JP4977535B2 - Pattern transfer method - Google Patents

Pattern transfer method Download PDF

Info

Publication number
JP4977535B2
JP4977535B2 JP2007158327A JP2007158327A JP4977535B2 JP 4977535 B2 JP4977535 B2 JP 4977535B2 JP 2007158327 A JP2007158327 A JP 2007158327A JP 2007158327 A JP2007158327 A JP 2007158327A JP 4977535 B2 JP4977535 B2 JP 4977535B2
Authority
JP
Japan
Prior art keywords
light
photomask
pattern
refractive index
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007158327A
Other languages
Japanese (ja)
Other versions
JP2008311462A (en
Inventor
英雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007158327A priority Critical patent/JP4977535B2/en
Priority to KR1020080038315A priority patent/KR20080110468A/en
Publication of JP2008311462A publication Critical patent/JP2008311462A/en
Application granted granted Critical
Publication of JP4977535B2 publication Critical patent/JP4977535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/60Substrates

Description

本発明は、半導体集積回路等の製造などで用いられるパターン転写方法およびフォトマスクに関する。   The present invention relates to a pattern transfer method and a photomask used in the manufacture of semiconductor integrated circuits and the like.

IC、LSI又はVLSI等の半導体集積回路の製造をはじめとして、広範囲な用途に用いられているフォトマスクは、例えば、透光性基板上にクロムを主成分とする遮光膜が形成されたフォトマスクブランクを用い、この遮光膜に紫外線や電子線等を露光光とするフォトリソグラフィ法により所定のパターンを形成したものである。近年では、半導体集積回路の高集積化等の市場要求に伴ってパターンの微細化が急速に進行し、露光工程でのレジスト解像度を高めるための露光波長の短波長化やレンズの開口数の増大により対応がなされてきた。   Photomasks used in a wide range of applications including the manufacture of semiconductor integrated circuits such as ICs, LSIs, and VLSIs are, for example, photomasks in which a light-shielding film containing chromium as a main component is formed on a translucent substrate A blank is used, and a predetermined pattern is formed on the light-shielding film by a photolithography method using ultraviolet rays, electron beams or the like as exposure light. In recent years, along with market demands such as higher integration of semiconductor integrated circuits, pattern miniaturization has rapidly progressed, and the exposure wavelength has been shortened and the numerical aperture of the lens has been increased to increase the resist resolution in the exposure process. Has been addressed.

しかしながら、露光波長の短波長化は装置や材料のコスト増大を招く結果となるという問題がある。また、レンズの開口数の増大は解像度の向上という利点の反面、焦点深度の減少を招く結果、プロセスの安定性が低下し、製品の歩留まりに悪影響を及ぼすという問題がある。このような問題の解決に対して有効なパターン転写法のひとつに「位相シフトマスク」をフォトマスクとして用いる「位相シフト法」が知られている(特許文献1)。   However, there is a problem that shortening the exposure wavelength results in an increase in the cost of the apparatus and materials. In addition, while increasing the numerical aperture of the lens has the advantage of improving the resolution, it results in a decrease in the depth of focus. As a result, there is a problem in that the process stability is lowered and the product yield is adversely affected. As one of effective pattern transfer methods for solving such problems, a “phase shift method” using a “phase shift mask” as a photomask is known (Patent Document 1).

これらのフォトマスクは、透明基板上に遮光性膜を形成したフォトマスクブランクの遮光性膜上にレジストを塗布し、当該レジストを露光・現像して所定のパターンを形成し、このレジストパターンをマスクとして上記遮光性膜をエッチングした後にレジストを除去することによって作製される。   In these photomasks, a resist is applied on a light-shielding film of a photomask blank in which a light-shielding film is formed on a transparent substrate, and the resist is exposed and developed to form a predetermined pattern, and this resist pattern is masked. As described above, the light-shielding film is etched and then the resist is removed.

従来、フォトマスクのパターンをシリコンウエーハなどの被転写基板に転写する際には、空気中での露光が行われていたが、形成すべきパターン線幅が狭くなるにつれて、より高NA(高開口数)での露光を実現するために被転写基板の上に純水や高屈折率の液体を供給して露光する方法が実用化されるようになってきた。また、更なる解像度の向上を目的として、露光装置の光源にも工夫がなされ、二重極照明や四重極照明、輪帯照明などの変形照明などが用いられるようになってきており、このような露光光源を用いた場合には、フォトマスクに入射する露光光にはフォトマスク面に非垂直入射する成分が含まれることとなる。また、フォトマスクのパターン面にはパターン面へのパーティクルの付着を防止するためにペリクル膜を設けられる。
特開平7−140635号公報
Conventionally, when a photomask pattern is transferred to a transfer substrate such as a silicon wafer, exposure in the air has been performed. However, as the pattern line width to be formed becomes narrower, the NA increases. In order to realize the exposure in the number (2), a method in which pure water or a liquid having a high refractive index is supplied onto the substrate to be transferred for exposure has been put into practical use. In addition, in order to further improve the resolution, the light source of the exposure apparatus has also been devised, and modified illumination such as dipole illumination, quadrupole illumination, or annular illumination has been used. When such an exposure light source is used, the exposure light incident on the photomask includes a component that is non-perpendicularly incident on the photomask surface. In addition, a pellicle film is provided on the pattern surface of the photomask in order to prevent adhesion of particles to the pattern surface.
JP-A-7-140635

図1に断面概略図を示したように、透明基板1上にCrやMoSiなどの遮光性膜2のパターンが形成されたフォトマスクの遮光部には、遮光性膜2の膜厚に相当する段差が生じている。また、パターンの微細化に伴って、パターンの幅とのパターンの段差の比は大きくなる。そして、透明基板1の屈折率は一般に、フォトマスクの露光雰囲気の屈折率(通常は1)よりも大きいために、フォトマスクに照射される光の入射角(θ)が大きくなればなるほど、フォトマスクの遮光部の段差が透過部を透過した光(の一部)を遮る現象が顕著となり、コントラスト比が低下するなどして解像度が低下してしまうという問題が生じる。   As shown in the schematic cross-sectional view of FIG. 1, the light shielding portion of the photomask in which the pattern of the light shielding film 2 such as Cr or MoSi is formed on the transparent substrate 1 corresponds to the film thickness of the light shielding film 2. There is a step. Further, as the pattern is miniaturized, the ratio of the pattern step to the pattern width increases. Since the refractive index of the transparent substrate 1 is generally larger than the refractive index (usually 1) of the exposure atmosphere of the photomask, the larger the incident angle (θ) of the light irradiated to the photomask, The phenomenon that the step of the light shielding part of the mask shields (a part of) the light transmitted through the transmissive part becomes prominent, and there arises a problem that the resolution is lowered due to a decrease in contrast ratio.

本発明は、上記問題点を解決するためになされたもので、その目的とするところは、フォトマスク面に非垂直入射する露光光成分などに起因して生じるパターン解像度の低下を抑制可能なパターン転写方法およびフォトマスクを提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a pattern capable of suppressing a decrease in pattern resolution caused by an exposure light component incident non-perpendicularly on a photomask surface. It is to provide a transfer method and a photomask.

かかる課題を解決するために、本発明のパターン転写方法は、フォトマスクのパターン形成面を屈折率が1よりも大きな媒質で覆った状態で露光することを特徴とする。   In order to solve this problem, the pattern transfer method of the present invention is characterized in that the pattern formation surface of the photomask is exposed while being covered with a medium having a refractive index larger than 1.

前記媒質は液体若しくは固体であり、例えば、純水、SOG、酸化ケイ素、窒化珪素、酸窒化珪素などである。   The medium is liquid or solid, for example, pure water, SOG, silicon oxide, silicon nitride, silicon oxynitride or the like.

本発明のフォトマスクは、透明基板の主面に遮光性膜がパターニングされており、該遮光性膜の非形成領域に屈折率が1よりも大きな媒質が充填されていることを特徴とする。   The photomask of the present invention is characterized in that a light-shielding film is patterned on the main surface of a transparent substrate, and a medium having a refractive index greater than 1 is filled in a region where the light-shielding film is not formed.

前記媒質は、例えば、SOG、酸化ケイ素、窒化珪素、酸窒化珪素などである。   Examples of the medium include SOG, silicon oxide, silicon nitride, and silicon oxynitride.

本発明によれば、屈折率が1よりも大きな媒質(高屈折率媒質)により、透明基板と高屈折率媒質との界面での屈折角が従来に比較して小さくなるので、遮光性膜によって遮られる露光光量を低減させることができる。この効果は、露光光の透明基板への入射角が大きいほど顕著となる。   According to the present invention, the medium having a refractive index larger than 1 (high refractive index medium) reduces the refraction angle at the interface between the transparent substrate and the high refractive index medium as compared with the conventional one. The amount of exposure light that is blocked can be reduced. This effect becomes more prominent as the incident angle of the exposure light to the transparent substrate increases.

その結果、フォトマスク面に非垂直入射する露光光成分などに起因して生じるパターン解像度の低下を抑制することが可能となる。   As a result, it is possible to suppress a decrease in pattern resolution caused by an exposure light component incident non-perpendicularly on the photomask surface.

以下、図面を参照して本発明のフォトマスクの構造について説明する。   The structure of the photomask of the present invention will be described below with reference to the drawings.

[本発明のフォトマスク]:図2は、本発明のフォトマスクの構造を説明するための断面概略図で、露光光に対して透明な石英やフッ化カルシウムなどの透明基板11の主面にパターニングされた遮光性膜12が設けられている。そして、透明基板11の主面全面が、遮光性膜12を覆うように、屈折率が1よりも大きな(n>1)高屈折率媒質13で被覆されている。このフォトマスクでは、遮光性膜12形成領域が遮光部、遮光性膜非形成領域が透光部となる。なお、高屈折率媒質13は、透光部を埋める(充填する)ように設けられている必要があるが、必ずしも遮光性膜12を覆う必要はない。   [Photomask of the Present Invention]: FIG. 2 is a schematic cross-sectional view for explaining the structure of the photomask of the present invention, on the main surface of the transparent substrate 11 such as quartz or calcium fluoride that is transparent to exposure light. A patterned light-shielding film 12 is provided. The entire main surface of the transparent substrate 11 is covered with a high refractive index medium 13 having a refractive index larger than 1 (n> 1) so as to cover the light shielding film 12. In this photomask, the light shielding film 12 forming region is a light shielding portion, and the light shielding film non-forming region is a light transmitting portion. The high refractive index medium 13 needs to be provided so as to fill (fill) the light transmitting portion, but does not necessarily need to cover the light shielding film 12.

一般に、露光光の出射面が接することとなる媒質(フォトマスクのパターン面が接している媒質)は空気や窒素であってその屈折率は1(n=1)であるから、図1に図示した構造の従来のフォトマスクでは、遮光部の段差が透光部を透過した光(の一部)を遮って解像度が低下してしまうという問題が生じる。しかし、本発明のように、屈折率が1よりも大きな高屈折率媒質13を設けた場合には、透明基板11と高屈折率媒質13との界面での屈折角が従来に比較して小さくなり、その結果、遮光性膜12によって遮られる露光光量を低減させることができる。この効果は、露光光の透明基板11への入射角(θ)が大きいほど顕著となる。   In general, the medium with which the exposure light exit surface is in contact (the medium with which the photomask pattern surface is in contact) is air or nitrogen, and its refractive index is 1 (n = 1). In the conventional photomask having the structure described above, there arises a problem that the stepped portion of the light shielding portion blocks (a part of) the light transmitted through the light transmitting portion and the resolution is lowered. However, when the high refractive index medium 13 having a refractive index larger than 1 is provided as in the present invention, the refraction angle at the interface between the transparent substrate 11 and the high refractive index medium 13 is smaller than in the prior art. As a result, the amount of exposure light blocked by the light-shielding film 12 can be reduced. This effect becomes more prominent as the incident angle (θ) of the exposure light to the transparent substrate 11 is larger.

遮光性膜12の膜厚や組成は、いわゆる「遮光膜」として用いるときは光学濃度で3以上となるようにし、ハーフトーン型の遮光性膜とする場合には、所定の透過率(例えば、1〜50%)の透過率となるように膜厚や組成を決める。このような遮光性膜12としては、クロムやモリブデンシリサイド、ジルコニアシリサイド、タングステンシリサイドなどの金属シリサイドやこれらに窒素や酸素を含んだ膜が例示される。また、透過率は0.1%以下などとして遮光性の高い膜としてもよいし、ハーフトーン型位相シフト膜として用いる場合などでは、実質的に露光に寄与しない程度(例えば、1〜30%程度)の透過率の膜であってもよい。なお、遮光性膜12の形成は、スパッタ法、蒸着法、CVD法などの公知の手法によることができる。   When used as a so-called “light-shielding film”, the light-shielding film 12 has an optical density of 3 or more. When a halftone-type light-shielding film is used, a predetermined transmittance (for example, The film thickness and composition are determined so that the transmittance is 1 to 50%. Examples of such a light-shielding film 12 include metal silicides such as chromium, molybdenum silicide, zirconia silicide, and tungsten silicide, and films containing nitrogen and oxygen. Further, the transmittance may be a film having high light shielding properties such as 0.1% or less, and when used as a halftone phase shift film, it does not substantially contribute to exposure (for example, about 1 to 30%). ) May be used. The light shielding film 12 can be formed by a known method such as sputtering, vapor deposition, or CVD.

透明基板11として石英を用いた場合、遮光性膜12としてクロムを主成分とする膜を用いると、エッチングを行う際に透明基板11との間でエッチング選択性をもたせることができるという利点がある。   When quartz is used as the transparent substrate 11, the use of a film mainly composed of chromium as the light-shielding film 12 has an advantage that etching selectivity can be provided between the transparent substrate 11 and the transparent substrate 11. .

露光波長が200nm以下(例えば、193nmなど)の場合には、金属シリサイドを主成分とする膜(酸素や窒素を含ませることもできる)を用いると、反射率を所定の値まで低減させること、遮光性膜の薄膜化、パターン微細化のために有利なフッ素系エッチングが可能、といった利点がある。   When the exposure wavelength is 200 nm or less (for example, 193 nm, etc.), the use of a film mainly containing metal silicide (which can also contain oxygen or nitrogen) reduces the reflectance to a predetermined value. There is an advantage that fluorine-based etching that is advantageous for thinning the light-shielding film and miniaturizing the pattern is possible.

また、遮光性膜12に適度な透過率(例えば、1〜30%)をもたせ、透光部を透過した露光光と遮光部を透過した露光光との位相の差を所定の値(例えば、180度)とすることによって、位相シフト効果をもたせることができる。この場合、通常のハーフトーン型位相シフトマスクと同様に遮光部の位相変化を透光部の位相変化よりも大きくすることもできるが、これとは逆に、透光部における位相変化を遮光部の位相変化よりも大きくすることもできる。特に、高屈折率媒質の屈折率が大きいときには、遮光部の厚みを薄くすることができるため、透光部における位相変化の方を遮光部よりも大きくする構成の方が好ましい。   Further, the light-shielding film 12 has an appropriate transmittance (for example, 1 to 30%), and the phase difference between the exposure light transmitted through the light-transmitting portion and the exposure light transmitted through the light-shielding portion is set to a predetermined value (for example, By setting the angle to 180 degrees, a phase shift effect can be provided. In this case, the phase change of the light-shielding part can be made larger than the phase change of the light-transmitting part as in the case of a normal halftone type phase shift mask. It is possible to make it larger than the phase change. In particular, when the refractive index of the high refractive index medium is large, the thickness of the light shielding portion can be reduced. Therefore, the configuration in which the phase change in the light transmitting portion is larger than that of the light shielding portion is preferable.

高屈折率媒質13としては、SOG、酸化ケイ素、窒化珪素、酸窒化珪素などを用いる。その厚みは、例えば1mm以上とすれば、ぺリクル膜が必要でなくなるという利点がある。また、遮光性膜12の上に設けられる高屈折率媒質の厚みが10〜40nmとなるように高屈折率媒質13を形成して反射防止膜としての機能をもたせたり、遮光性膜12に対する保護膜として機能させるようにしてもよい。   As the high refractive index medium 13, SOG, silicon oxide, silicon nitride, silicon oxynitride, or the like is used. If the thickness is, for example, 1 mm or more, there is an advantage that a pellicle film is not necessary. Further, the high refractive index medium 13 is formed so that the thickness of the high refractive index medium provided on the light shielding film 12 is 10 to 40 nm so as to function as an antireflection film, or the light shielding film 12 is protected. You may make it function as a film | membrane.

[本発明のパターン転写方法]:図3は本発明のパターン転写方法を説明するための図で、ここで用いるフォトマスクは、図1で示したものと同様の従来型のフォトマスクで、透明基板11の主面に遮光性膜12が設けられている。   [Pattern Transfer Method of the Present Invention]: FIG. 3 is a diagram for explaining the pattern transfer method of the present invention. The photomask used here is a conventional photomask similar to that shown in FIG. A light shielding film 12 is provided on the main surface of the substrate 11.

このフォトマスクのパターン形成面が高屈折率媒体13で覆われるようにした状態で、レジスト14が塗布された被転写基板15にパターン焼付けのための露光を行う。図3に示した高屈折率媒体13は、通常の露光環境である空気や窒素よりも屈折率が高い(屈折率が1よりも大きな)液体(例えば、純水)で、図3(A)には、この高屈折率媒体13中に被転写基板15も一緒に浸漬させた状態で露光を行う状態が図示されているが、フォトマスクのパターン形成面(遮光性膜12)と被転写基板15(上のレジスト14)が共に高屈折率媒体13中にある必要はなく、フォトマスクのパターン形成面が高屈折率媒体13に接していればよい。   In a state where the pattern forming surface of the photomask is covered with the high refractive index medium 13, exposure for pattern printing is performed on the transfer target substrate 15 coated with the resist 14. The high refractive index medium 13 shown in FIG. 3 is a liquid (for example, pure water) having a refractive index higher than that of air or nitrogen (for example, pure water), which is a normal exposure environment. 1 shows a state in which exposure is performed in a state where the transfer substrate 15 is also immersed in the high refractive index medium 13, but the pattern formation surface (light-shielding film 12) of the photomask and the transfer substrate are illustrated. 15 (the upper resist 14) need not be in the high refractive index medium 13 as long as the pattern formation surface of the photomask is in contact with the high refractive index medium 13.

例えば、フォトマスク(のパターン形成面)のみを高屈折率媒体13に浸漬してもよく(図3(B))、あるいは、フォトマスクのパターン形成面側にレンズなどの光学素子16を設けてこれらの間を高屈折率媒体13で充填させたり(図3(C))、さらには、フォトマスク(のパターン形成面)と被転写基板(上のレジスト14)を別々の高屈折率媒体に浸漬させたり、フォトマスク(のパターン形成面)のみを高屈折率媒体に浸漬させた状態で通常の液浸露光機のように被転写基板の露光部分のみを液浸させるなどの構成にしてもよい。   For example, only the photomask (the pattern formation surface thereof) may be immersed in the high refractive index medium 13 (FIG. 3B), or an optical element 16 such as a lens is provided on the pattern formation surface side of the photomask. The space between them is filled with a high refractive index medium 13 (FIG. 3C), and further, the photomask (pattern forming surface thereof) and the transferred substrate (the upper resist 14) are formed on separate high refractive index media. It is also possible to immerse or to immerse only the exposed part of the substrate to be transferred like a normal immersion exposure machine with only the photomask (pattern forming surface) immersed in a high refractive index medium. Good.

また、高屈折率媒体13は、フォトマスクのパターン形成面を覆ってさえいればよく、パターン形成面を薄く覆う程度でもよい。なお、高屈折率媒体13は液体である必要はなく、SOG、酸化ケイ素、窒化珪素、酸窒化珪素などの固体であってもよく、この場合にも、当該固体の薄膜がパターン上を覆っていればよい。   Further, the high refractive index medium 13 only needs to cover the pattern formation surface of the photomask, and may cover the pattern formation surface thinly. The high refractive index medium 13 does not need to be a liquid, and may be a solid such as SOG, silicon oxide, silicon nitride, or silicon oxynitride. In this case as well, the solid thin film covers the pattern. Just do it.

このようなパターン転写方法の場合には、従来のフォトマスクを用いた場合にも、透明基板11と高屈折率媒質13との界面での屈折角が従来法でパターン転写する場合に比較して小さくなり、その結果、遮光性膜12によって遮られる露光光量を低減させることができる。また、この効果は、露光光の透明基板11への入射角(θ)が大きいほど顕著となる。   In the case of such a pattern transfer method, even when a conventional photomask is used, the refraction angle at the interface between the transparent substrate 11 and the high refractive index medium 13 is compared with the case where the pattern transfer is performed by the conventional method. As a result, the amount of exposure light blocked by the light-shielding film 12 can be reduced. This effect becomes more prominent as the incident angle (θ) of the exposure light to the transparent substrate 11 is larger.

なお、高屈折率媒質13の屈折率は、1よりも大きく、かつ、遮光性膜12のそれよりも大きいことが好ましく、さらには、透明基板11の屈折率よりも大きいと、より好ましい。   The refractive index of the high refractive index medium 13 is preferably larger than 1 and larger than that of the light-shielding film 12, and more preferably larger than the refractive index of the transparent substrate 11.

図4は、フォトマスクのパターン面を高屈折率の固体で覆う場合の本発明のフォトマスクの製造プロセスを説明するための図で、本実施例で得られるフォトマスクは、遮光性膜としてMoSiNの遮光層(60nm)と反射防止層(40nm)を積層させたバイナリマスクである。本実施例では、遮光層と反射防止層の厚みをそれぞれ上記の値としているが、これらの膜厚はそれぞれ、30〜60nmおよび10〜40nmなどとするようにしてもよい。   FIG. 4 is a diagram for explaining the manufacturing process of the photomask of the present invention in the case where the pattern surface of the photomask is covered with a solid having a high refractive index. The photomask obtained in this example is MoSiN as a light-shielding film. This is a binary mask in which a light shielding layer (60 nm) and an antireflection layer (40 nm) are laminated. In this embodiment, the thicknesses of the light shielding layer and the antireflection layer are set to the above values, respectively, but these film thicknesses may be 30 to 60 nm and 10 to 40 nm, respectively.

先ず、石英基板11の主面に遮光性膜12を備えたフォトマスクブランクを準備する(図4(A))。本実施例の遮光性膜12は、MoSiNの遮光層(60nm)と反射防止層(40nm)を積層させたものであるが、一般的には、CrやMoSiなどの金属シリサイド、またはこれらに酸素または窒素を含ませた膜などであり、その成膜は、Arガス中に窒素ガスを添加させた雰囲気中で金属ターゲットをスパッタすることで行われる。   First, a photomask blank provided with the light-shielding film 12 on the main surface of the quartz substrate 11 is prepared (FIG. 4A). The light-shielding film 12 of the present embodiment is formed by laminating a light-shielding layer (60 nm) and an antireflection layer (40 nm) of MoSiN. In general, a metal silicide such as Cr or MoSi or oxygen Alternatively, a film containing nitrogen is formed, and the film formation is performed by sputtering a metal target in an atmosphere in which nitrogen gas is added to Ar gas.

なお、膜中に酸素を含ませる場合にはArガス中に酸素ガスを添加させた雰囲気中で、また、酸素と窒素を含ませるときにはArガス中に酸素(含有)ガスと窒素(含有)ガスを添加させた雰囲気中でスパッタ成膜を行う。さらに、膜中に炭素を含ませる場合には、炭素含有ガスを添加させた雰囲気中でスパッタ成膜を行う。このような酸素(含有)ガスや窒素(含有)ガス或いは炭素含有ガスとしては、O、N、NO、NO、CO、CO、CH、などが例示される。 When oxygen is contained in the film, it is in an atmosphere in which oxygen gas is added to Ar gas, and when oxygen and nitrogen are contained, oxygen (containing) gas and nitrogen (containing) gas are contained in Ar gas. Sputter film formation is performed in an atmosphere to which is added. Further, when carbon is included in the film, sputtering film formation is performed in an atmosphere to which a carbon-containing gas is added. Examples of such oxygen (containing) gas, nitrogen (containing) gas, or carbon-containing gas include O 2 , N 2 , NO, N 2 O, CO, CO 2 , and CH 4 .

また、遮光性膜12は遮光層と反射防止層の2層構造にしてもよいし、さらに石英基板11側に反射防止層や密着改善層を形成した3層以上の構成としてもよい。また、膜中での組成を徐々に変化させることによって、表面の酸化度や窒化度をあげることで反射率を低減させるようにしてもよい。さらに、パターン形成の補助膜となるエッチングマスク層や、エッチングストッパを形成してもよい。これら多層は単一元素から多層を形成しても、異元素を含む層を形成してもよい。   The light-shielding film 12 may have a two-layer structure of a light-shielding layer and an antireflection layer, or may have a structure of three or more layers in which an antireflection layer or an adhesion improving layer is formed on the quartz substrate 11 side. Further, the reflectivity may be reduced by gradually changing the composition in the film to increase the degree of oxidation or nitridation on the surface. Furthermore, an etching mask layer that serves as an auxiliary film for pattern formation or an etching stopper may be formed. These multilayers may be formed from a single element or a layer containing a different element.

次に、遮光性膜12の上からレジスト14を塗布し(図4(B))、EB描画装置で所定のパターンを露光・現像して、所定のレジストパターン14を得る(図4(C))。レジスト14は、電子線用でもKrF線用でもArF線用でもよく、ポジ型でもネガ型でもよい。なお、化学増幅型である必要はないが、本実施例では、電子線用の化学増幅型ポジレジストを用いている。   Next, a resist 14 is applied on the light-shielding film 12 (FIG. 4B), and a predetermined pattern is exposed and developed by an EB drawing apparatus to obtain a predetermined resist pattern 14 (FIG. 4C). ). The resist 14 may be an electron beam, a KrF line, or an ArF line, and may be a positive type or a negative type. Although it is not necessary to use a chemically amplified type, in this embodiment, a chemically amplified positive resist for electron beams is used.

このレジストパターン14をマスクとして、遮光性膜12をエッチングしてパターニングを行う(図4(D))。この場合のエッチングは、ウエット、ドライどちらの手法でも可能であるが、微細なパターンを形成するにはドライエッチングが好ましい。   Using the resist pattern 14 as a mask, the light shielding film 12 is etched and patterned (FIG. 4D). Etching in this case can be performed by either wet or dry methods, but dry etching is preferable for forming a fine pattern.

本実施例では、遮光性膜12は金属シリサイド膜であるので、CF4やSF6などのフッ素を含んだエッチングガスを用いてドライエッチングを行っている。遮光性膜12としてCr膜を用いた場合には、塩素ガスと酸素ガスを混合したものをエッチングガスとして用いることができる。また、なお、このようなエッチングガスには、HeやArなどの不活性ガスを含んでいてもよい。   In this embodiment, since the light-shielding film 12 is a metal silicide film, dry etching is performed using an etching gas containing fluorine such as CF4 and SF6. When a Cr film is used as the light-shielding film 12, a mixture of chlorine gas and oxygen gas can be used as an etching gas. In addition, such an etching gas may contain an inert gas such as He or Ar.

なお、遮光性膜12は、上述の2層積層膜に、さらに石英基板11側に密着改善層などを形成して3層以上の積層構造としてもよい。また、膜中の組成を厚み方向に徐々に変化させて膜表面の酸化度や窒化度を高めることにより、反射率を低減させるようにしてもよい。さらに、パターン形成の補助膜となるエッチングマスク層やエッチングストッパを形成してもよい。   The light-shielding film 12 may have a laminated structure of three or more layers by forming an adhesion improving layer on the quartz substrate 11 side on the above-described two-layer laminated film. Alternatively, the reflectance may be reduced by gradually changing the composition in the film in the thickness direction to increase the degree of oxidation or nitridation on the film surface. Further, an etching mask layer or an etching stopper that serves as an auxiliary film for pattern formation may be formed.

そして、遮光性膜12のパターニング後にレジストマスク14を除去すると、石英基板11の主面にパターニングされた遮光性膜を備えた従来型のフォトマスクが得られる(図4(E))。   Then, when the resist mask 14 is removed after the patterning of the light-shielding film 12, a conventional photomask having a light-shielding film patterned on the main surface of the quartz substrate 11 is obtained (FIG. 4E).

これに続いて、遮光性膜12を覆うように、屈折率が1よりも大きな高屈折率媒質13であるSOG膜(n=1.4)を透明基板11の主面全面に形成する(図4(F))。SOG膜の厚みは約130nmである。   Subsequently, an SOG film (n = 1.4) which is a high refractive index medium 13 having a refractive index larger than 1 is formed on the entire main surface of the transparent substrate 11 so as to cover the light shielding film 12 (FIG. 4 (F)). The thickness of the SOG film is about 130 nm.

そして、SOG膜13を平坦化処理して、透光部と遮光部とを備えた、本発明のフォトマスクを得た(図4(G))。なお、上述のように、遮光性膜12の厚みは約100nmであり、SOG膜13の塗布厚は約130nmであるから、遮光性膜12の上には約30nmの高屈折率媒質が設けられることとなる。この部分は、反射防止膜として、また、遮光性膜12に対する保護膜として、機能することとなる。   Then, the SOG film 13 was planarized to obtain a photomask of the present invention having a light transmitting part and a light shielding part (FIG. 4G). As described above, since the thickness of the light shielding film 12 is about 100 nm and the coating thickness of the SOG film 13 is about 130 nm, a high refractive index medium of about 30 nm is provided on the light shielding film 12. It will be. This portion functions as an antireflection film and as a protective film for the light shielding film 12.

石英基板上にCrONからなる厚さ70nmの遮光膜と厚さ30nm反射防止膜を積層した遮光部をもち、0.2μm幅の孤立透過部(遮光膜と反射防止膜が形成されていない部分)をもつフォトマスクを、フォトマスクへの入射角(θ)が45度となる2極照明を光源とするArFエキシマレーザ露光装置にセットする。そして、当該フォトマスクと被露光物(被転写シリコン基板:不図示)側の光学系までの空間を純水(屈折率1.44)で満たして露光を行う(図5(A))。なお、比較のため、フォトマスクと被露光物側の光学系までの空間を窒素雰囲気(屈折率1)とした状態での露光も行う(図5(B))。   It has a light-shielding part in which a light-shielding film made of CrON and a 30-nm-thick antireflection film are laminated on a quartz substrate, and an isolated transmission part with a width of 0.2 μm (part where the light-shielding film and the antireflection film are not formed) Is set in an ArF excimer laser exposure apparatus using dipole illumination with an incident angle (θ) to the photomask of 45 degrees as a light source. Then, exposure is performed by filling the space between the photomask and the optical system on the object to be exposed (transferred silicon substrate: not shown) with pure water (refractive index: 1.44) (FIG. 5A). For comparison, exposure is also performed in a state where the space between the photomask and the optical system on the object to be exposed side is a nitrogen atmosphere (refractive index 1) (FIG. 5B).

フォトマスクのパターン形成面を被露光物であるシリコン基板側に向けて、フォトマスクに45度の角度で光を入射させると、フォトマスクの被露光物側の光学系との間の空間が窒素(屈折率1)である場合(図5(B))、マスク基板から被露光物側の空間に出る光の角度が45度となることから、減衰作用をうける領域を計算すると透過パターンに入ってきた光の幅のうち0.1μm分の光量は遮光膜及び反射防止膜により減衰作用を受けることになる。この場合、マスクの透光部に入射する光の幅(0.2μm)を100%とすると、透過パターンを透過する光の幅の50%に相当する部分だけが減衰作用を受けずに透過できることになり、減衰を受ける50%の幅に相当する部分はコントラスト低下の原因となる。   When light is incident on the photomask at an angle of 45 degrees with the pattern formation surface of the photomask facing toward the silicon substrate that is the object to be exposed, the space between the optical system on the object to be exposed side of the photomask becomes nitrogen. In the case of (refractive index 1) (FIG. 5B), the angle of light emitted from the mask substrate to the space on the exposure object side is 45 degrees. Of the width of the incoming light, the amount of light of 0.1 μm is attenuated by the light shielding film and the antireflection film. In this case, if the width (0.2 μm) of light incident on the light transmitting portion of the mask is 100%, only a portion corresponding to 50% of the width of the light transmitted through the transmission pattern can be transmitted without being attenuated. Thus, the portion corresponding to the width of 50% subject to attenuation causes a decrease in contrast.

これに対して、フォトマスクの被露光物側の光学系とフォトマスクの間を純水(屈折率1.44)で満たした場合(図5(A))、フォトマスクから被露光物側の空間に出る光の角度が約30度となるため、減衰作用を受ける透過パターンの幅は0.06μmとなり、0.14μm分の光(即ち、70%の光の幅に相当する光量)は減衰作用を受けずに透過できることになり、コントラスト低下の原因となる減衰を受ける光の幅の割合が30%に低下する。つまり、本発明の場合には、コントラスト低下の原因となる減衰を受ける光の幅の割合を50%から30%に減少させることができる。   In contrast, when the space between the optical system on the exposed object side of the photomask and the photomask is filled with pure water (refractive index: 1.44) (FIG. 5A), the photomask is exposed to the exposed object side. Since the angle of the light emitted to the space is about 30 degrees, the width of the transmission pattern subjected to the attenuation action is 0.06 μm, and the light corresponding to 0.14 μm (that is, the amount of light corresponding to the width of 70% light) is attenuated. The light can be transmitted without being affected, and the ratio of the width of light that undergoes attenuation that causes a decrease in contrast is reduced to 30%. In other words, in the case of the present invention, the ratio of the width of light that undergoes attenuation that causes a decrease in contrast can be reduced from 50% to 30%.

従来のフォトマスクの構造を説明するための断面概略図である。It is the cross-sectional schematic for demonstrating the structure of the conventional photomask. 本発明のフォトマスクの構造を説明するための断面概略図である。It is the cross-sectional schematic for demonstrating the structure of the photomask of this invention. 本発明のパターン転写方法を説明するための図である。It is a figure for demonstrating the pattern transfer method of this invention. 本発明のフォトマスクの製造プロセスを説明するための図である。It is a figure for demonstrating the manufacturing process of the photomask of this invention. 本発明のパターン転写方法を従来のパターン転写方法と比較して示すための図である。It is a figure for showing the pattern transfer method of the present invention in comparison with the conventional pattern transfer method.

符号の説明Explanation of symbols

1、11 基板
2、12 遮光性膜
13 高屈折率媒体
14 レジスト
15 被転写基板
16 光学素子
1, 11 Substrate 2, 12 Light-shielding film 13 High refractive index medium 14 Resist 15 Transfer substrate 16 Optical element

Claims (1)

基板上にパターニングされた遮光性膜を備えたフォトマスクを用いたパターン転写方法であって、下記のa乃至dの何れかの態様で前記フォトマスクのパターン形成面を屈折率が1よりも大きな媒体である純水で覆った状態で、前記フォトマスク面に非垂直入射する露光光成分を有する露光光を前記パターン形成面と反対側の面から入射させ、前記パターン形成面に対向して配置された被転写基板上に設けられたレジストを、変形照明により露光する、パターン転写方法。
a:前記フォトマスクのパターン形成面のみを前記純水に浸漬させる。
b:前記フォトマスクのパターン形成面側に光学素子を設け、該パターン形成面と光学素子との間のみに前記純水を充填する。
c:前記フォトマスクのパターン形成面と前記被転写基板上のレジストを別々に、前記純水に浸漬させる。
d:前記フォトマスクのパターン形成面のみを前記純水に浸漬させ、
前記被転写基板の露光部分のみを液浸させる。
A pattern transfer method using a photomask having a light-shielding film patterned on a substrate , wherein the pattern forming surface of the photomask has a refractive index larger than 1 in any one of the following modes a to d: Exposure light having an exposure light component that is non-perpendicularly incident on the photomask surface is incident from a surface opposite to the pattern formation surface in a state of being covered with pure water as a medium, and is disposed to face the pattern formation surface. A pattern transfer method in which a resist provided on a transferred substrate is exposed by modified illumination.
a: Only the pattern forming surface of the photomask is immersed in the pure water.
b: An optical element is provided on the pattern forming surface side of the photomask, and the pure water is filled only between the pattern forming surface and the optical element.
c: The pattern forming surface of the photomask and the resist on the transferred substrate are separately immersed in the pure water.
d: only the pattern forming surface of the photomask is immersed in the pure water,
Only the exposed portion of the transfer substrate is immersed.
JP2007158327A 2007-06-15 2007-06-15 Pattern transfer method Active JP4977535B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007158327A JP4977535B2 (en) 2007-06-15 2007-06-15 Pattern transfer method
KR1020080038315A KR20080110468A (en) 2007-06-15 2008-04-24 Pattern transfer method and photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158327A JP4977535B2 (en) 2007-06-15 2007-06-15 Pattern transfer method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011205702A Division JP4977794B2 (en) 2011-09-21 2011-09-21 Pattern transfer method and photomask

Publications (2)

Publication Number Publication Date
JP2008311462A JP2008311462A (en) 2008-12-25
JP4977535B2 true JP4977535B2 (en) 2012-07-18

Family

ID=40238813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158327A Active JP4977535B2 (en) 2007-06-15 2007-06-15 Pattern transfer method

Country Status (2)

Country Link
JP (1) JP4977535B2 (en)
KR (1) KR20080110468A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365112A (en) * 2012-03-30 2013-10-23 富士胶片株式会社 Exposure device and exposure method, and method for manufacturing pattern film
KR102286886B1 (en) 2014-11-18 2021-08-09 삼성디스플레이 주식회사 Photo mask and method of manufacturing the same
US10732500B2 (en) 2015-07-28 2020-08-04 Lg Chem, Ltd. Photomask, laminate comprising photomask, photomask preparation method, pattern forming apparatus using photomask and pattern forming method using photomask
KR20220077308A (en) 2020-12-01 2022-06-09 삼성디스플레이 주식회사 Mask

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576849A (en) * 1980-06-13 1982-01-13 Matsushita Electric Ind Co Ltd Photomask and its preparation
JPH07220990A (en) * 1994-01-28 1995-08-18 Hitachi Ltd Pattern forming method and exposure apparatus therefor
US6566021B2 (en) * 2001-07-26 2003-05-20 Micro Lithography, Inc. Fluoropolymer-coated photomasks for photolithography
US7022437B2 (en) * 2003-01-15 2006-04-04 Asml Netherlands B.V. Perfluoropolyether liquid pellicle and methods of cleaning masks using perfluoropolyether liquid
JP2006173305A (en) * 2004-12-15 2006-06-29 Canon Inc Aligner and its method, and device manufacturing method
JP4669698B2 (en) * 2004-12-24 2011-04-13 信越化学工業株式会社 Resist material and pattern forming method

Also Published As

Publication number Publication date
KR20080110468A (en) 2008-12-18
JP2008311462A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP6050408B2 (en) Reflective mask, reflective mask blank and manufacturing method thereof
KR101394715B1 (en) Method of producing photomask and photomask blank
JP5282507B2 (en) Halftone EUV mask, halftone EUV mask manufacturing method, halftone EUV mask blank, and pattern transfer method
JP5524828B2 (en) Reflective mask blank, reflective mask and manufacturing method thereof
KR101780068B1 (en) Mask blank and method for manufacturing transfer mask
JP2004207593A (en) Mask for extreme ultra-violet exposure, blank, and method for pattern transfer
KR102541867B1 (en) Phase shift mask blank for manufacturing display device, method for manufacturing phase shift mask for manufacturing display device, and manufacturing method for display device
KR20170123610A (en) Mask blank, phase shift mask, method of manufacturing phase shift mask, and method of manufacturing semiconductor device
JP5476679B2 (en) Halftone EUV mask and method of manufacturing halftone EUV mask
JP5089362B2 (en) Photomask and exposure method
JP4977535B2 (en) Pattern transfer method
JP5724509B2 (en) Photomask and photomask blanks
WO2019230312A1 (en) Mask blank, phase-shift mask, and semiconductor device manufacturing method
JP7059679B2 (en) Reflective photomask blank and reflective photomask
JP4622504B2 (en) Mask blank for extreme ultraviolet exposure, mask and pattern transfer method
JP4977794B2 (en) Pattern transfer method and photomask
JP2022191475A (en) Photomask blank, manufacturing method of photomask, and manufacturing method of display device
JP2002040625A (en) Mask for exposure, resist pattern forming method and method for producing substrate for the mask
JP6119836B2 (en) Photo mask
KR101751542B1 (en) Mask blank, transfer mask and transfer mask set
JP2020042208A (en) Mask blank, transfer mask and method for manufacturing semiconductor device
JP2010078923A (en) Multi-gradation photomask, photomask blank, and pattern transfer method
JP2008310092A (en) Photomask
JP5949877B2 (en) Mask pattern transfer method
KR20210155863A (en) Phase shift mask for extreme ultraviolet lithography and method of forming a semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4977535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3