、このダイレス加工装置において、加熱装置(3)は、上下左右(上下両側)の周囲四側面にそれぞれ2個ずつ配置された計8個の加熱器(31)〜(34)を備えている。
Second Embodiment
FIG. 4 is a front sectional view schematically showing a workpiece heating unit of a dieless machining apparatus according to a second embodiment of the present invention. As shown in the figure, in this dieless processing apparatus, a total of eight heaters (31) to (34) are provided with two heating devices (3) arranged on each of the four sides around the top, bottom, left and right (upper and lower sides). ).

本実施形態においては、各加熱器(31)〜(34)がワーク(W)に対し接離方向に移動自在に設けられており、加熱器(31)〜(34)のワーク(W)に対する距離(D1)〜(D4)が適宜変更されることによって、ワーク(W)への熱量が調整できるように構成されている。   In the present embodiment, each of the heaters (31) to (34) is provided so as to be movable toward and away from the workpiece (W), and the heaters (31) to (34) with respect to the workpiece (W). By appropriately changing the distances (D1) to (D4), the amount of heat applied to the workpiece (W) can be adjusted.

例えば図4(a)の状態では、各加熱器(31)〜(34)と各ワーク壁部(W1)〜(W4)との各距離(D1)〜(D4)が全て等しく設定されており、各加熱器(31)〜(34)の出力熱量が同じであれば、ワーク(W)の周囲四側面にそれぞれ均等な熱量が与えられる一方、図4(b)の状態では、両側の加熱器(32)(34)の対ワーク距離(D2)(D4)が、上下の加熱器(31)(33)の対ワーク距離(D1)(D3)に対し、短く調整されており、各加熱器(31)〜(34)の出力熱量が同じであっても、ワーク(W)の両側壁(W2)(W4)への入熱量が、上下壁(W1)(W3)への入熱量に比べて多くなるようになっている。   For example, in the state of FIG. 4A, the distances (D1) to (D4) between the heaters (31) to (34) and the work wall portions (W1) to (W4) are all set equal. If the output heat amounts of the heaters (31) to (34) are the same, uniform heat amounts are given to the four sides around the work (W), while in the state of FIG. The distance between workpieces (D2) and (D4) of the heaters (32) and (34) is adjusted to be shorter than the distance between workpieces (D1) and (D3) of the upper and lower heaters (31) and (33). Even if the output heat amounts of the chambers (31) to (34) are the same, the heat input amount to the both side walls (W2) (W4) of the work (W) becomes the heat input amount to the upper and lower walls (W1) (W3). Compared to more.

本第2実施形態において、他の構成は、上記第1実施形態と同様であるため、同一部分に同一または相当符号を付して、重複説明は省略する。   In the second embodiment, since the other configuration is the same as that of the first embodiment, the same parts are denoted by the same or corresponding reference numerals, and the duplicate description will be omitted.

本第2実施形態において加工されるワーク(W)は両側壁(W2)(W4)の肉厚が厚く、上下壁(W1)(W3)の肉厚が薄く形成された横長矩形断面形状を有している。   The workpiece (W) processed in the second embodiment has a horizontally long rectangular cross-sectional shape in which both side walls (W2) (W4) are thick and the top and bottom walls (W1) (W3) are thin. is doing.

このワーク(W)を加工するに際して加熱する場合には、図4(b)に示すように、両側の加熱器(32)(34)はワーク(W)に対し近づけた状態で加熱する一方、上下の加熱器(31)(33)はワーク(W)から遠ざけた状態で加熱する。これにより、熱容量の大きいワーク(W)の両側壁(W2)(W4)に対しては、入熱量が多くなるとともに、熱容量の小さい上下壁(W1)(W3)に対しては、入熱量が少なくなる。従ってワーク(W)は、断面状態で加熱部の材料全域においてほぼ均一な温度となるように加熱される。   When heating the workpiece (W), as shown in FIG. 4 (b), the heaters (32) and (34) on both sides are heated close to the workpiece (W). The upper and lower heaters (31) and (33) are heated away from the workpiece (W). As a result, the amount of heat input increases for both side walls (W2) and (W4) of the workpiece (W) having a large heat capacity, and the amount of heat input for the upper and lower walls (W1) and (W3) having a small heat capacity. Less. Accordingly, the workpiece (W) is heated so as to have a substantially uniform temperature in the entire area of the material of the heating portion in a cross-sectional state.

このようにワーク(W)の加熱部全域において均一な温度に加熱されるため、ワーク(W)に作用する引張力によって、ワーク(W)が加熱部全周においてバランス良く均一に縮径および薄肉変形させることができる。   Since the workpiece (W) is heated to a uniform temperature over the entire heating portion of the workpiece (W), the workpiece (W) is uniformly reduced in diameter and thinly in a well-balanced manner around the entire circumference of the heating portion by the tensile force acting on the workpiece (W). Can be deformed.

以上のように、この第2実施形態のダイレス加工装置においても、上記第1実施形態と同様に、ワーク(W)を、加工前の断面形状に対し正確な相似形状に加工できて、加工精度を向上させることができるとともに、ワーク(W)の加熱部全周を効率良く加熱することができ、生産効率を向上させることができる。   As described above, also in the dieless machining apparatus of the second embodiment, the workpiece (W) can be machined into an accurate similar shape with respect to the cross-sectional shape before machining, as in the first embodiment. In addition, the entire circumference of the heating part of the workpiece (W) can be efficiently heated, and the production efficiency can be improved.

なお本第2実施形態では、加熱装置(3)における各加熱器(31)〜(34)の対ワーク距離(D1)〜(D4)を変更することによって、ワーク(W)に対する周方向の入熱量を調整するようにしているが、それだけに限られず、各加熱器(31)〜(34)として、上記第1実施形態と同様に出力熱量を調整可能なものを用いて、この出力熱量の変更と、距離の変更とを併用して、ワークに対する周方向の入熱量を適宜調整するようにしても良い。   In the second embodiment, by changing the distances (D1) to (D4) between the heaters (31) to (34) in the heating device (3), the circumferential direction of the workpiece (W) is changed. The amount of heat is adjusted. However, the present invention is not limited to this, and each of the heaters (31) to (34) can be used to adjust the amount of output heat in the same manner as in the first embodiment. And the change of the distance may be used in combination, and the amount of heat input in the circumferential direction with respect to the workpiece may be appropriately adjusted.

<変形例>
上記実施形態においては、矩形断面の角パイプ状のワーク(W)に対し、本発明を適用する場合を例に挙げて説明したが、それだけに限られず、本発明においては、ワーク(W)の断面形状が特に限定されるものではなく、三角形や、五角形以上の断面形状のワークにも適用でき、さらに多角形状に限られず、楕円形、長円形等のワークや、これらの形状を組み合わせたワーク等、いわゆる異形断面のワークに適用することができる。さらにパイプ形状のワークに限られず、棒状ワーク等の中実構造のワークにも本発明を適用することができる。
<Modification>
In the above embodiment, the case where the present invention is applied to the rectangular pipe-shaped workpiece (W) having a rectangular cross section has been described as an example. However, the present invention is not limited thereto, and in the present invention, the cross section of the workpiece (W). The shape is not particularly limited, and can be applied to a workpiece having a cross-sectional shape of a triangle or a pentagon, and is not limited to a polygonal shape, but also a workpiece such as an ellipse or an oval, or a combination of these shapes. It can be applied to a workpiece having a so-called irregular cross section. Furthermore, the present invention is not limited to pipe-shaped workpieces but can be applied to solid-structured workpieces such as rod-shaped workpieces.

また図5に示すように外周が真円形に形成されていても、肉厚が周方向の位置によって異なるワーク(W)においては、肉厚の厚い部分(熱容量の大きい部分)の入熱量を多く設定するようにして、本発明を適用することによって、上記と同様に、高い加工精度で効率良く変形させることができる。   Moreover, even if the outer periphery is formed in a perfect circle as shown in FIG. 5, in the work (W) whose thickness varies depending on the position in the circumferential direction, the heat input amount of the thick portion (the portion having a large heat capacity) is increased. As described above, by applying the present invention, it can be efficiently deformed with high processing accuracy as described above.

また上記実施形態では、加熱装置(3)において、4個または8個の加熱器(31)〜(34)を配置する場合を例に挙げて説明したが、加熱器の数は特に限定されるものではなく、要は周方向において部分的に入熱量を変化させることができる構成であれば、どのような加熱装置を採用しても良い。   In the above-described embodiment, the case where four or eight heaters (31) to (34) are arranged in the heating device (3) has been described as an example, but the number of heaters is particularly limited. In short, any heating device may be adopted as long as the amount of heat input can be partially changed in the circumferential direction.

また上記実施形態においては、ワーク(W)に引張力を与えて、ワーク(W)の加熱部を縮径薄肉変形させるようにしているが、それだけに限られず、本発明においては、ワーク(W)に圧縮力を与えて、ワーク(W)の加熱部を拡径増肉変形させるようにしても良い。   In the above embodiment, a tensile force is applied to the workpiece (W) so that the heating portion of the workpiece (W) is reduced in diameter and thickness. However, the present invention is not limited to this, and in the present invention, the workpiece (W) is deformed. A heating force of the workpiece (W) may be deformed by increasing the diameter of the workpiece (W).

さらに1本のワーク(W)に対して、引張力による縮径薄肉変形と、圧縮力による拡径増肉変形とを行うようにしても良い。   Furthermore, you may make it perform the diameter reduction thin wall deformation | transformation by a tensile force, and the diameter expansion wall thickness deformation | transformation by a compressive force with respect to one workpiece | work (W).

また本発明において、複数の加熱器を配置する場合、ワーク外周における円弧線上に沿って並べて配置するようにしても良い。   Moreover, in this invention, when arrange | positioning a some heater, you may make it arrange | position along the circular arc line in a workpiece | work outer periphery.

<実施例1>
図6に示すように、上下壁(W1)(W3)の肉厚が薄く、両側壁(W2)(W4)の肉厚が厚い矩形断面の角パイプ状のワーク(W)において、上壁(W1)および一側壁(W2)とをそれぞれ8等分して、等分された各部分をそれぞれ「a1」〜「a8」、「b1」〜「b8」とする。そしてワーク(W)を500℃に加熱することを目標として、各部分(a1)〜(a8)、(b1)〜(b8)毎の入熱量を、同図の表に示す条件で15秒間加熱した場合を想定して、有限要素法(FEM)によりシミュレーションを行い、ワーク(W)の断面状態での温度分布を求めた。
<Example 1>
As shown in FIG. 6, in the rectangular pipe-shaped workpiece (W) having a rectangular cross section, the upper and lower walls (W1) (W3) are thin and the both side walls (W2) (W4) are thick. W1) and one side wall (W2) are each divided into eight equal parts, and the divided parts are designated as “a1” to “a8” and “b1” to “b8”, respectively. Then, with the goal of heating the workpiece (W) to 500 ° C., the heat input for each part (a1) to (a8), (b1) to (b8) is heated for 15 seconds under the conditions shown in the table of FIG. Assuming the case, the simulation was performed by the finite element method (FEM), and the temperature distribution in the cross-sectional state of the workpiece (W) was obtained.

具体的には、ワーク(W)の外周面における部分(a1)(a8)(b1)(b8)は入熱量を「450」に設定し、部分(a2)(a7)は入熱量を「750」に設定し、部分(a3)〜(a6)は入熱量を「650」に設定し、部分(b2)(b7)は入熱量を「1000」に設定し、部分(b3)〜(b6)は入熱量を「1200」に設定した。なお入熱量(熱量)は、大きさを示すのみで単位はなく無次元となっている(以下の実施例、比較例、参照例においても同じ)。   Specifically, the heat input is set to “450” for the portions (a1), (a8), (b1), and (b8) on the outer peripheral surface of the workpiece (W), and the heat input is set to “750” for the portions (a2) and (a7). And the portions (a3) to (a6) are set to “650”, the portions (b2) and (b7) are set to “1000”, and the portions (b3) to (b6) Set the heat input to “1200”. Note that the amount of heat input (the amount of heat) indicates only the magnitude and has no units and is dimensionless (the same applies to the following examples, comparative examples, and reference examples).

この加熱条件で加熱した際のワーク(W)の断面状態での温度分布を図7に示す。同図に示すように、周壁(W1)〜(W4)の外部から内部にかけて温度が低下しているものの、最高温度が510℃、最低温度が478℃となり、温度差は32℃となった。   FIG. 7 shows the temperature distribution in the cross-sectional state of the workpiece (W) when heated under these heating conditions. As shown in the figure, although the temperature decreased from the outside to the inside of the peripheral walls (W1) to (W4), the maximum temperature was 510 ° C, the minimum temperature was 478 ° C, and the temperature difference was 32 ° C.

なお検査対象のワーク(W)は左右対称形状であるため、下壁(W3)は上壁(W1)と同じ温度分布となり、他側壁(W4)は一側壁(W2)と同じ温度分布となる(以下の実施例、比較例、参照例においても同じ)。   Since the workpiece (W) to be inspected has a symmetrical shape, the lower wall (W3) has the same temperature distribution as the upper wall (W1), and the other side wall (W4) has the same temperature distribution as the one side wall (W2). (The same applies to the following examples, comparative examples, and reference examples).

<比較例1>
図10に示すように、上記実施例1と同形状のワーク(W)において、同図の表の加熱条件に示すように各壁部(W1)(W2)の各部分(a1)〜(a8)、(b1)〜(b8)の入熱量を全て「750」と等しく設定した以外は、上記と同様に、ワーク(W)の断面状態での温度分布を求めた。その結果を図11に示す。
<Comparative Example 1>
As shown in FIG. 10, in the workpiece (W) having the same shape as in the first embodiment, as shown in the heating conditions in the table of the figure, the portions (a1) to (a8) of the wall portions (W1) (W2). ) And (b1) to (b8), the temperature distribution in the cross-sectional state of the workpiece (W) was obtained in the same manner as described above except that the heat input amounts were all set equal to “750”. The result is shown in FIG.

同図に示すように、上下壁(W1)(W3)に比べて、両側壁(W2)(W4)の温度が低く、さらに最高温度が507℃、最低温度が431℃となり、温度差は76℃となっていた。   As shown in the figure, the temperature of both side walls (W2) (W4) is lower than that of the upper and lower walls (W1) (W3), the maximum temperature is 507 ° C., the minimum temperature is 431 ° C., and the temperature difference is 76. It was ℃.

<評価1>
実施例1のように、ワーク(W)に対し肉厚の厚い部分は入熱量を多くし、薄い部分は入熱量を少なくし、さらに隣り合う壁部間の角部は、熱量が伝わり易いため、角部への入熱量を小さくして、角部から離れるに従って(壁部中間に向かうに従って)、入熱量を次第に多くすることによって、断面状態での温度差を32℃と小さくできる。このように断面状態での加熱部の材料全域においてほぼ均一な温度に設定されたワーク(W)に対し、引張力が作用した際には、ワーク(W)が全周においてバランス良く均一に縮径および薄肉変形し、加工前の断面形状に対し正確な相似形状に加工することができる。
<Evaluation 1>
As in Example 1, the thick part of the workpiece (W) increases the amount of heat input, the thin part decreases the amount of heat input, and the corners between adjacent wall parts are more likely to transmit heat. The temperature difference in the cross-sectional state can be reduced to 32 ° C. by decreasing the amount of heat input to the corner and gradually increasing the amount of heat input as the distance from the corner increases (towards the middle of the wall). In this way, when a tensile force is applied to the workpiece (W) set at a substantially uniform temperature in the entire area of the material of the heating section in the cross-sectional state, the workpiece (W) is uniformly reduced in a well-balanced manner on the entire circumference. The diameter and thin wall can be deformed and processed into an accurate similar shape to the cross-sectional shape before processing.

これに対し比較例1のように、ワーク(W)の全周のいずれの部分にも均一な入熱量を与えた際には、ワーク(W)における断面状態での温度差が76℃と非常に大きくなる。このように加熱部の材料温度にバラツキがあるワーク(W)に対し、引張力が作用した際には、周方向においてワーク(W)の変形量にバラツキが生じ、加工精度が低下して、加工前の断面形状に対し正確な相似形状に形成することが困難である。   On the other hand, as in Comparative Example 1, when a uniform heat input was applied to any part of the entire circumference of the workpiece (W), the temperature difference in the cross-sectional state of the workpiece (W) was 76 ° C. Become bigger. In this way, when a tensile force is applied to the workpiece (W) having a variation in the material temperature of the heating part, the amount of deformation of the workpiece (W) varies in the circumferential direction, and the machining accuracy is reduced. It is difficult to form an accurate similar shape to the cross-sectional shape before processing.

なお図18にワーク(W)の温度と0.2%耐力との関係を表すグラフを示す。同グラフに示すように、ワーク(W)の温度が500℃近辺において、温度分布(温度差)が30℃の範囲内にあれば、耐力が50N/mm2 以下と低く、しかも耐力の高低差も20N/mm2 以内と小さくなり、断面部分の全域においてバランス良く変形させることが可能となる。従って本発明においては、ワーク(W)の加熱部における断面部分の温度分布(温度差)が30℃以内であれば、ワーク(W)を全周においてバランス良く均一に変形させることができ、加工精度を向上させることができる。もっとも本発明においては、温度分布(温度差)が50℃以内であれば、耐力も比較的低く、しかも耐力の高低差も比較的小さくすることができるため、ワーク(W)の加熱部における温度分布(温度差)が50℃以内であれば十分に、加工精度を向上させることが可能である。 In addition, the graph showing the relationship between the temperature of a workpiece | work (W) and 0.2% yield strength is shown in FIG. As shown in the graph, when the temperature of the workpiece (W) is around 500 ° C and the temperature distribution (temperature difference) is within the range of 30 ° C, the proof stress is as low as 50 N / mm 2 or less, and the difference in proof strength is high or low. Is smaller than 20 N / mm 2, and can be deformed in a well-balanced manner in the entire cross-sectional area. Therefore, in the present invention, if the temperature distribution (temperature difference) of the cross-sectional portion in the heating part of the workpiece (W) is within 30 ° C., the workpiece (W) can be uniformly deformed in a well-balanced manner on the entire circumference. Accuracy can be improved. However, in the present invention, if the temperature distribution (temperature difference) is within 50 ° C., the yield strength is relatively low, and the difference in yield strength can be made relatively small. If the distribution (temperature difference) is within 50 ° C., the processing accuracy can be sufficiently improved.

また同グラフから明らかなように、ワーク(W)の加熱温度が450℃以上、好ましくは480℃以上の場合には、耐力が小さくなるため、ワーク(W)を小さい引張力で効率良くスムーズに変形させることができる。   Further, as is apparent from the graph, when the heating temperature of the workpiece (W) is 450 ° C. or higher, preferably 480 ° C. or higher, the proof stress becomes small, so the workpiece (W) can be efficiently and smoothly made with a small tensile force. Can be deformed.

<参照例1>
図14に示すように、上記と同形状のワーク(W)において、各壁部(W1)(W2)の各部分(a1)〜(a8)、(b1)〜(b8)に対する入熱量を全て「100」に設定し、上記と同様に、ワーク(W)の断面状態での温度分布を求めた。なおこの参照例1においては、加熱時間を120秒に設定した。その結果を図15に示す。
<Reference Example 1>
As shown in FIG. 14, in the workpiece (W) having the same shape as described above, all the heat input amounts to the portions (a1) to (a8) and (b1) to (b8) of the wall portions (W1) and (W2) are all obtained. The temperature distribution in the cross-sectional state of the workpiece (W) was determined in the same manner as described above. In Reference Example 1, the heating time was set to 120 seconds. The result is shown in FIG.

同図に示すように、加熱時間を120秒と長く設定することによって、ワーク(W)の加熱部における材料温度において、最高温度が503℃、最低温度が492℃となり、温度差が11℃と非常に小さくて、加熱部の材料全域においてほぼ均一な温度分布に調整することが可能であるが、この加熱条件では、加熱時間が非常に長く、生産性が著しく低下してしまうため、実際に採用することは困難であると思われる。   As shown in the figure, by setting the heating time as long as 120 seconds, the maximum temperature is 503 ° C., the minimum temperature is 492 ° C., and the temperature difference is 11 ° C. Although it is very small and can be adjusted to a substantially uniform temperature distribution over the entire material of the heating part, under these heating conditions, the heating time is very long and the productivity is significantly reduced. It seems difficult to adopt.

<実施例2>
図8に示すように、周囲四側壁(W1)〜(W4)の肉厚が等しい正方形断面の角パイプ状のワーク(W)において、同図の表に示す加熱条件で15秒間加熱する場合を想定して、上記と同様にシミュレーションを行い、ワーク(W)の断面状態での温度分布を求めた。その結果を図9に示す。
<Example 2>
As shown in FIG. 8, in the case of a square pipe-shaped workpiece (W) having a square cross section with the same thickness of the surrounding four side walls (W1) to (W4), heating is performed for 15 seconds under the heating conditions shown in the table of FIG. Assuming that the simulation was performed in the same manner as described above, the temperature distribution in the cross-sectional state of the workpiece (W) was obtained. The result is shown in FIG.

同図に示すように、周壁(W1)(W2)の外部から内部にかけてわずかに温度が低下しているだけで、加熱部の材料全域においてほぼ均一な温度分布に調整することができた。具体的には最高温度が505℃、最低温度が495℃となり、温度差は10℃となった。   As shown in the figure, it was possible to adjust the temperature distribution to be almost uniform over the entire area of the material of the heating section only by a slight temperature drop from the outside to the inside of the peripheral walls (W1) and (W2). Specifically, the maximum temperature was 505 ° C., the minimum temperature was 495 ° C., and the temperature difference was 10 ° C.

<比較例2>
図12に示すように、上記実施例2と同形状のワーク(W)において、同図の加熱条件に示すように各壁部(W1)(W2)の各部分(a1)〜(a8)、(b1)〜(b8)に対する入熱量を全て同じに設定した以外は、上記実施例2と同様に、ワーク(W)の断面状態での温度分布を求めた。その結果を図13に示す。
<Comparative example 2>
As shown in FIG. 12, in the workpiece (W) having the same shape as in the second embodiment, as shown in the heating conditions of the drawing, the portions (a1) to (a8) of the wall portions (W1) (W2), The temperature distribution in the cross-sectional state of the workpiece (W) was obtained in the same manner as in Example 2 except that the heat input amounts for (b1) to (b8) were all set to be the same. The result is shown in FIG.

同図に示すように、比較例2のものでは、上記実施例2のものと比べて、周壁(W1)(W2)の外部から内部にかけて温度が大きく低下しており、温度分布にバラツキが認められた。具体的には、最愛温度が507℃、最低温度が477℃となり、温度差は30℃となった。   As shown in the figure, in the comparative example 2, the temperature is greatly decreased from the outside to the inside of the peripheral walls (W1) and (W2), compared to the above example 2, and the temperature distribution varies. It was. Specifically, the beloved temperature was 507 ° C., the minimum temperature was 477 ° C., and the temperature difference was 30 ° C.

<評価2>
実施例2および比較例2から明らかなように、周壁の肉厚が全周にわたって同一の角パイプ状のワーク(W)においては、熱の影響を受けやすい角部において入熱量を少なく設定することにより、材料全域においてほぼ均一な温度分布に調整することができる。従って肉厚が同一の場合であっても特に、断面多角形状のワークにおいては、本発明を適用することによって、優れた効果を得ることができる。
<Evaluation 2>
As is clear from Example 2 and Comparative Example 2, in the square pipe-shaped workpiece (W) having the same peripheral wall thickness over the entire circumference, the amount of heat input is set to be small at corners that are susceptible to heat. Thus, the temperature distribution can be adjusted to a substantially uniform temperature throughout the entire material. Therefore, even when the thickness is the same, an excellent effect can be obtained by applying the present invention to a workpiece having a polygonal cross section.

<参照例2>
図16に示すように、上記実施例2と同形状のワーク(W)において、同図の加熱条件に示すように各壁部(W1)(W2)の各部分(a1)〜(a8)、(b1)〜(b8)に対する入熱量を全て同じに設定し、上記と同様に、ワーク(W)の断面状態での温度分布を求めた。なおこの参照例2においては、加熱時間を120秒に設定した。その結果を図17に示す。
<Reference Example 2>
As shown in FIG. 16, in the workpiece (W) having the same shape as in the second embodiment, as shown in the heating conditions in the figure, the portions (a1) to (a8) of the wall portions (W1) (W2), All the heat inputs with respect to (b1) to (b8) were set to be the same, and the temperature distribution in the cross-sectional state of the workpiece (W) was obtained in the same manner as described above. In Reference Example 2, the heating time was set to 120 seconds. The result is shown in FIG.

同図に示すように、加熱時間を120秒と長く設定することによって、ワーク(W)の断面状態での材料温度において、最高温度が506℃、最低温度が502℃、温度差が4℃と非常に小さくて、周方向全域においてほぼ均一な温度分布に調整することが可能であるが、加熱時間が非常に長く、生産性が著しく低下してしまうため、実際に採用することは困難であると思われる。   As shown in the figure, by setting the heating time as long as 120 seconds, the maximum temperature is 506 ° C., the minimum temperature is 502 ° C., and the temperature difference is 4 ° C. in the cross-sectional state of the workpiece (W). Although it is very small and can be adjusted to a substantially uniform temperature distribution in the entire circumferential direction, it is difficult to actually adopt it because the heating time is very long and the productivity is significantly reduced. I think that the.

この発明の押出材のダイレス加工方法は、長尺なワークを断面方向に変形させる加工技術に適用可能である。   The dieless processing method for an extruded material according to the present invention can be applied to a processing technique for deforming a long workpiece in a cross-sectional direction.

この発明の第1実施形態であるダイレス加工装置を概略的に示す側面断面図である。1 is a side cross-sectional view schematically showing a dieless machining apparatus according to a first embodiment of the present invention. 第1実施形態のダイレス加工装置における加熱部を概略的に示す正面断面図である。It is front sectional drawing which shows schematically the heating part in the dieless processing apparatus of 1st Embodiment. 本発明における入熱量の設定方法を説明するためのワークの正面断面図である。It is front sectional drawing of the workpiece | work for demonstrating the setting method of the heat gain in this invention. この発明の第2実施形態であるダイレス加工装置を加熱部を概略的示す正面断面図であって、同図(a)は各加熱器の対ワーク距離を等しくした状態の正面断面図、同図(b)は各加熱器の対ワーク距離を変更した状態の正面断面図である。It is front sectional drawing which shows a heating part roughly in the dieless processing apparatus which is 2nd Embodiment of this invention, Comprising: The same figure (a) is front sectional drawing of the state which made the distance with respect to a workpiece | work of each heater equal, The figure (B) is front sectional drawing of the state which changed the distance with respect to a workpiece | work of each heater. この発明のダイレス加工装置に適用可能なワークの変形例を示す断面図である。It is sectional drawing which shows the modification of the workpiece | work applicable to the dieless processing apparatus of this invention. 実施例1の入熱量の温度条件を説明するための図である。It is a figure for demonstrating the temperature conditions of the heat gain of Example 1. FIG. 実施例1によるワークの温度分布状態を示す断面図である。It is sectional drawing which shows the temperature distribution state of the workpiece | work by Example 1. FIG. 実施例2の入熱量の温度条件を説明するための図である。It is a figure for demonstrating the temperature conditions of the heat gain of Example 2. FIG. 実施例2によるワークの温度分布状態を示す断面図である。It is sectional drawing which shows the temperature distribution state of the workpiece | work by Example 2. FIG. 比較例1の入熱量の温度条件を説明するための図である。It is a figure for demonstrating the temperature conditions of the heat gain of the comparative example 1. FIG. 比較例1によるワークの温度分布状態を示す断面図である。It is sectional drawing which shows the temperature distribution state of the workpiece | work by the comparative example 1. 比較例2の入熱量の温度条件を説明するための図である。It is a figure for demonstrating the temperature conditions of the heat gain of the comparative example 2. FIG. 比較例2によるワークの温度分布状態を示す断面図である。It is sectional drawing which shows the temperature distribution state of the workpiece | work by the comparative example 2. 参照例1の入熱量の温度条件を説明するための図である。5 is a diagram for explaining a temperature condition of a heat input amount in Reference Example 1. FIG. 参照例1によるワークの温度分布状態を示す断面図である。7 is a cross-sectional view showing a temperature distribution state of a workpiece according to Reference Example 1. FIG. 参照例2の入熱量の温度条件を説明するための図である。6 is a diagram for explaining a temperature condition of a heat input amount in Reference Example 2. FIG. 参照例2によるワークの温度分布状態を示す断面図である。10 is a cross-sectional view showing a temperature distribution state of a workpiece according to Reference Example 2. FIG. ワークの材料温度と0.2%耐力との関係を示すグラフである。It is a graph which shows the relationship between the material temperature of a workpiece | work, and 0.2% yield strength.

符号の説明Explanation of symbols

2…引張装置(移動手段)
3…加熱装置(加熱手段、ワーク加熱装置)
31〜34…加熱器
Q1〜Q4…入熱量
T1〜T4…肉厚
W…ワーク
W1〜W4…周壁
2 ... Tensioning device (moving means)
3. Heating device (heating means, workpiece heating device)
31-34 ... heaters Q1-Q4 ... heat input T1-T4 ... wall thickness W ... work W1-W4 ... peripheral wall

Claims (16)

長尺なワークを外周から加熱手段によって加熱しつつ、長さ方向に引張力または圧縮力を付与することにより、ワークの加熱部を変形させるようにしたダイレス加工方法であって、
ワークを加熱する際に、ワークの断面形状に応じ、周方向の位置によって、加熱手段によるワーク外周面への入熱量を変化させるようにしたことを特徴とするダイレス加工方法。
A dieless machining method in which a heating part of a workpiece is deformed by applying a tensile force or a compressive force in a length direction while heating a long workpiece by a heating means from the outer periphery,
A dieless machining method, wherein, when a workpiece is heated, the amount of heat input to the outer circumferential surface of the workpiece by the heating means is changed according to the position in the circumferential direction according to the cross-sectional shape of the workpiece.
ワークは、周方向の位置によって異なる熱容量を有し、熱容量に応じて加熱手段による入熱量を変化させるようにした請求項1に記載のダイレス加工方法。   The dieless machining method according to claim 1, wherein the workpiece has a different heat capacity depending on a position in the circumferential direction, and the amount of heat input by the heating means is changed according to the heat capacity. ワークは、周方向の位置によって肉厚の異なる周壁を有し、周壁のうち肉厚の厚い部分には、薄い部分に比べて、加熱手段による入熱量を多くするようにした請求項1または2に記載のダイレス加工方法。   The workpiece has peripheral walls having different thicknesses depending on positions in the circumferential direction, and a thicker portion of the peripheral walls has a larger amount of heat input by the heating means than a thin portion. The dieless processing method described in 1. ワークは、多数の平坦な壁部が周方向に連接された断面多角形の周壁を有し、各壁部のうち断面積の大きい壁部には、断面積の小さい壁部に比べて、加熱手段による入熱量を多くするようにした請求項1〜3のいずれかに記載のダイレス加工方法。   The workpiece has a peripheral wall with a polygonal cross section in which a large number of flat wall parts are connected in the circumferential direction, and the wall part with a large cross-sectional area among each wall part is heated compared to a wall part with a small cross-sectional area. The dieless processing method according to any one of claims 1 to 3, wherein an amount of heat input by the means is increased. ワークの加熱部における断面状態での材料温度において、最高温度と最低温度との温度差が50℃以下に設定される請求項1〜4のいずれかに記載のダイレス加工方法。   The dieless processing method according to any one of claims 1 to 4, wherein a temperature difference between a maximum temperature and a minimum temperature is set to 50 ° C or less in a material temperature in a cross-sectional state in a heating portion of the workpiece. ワークの加熱部における温度が、450℃以上に設定される請求項1〜5のいずれかに記載のダイレス加工方法。   The dieless processing method according to any one of claims 1 to 5, wherein the temperature in the heating part of the workpiece is set to 450 ° C or higher. ワークは、多数の平坦な壁部が周方向に連接された断面多角形の周壁を有し、隣り合う壁部間の角部には、他の部分に比べて、加熱手段による入熱量を少なくするようにした請求項1〜6のいずれかに記載のダイレス加工方法。   The work has a peripheral wall having a polygonal cross section in which a large number of flat wall parts are connected in the circumferential direction, and the amount of heat input by the heating means is less at the corners between adjacent wall parts than at other parts. The dieless processing method according to any one of claims 1 to 6, wherein the dieless processing method is performed. ワークの加熱部を、固溶体化温度まで上昇させる請求項1〜7のいずれかに記載のダイレス加工方法。   The dieless machining method according to any one of claims 1 to 7, wherein the heating part of the workpiece is raised to a solid solution temperature. ワークとして、アルミニウム又はその合金製のものが用いられる請求項1〜8のいずれかに記載のダイレス加工方法。   The dieless processing method according to claim 1, wherein the workpiece is made of aluminum or an alloy thereof. ワークとして、異形断面のものが用いられる請求項1〜9のいずれかに記載のダイレス加工方法。   The dieless processing method according to any one of claims 1 to 9, wherein a workpiece having an irregular cross section is used. 長尺なワークを外周から加熱手段によって加熱しつつ、長さ方向に引張力または圧縮力を付与することにより、ワークの加熱部を変形させるようにしたダイレス加工装置であって、
加熱手段は、ワークの周方向の位置によって、ワーク外周面への入熱量を変更可能に構成されたことを特徴とするダイレス加工装置。
A dieless machining apparatus that deforms a heating part of a workpiece by applying a tensile force or a compressive force in the length direction while heating a long workpiece by a heating means from the outer periphery,
The dieless processing apparatus, wherein the heating means is configured to be able to change the amount of heat input to the outer peripheral surface of the workpiece depending on the position in the circumferential direction of the workpiece.
加熱手段は、ワークの外周に、周方向に並んで配置される複数の加熱器をもって構成される請求項11に記載のダイレス加工装置。   The dieless processing apparatus according to claim 11, wherein the heating unit includes a plurality of heaters arranged in a circumferential direction on the outer periphery of the workpiece. 各加熱器の出力熱量をそれぞれ個別に調整可能に構成される請求項12に記載のダイレス加工装置。   The dieless processing apparatus according to claim 12, wherein the output calorie of each heater is configured to be individually adjustable. 加熱器が、ワークに対し接離方向に移動可能に構成される請求項12または13に記載のダイレス加工装置。   The dieless processing apparatus according to claim 12 or 13, wherein the heater is configured to be movable in a contact / separation direction with respect to the workpiece. 長尺なワークを外周から加熱手段によって加熱しつつ、長さ方向に引張力または圧縮力を付与することにより、ワークの加熱部を変形させるようにしたダイレス加工装置のワーク加熱方法であって、
ワークの断面形状に応じ、周方向の位置によって、加熱手段によるワーク外周面への入熱量を変化させるようにしたことを特徴とするダイレス加工装置のワーク加熱方法。
It is a work heating method of a dieless processing apparatus in which a heating part of a work is deformed by applying a tensile force or a compressive force in the length direction while heating a long work by a heating means from the outer periphery,
A work heating method for a dieless machining apparatus, wherein a heat input amount to a work outer peripheral surface by a heating means is changed according to a position in a circumferential direction according to a cross-sectional shape of the work.
長尺なワークを外周から加熱しつつ、長さ方向に引張力または圧縮力を付与することにより、ワークの加熱部を変形させるようにしたダイレス加工装置のワーク加熱装置であって、
ワークの周方向の位置によって、ワーク外周面への入熱量を変更可能に構成されたことを特徴とするダイレス加工装置のワーク加熱装置。
While heating a long workpiece from the outer periphery, by applying a tensile force or a compressive force in the length direction, a workpiece heating device of a dieless processing device that deforms the heating portion of the workpiece,
A work heating device for a dieless machining apparatus, wherein the amount of heat input to the work outer peripheral surface can be changed depending on a position in a circumferential direction of the work.
JP2007329843A 2007-12-21 2007-12-21 Dieless processing method Expired - Fee Related JP5069549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329843A JP5069549B2 (en) 2007-12-21 2007-12-21 Dieless processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329843A JP5069549B2 (en) 2007-12-21 2007-12-21 Dieless processing method

Publications (2)

Publication Number Publication Date
JP2009148805A true JP2009148805A (en) 2009-07-09
JP5069549B2 JP5069549B2 (en) 2012-11-07

Family

ID=40918610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329843A Expired - Fee Related JP5069549B2 (en) 2007-12-21 2007-12-21 Dieless processing method

Country Status (1)

Country Link
JP (1) JP5069549B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136345A (en) * 2009-12-25 2011-07-14 Tokyo Metropolitan Univ Tube machining apparatus and tube machining method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879157A (en) * 1972-01-24 1973-10-24
JPS4881761A (en) * 1972-02-04 1973-11-01
JPS56119640A (en) * 1980-02-27 1981-09-19 Diesel Kiki Co Ltd Method for heating blank material forming plural projections along axial direction of cam shaft or the like
JPS5987943A (en) * 1982-11-12 1984-05-21 Hitachi Ltd Method and device for thickening pipe material
JPS609542A (en) * 1983-06-30 1985-01-18 Mitsubishi Heavy Ind Ltd Enlarging method of sectional area of bar material
JPS60244437A (en) * 1984-05-17 1985-12-04 Hitachi Ltd Formation of uneven-thickness pipe
JPH0655226A (en) * 1992-08-07 1994-03-01 Toyota Motor Corp Method for increasing wall thickness of metallic tube and device therefor
JPH06248400A (en) * 1993-02-23 1994-09-06 Sumitomo Metal Ind Ltd Method for forging aluminum alloy
JPH11169994A (en) * 1997-12-15 1999-06-29 Nakajima Steel Pipe Co Ltd Partial thickening method of tube body and partial thickening equipment for tube body
JP2001150080A (en) * 1999-11-22 2001-06-05 Nakajima Steel Pipe Co Ltd Method and machine for partially enlarging wall thickness of pipe
JP2004276040A (en) * 2003-03-13 2004-10-07 Sumitomo Metal Ind Ltd Uneven thickness tube manufacturing method, and uneven thickness tube
JP2008114262A (en) * 2006-11-06 2008-05-22 Honda Motor Co Ltd Method of manufacturing deformed pipe body

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879157A (en) * 1972-01-24 1973-10-24
JPS4881761A (en) * 1972-02-04 1973-11-01
JPS56119640A (en) * 1980-02-27 1981-09-19 Diesel Kiki Co Ltd Method for heating blank material forming plural projections along axial direction of cam shaft or the like
JPS5987943A (en) * 1982-11-12 1984-05-21 Hitachi Ltd Method and device for thickening pipe material
JPS609542A (en) * 1983-06-30 1985-01-18 Mitsubishi Heavy Ind Ltd Enlarging method of sectional area of bar material
JPS60244437A (en) * 1984-05-17 1985-12-04 Hitachi Ltd Formation of uneven-thickness pipe
JPH0655226A (en) * 1992-08-07 1994-03-01 Toyota Motor Corp Method for increasing wall thickness of metallic tube and device therefor
JPH06248400A (en) * 1993-02-23 1994-09-06 Sumitomo Metal Ind Ltd Method for forging aluminum alloy
JPH11169994A (en) * 1997-12-15 1999-06-29 Nakajima Steel Pipe Co Ltd Partial thickening method of tube body and partial thickening equipment for tube body
JP2001150080A (en) * 1999-11-22 2001-06-05 Nakajima Steel Pipe Co Ltd Method and machine for partially enlarging wall thickness of pipe
JP2004276040A (en) * 2003-03-13 2004-10-07 Sumitomo Metal Ind Ltd Uneven thickness tube manufacturing method, and uneven thickness tube
JP2008114262A (en) * 2006-11-06 2008-05-22 Honda Motor Co Ltd Method of manufacturing deformed pipe body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136345A (en) * 2009-12-25 2011-07-14 Tokyo Metropolitan Univ Tube machining apparatus and tube machining method

Also Published As

Publication number Publication date
JP5069549B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5933655B2 (en) Method for drawing glass strip
JP4798674B1 (en) Rack bar and manufacturing method thereof
CN104607580A (en) Forging forming technology of aluminum alloy straight-flanked ring with extra-large specification
JP6194526B2 (en) Method and apparatus for heating plate workpiece and hot press molding method
JP5729059B2 (en) Heat-treated steel or bending member manufacturing apparatus and manufacturing method
JP4451493B2 (en) Manufacturing method of irregular cross section
JP4871209B2 (en) Metal material forging method and forging apparatus
Furushima et al. Fabrication of noncircular multicore microtubes by superplastic dieless drawing process
CN114245494A (en) Heating method, heating device, and method for producing press-molded article
US5492308A (en) Constrained quenching apparatus and heat treatment apparatus
JPH0788566A (en) Method for forming corrugated tube and device therefor
JP5069549B2 (en) Dieless processing method
Wei et al. Finite element analysis of deformation behavior in continuous ECAP process
JP2015514592A (en) Transfer mold capable of double row press processing
US4407486A (en) Method and apparatus of hot working metal with induction reheating
WO2014017372A1 (en) Seamless metal tube fabrication method, mandrel mill, and auxiliary tools
JP2008023531A (en) Method for producing bolt, bolt, shape material for bolt, device for molding shape material for bolt and method for molding shape material for bolt
JP2019141906A (en) Manufacturing method of hot forging material
JP4038541B2 (en) Heat treatment method for steel wire
JP2007136472A (en) Method and apparatus for upsetting
JPS59191523A (en) Working method for deforming sectional shape of metallic pipe in longitudinal direction into similar shape
JP6365206B2 (en) Hot bending member manufacturing apparatus and manufacturing method
JP5512320B2 (en) Extruded material manufacturing method
JP2019210509A (en) Three-dimensional hot bending and quenching equipment and quenching method
JP2008149324A (en) Method of drawing special-shaped metallic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120817

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees