JP2009145539A - Photomask and exposure method - Google Patents

Photomask and exposure method Download PDF

Info

Publication number
JP2009145539A
JP2009145539A JP2007321793A JP2007321793A JP2009145539A JP 2009145539 A JP2009145539 A JP 2009145539A JP 2007321793 A JP2007321793 A JP 2007321793A JP 2007321793 A JP2007321793 A JP 2007321793A JP 2009145539 A JP2009145539 A JP 2009145539A
Authority
JP
Japan
Prior art keywords
light
film
photomask
exposure
shielding film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007321793A
Other languages
Japanese (ja)
Other versions
JP5089362B2 (en
Inventor
Hideo Kaneko
英雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007321793A priority Critical patent/JP5089362B2/en
Publication of JP2009145539A publication Critical patent/JP2009145539A/en
Application granted granted Critical
Publication of JP5089362B2 publication Critical patent/JP5089362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To suppress degradation in pattern resolution caused by an exposure light component incident not perpendicular to a photomask face. <P>SOLUTION: A light-shielding film 12 of the photomask is an optical film functioning in such a manner that exposure light to be reflected on a side face of the film is totally reflected toward a light transmitting portion. That is, when the side face of the light shielding film 12 is present on the optical path of the exposure light in a transparent substrate 11, the exposure light incident at an angle θ to the photomask surface, the exposure light component is totally reflected on the side face of the light shielding film 12 toward the light transmitting portion, and thereby, contributing to exposure without being blocked by the light shielding film 12. In order to obtain the above described total reflection, it is preferable to use a light shielding film 12 having a refractive index n<SB>f</SB>satisfying the condition of n<SB>f</SB><n<SB>t</SB>×sin(π/2-sin<SP>-1</SP>(sinθ/n<SB>t</SB>)), wherein θ represents an incident angle of the exposure light to the photomask and n<SB>t</SB>represents a refractive index of the light transmitting portion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体集積回路等の製造などに用いられるフォトマスクおよび露光方法に関する。   The present invention relates to a photomask and an exposure method used for manufacturing a semiconductor integrated circuit and the like.

IC、LSI又はVLSI等の半導体集積回路の製造をはじめとして、広範囲な用途に用いられているフォトマスクは、例えば、透光性基板上にクロムを主成分とする遮光膜が形成されたフォトマスクブランクを用い、この遮光膜に紫外線や電子線等を露光光とするフォトリソグラフィ法により所定のパターンを形成したものである。近年では、半導体集積回路の高集積化等の市場要求に伴ってパターンの微細化が急速に進行し、露光工程でのレジスト解像度を高めるための露光波長の短波長化やレンズの開口数の増大により対応がなされてきた。   Photomasks used in a wide range of applications including the manufacture of semiconductor integrated circuits such as ICs, LSIs, and VLSIs are, for example, photomasks in which a light-shielding film containing chromium as a main component is formed on a translucent substrate A blank is used, and a predetermined pattern is formed on the light-shielding film by a photolithography method using ultraviolet rays, electron beams or the like as exposure light. In recent years, along with market demands such as higher integration of semiconductor integrated circuits, pattern miniaturization has rapidly progressed, and the exposure wavelength has been shortened and the numerical aperture of the lens has been increased to increase the resist resolution in the exposure process. Has been addressed.

しかしながら、露光波長の短波長化は装置や材料のコスト増大を招く結果となるという問題がある。また、レンズの開口数の増大は解像度の向上という利点の反面、焦点深度の減少を招く結果、プロセスの安定性が低下し、製品の歩留まりに悪影響を及ぼすという問題がある。このような問題の解決に対して有効なパターン転写法のひとつに「位相シフトマスク」をフォトマスクとして用いる「位相シフト法」が知られている(特許文献1)。   However, there is a problem that shortening the exposure wavelength results in an increase in the cost of the apparatus and materials. In addition, while increasing the numerical aperture of the lens has the advantage of improving the resolution, it results in a decrease in the depth of focus. As a result, there is a problem in that the process stability is lowered and the product yield is adversely affected. As one of effective pattern transfer methods for solving such problems, a “phase shift method” using a “phase shift mask” as a photomask is known (Patent Document 1).

これらのフォトマスクは、透明基板上に遮光性膜を形成したフォトマスクブランクの遮光性膜上にレジストを塗布し、当該レジストを露光・現像して所定のパターンを形成し、このレジストパターンをマスクとして上記遮光性膜をエッチングした後にレジストを除去することによって作製される。   In these photomasks, a resist is applied on a light-shielding film of a photomask blank in which a light-shielding film is formed on a transparent substrate, and the resist is exposed and developed to form a predetermined pattern, and this resist pattern is masked. As described above, the light-shielding film is etched and then the resist is removed.

従来、フォトマスクのパターンをシリコンウエーハなどの被転写基板に転写する際には、空気中での露光が行われていた。しかし、形成すべきパターン線幅が狭くなるにつれて、より高NA(高開口数)での露光を実現するために被転写基板の上に純水や高屈折率の液体を供給して露光する方法が実用化されるようになってきた。   Conventionally, when a photomask pattern is transferred to a transfer substrate such as a silicon wafer, exposure in air has been performed. However, as the pattern line width to be formed becomes narrower, exposure is performed by supplying pure water or a liquid with a high refractive index onto the transfer substrate in order to realize exposure with a higher NA (high numerical aperture). Has come into practical use.

また、更なる解像度の向上を目的として、露光装置の光源にも工夫がなされ、二重極照明や四重極照明、輪帯照明などの変形照明などが用いられるようになってきている。このような露光光源を用いた場合には、フォトマスクに入射する露光光にはフォトマスク面に非垂直入射する成分が含まれることとなる。
特開平7−140635号公報
In order to further improve the resolution, the light source of the exposure apparatus has also been devised, and modified illumination such as dipole illumination, quadrupole illumination, or annular illumination has been used. When such an exposure light source is used, the exposure light incident on the photomask includes a component that is non-perpendicularly incident on the photomask surface.
JP-A-7-140635

一般に、遮光性膜には、Crや金属シリサイド、またはこれらに酸素、窒素、炭素の何れかを含ませたものが用いられており、また、単層構造であるか複数層の積層構造であるかにかかわらず、反射率低減のための反射防止膜を形成した遮光性膜も用いられている。   In general, the light-shielding film is made of Cr, metal silicide, or those containing any of oxygen, nitrogen, and carbon, and has a single-layer structure or a multi-layer structure. Regardless of this, a light-shielding film having an antireflection film for reducing the reflectance is also used.

図1は、従来の遮光性膜が抱える技術的な問題を説明するためのフォトマスクの断面概略図で、この図に示したように、透明基板1上に遮光性膜2のパターンが形成されたフォトマスクの遮光部には、遮光性膜2の膜厚に相当する段差が生じている。パターンを微細化すると、パターン幅(w)とパターン段差(d)との比(d/w)は大きくなる。   FIG. 1 is a schematic cross-sectional view of a photomask for explaining a technical problem of a conventional light-shielding film. As shown in this figure, a pattern of a light-shielding film 2 is formed on a transparent substrate 1. A step corresponding to the film thickness of the light-shielding film 2 is generated in the light-shielding portion of the photomask. When the pattern is miniaturized, the ratio (d / w) between the pattern width (w) and the pattern step (d) increases.

また、フォトマスクに照射される光の入射角(θ)が大きくなればなるほど、フォトマスクの遮光部の段差によって透光部を透過した光(の一部)が遮られる現象が顕著となり、コントラスト比が低下するなどして解像度が低下してしまうという問題が生じる。   In addition, as the incident angle (θ) of the light applied to the photomask increases, the phenomenon that (a part of) the light transmitted through the light transmitting portion is blocked by the step of the light shielding portion of the photomask becomes more significant. There arises a problem that the resolution is lowered due to a reduction in the ratio.

本発明者は既に、上述のような問題を解決するために、基板に凹部を形成して当該凹部内に遮光性膜を形成したり、透光部に露光波長における屈折率が1より大きな透光性膜を形成する手法(特願2007-158326)、或いは、屈折率が1より大きい液体や固体の媒体でマスクのパターン面を覆う(特願2007-158327)などによってパターン部での光の侵入角度を小さくしてフォトマスクの透光部を透過した光(の一部)が遮光部の段差によって遮られる程度を低減させる発明を考案しているが、パターンの微細化に対応するためにはさらなる改善が必要である。   In order to solve the above-described problems, the present inventor has already formed a recess in the substrate and formed a light-shielding film in the recess, or the transparent portion has a refractive index greater than 1 at the exposure wavelength. The method of forming a light-sensitive film (Japanese Patent Application No. 2007-158326) or the pattern surface of the mask is covered with a liquid or solid medium having a refractive index higher than 1 (Japanese Patent Application No. 2007-158327). We have devised an invention that reduces the penetration angle and reduces the degree to which the light transmitted through the light-transmitting part of the photomask is blocked by the step of the light-shielding part. Needs further improvement.

本発明は、上記問題点を解決するためになされたもので、その目的とするところは、フォトマスク面に非垂直入射する露光光成分などに起因して生じるパターン解像度の低下を抑制可能なフォトマスクを提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a photo that can suppress a decrease in pattern resolution caused by an exposure light component incident non-perpendicularly on the photomask surface. To provide a mask.

かかる課題を解決するために、本発明のフォトマスクは、透明基板上に透光部と遮光部を備えたフォトマスクであって、前記遮光部は、その側面に入射した露光光を前記透光部側へと全反射させるパターニングされた光学膜であることを特徴とする。   In order to solve this problem, the photomask of the present invention is a photomask provided with a light transmitting portion and a light shielding portion on a transparent substrate, and the light shielding portion transmits the exposure light incident on the side surface thereof. It is a patterned optical film that totally reflects toward the part side.

第1の態様においては、前記遮光部は、前記透明基板の一方主面に設けられた凹部内に形成されている。   In the first aspect, the light shielding part is formed in a recess provided on one main surface of the transparent substrate.

また、第2の態様においては、前記遮光部は前記透明基板の一方主面上にパターニングされた低透過率膜であり、前記透光部は前記透明基板の一方主面上の非遮光部に設けられた高透過率膜である。   In the second aspect, the light shielding portion is a low transmittance film patterned on one main surface of the transparent substrate, and the light transmitting portion is a non-light shielding portion on one main surface of the transparent substrate. This is a high permeability film provided.

本発明においては、前記透光部の屈折率をn、前記遮光部の屈折率をn、前記透明基板に入射する露光光の入射角をθとしたとき、n<n・sin(π/2−sin−1(sinθ/n))の関係式を満足することが好ましい。 In the present invention, when the refractive index of the light transmitting part is n t , the refractive index of the light shielding part is n f , and the incident angle of the exposure light incident on the transparent substrate is θ, n f <n t · sin (π / 2-sin -1 ( sinθ / n t)) preferably satisfies the relational expression.

前記遮光部は、例えば、アルミニウム、銅、またはモリブデンの金属膜若しくは合金膜又はこれらに窒素や酸素を含んだ膜である。特に、アルミニウム膜は全反射となるための入射角範囲が広く、また、透過部の材質の選択の幅が広がるので好ましい。なお、ここに言うアルミニウム膜には全反射条件を満足する範囲において、酸素や窒素、あるいはその他の元素を含んでいるものも含まれる。   The light shielding portion is, for example, a metal film or alloy film of aluminum, copper, or molybdenum, or a film containing nitrogen or oxygen. In particular, an aluminum film is preferable because it has a wide incident angle range for total reflection and a wider selection of materials for the transmission part. It should be noted that the aluminum film mentioned here includes oxygen, nitrogen, or other elements containing oxygen in a range that satisfies the total reflection condition.

また、前記透光部となる高透過率膜は、例えば、酸化珪素膜、窒化珪素膜、または酸化窒化珪素膜である。   Further, the high transmittance film serving as the light transmitting portion is, for example, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film.

本発明によれば、フォトマスクの遮光性膜を、その側面により反射される露光光が透光部側へと全反射するような光学膜としたので、フォトマスクの表面に角度θで入射した露光光の透明基板中での光路上に遮光性膜の側面があった場合にも、当該露光光成分は遮光性膜の側面で透光部側へと全反射され、遮光性膜によって遮蔽されることなく露光に寄与することとなる。その結果、従来構造のフォトマスクであれば遮光性膜によって遮蔽されていた露光光量を大幅に低減することが可能となる。   According to the present invention, since the light-shielding film of the photomask is an optical film in which the exposure light reflected by the side surface is totally reflected toward the light transmitting part, the light is incident on the surface of the photomask at an angle θ. Even when the side surface of the light-shielding film is on the optical path in the transparent substrate of the exposure light, the exposure light component is totally reflected by the side surface of the light-shielding film toward the translucent part and is shielded by the light-shielding film. It will contribute to the exposure without. As a result, if the photomask has a conventional structure, the amount of exposure light shielded by the light-shielding film can be greatly reduced.

従って、本発明のフォトマスクを用い、その表面に斜め入射する光成分(非垂直入射成分)を含む照射光により露光を行なうこととすれば、フォトマスク面に非垂直入射する露光光成分などに起因して生じるパターン解像度の低下を抑制することが可能となる。特に、二重極照明や四重極照明、輪帯照明などの変形照明のように斜入射照明系においては効果が大きい。   Therefore, if the photomask of the present invention is used and exposure is performed with irradiation light including a light component that is obliquely incident on the surface (non-vertical incident component), the exposure light component that is non-perpendicularly incident on the photomask surface and the like It is possible to suppress a reduction in pattern resolution caused by the cause. In particular, the effect is great in an oblique incidence illumination system such as modified illumination such as dipole illumination, quadrupole illumination, or annular illumination.

以下、図面を参照して本発明のフォトマスクの構造について説明する。   The structure of the photomask of the present invention will be described below with reference to the drawings.

[本発明のフォトマスクの態様(その1)]:図2は、本発明のフォトマスクの第1の態様を説明するための断面概略図で、露光光に対して透明な石英やフッ化カルシウムなどの透明基板11の主面に掘り込み形成された凹部がパターニングされており、この凹部に遮光性膜12が設けられている。この遮光性膜12の形成領域が遮光部となり、遮光性膜12の非形成領域が透光部となる。   [Aspect of Photomask of the Present Invention (Part 1)] FIG. 2 is a schematic cross-sectional view for explaining the first aspect of the photomask of the present invention, and is made of quartz or calcium fluoride transparent to exposure light. A concave portion formed by digging in the main surface of the transparent substrate 11 is patterned, and a light shielding film 12 is provided in the concave portion. The region where the light-shielding film 12 is formed becomes a light-shielding portion, and the region where the light-shielding film 12 is not formed becomes a light-transmitting portion.

このフォトマスクの遮光性膜12は、その側面により反射される露光光が透光部側へと全反射するような光学膜となっている。つまり、フォトマスクの表面に角度θで入射した露光光の透明基板11中での光路上に遮光性膜12の側面があった場合にも、当該露光光成分は遮光性膜12の側面で透光部側へと全反射され、遮光性膜12によって遮蔽されることなく露光に寄与することとなる。   The light-shielding film 12 of this photomask is an optical film in which the exposure light reflected by the side surface is totally reflected toward the light transmitting part. That is, even if the side surface of the light shielding film 12 is on the optical path in the transparent substrate 11 of the exposure light incident on the surface of the photomask at an angle θ, the exposure light component is transmitted through the side surface of the light shielding film 12. The light is totally reflected to the light portion side and contributes to exposure without being shielded by the light-shielding film 12.

このような全反射を得るためには、フォトマスクへの露光光の入射角をθ、透光部の屈折率(図2の場合は透明基板11の屈折率)をnとしたとき、下記の条件を満足する屈折率nの遮光性膜12を用いることが好ましい。 In order to obtain such total reflection, when the incident angle of the exposure light to the photomask is θ and the refractive index of the light transmitting portion (refractive index of the transparent substrate 11 in the case of FIG. 2) is n t , It is preferable to use the light-shielding film 12 having a refractive index n f that satisfies the above condition.

(式1) n<n・sin(π/2−sin−1(sinθ/n)) (Equation 1) n f <n t · sin (π / 2-sin -1 (sinθ / n t))

例えば、露光波長が193nmで透光部の材料(石英)の屈折率(n)が1.56であるとすると、フォトマスク表面への露光光の入射角が60°である場合には、遮光性膜の屈折率(n)は1.30以下であることが好ましい。 For example, if the exposure wavelength is 193 nm and the refractive index (n t ) of the light transmitting material (quartz) is 1.56, when the incident angle of the exposure light on the photomask surface is 60 °, The refractive index (n f ) of the light-shielding film is preferably 1.30 or less.

このような光学膜としては、アルミニウム、銅、モリブデンなどの金属膜やこれらの金属を含む合金膜、或いはこれらに窒素や酸素を含んだ膜などが例示される。   Examples of such optical films include metal films such as aluminum, copper, and molybdenum, alloy films containing these metals, and films containing nitrogen and oxygen in these films.

遮光性膜12は、その透過率が0.1%以下といった極めて遮光性の高い膜としてもよいし、実質的に露光に寄与しない程度(例えば、1〜30%程度)の透過率の膜であってもよい。なお、遮光性膜12の形成は、スパッタ法、蒸着法、CVD法などの公知の手法によることができる。   The light-shielding film 12 may be a highly light-shielding film having a transmittance of 0.1% or less, or a film having a transmittance that does not substantially contribute to exposure (for example, about 1 to 30%). There may be. The light shielding film 12 can be formed by a known method such as sputtering, vapor deposition, or CVD.

また、遮光性膜12の表面(フォトマスクの露光光出射面側)に反射防止膜を設けてもよい。なお、この場合には、反射防止膜もその側面が露光光全反射条件を満たす光学膜であることが好ましい。   Further, an antireflection film may be provided on the surface of the light shielding film 12 (on the exposure light emitting surface side of the photomask). In this case, the antireflection film is also preferably an optical film whose side surface satisfies the exposure light total reflection condition.

遮光部を形成する凹部の基板掘込量は、少なくとも遮光性膜12の厚みの深さあればよいが、露光光の出射面を平坦な面とするためには、遮光性膜12の厚みと同程度の深さであることが好ましい。   The substrate digging amount of the concave portion forming the light shielding portion may be at least as long as the thickness of the light shielding film 12, but in order to make the exposure light emission surface flat, the thickness of the light shielding film 12 It is preferable that the depth is the same.

また、遮光性膜12に適度な透過率(例えば、1〜30%)をもたせ、透光部を透過した露光光と遮光部を透過した露光光との位相の差を所定の値(例えば、180度)とすることによって、位相シフト効果をもたせるようにしてもよい。   Further, the light-shielding film 12 has an appropriate transmittance (for example, 1 to 30%), and the phase difference between the exposure light transmitted through the light-transmitting portion and the exposure light transmitted through the light-shielding portion is set to a predetermined value (for example, (180 degrees) may provide a phase shift effect.

なお、遮光性膜12に位相シフト効果をもたせる場合、遮光性膜12中を伝播した露光光の位相変化量δφが、露光時にフォトマスクのパターン面が接している媒質中を遮光性膜12と同じ距離(厚み)だけ伝播した光の位相変化量δφよりも小さく(δφ<δφ)なるように膜設計すると、基板掘込量を低く抑えることができる。 When the light-shielding film 12 has a phase shift effect, the phase change amount δφ of the exposure light propagated through the light-shielding film 12 is changed between the light-shielding film 12 and the medium in contact with the photomask pattern surface during exposure. If the film is designed to be smaller than the phase change amount δφ 0 of light propagated by the same distance (thickness) (δφ <δφ 0 ), the substrate digging amount can be kept low.

[本発明のフォトマスクの態様(その2)]:図3は、本発明のフォトマスクの第2の態様を説明するための断面概略図で、露光光に対して透明な石英やフッ化カルシウムなどの透明基板11の主面にパターニングされた遮光性膜12が形成されており、透明基板主面の非遮光性膜領域に、露光波長における屈折率が1より大きい透光性膜13(例えばSiO膜)が設けられている。遮光性膜12の形成領域は遮光部となり、透光性膜13の形成領域が透光部となる。この場合も、従来構造であれば遮光性膜12によって遮られることとなる露光光の透過光量を大幅に低減することができる。 [Aspect of Photomask of the Present Invention (Part 2)] FIG. 3 is a schematic cross-sectional view for explaining a second aspect of the photomask of the present invention, and is made of quartz or calcium fluoride that is transparent to exposure light. A light-shielding film 12 patterned on the main surface of the transparent substrate 11 is formed, and a light-transmitting film 13 having a refractive index greater than 1 at the exposure wavelength (for example, in the non-light-shielding film region of the main surface of the transparent substrate) SiO 2 film) is provided. The formation region of the light-shielding film 12 becomes a light-shielding portion, and the formation region of the light-transmitting film 13 becomes a light-transmitting portion. In this case as well, the transmitted light amount of the exposure light that is blocked by the light-shielding film 12 can be significantly reduced with the conventional structure.

この態様のフォトマスクの場合、透光性膜13の屈折率を透明基板材料の屈折率よりも大きくすると、図2に示した第1の態様のフォトマスクに比較して、フォトマスクのパターン形成面側での光の屈折角を更に小さくすることができ、その結果、コントラストを改善することができる。   In the case of the photomask of this mode, when the refractive index of the translucent film 13 is made larger than the refractive index of the transparent substrate material, the pattern formation of the photomask is compared with the photomask of the first mode shown in FIG. The refraction angle of light on the surface side can be further reduced, and as a result, the contrast can be improved.

この態様のフォトマスクの場合も、遮光性膜12の側面により反射される露光光を透光部側へと全反射させるためには、フォトマスクへの露光光の入射角をθ、透光部の屈折率(図3の場合は透光性膜13の屈折率)をnとしたとき、上記の式(1)を満足することが好ましい。 Also in the case of the photomask of this aspect, in order to totally reflect the exposure light reflected by the side surface of the light-shielding film 12 toward the translucent part, the incident angle of the exposure light to the photomask is θ, and the translucent part It is preferable that the above formula (1) is satisfied, where n t is the refractive index of (in the case of FIG.

例えば、露光波長が193nmで透光部の材料(SiO)の屈折率(n)が1.50であるとすると、フォトマスク表面への露光光の入射角が60°である場合には、遮光性膜の屈折率(n)は1.20以下であることが好ましい。 For example, when the exposure wavelength is 193 nm and the refractive index (n t ) of the light transmitting material (SiO 2 ) is 1.50, when the incident angle of the exposure light on the photomask surface is 60 ° The refractive index (n f ) of the light-shielding film is preferably 1.20 or less.

このような光学膜としては、アルミニウム、銅、モリブデンなどの金属膜やこれらに窒素や酸素を含んだ膜などが例示される。中でもアルミニウム膜は、全反射を起こす露光光の入射角の範囲が広く、また、透過部の材質の選択の幅が広がるので遮光性膜として好ましい。なお、ここに言うアルミニウム膜には全反射条件を満足する範囲において、酸素や窒素、あるいはその他の元素を含んでいる膜も含まれる。   Examples of such optical films include metal films such as aluminum, copper, and molybdenum, and films containing nitrogen or oxygen in these. Among these, an aluminum film is preferable as a light-shielding film because the range of the incident angle of exposure light causing total reflection is wide and the range of selection of the material of the transmission part is widened. Note that the aluminum film mentioned here includes a film containing oxygen, nitrogen, or other elements within a range satisfying the total reflection condition.

この態様のフォトマスクにおいても、遮光性膜12は、その透過率が0.1%以下といった極めて遮光性の高い膜としてもよいし、実質的に露光に寄与しない程度(例えば、1〜30%程度)の透過率の膜であってもよい。なお、遮光性膜12の形成は、スパッタ法、蒸着法、CVD法などの公知の手法によることができる。   Also in the photomask of this aspect, the light-shielding film 12 may be a highly light-shielding film having a transmittance of 0.1% or less, or substantially not contributing to exposure (for example, 1 to 30%). A film having a transmittance of about). The light shielding film 12 can be formed by a known method such as sputtering, vapor deposition, or CVD.

また、遮光性膜12の表面(フォトマスクの露光光出射面側)に反射防止膜を設けてもよい。なお、この場合には、反射防止膜もその側面が露光光全反射条件を満たす光学膜であることが好ましい。   Further, an antireflection film may be provided on the surface of the light shielding film 12 (on the exposure light emitting surface side of the photomask). In this case, the antireflection film is also preferably an optical film whose side surface satisfies the exposure light total reflection condition.

透光性膜13は、上述の遮光性膜12よりも透過率の高い膜であればよい。露光光の透過度の高い膜としては、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜などが例示される。特に、窒化珪素膜は屈折率が大きいので好ましい。なお、露光波長が短くなると透過率が減少するため、その場合には適度に酸素を添加し、酸化窒化珪素膜とするとよい。   The translucent film 13 may be a film having a higher transmittance than the above-described light-shielding film 12. Examples of the film having a high exposure light transmittance include a silicon oxide film, a silicon nitride film, and a silicon oxynitride film. In particular, a silicon nitride film is preferable because it has a high refractive index. Note that the transmittance decreases as the exposure wavelength becomes shorter. In that case, oxygen may be appropriately added to form a silicon oxynitride film.

透光性膜13の厚みは遮光性膜12と同程度以上であればよいが、露光光の出射面を平坦にするためには、遮光性膜12の厚みと同程度の膜厚であることが好ましい。   The thickness of the translucent film 13 may be equal to or greater than that of the light-shielding film 12, but in order to flatten the exposure light emission surface, the thickness of the light-transmissive film 13 should be approximately the same as the thickness of the light-shielding film 12. Is preferred.

また、透光性膜13の膜厚を調整し、かつ、遮光性膜12に適度な透過率(例えば、1〜30%)をもたせ、透光部を透過した露光光と遮光部を透過した露光光との位相の差を所定の値(例えば、180度)とすることによって、位相シフト効果をもたせることができる。   Moreover, the film thickness of the translucent film 13 is adjusted, and the light-shielding film 12 has an appropriate transmittance (for example, 1 to 30%), so that the exposure light transmitted through the translucent part and the light-shielding part are transmitted. By setting the phase difference from the exposure light to a predetermined value (for example, 180 degrees), a phase shift effect can be provided.

なお、遮光性膜12に位相シフト効果をもたせる場合、遮光性膜12中を伝播した露光光の位相変化量δφが、露光時にフォトマスクのパターン面が接している媒質中を遮光性膜12と同じ距離(厚み)だけ伝播した光の位相変化量δφよりも小さく(δφ<δφ)なるように膜設計すると、透光性膜13の膜厚を薄くすることができる。 When the light-shielding film 12 has a phase shift effect, the phase change amount δφ of the exposure light propagated through the light-shielding film 12 is changed between the light-shielding film 12 and the medium in contact with the photomask pattern surface during exposure. If the film is designed to be smaller than the phase change amount δφ 0 of light propagated by the same distance (thickness) (δφ <δφ 0 ), the thickness of the translucent film 13 can be reduced.

[本発明のフォトマスクの態様(その3)]:本発明のフォトマスクの第3の態様のものの外観は図1に示したものと同様であり、透明基板11の主面にパターニングされた遮光性膜12によって遮光部が形成され、遮光性膜12が除去された領域が透光部とされている。   [Aspect (3) of the photomask of the present invention]: The appearance of the third aspect of the photomask of the present invention is the same as that shown in FIG. The light shielding portion is formed by the light-shielding film 12, and the region from which the light-shielding film 12 is removed is the light-transmitting portion.

この場合の遮光性膜12も、その側面により反射される露光光が透光部側へと全反射するような光学膜となっている。従って、フォトマスクの表面に角度θで入射した露光光の透明基板11中での光路上に遮光性膜12の側面があった場合にも、当該露光光成分は遮光性膜12の側面で透光部側へと全反射され、遮光性膜12によって遮蔽されることなく露光に寄与することとなる(図4)。   The light-shielding film 12 in this case is also an optical film in which the exposure light reflected by the side surface is totally reflected toward the light transmitting part. Therefore, even when the side surface of the light shielding film 12 is on the optical path in the transparent substrate 11 of the exposure light incident on the surface of the photomask at an angle θ, the exposure light component is transmitted through the side surface of the light shielding film 12. It is totally reflected toward the light part side and contributes to exposure without being shielded by the light shielding film 12 (FIG. 4).

このフォトマスクをそのまま露光機にセットしてマスクのパターン面が接する媒質が空気や窒素の状態のままで露光を行ってもよいし、マスクのパターン面を屈折率が1よりも大きな媒体(例えば、純水)で覆ったり、浸漬したり、或いは塗布したりした状態で露光を行なうようにしもよい。   The photomask may be set in an exposure machine as it is, and exposure may be performed while the medium in contact with the mask pattern surface is in the state of air or nitrogen, or the mask pattern surface may be a medium having a refractive index greater than 1 (for example, , Pure water), exposure, or exposure may be performed in a state of being immersed or coated.

この態様のフォトマスクの場合も、遮光性膜12の側面により反射される露光光を透光部側へと全反射させるためには、フォトマスクへの露光光の入射角をθ、透光部の屈折率(図4の場合は空気の屈折率)をnとしたとき、上記の式(1)を満足することが好ましい。 Also in the case of the photomask of this aspect, in order to totally reflect the exposure light reflected by the side surface of the light-shielding film 12 toward the translucent part, the incident angle of the exposure light to the photomask is θ, and the translucent part It is preferable that the above formula (1) is satisfied, where n t is the refractive index of (the refractive index of air in the case of FIG. 4).

例えば、露光波長が193nmで透光部の媒質(空気や窒素)の屈折率(n)が1であるとすると、フォトマスク表面への露光光の入射角が60°である場合には、遮光性膜の屈折率(n)は0.5以下であることが好ましい。 For example, when the exposure wavelength is 193 nm and the refractive index (n t ) of the light transmitting medium (air or nitrogen) is 1, when the incident angle of the exposure light on the photomask surface is 60 °, The refractive index (n f ) of the light shielding film is preferably 0.5 or less.

このような光学膜としてはアルミニウムが例示される。   An example of such an optical film is aluminum.

また、この態様のフォトマスクにおいても、遮光性膜12は、その透過率が0.1%以下といった極めて遮光性の高い膜としてもよいし、実質的に露光に寄与しない程度(例えば、1〜30%程度)の透過率の膜であってもよい。なお、遮光性膜12の形成は、スパッタ法、蒸着法、CVD法などの公知の手法によることができる。   Also in the photomask of this aspect, the light-shielding film 12 may be a highly light-shielding film having a transmittance of 0.1% or less, or to a degree that does not substantially contribute to exposure (for example, 1 to 1). A film having a transmittance of about 30% may be used. The light shielding film 12 can be formed by a known method such as sputtering, vapor deposition, or CVD.

また、遮光性膜12の表面(フォトマスクの露光光出射面側)に反射防止膜を設けてもよい。なお、この場合には、反射防止膜もその側面が露光光全反射条件を満たす光学膜であることが好ましい。   Further, an antireflection film may be provided on the surface of the light shielding film 12 (on the exposure light emitting surface side of the photomask). In this case, the antireflection film is also preferably an optical film whose side surface satisfies the exposure light total reflection condition.

なお、上述の第1乃至3の態様の遮光部と透光部を相互に組み合わせてフォトマスクを構成するようにしてもよい。また、何れの態様においても、遮光性膜12の表面(フォトマスクの露光光出射面側)に反射防止膜を設けてもよく、その場合には、反射防止膜の側面も露光光全反射条件を満たすことが好ましい。   In addition, you may make it comprise a photomask combining the light-shielding part and translucent part of the above-mentioned 1st thru | or 3rd aspect mutually. In any embodiment, an antireflection film may be provided on the surface of the light-shielding film 12 (on the exposure light emitting surface side of the photomask). In that case, the side surface of the antireflection film is also exposed to the exposure light total reflection condition. It is preferable to satisfy.

図5は、上述の第1の態様のフォトマスクの製造プロセスを説明するための図で、本実施例で得られるフォトマスクは、遮光性膜としてAlの遮光層(厚み60nm)を積層させたバイナリマスクである。   FIG. 5 is a diagram for explaining the manufacturing process of the photomask of the first aspect described above. In the photomask obtained in this example, an Al light shielding layer (thickness 60 nm) is laminated as a light shielding film. It is a binary mask.

先ず、石英基板11の主面にレジスト14を塗布する(図5(A))。レジスト14は、電子線用でもKrF線用でもArF線用でもよく、ポジ型でもネガ型でもよい。また、化学増幅型である必要はないが、本実施例では、電子線用の化学増幅型ポジレジストを用いている。   First, a resist 14 is applied to the main surface of the quartz substrate 11 (FIG. 5A). The resist 14 may be an electron beam, a KrF line, or an ArF line, and may be a positive type or a negative type. Further, although it is not necessary to be a chemical amplification type, in this embodiment, a chemical amplification type positive resist for electron beam is used.

このレジスト14に、EB描画装置で所定のパターンを露光し、現像して、所定のレジストパターン14を得る(図5(B))。   A predetermined pattern is exposed to the resist 14 by an EB drawing apparatus and developed to obtain a predetermined resist pattern 14 (FIG. 5B).

このレジストパターン14をマスクとして、石英基板11をエッチングして凹部15を形成する(図5(C))。このエッチングは、ウエット系、ドライ系のどちらでも可能であるが、微細なパターンを形成するにはドライエッチングが好ましく、本実施例では、CF(四フッ化炭素)やSF(六フッ化硫黄)といったフッ素を含んだエッチングガスを用いてエッチングを行っている。なお、このようなエッチングガスには、HeやArなどの不活性ガスを含んでいてもよい。 Using this resist pattern 14 as a mask, the quartz substrate 11 is etched to form a recess 15 (FIG. 5C). This etching can be either wet or dry, but dry etching is preferable for forming a fine pattern. In this embodiment, CF 4 (carbon tetrafluoride) or SF 6 (hexafluoride) is used. Etching is performed using an etching gas containing fluorine such as sulfur. Note that such an etching gas may contain an inert gas such as He or Ar.

エッチング深さは、バイナリマスクとする場合は、遮光性膜が所定の遮光度となる厚みと同程度に形成すればよい。本実施例でのエッチング深さは概ね60nmである。   When the etching depth is a binary mask, the etching depth may be approximately the same as the thickness at which the light shielding film has a predetermined light shielding degree. The etching depth in this example is approximately 60 nm.

形成した凹部15に、遮光性膜12としてのAlを成膜する(図5(D))。その成膜は、Arガス中でAlターゲットをスパッタすることで行っている。   Al is deposited as the light-shielding film 12 in the formed recess 15 (FIG. 5D). The film formation is performed by sputtering an Al target in Ar gas.

なお、遮光性膜12は、上記の膜に、さらに石英基板11側に反射防止層や密着改善層を形成したり表面に反射防止膜を形成したりして3層以上の積層構造としてもよい。また、膜中の組成を厚み方向に徐々に変化させて膜表面の酸化度や窒化度を高めることにより、反射率を低減させるようにしてもよい。   The light-shielding film 12 may have a laminated structure of three or more layers by forming an antireflection layer or an adhesion improving layer on the quartz substrate 11 side, or forming an antireflection film on the surface. . Alternatively, the reflectance may be reduced by gradually changing the composition in the film in the thickness direction to increase the degree of oxidation or nitridation on the film surface.

そして、遮光性膜の形成後にレジストマスク14を除去すると、石英基板11の主面にパターニングされた遮光性膜を備えたフォトマスクが得られる(図5(E))。   Then, when the resist mask 14 is removed after the formation of the light-shielding film, a photomask having a light-shielding film patterned on the main surface of the quartz substrate 11 is obtained (FIG. 5E).

このフォトマスクの表面から、波長193nmの露光光を入射角60°で入射させると、パターニングされた遮光性膜の側面では全反射され、遮光性膜で遮蔽される露光光量をほとんどゼロにすることができる。石英基板上にCr膜をパターニングして遮光性膜とした従来のフォトマスクの場合には、Cr遮光性膜の(側面の)反射率が40%以下であるためにCr遮光性膜の側面に照射された露光光の60%以上が遮蔽される結果となり、露光光量の大きな損失となる。   When exposure light with a wavelength of 193 nm is incident from the surface of this photomask at an incident angle of 60 °, the amount of exposure light that is totally reflected on the side surface of the patterned light-shielding film and shielded by the light-shielding film is almost zero. Can do. In the case of a conventional photomask in which a Cr film is patterned on a quartz substrate to form a light-shielding film, the reflectance of the Cr light-shielding film is 40% or less. As a result, 60% or more of the irradiated exposure light is blocked, resulting in a large loss of exposure light quantity.

なお、本実施例では、石英基板11をエッチングして凹部15を形成する際にレジストマスクを用いたが、例えば金属膜(パターン補助膜)をマスクとして用いてもよい。   In the present embodiment, the resist mask is used when the quartz substrate 11 is etched to form the recesses 15. However, for example, a metal film (pattern auxiliary film) may be used as a mask.

図6は、上述の第2の態様のフォトマスクの製造プロセスを説明するための図で、本実施例で得られるフォトマスクも実施例1と同様に、遮光性膜としてAlを60nm積層させたバイナリマスクである。   FIG. 6 is a diagram for explaining the manufacturing process of the photomask of the second aspect described above. Similarly to Example 1, the photomask obtained in this example was formed by laminating 60 nm of Al as a light-shielding film. It is a binary mask.

先ず、石英基板11の主面にレジスト14を塗布する(図6(A))。本実施例でも、電子線用の化学増幅型ポジレジストを用いている。   First, a resist 14 is applied to the main surface of the quartz substrate 11 (FIG. 6A). Also in this embodiment, a chemically amplified positive resist for electron beams is used.

このレジスト14に、EB描画装置で所定のパターンを露光し、現像して、所定のレジストパターン14を得る(図6(B))。   A predetermined pattern is exposed to this resist 14 by an EB drawing apparatus and developed to obtain a predetermined resist pattern 14 (FIG. 6B).

このレジスト14をマスクとし、石英基板11の露出部分に、遮光性膜12としてAl(厚み60nm)を積層させる。この成膜も、Arガス中に窒素ガスを添加させた雰囲気中で金属ターゲットをスパッタすることで行っている。   Using this resist 14 as a mask, Al (thickness 60 nm) is laminated on the exposed portion of the quartz substrate 11 as the light-shielding film 12. This film formation is also performed by sputtering a metal target in an atmosphere in which nitrogen gas is added to Ar gas.

なお、遮光性膜12は、上記の2層積層膜に、さらに石英基板11側に反射防止層や密着改善層を形成して3層以上の積層構造としてもよい。また、膜中の組成を厚み方向に徐々に変化させて膜表面の酸化度や窒化度を高めることにより、反射率を低減させるようにしてもよい。   The light-shielding film 12 may have a laminated structure of three or more layers by forming an antireflection layer or an adhesion improving layer on the quartz substrate 11 side on the two-layer laminated film. Alternatively, the reflectance may be reduced by gradually changing the composition in the film in the thickness direction to increase the degree of oxidation or nitridation on the film surface.

そして、遮光性膜の形成後にレジストマスク14を除去すると、石英基板11の主面にパターニングされた遮光性膜12が得られる(図6(D))。   Then, when the resist mask 14 is removed after the formation of the light shielding film, the light shielding film 12 patterned on the main surface of the quartz substrate 11 is obtained (FIG. 6D).

さらに、上述と同様の手法により、遮光性膜12上にレジストパターン14を形成し(図6(E))、石英基板11の露出部分に酸化ケイ素膜を約60nmの厚みでスパッタ成膜して透光性膜13を得る(図6(F))。なお、この酸化ケイ素膜に代えて、窒化珪素膜や酸化窒化珪素膜であってもよいことは上述のとおりである。   Further, a resist pattern 14 is formed on the light-shielding film 12 by the same method as described above (FIG. 6E), and a silicon oxide film is formed on the exposed portion of the quartz substrate 11 by sputtering to a thickness of about 60 nm. A light-transmitting film 13 is obtained (FIG. 6F). As described above, a silicon nitride film or a silicon oxynitride film may be used instead of the silicon oxide film.

そして最後に、レジストマスク14を除去すると、石英基板11の主面に、パターニングされた遮光性膜12と透光性膜13を備えたフォトマスクが得られる(図6(G))。   Finally, when the resist mask 14 is removed, a photomask provided with the patterned light-shielding film 12 and the light-transmitting film 13 on the main surface of the quartz substrate 11 is obtained (FIG. 6G).

なお、本実施例では遮光性膜12を先に形成する例を示したが、透光性膜13を先に形成するようにしてもよい。   In this embodiment, the example in which the light-shielding film 12 is formed first is shown, but the light-transmitting film 13 may be formed first.

以上、実施例により本発明のフォトマスクを説明したが、上述の遮光部と透光部を相互に組み合わせた態様のフォトマスクとしてもよいことは既に説明したとおりである。そして、本発明のフォトマスクを用い、その表面に斜め入射する光成分(非垂直入射成分)を含む照射光により露光を行なうこととすれば、フォトマスク面に非垂直入射する露光光成分などに起因して生じるパターン解像度の低下を抑制することが可能となる。特に、二重極照明や四重極照明、輪帯照明などの変形照明のように斜入射照明系においては効果が大きい。   As described above, the photomask of the present invention has been described with reference to the embodiments. However, as described above, the above-described photomask having a combination of the light shielding portion and the light transmitting portion may be used. If the photomask of the present invention is used and exposure is performed with irradiation light including a light component that is obliquely incident on the surface (non-perpendicular incident component), exposure light component that is non-perpendicularly incident on the photomask surface, etc. It is possible to suppress a reduction in pattern resolution caused by the cause. In particular, the effect is great in an oblique incidence illumination system such as modified illumination such as dipole illumination, quadrupole illumination, or annular illumination.

本発明は、従来構造のフォトマスクであれば遮光性膜によって遮蔽されていた露光光量を大幅に低減することにより、フォトマスク面に非垂直入射する露光光成分などに起因して生じるパターン解像度の低下を抑制することを可能とする。   The present invention significantly reduces the amount of exposure light that has been shielded by the light-shielding film in the case of a photomask having a conventional structure, thereby reducing the pattern resolution caused by the exposure light component incident non-perpendicularly on the photomask surface. It is possible to suppress the decrease.

従来のフォトマスクの構造を説明するための断面概略図である。It is the cross-sectional schematic for demonstrating the structure of the conventional photomask. 第1の態様のフォトマスクの構造を説明するための断面概略図である。It is the cross-sectional schematic for demonstrating the structure of the photomask of a 1st aspect. 第2の態様のフォトマスクの構造を説明するための断面概略図である。It is the cross-sectional schematic for demonstrating the structure of the photomask of a 2nd aspect. 第3の態様のフォトマスクの構造を説明するための断面概略図である。It is the cross-sectional schematic for demonstrating the structure of the photomask of a 3rd aspect. 第1の態様のフォトマスクの製造プロセスを説明するための図である。It is a figure for demonstrating the manufacturing process of the photomask of a 1st aspect. 第2の態様のフォトマスクの製造プロセスを説明するための図である。It is a figure for demonstrating the manufacturing process of the photomask of a 2nd aspect.

符号の説明Explanation of symbols

1、11 基板
2、12 遮光性膜
13 透光性膜
14 レジスト
15 凹部
1, 11 Substrate 2, 12 Light-shielding film 13 Translucent film 14 Resist 15 Recess

Claims (7)

透明基板上に透光部と遮光部を備えたフォトマスクであって、前記遮光部は、その側面に入射した露光光を前記透光部側へと全反射させるパターニングされた光学膜であることを特徴とするフォトマスク。   A photomask having a light-transmitting part and a light-shielding part on a transparent substrate, wherein the light-shielding part is a patterned optical film that totally reflects exposure light incident on its side surface toward the light-transmitting part. A photomask characterized by 前記遮光部は、前記透明基板の一方主面に設けられた凹部内に形成されている請求項1に記載のフォトマスク。   The photomask according to claim 1, wherein the light shielding part is formed in a recess provided on one main surface of the transparent substrate. 前記遮光部は前記透明基板の一方主面上にパターニングされた低透過率膜であり、前記透光部は前記透明基板の一方主面上の非遮光部に設けられた高透過率膜である請求項1に記載のフォトマスク。   The light shielding portion is a low transmittance film patterned on one main surface of the transparent substrate, and the light transmitting portion is a high transmittance film provided on a non-light shielding portion on one main surface of the transparent substrate. The photomask according to claim 1. 前記透光部の屈折率をn、前記遮光部の屈折率をn、前記透明基板に入射する露光光の入射角をθとしたとき、下記の関係式を満足することを特徴とする請求項1乃至3の何れか1項に記載のフォトマスク。
<n・sin(π/2−sin−1(sinθ/n))
When the refractive index of the light transmitting part is n t , the refractive index of the light shielding part is n f , and the incident angle of the exposure light incident on the transparent substrate is θ, the following relational expression is satisfied: The photomask according to any one of claims 1 to 3.
n f <n t · sin (π / 2−sin −1 (sin θ / n t ))
前記遮光部は、アルミニウム、銅、またはモリブデンの金属膜若しくは合金膜又はこれらに窒素や酸素を含んだ膜である請求項1乃至4の何れか1項に記載のフォトマスク。   5. The photomask according to claim 1, wherein the light shielding portion is a metal film or alloy film of aluminum, copper, or molybdenum, or a film containing nitrogen or oxygen therein. 前記透光部となる高透過率膜は、酸化珪素膜、窒化珪素膜、または酸化窒化珪素膜である請求項3乃至5の何れか1項に記載のフォトマスク。   The photomask according to any one of claims 3 to 5, wherein the high-transmittance film serving as the light-transmitting portion is a silicon oxide film, a silicon nitride film, or a silicon oxynitride film. フォトリソグラフィによりパターンを転写するための露光方法であって、
請求項1乃至6の何れか1項に記載のフォトマスクの表面に斜め入射する光成分を含む露光光を用いて前記フォトマスクに形成されたパターンを転写させる露光方法。
An exposure method for transferring a pattern by photolithography,
An exposure method for transferring a pattern formed on the photomask using exposure light containing a light component obliquely incident on the surface of the photomask according to claim 1.
JP2007321793A 2007-12-13 2007-12-13 Photomask and exposure method Active JP5089362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007321793A JP5089362B2 (en) 2007-12-13 2007-12-13 Photomask and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007321793A JP5089362B2 (en) 2007-12-13 2007-12-13 Photomask and exposure method

Publications (2)

Publication Number Publication Date
JP2009145539A true JP2009145539A (en) 2009-07-02
JP5089362B2 JP5089362B2 (en) 2012-12-05

Family

ID=40916215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007321793A Active JP5089362B2 (en) 2007-12-13 2007-12-13 Photomask and exposure method

Country Status (1)

Country Link
JP (1) JP5089362B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539065A (en) * 2010-07-26 2013-10-17 エルジー・ケム・リミテッド Mask and optical filter manufacturing apparatus including the same
JP2014106451A (en) * 2012-11-29 2014-06-09 Toppan Printing Co Ltd Photo mask and manufacturing method of photo mask
CN103959155A (en) * 2011-12-01 2014-07-30 Lg化学株式会社 Mask
US9041993B2 (en) 2010-07-26 2015-05-26 Lg Chem, Ltd. Mask
US9140979B2 (en) 2011-12-01 2015-09-22 Lg Chem, Ltd. Mask
JP2017076152A (en) * 2017-02-01 2017-04-20 Hoya株式会社 Mask blank, phase shift mask and manufacturing method of semiconductor device

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124944A (en) * 1984-11-22 1986-06-12 Hitachi Micro Comput Eng Ltd Mask
JPS6223196A (en) * 1985-07-23 1987-01-31 株式会社 丸五技研 Through hole plating method and automatic plating apparatus for printed wiring board
JPS62231960A (en) * 1986-04-01 1987-10-12 Sharp Corp Manufacture of photomask
JPS6333746A (en) * 1986-07-29 1988-02-13 Sharp Corp Production of photomask
JPH04181712A (en) * 1990-11-16 1992-06-29 Canon Inc Pattern forming unit with selective irradiation light
JPH04324445A (en) * 1991-04-25 1992-11-13 Nec Corp Mask for exposing and production thereof
JPH06301194A (en) * 1993-04-15 1994-10-28 Hitachi Ltd Manufacture of photo-mask and photo-mask
JPH1018628A (en) * 1996-07-05 1998-01-20 Shin Meiwa Ind Co Ltd Feeder bearing device of multistage parking equipment
JPH1090875A (en) * 1996-09-02 1998-04-10 Lg Semicon Co Ltd Phase shift mask and its production
JPH10186628A (en) * 1996-12-20 1998-07-14 Sharp Corp Production of photomask
JPH1126355A (en) * 1997-07-07 1999-01-29 Toshiba Corp Exposure mask and manufacture of the same
JP2000066368A (en) * 1998-08-25 2000-03-03 Murata Mfg Co Ltd Photomask, phase-shift mask and their production
JP2000250200A (en) * 1999-03-04 2000-09-14 Hitachi Ltd Lithography mask
JP2002251000A (en) * 2001-02-26 2002-09-06 Semiconductor Leading Edge Technologies Inc Method of manufacturing phase shift mask, phase shift mask, phase shift mask blank and method of manufacturing semiconductor device
JP2003107677A (en) * 2001-09-28 2003-04-09 Fuji Photo Film Co Ltd Photomask, its manufacturing method and photomask material
JP2006030320A (en) * 2004-07-12 2006-02-02 Hoya Corp Gray tone mask and method for manufacturing gray tone mask
JP2006267262A (en) * 2005-03-22 2006-10-05 Hoya Corp Gray tone mask and manufacturing method of thin film transistor substrate
JP2007292829A (en) * 2006-04-21 2007-11-08 Canon Inc Mask for near field exposure, method for manufacturing mask for near field exposure, near field exposure device and near field exposure method using this mask
JP2008070622A (en) * 2006-09-14 2008-03-27 Canon Inc Exposure mask and method for manufacturing the same

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124944A (en) * 1984-11-22 1986-06-12 Hitachi Micro Comput Eng Ltd Mask
JPS6223196A (en) * 1985-07-23 1987-01-31 株式会社 丸五技研 Through hole plating method and automatic plating apparatus for printed wiring board
JPS62231960A (en) * 1986-04-01 1987-10-12 Sharp Corp Manufacture of photomask
JPS6333746A (en) * 1986-07-29 1988-02-13 Sharp Corp Production of photomask
JPH04181712A (en) * 1990-11-16 1992-06-29 Canon Inc Pattern forming unit with selective irradiation light
JPH04324445A (en) * 1991-04-25 1992-11-13 Nec Corp Mask for exposing and production thereof
JPH06301194A (en) * 1993-04-15 1994-10-28 Hitachi Ltd Manufacture of photo-mask and photo-mask
JPH1018628A (en) * 1996-07-05 1998-01-20 Shin Meiwa Ind Co Ltd Feeder bearing device of multistage parking equipment
JPH1090875A (en) * 1996-09-02 1998-04-10 Lg Semicon Co Ltd Phase shift mask and its production
JPH10186628A (en) * 1996-12-20 1998-07-14 Sharp Corp Production of photomask
JPH1126355A (en) * 1997-07-07 1999-01-29 Toshiba Corp Exposure mask and manufacture of the same
JP2000066368A (en) * 1998-08-25 2000-03-03 Murata Mfg Co Ltd Photomask, phase-shift mask and their production
JP2000250200A (en) * 1999-03-04 2000-09-14 Hitachi Ltd Lithography mask
JP2002251000A (en) * 2001-02-26 2002-09-06 Semiconductor Leading Edge Technologies Inc Method of manufacturing phase shift mask, phase shift mask, phase shift mask blank and method of manufacturing semiconductor device
JP2003107677A (en) * 2001-09-28 2003-04-09 Fuji Photo Film Co Ltd Photomask, its manufacturing method and photomask material
JP2006030320A (en) * 2004-07-12 2006-02-02 Hoya Corp Gray tone mask and method for manufacturing gray tone mask
JP2006267262A (en) * 2005-03-22 2006-10-05 Hoya Corp Gray tone mask and manufacturing method of thin film transistor substrate
JP2007292829A (en) * 2006-04-21 2007-11-08 Canon Inc Mask for near field exposure, method for manufacturing mask for near field exposure, near field exposure device and near field exposure method using this mask
JP2008070622A (en) * 2006-09-14 2008-03-27 Canon Inc Exposure mask and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539065A (en) * 2010-07-26 2013-10-17 エルジー・ケム・リミテッド Mask and optical filter manufacturing apparatus including the same
US9041993B2 (en) 2010-07-26 2015-05-26 Lg Chem, Ltd. Mask
US9069257B2 (en) 2010-07-26 2015-06-30 Lg Chem, Ltd. Mask and optical filter manufacturing apparatus including the same
JP2015187731A (en) * 2010-07-26 2015-10-29 エルジー・ケム・リミテッド Mask and optical filter manufacturing apparatus including the same
CN103959155A (en) * 2011-12-01 2014-07-30 Lg化学株式会社 Mask
JP2015507213A (en) * 2011-12-01 2015-03-05 エルジー・ケム・リミテッド mask
US9140979B2 (en) 2011-12-01 2015-09-22 Lg Chem, Ltd. Mask
JP2014106451A (en) * 2012-11-29 2014-06-09 Toppan Printing Co Ltd Photo mask and manufacturing method of photo mask
JP2017076152A (en) * 2017-02-01 2017-04-20 Hoya株式会社 Mask blank, phase shift mask and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP5089362B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
US6913706B2 (en) Double-metal EUV mask absorber
KR101793285B1 (en) Mask blank and transfer mask
US8029948B2 (en) Photomask blank, photomask, and methods of manufacturing the same
KR101780068B1 (en) Mask blank and method for manufacturing transfer mask
WO2009136564A1 (en) Reflective mask, reflective mask blank and method for manufacturing reflective mask
JP5089362B2 (en) Photomask and exposure method
JP2011228743A (en) Reflection type photomask blank, reflection type photomask, and pattern transfer method employing the same
JP7106492B2 (en) MASK BLANK, PHASE SHIFT MASK, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
TWI752019B (en) Photomask having a plurality of shielding layers
KR102541867B1 (en) Phase shift mask blank for manufacturing display device, method for manufacturing phase shift mask for manufacturing display device, and manufacturing method for display device
JP2019139085A (en) Reflective photomask blank and reflective photomask
JP5178996B2 (en) Reflective photomask blank, reflective photomask, and pattern transfer method using the same
JP3993005B2 (en) Halftone phase shift mask blank, halftone phase shift mask, method of manufacturing the same, and pattern transfer method
JPWO2010113787A1 (en) Mask blank and transfer mask manufacturing method
TWI396936B (en) Mask blank and method of manufacturing mask
JP5476679B2 (en) Halftone EUV mask and method of manufacturing halftone EUV mask
JP2005284213A (en) Phase shift mask blank, phase shift mask and method for transferring pattern
JP4977535B2 (en) Pattern transfer method
JP2008310091A (en) Halftone phase shift mask
JP7059679B2 (en) Reflective photomask blank and reflective photomask
WO2019230312A1 (en) Mask blank, phase-shift mask, and semiconductor device manufacturing method
CN112740105A (en) Mask blank, transfer mask, and method for manufacturing semiconductor device
JP2005316512A (en) Method of manufacturing phase shift mask blank, method for manufacturing phase shift mask, and method of transferring pattern
JP2007035931A (en) Mask blank for extreme ultraviolet ray exposure, mask for extreme ultraviolet ray exposure, its manufacturing method, and pattern transfer method
JP4977794B2 (en) Pattern transfer method and photomask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150