JP2009144319A - Method for production of nonwoven fabrics including thermoadhesive conjugate fiber - Google Patents

Method for production of nonwoven fabrics including thermoadhesive conjugate fiber Download PDF

Info

Publication number
JP2009144319A
JP2009144319A JP2009081979A JP2009081979A JP2009144319A JP 2009144319 A JP2009144319 A JP 2009144319A JP 2009081979 A JP2009081979 A JP 2009081979A JP 2009081979 A JP2009081979 A JP 2009081979A JP 2009144319 A JP2009144319 A JP 2009144319A
Authority
JP
Japan
Prior art keywords
polyester
fiber
heat
nonwoven fabric
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009081979A
Other languages
Japanese (ja)
Other versions
JP4918111B2 (en
Inventor
Junji Ikeda
純二 池田
Wataru Watanabe
渡 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2009081979A priority Critical patent/JP4918111B2/en
Publication of JP2009144319A publication Critical patent/JP2009144319A/en
Application granted granted Critical
Publication of JP4918111B2 publication Critical patent/JP4918111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for production of nonwoven fabric by using short cut thermoadhesive fiber having latent crimping property by being homogeneously mixed with main fibers and subjected to thermal adhesion to obtain a nonwoven fabric having a reduced uneven tension. <P>SOLUTION: A thermoadhesive conjugate fiber without expression of crimping, which comprises polyester A having a melting point of 220°C or more and a polyester B having a flow starting temperature lower than the melting point of the polyester by 40°C or more into a side-by-side type, has latent crimping performance, a difference in intrinsic viscosity between the polyester A and the polyester B within the range of 0.05-0.15, a fiber length of 5-25 mm and a fineness of 1-10 denier, is exposed to relaxation heat treatment at a temperature at which polyester B does not melt to express the spiral crimps of 5 to 15/25 mm and then mixed with the main fiber, and the mixture is heat-treated at the melting temperature of the polyester B to bond the constructing fibers. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ショートカット熱接着性複合繊維を含む不織布の製造方法に関するものである。   The present invention relates to a method for producing a nonwoven fabric containing a shortcut heat-adhesive conjugate fiber.

合成繊維、特にポリエステル繊維は、その優れた寸法安定性、耐候性、機械的特性、耐久性などの点から、衣料、詰物素材、産業資材として不可欠のものとなっている。しかしながら、その使用用途によっては、更に特殊機能の付与が望まれている。中でも、自動車の廃材をリサイクルして車両用の不織布を再生する分野では、廃材の中に含まれる繊維や発泡ウレタンと混合、熱接着するショートカット熱接着性繊維への強い要望がある。   Synthetic fibers, particularly polyester fibers, are indispensable as garments, filling materials, and industrial materials because of their excellent dimensional stability, weather resistance, mechanical properties, and durability. However, depending on the intended use, it is desired to provide a special function. In particular, in the field of recycling automobile waste materials to recycle non-woven fabrics for vehicles, there is a strong demand for shortcut heat-bondable fibers that are mixed and thermally bonded to fibers and urethane foam contained in the waste materials.

従来、主体繊維を接着する手段として熱接着性繊維を数多く使用している。一般的には、芯成分にポリエステル、鞘成分にイソフタル酸(以下、IPAと称する。)を共重合した低融点ポリエステルを配した芯鞘型複合繊維、芯成分にポリエステル、鞘成分にポリプロピレンを配した芯鞘型複合繊維、芯成分にポリエステル、鞘成分にポリエチレンを配した芯鞘型複合繊維、また、耐熱性を有する熱接着性繊維としては、芯成分にポリエステル、鞘成分に脂肪族ラクトンを共重合した低融点ポリエステルを配した芯鞘型複合繊維等が多く使用されている。   Conventionally, many heat-bonding fibers have been used as means for bonding main fibers. Generally, a core-sheath type composite fiber in which a low melting point polyester copolymerized with polyester as a core component and isophthalic acid (hereinafter referred to as IPA) as a sheath component is arranged, polyester as a core component, and polypropylene as a sheath component. Core-sheath type composite fiber, core-sheath type composite fiber with polyester as the core component, polyethylene as the sheath component, and heat-adhesive fiber having heat resistance include polyester as the core component and aliphatic lactone as the sheath component. Many core-sheath type composite fibers and the like in which a low-melting polyester copolymerized is disposed.

しかし、これらの熱接着性繊維は芯鞘構造であるため、熱処理により捲縮を発現するものではなく、偏心型の芯鞘構造繊維であっても、捲縮の発現は少ないものである。このような捲縮を十分に発現していない熱接着性繊維は、主体繊維、自動車の廃材の中に含まれる繊維や発泡ウレタンと均一に混合できず、得られる不織布には強力斑が発生するという問題がある。また、主体繊維等と均一に混合するために、機械捲縮を付与したショートカット綿を生産しようとした場合、生産性の良いECカッタ−を使用すると、機械捲縮付与後、クリンプトウを所望の繊維長にカットする際、カット時のローターからの排出不良、梱包時に嵩高となる等、生産面で数多くの問題が生じる。一方、クリンプトウをギロチンカッター等、生産性の悪いカット方法であればクリンプ付きのショートカット綿を生産することは可能であるが、カット代が高くなりコスト高となる。   However, since these heat-adhesive fibers have a core-sheath structure, they do not develop crimps by heat treatment, and even if they are eccentric core-sheath structure fibers, the occurrence of crimps is small. Such heat-adhesive fibers that do not sufficiently develop crimp cannot be uniformly mixed with the main fibers, fibers contained in automobile waste materials and urethane foam, and strong spots are generated in the resulting nonwoven fabric. There is a problem. In addition, when trying to produce a short cut cotton with mechanical crimping in order to uniformly mix with the main fiber, etc., if a high productivity EC cutter is used, after the mechanical crimping is applied, crimpto is added to the desired fiber. When cutting into long pieces, many problems arise in production, such as poor discharge from the rotor at the time of cutting, and bulkiness at the time of packing. On the other hand, it is possible to produce crimped shortcut cotton by using a low-productivity cutting method such as guillotine cutter, but the cost for cutting becomes high and the cost is high.

生産性が良く、コストが安く、主体繊維等との均一混合性に優れたショートカット熱接着性繊維が望まれている。   Short-cut heat-bonding fibers that have good productivity, low cost, and excellent uniform mixing with main fibers and the like are desired.

特開平4−136255号   JP-A-4-136255

本発明は、かかる従来の問題点を解消し、主体繊維と均一に混合し、熱接着することで不織布とした時の強力斑を少なくする潜在捲縮性能を有するショートカット熱接着性繊維を用いた不織布の製造方法を提供するものである。   The present invention uses a short-cut heat-adhesive fiber having a latent crimping performance that eliminates such conventional problems, uniformly mixes with the main fiber, and reduces strong spots when made into a nonwoven fabric by thermal bonding. The manufacturing method of a nonwoven fabric is provided.

本発明者らは、上記目的を達成するために、クリンプ付きのショートカット繊維ではなく、ノークリンプのショートカット繊維に着目し、繊維生産工程ではクリンプを付与せずに潜在捲縮性を有するショートカット繊維を作成し、主体繊維と混綿する工程前に本来有する捲縮を予備熱処理により顕在化させることにより、生産性が良好で、主体繊維と均一に混合できる本発明を完成するに至った。   In order to achieve the above object, the present inventors focused on not crimped shortcut fibers instead of crimped shortcut fibers, and created shortcut fibers having latent crimping properties without imparting crimps in the fiber production process. In addition, the present invention, which has good productivity and can be uniformly mixed with the main fiber, has been completed by revealing the inherent crimp before the step of blending with the main fiber by preliminary heat treatment.

すなわち、本発明は、融点220℃以上のポリエステルAと、流動開始温度がポリエステルAの融点より40℃以上低いポリエステルBとがサイドバイサイド型に接合した複合繊維であり、ポリエステルAとポリエステルBの極限粘度差が0.05〜0.15の範囲で、繊維長5〜25mm、繊度1〜10デニールである潜在捲縮性能を有し、クリンプが発現していない熱接着性複合繊維を、ポリエステルBが溶融しない温度で弛緩熱処理を施して5〜15個/25mmのスパイラル捲縮を発現させた後、主体繊維と混綿し、ポリエステルBが溶融する温度にて熱処理し、構成繊維同士を熱接着することを特徴とする不織布の製造方法を要旨とするものである。   That is, the present invention is a composite fiber in which a polyester A having a melting point of 220 ° C. or higher and a polyester B having a flow start temperature of 40 ° C. or lower than the melting point of the polyester A are joined in a side-by-side manner. Polyester B is a heat-adhesive conjugate fiber having a latent crimping performance of 0.05 to 0.15 in difference, fiber length of 5 to 25 mm, fineness of 1 to 10 denier, and no crimp expression. Apply relaxation heat treatment at a temperature that does not melt and develop spiral crimps of 5 to 15 pieces / 25 mm, then blend with the main fiber, heat treatment at a temperature at which polyester B melts, and heat-bond the constituent fibers together A method for producing a nonwoven fabric characterized by

本発明では、生産工程では熱接着性繊維にクリンプを付与せずに、主体繊維との混合前段階で、初めて繊維が有する潜在捲縮を顕在化させて捲縮を付与することで、主体繊維との混合状態を良好とし、機械的特性の良好な不織布を得ることができたものである。   In the present invention, in the production process, without applying crimp to the heat-adhesive fiber, the latent fiber has first manifested a latent crimp in the stage before mixing with the main fiber, thereby providing the main fiber. And a non-woven fabric with good mechanical properties can be obtained.

すなわち、熱接着性繊維を構成するポリエステル重合体と低融点ポリエステル重合体との極限粘度差を適正化することで、弛緩熱処理により構成重合体間に収縮差を生じさせて潜在捲縮を顕在化させ、特定数値範囲のスパイラル捲縮を有する熱接着性複合繊維を得ることが可能となり、主体繊維と混合した場合、均一に分散されるため、不織布の強力斑による強力低下もなく、安定した不織布を生産することができる。   That is, by optimizing the intrinsic viscosity difference between the polyester polymer and the low-melting-point polyester polymer that make up the heat-adhesive fiber, a shrinkage difference is created between the constituent polymers by the relaxation heat treatment to reveal latent crimps. It is possible to obtain a heat-adhesive conjugate fiber having a spiral crimp in a specific numerical range, and when mixed with the main fiber, it is uniformly dispersed. Can be produced.

また、本発明に用いる熱接着性複合繊維は、繊維生産段階では、クリンプを付与しないため、ECローターからの排出状態に問題なく、生産性が向上するとともに、梱包時の嵩が大きくならず袋への収納状態の良好となるという効果を奏するものである。   In addition, since the heat-adhesive conjugate fiber used in the present invention does not give crimps at the fiber production stage, there is no problem in the discharge state from the EC rotor, the productivity is improved, and the bulk at the time of packing is not increased. There is an effect that the storage state is good.

本発明では、潜在捲縮性能を有するショートカット熱接着性複合繊維を使用するので、自動車の廃材から車両用の不織布を再生する分野においても、廃材の中の繊維、発泡ウレタンと均一に混合、熱接着することが可能であり、安定した不織布を生産することができる。   In the present invention, since a shortcut heat-adhesive conjugate fiber having latent crimping performance is used, even in the field of regenerating non-woven fabric for vehicles from automobile waste materials, the fibers in the waste materials are uniformly mixed with foamed urethane, heat Bonding is possible, and a stable nonwoven fabric can be produced.

以下、本発明について詳細に説明する。本発明に用いる熱接着性繊維は、融点(以下、Tmと称する。)220℃以上のポリエステルAと、流動開始温度(以下、Tfと称する。)がポリエステルAのTmより40℃以上低いポリエステルBとがサイドバイサイド型に接合した複合繊維である。ポリエステルAの融点が220℃未満であると、複合繊維を安定して製糸することが困難であるとともに、熱接着処理時にポリエステルAまでもが熱の影響を受けて熱劣化するため好ましくない。ポリエステルAとしては、Tm220℃以上のポリアルキレンテレフタレートを用いることが好ましく、このようなポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレート等が挙げられ、なかでも、生産性、機械的特性等の点からポリエチレンテレフタレート(以下、PETと称する。)を用いることが好ましい。また、ポリエステルAには、その特性を損なわない範囲であれば、少量の共重合成分や艶消し剤、滑剤等の添加剤を含有していてもよい。   Hereinafter, the present invention will be described in detail. The heat-adhesive fiber used in the present invention includes polyester A having a melting point (hereinafter referred to as Tm) of 220 ° C. or higher, and polyester B having a flow start temperature (hereinafter referred to as Tf) of 40 ° C. or lower than Tm of polyester A. Are composite fibers joined in a side-by-side manner. When the melting point of the polyester A is less than 220 ° C., it is difficult to stably produce the composite fiber, and even the polyester A is affected by heat during the heat-bonding process, which is not preferable. Polyester A is preferably a polyalkylene terephthalate having a Tm of 220 ° C. or higher. Examples of such polyester include polyethylene terephthalate, polybutylene terephthalate, and polypropylene terephthalate. Among them, productivity, mechanical properties, etc. From this point, it is preferable to use polyethylene terephthalate (hereinafter referred to as PET). Further, the polyester A may contain a small amount of an additive such as a copolymer component, a matting agent, and a lubricant as long as the characteristics are not impaired.

ポリエステルBのTfは、ポリエステルAのTmより40℃以上低いものである。ポリエステルBのTfとポリエステルAのTmとの差が40℃未満では、熱接着処理の際に高温とする必要が生じるため経済的に好ましくないばかりか、熱処理の際、ポリエステルAの重合体の分解が起こりやすくなる。   Tf of polyester B is 40 ° C. or lower than Tm of polyester A. If the difference between Tf of polyester B and Tm of polyester A is less than 40 ° C., it is not economically preferable because a high temperature is required in the heat bonding treatment, and the polymer of polyester A is decomposed during the heat treatment. Is likely to occur.

ポリエステルAとポリエステルBとの極限粘度差は0.05〜0.15の範囲である。極限粘度差が0.05未満では、弛緩熱処理において、充分な捲縮が発現されず、主体繊維や廃材の中に含まれる繊維、発泡ウレタン等と均一に混合できなくなるため好ましくない。一方、極限粘度差が0.15を超えるとノズル直下の糸曲がり角度が大きくなり、製糸性が悪化する。たとえ紡糸が可能で、繊維が得られたとしても、弛緩熱処理時に微細な捲縮を発現するため、主体繊維や廃材の中に含まれる繊維、発泡ウレタン等と均一に混合できなくなるため好ましくない。   The intrinsic viscosity difference between polyester A and polyester B is in the range of 0.05 to 0.15. An intrinsic viscosity difference of less than 0.05 is not preferable because sufficient crimps are not exhibited in the relaxation heat treatment and cannot be uniformly mixed with the main fibers, fibers contained in the waste material, foamed urethane, and the like. On the other hand, when the intrinsic viscosity difference exceeds 0.15, the yarn bending angle immediately below the nozzle becomes large, and the yarn-making property is deteriorated. Even if spinning is possible and fibers are obtained, fine crimps are developed during the relaxation heat treatment, which is not preferable because it cannot be uniformly mixed with the main fibers, fibers contained in the waste material, foamed urethane, and the like.

ポリエステルBとしては、前記特性を満足するポリエステルであれば特に限定されず、例えば、イソフタル酸、脂肪族ジカルボン酸、脂肪族ジオール等を共重合したポリアルキレンテレフタレートが挙げられる。中でもイソフタル酸を20〜40モル%共重合したポリエチレンテレフタレートが好ましい。又、耐熱性が要求される分野にはε−カプロラクトン等の脂肪族ラクトンを10〜20モル%共重合したポリアルキレンテレフタレートが好ましい。   Polyester B is not particularly limited as long as it satisfies the above characteristics, and examples thereof include polyalkylene terephthalate copolymerized with isophthalic acid, aliphatic dicarboxylic acid, aliphatic diol and the like. Among them, polyethylene terephthalate obtained by copolymerizing 20 to 40 mol% of isophthalic acid is preferable. In fields where heat resistance is required, polyalkylene terephthalate obtained by copolymerizing 10 to 20 mol% of an aliphatic lactone such as ε-caprolactone is preferable.

熱接着性繊維の複合形態はサイドバイサイド型とする。複合形態が、芯鞘型あるいは偏心タイプの芯鞘型では、弛緩熱処理時に充分な捲縮が発現しないため好ましくない。   The composite form of the heat-adhesive fiber is a side-by-side type. When the composite form is a core-sheath type or an eccentric type core-sheath type, it is not preferable because sufficient crimp does not appear during the relaxation heat treatment.

本発明における熱接着性繊維の構成重合体において、両者ともにポリエステル系のものとするのは、両重合体同士を相溶性とすることによって、生産工程等において、両重合体の接合境界面において剥離しないためである。   In the constituent polymers of the heat-adhesive fiber in the present invention, both are polyester-based, and the two polymers are made compatible with each other so that they are peeled off at the joint interface between the two polymers in the production process. It is because it does not.

断面形状は特に限定されないが、丸断面であることが好ましく、また、中空のものであってもよい。   The cross-sectional shape is not particularly limited, but is preferably a round cross-section and may be hollow.

熱接着性繊維の繊維長は、5〜25mmである。繊維長が5mm未満では、カット時のECローターからの排出、梱包時の問題はないが、主体繊維や廃材の中に含まれる繊維、発泡ウレタンと均一に混合できなくなるため好ましくない。一方、繊維長が25mmを超えると、主体繊維等と均一に混合できなくなるため好ましくない。又、カット時のECローターからの排出が不良となり、梱包重量が減少するため製造コストが高くなる。   The fiber length of the heat-adhesive fiber is 5 to 25 mm. When the fiber length is less than 5 mm, there is no problem in discharging from the EC rotor at the time of cutting and packaging, but it is not preferable because it cannot be uniformly mixed with the main fiber, the fiber contained in the waste material, and urethane foam. On the other hand, if the fiber length exceeds 25 mm, it is not preferable because it cannot be uniformly mixed with the main fibers. Further, the discharge from the EC rotor at the time of cutting becomes poor, and the packaging weight is reduced, resulting in an increase in manufacturing cost.

熱接着性繊維の繊度は、1〜10デニールである。繊度が1デニール未満では、カット時のECローターからの排出、梱包時の問題はないが、ノズル直下の糸曲がり角度が大きくなり、製糸性が悪化するため好ましくない。繊度が10デニールを超えると、カット時、ECローターからの排出は問題ないが、梱包時に嵩高となり、また、主体繊維等との混合状態が悪くなる。さらには、主体繊維や発泡ウレタン等と混合したとき、熱接着性繊維のデニールが太いために、熱接着性繊維の構成本数が減少し、かつ熱接着性繊維と主体繊維等との接触面積が減少するため、得られる不織布の強力が低下するため好ましくない。   The fineness of the heat-adhesive fiber is 1 to 10 denier. When the fineness is less than 1 denier, there is no problem in discharging and packing from the EC rotor at the time of cutting, but it is not preferable because the yarn bending angle immediately below the nozzle is increased and the yarn-making property is deteriorated. When the fineness exceeds 10 denier, there is no problem in discharging from the EC rotor at the time of cutting, but it becomes bulky at the time of packing, and the mixed state with the main fibers and the like becomes worse. Furthermore, when mixed with the main fiber, foamed urethane, etc., the denier of the heat-adhesive fiber is thick, so the number of constituents of the heat-adhesive fiber is reduced, and the contact area between the heat-adhesive fiber and the main fiber is reduced. Since it decreases, the strength of the resulting nonwoven fabric decreases, which is not preferable.

本発明における潜在捲縮性能を有する熱接着性複合繊維は、ポリエステルAの重合体とポリエステルBの重合体とを、通常用いられる2成分型複合紡糸装置により各々の重合体を溶融し、サイドバイサイド型紡糸口金を使用して捲取り、ノークリンプ延伸を行い、次いで、ノークリンプトウを用途に応じて5〜25mmのカット長に切断することにより得ることができる。このように得られた本発明の熱接着性複合繊維は、クリンプが付与されていないため、生産性が良好で梱包時に嵩高とならないという利点を有する。   In the heat-adhesive conjugate fiber having latent crimping performance in the present invention, a polymer of polyester A and a polymer of polyester B are melted by a commonly used two-component type composite spinning apparatus, and a side-by-side type is obtained. It can be obtained by scooping using a spinneret, performing no-crimp stretching, and then cutting the no-crimp tow into a cut length of 5 to 25 mm depending on the application. The heat-adhesive conjugate fiber of the present invention thus obtained has the advantage that it has good productivity and does not become bulky during packaging because it is not crimped.

本発明において熱接着性複合繊維は、主体繊維と混合して不織布とする際、混合工程前に、ポリエステルBが溶融しない温度で弛緩熱処理を施して5〜15個/25mmのスパイラル捲縮を発現させる。特定個数のスパイラル捲縮を付与することにより、主体繊維と均一に混合することができ、強力斑のない不織布を得ることができる。   In the present invention, when the heat-adhesive conjugate fiber is mixed with the main fiber to form a nonwoven fabric, before the mixing step, a relaxation heat treatment is performed at a temperature at which the polyester B does not melt, and 5 to 15 pieces / 25 mm spiral crimp is expressed. Let By applying a specific number of spiral crimps, it is possible to uniformly mix with the main fibers and obtain a nonwoven fabric without strong spots.

弛緩熱処理により発現させるスパイラル捲縮の捲縮数が5個/25mm未満では、主体繊維や廃材の中に含まれる繊維、発泡ウレタン等と均一に混合できなくなるため好ましくない。一方、捲縮数が15個/25mmを超えると、開繊性が悪くなり、主体繊維や廃材の中に含まれる繊維、発泡ウレタンと均一に混合できなくなるため好ましくない。   If the number of crimps of spiral crimp expressed by the relaxation heat treatment is less than 5/25 mm, it is not preferable because it cannot be uniformly mixed with the main fiber, the fibers contained in the waste material, foamed urethane and the like. On the other hand, if the number of crimps exceeds 15 pieces / 25 mm, the opening property is deteriorated, and it is not preferable because it cannot be uniformly mixed with the main fibers, the fibers contained in the waste material, and the urethane foam.

弛緩熱処理は、前述の捲縮を発現させるものであって、例えば、熱風乾燥機等の熱処理機を用いて、60℃×15分行うことによって潜在捲縮を顕在化させる。   The relaxation heat treatment expresses the above-described crimp, and, for example, the latent crimp is made apparent by performing heat treatment at 60 ° C. for 15 minutes using a heat treatment machine such as a hot air drier.

次に、前述の潜在捲縮が顕在化した熱接着性複合繊維と、主体繊維等と混綿し、ポリエステルBが溶融する温度にて熱接着を施して、構成繊維同士を熱接着して不織布を得ることができる。   Next, the non-woven fabric is formed by blending the above-mentioned latent adhesive crimped fiber with the heat-adhesive conjugate fiber, the main fiber, etc., and performing thermal bonding at a temperature at which the polyester B melts, and thermally bonding the constituent fibers together. Obtainable.

主体繊維としては、通常のポリエステル等の合成繊維が挙げられる。また、自動車の廃材から車両用の不織布(防音用途等)を再生する分野で用いるために、自動車の廃材の中に含まれる繊維や発砲ウレタンを主体繊維としては用いることが好ましい。   Examples of the main fiber include ordinary synthetic fibers such as polyester. Moreover, in order to use in the field | area which reproduces the nonwoven fabric for vehicles (soundproof use etc.) from the waste material of a motor vehicle, it is preferable to use the fiber and foaming urethane which are contained in the waste material of a motor vehicle as a main fiber.

主体繊維と混合する際、熱接着性複合繊維を10重量%以上混合する。不織布が含有する熱接着性複合繊維の量が10重量%未満では、構成繊維同士の熱接着が不十分となり、得られる不織布の強力が低いものとなるため好ましくない。熱接着性複合繊維の含有量の上限については、用途に応じて適宜選択すればよいが、含有量が50重量%を超えると、得られる不織布の強力は向上するがペーパーライクなものとなる。したがって、熱接着性繊維は、10〜50重量%含有させることが好ましく、更に好ましくは15〜30重量%である。   When mixing with the main fiber, 10% by weight or more of the heat-adhesive conjugate fiber is mixed. If the amount of the heat-adhesive conjugate fiber contained in the nonwoven fabric is less than 10% by weight, the thermal bonding between the constituent fibers becomes insufficient, and the resulting nonwoven fabric has low strength, which is not preferable. The upper limit of the content of the heat-adhesive conjugate fiber may be appropriately selected according to the use. However, when the content exceeds 50% by weight, the strength of the resulting nonwoven fabric is improved, but it becomes paper-like. Therefore, it is preferable to contain 10-50 weight% of heat bondable fibers, More preferably, it is 15-30 weight%.

熱接着性複合繊維と主体繊維とを均一に混合した後、ポリエステルBが溶融する温度で熱処理を施し、構成繊維同士を熱接着するが、具体的な熱処理温度としては、ポリエステルBのTfより10〜40℃高い温度、好ましくはTfより15〜25℃高い温度で、かつ、ポリエステルAのTmよりも低い温度とする。   After the heat-adhesive conjugate fiber and the main fiber are uniformly mixed, heat treatment is performed at a temperature at which the polyester B melts, and the constituent fibers are thermally bonded to each other. The specific heat treatment temperature is 10 from the Tf of the polyester B. The temperature is -40 ° C higher, preferably 15-25 ° C higher than Tf, and lower than Tm of polyester A.

以下、実施例により本発明をさらに詳細に説明する。なお、実施例中の性能評価は、下記方法に従って測定したものである。
(1)極限粘度:フェノールと四塩化エタンとの等重量混合液を溶媒とし、温度20℃で測定した。
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, the performance evaluation in an Example is measured according to the following method.
(1) Intrinsic viscosity: Measured at a temperature of 20 ° C. using an equal weight mixed solution of phenol and ethane tetrachloride as a solvent.

(2)ガラス転移点(Tg)、結晶開始温度(Tc)及び融点(Tm):パーキンエルマー社製の示差走査熱量計DSC−7型を使用し、昇温速度10℃/分で測定した。 (2) Glass transition point (Tg), crystal start temperature (Tc) and melting point (Tm): A differential scanning calorimeter DSC-7 manufactured by Perkin Elmer was used and measured at a heating rate of 10 ° C./min.

(3)Tf:フロテスター(島津製作所製CFT−500型)を用い、荷重100Kg/cm2、ノズル径0.5mmの条件で、初期温度50℃より10℃/分の割合で昇温していき、ポリマーがダイから流出し始める温度として求めた。 (3) Tf: Using a flotester (CFT-500 type, manufactured by Shimadzu Corporation), increasing the temperature at a rate of 10 ° C./min from an initial temperature of 50 ° C. under a load of 100 kg / cm 2 and a nozzle diameter of 0.5 mm. The temperature was determined as the temperature at which the polymer began to flow out of the die.

(4)繊維長:JIS L−1015−7−4−1Cの方法により測定した。 (4) Fiber length: Measured by the method of JIS L-1015-7-4-1C.

(5)繊度:JIS L−1015−7−5−1Aの方法により測定した。 (5) Fineness: Measured by the method of JIS L-1015-7-5-1A.

(6)弛緩熱処理後捲縮数:ノークリンプトウを25mmに切断し、自由に収縮し得る状態で60℃×15分間熱処理した後、JISL−1015−7−12−1の方法に準じて測定した。 (6) Number of crimps after relaxation heat treatment: Noclamptope cut into 25 mm, heat treated at 60 ° C. for 15 minutes in a state where it can be freely contracted, and then measured according to the method of JISL-1015-7-12-1. did.

(7)製糸性:紡糸操業性を次の3段階で評価した。△以上を合格とした。
○:紡糸操業性に問題ない。
△:若干、密着の発生はあるが、実用上は問題ない。
×:密着が激しく、紡糸操業性に問題あり。
(7) Spinning property: Spinning operability was evaluated in the following three stages. Δ or more was regarded as acceptable.
○: No problem in spinning operability.
Δ: Slight adhesion occurs, but there is no problem in practical use.
X: Adhesion is intense and there is a problem in spinning operability.

(8)ECローターからの排出状態:ECローターからの排出状態を次の2段階で評価した。
○:排出状態は問題ない。
×:排出不良。
(8) Ejection state from EC rotor: Ejection state from EC rotor was evaluated in the following two stages.
○: There is no problem with the discharge state.
×: Emission failure.

(9)梱包時の嵩高状態:梱包時の嵩高状態を次の2段階で評価した。
○:梱包時の嵩高は問題なく、紙袋への収納状態も良好である。
×:梱包時の嵩が大きいため紙袋への収納が悪く、梱包重量が減少する。
(9) Bulky state at the time of packing: The bulky state at the time of packing was evaluated in the following two stages.
○: Bulkiness at the time of packing is satisfactory, and the state of storage in a paper bag is also good.
X: Since the bulk at the time of packing is large, storage in a paper bag is bad, and packing weight reduces.

(10)廃材との混合状態:廃材との混合状態を次の2段階で評価した。
○:廃材との混合状態は良好である。
×:廃材との混合状態は悪く、不織布の強力が低下する。
(10) Mixed state with waste material: The mixed state with waste material was evaluated in the following two stages.
○: The mixed state with the waste material is good.
X: The mixed state with a waste material is bad, and the strength of a nonwoven fabric falls.

(11)不織布の強力斑の有無:不織布の強力斑の有無を次の2段階で評価した。
○:不織布の強力斑はない。
×:不織布に強力斑がある。
(11) Presence / absence of strong spots on nonwoven fabric: The presence / absence of strong spots on nonwoven fabric was evaluated in the following two stages.
○: There are no strong spots on the nonwoven fabric.
X: There are strong spots on the nonwoven fabric.

実施例1
ポリエステルAとして、極限粘度0.67、Tm256℃のPETを、ポリエステルBとして、テレフタル酸/イソフタル酸=60/40(モル比)を共重合したTg65℃、Tf110℃、極限粘度0.57の共重合ポリエステルを用意し、これらの重合体を通常の2成分複合溶融紡糸機にてサイドバイサイド型の紡糸口金344孔を用いて、50:50の比率(重量比)で紡糸温度270℃、引き取り速度800m/分、吐出量450g/分の条件で紡糸した。得られた未延伸糸を束状に集束し、延伸温度55℃、延伸倍率3.5倍で延伸を行い、10万デニールのノークリンプトウに仕上げ油剤を付与し、単繊維繊度4デニールのノークリンプトウを得た。得られたノークリンプトウを繊維長15mmに切断し、紙袋に梱包した。
Example 1
As polyester A, PET having an intrinsic viscosity of 0.67 and Tm of 256 ° C., polyester B as copolymer of terephthalic acid / isophthalic acid = 60/40 (molar ratio), Tg of 65 ° C., Tf of 110 ° C., intrinsic viscosity of 0.57 Polymerized polyesters were prepared, and these polymers were spun at 270 ° C. in a 50:50 ratio (weight ratio) using a side-by-side type spinneret 344 holes in an ordinary two-component composite melt spinning machine, with a take-off speed of 800 m. Spinning was performed under the conditions of / min and discharge rate of 450 g / min. The obtained undrawn yarn is bundled into a bundle, drawn at a drawing temperature of 55 ° C. and a draw ratio of 3.5 times, and a finishing oil is applied to a 100,000 denier no-crimp, and a single fiber fineness of 4 denier Crimptow was obtained. The obtained noclamptow was cut into a fiber length of 15 mm and packed in a paper bag.

次に、廃材と混合する直前に熱接着性複合繊維に60℃×15分間弛緩熱処理を行い、潜在捲縮を顕在化させてスパイラル捲縮を発現させた。捲縮を発現した熱接着性複合繊維/廃材の中に含まれる繊維、発泡ウレタン=20/80(重量比)の混率で混合し、連続熱処理機で130℃×5分間熱接着処理を行い不織布を得た。   Next, the heat-adhesive conjugate fiber was subjected to a relaxation heat treatment at 60 ° C. for 15 minutes immediately before mixing with the waste material, thereby revealing latent crimps and developing spiral crimps. Non-woven fabric by crimping the heat-adhesive composite fiber / fibers contained in the waste material, urethane foam = 20/80 (weight ratio) and mixing with a continuous heat treatment machine at 130 ° C for 5 minutes Got.

製糸性、熱処理後捲縮数、ECローターからの排出、梱包時の嵩高、廃材との混合状態は良好で、不織布の強力斑がないものであった。   The yarn forming property, the number of crimps after heat treatment, the discharge from the EC rotor, the bulkiness at the time of packing, and the mixed state with the waste material were good, and there were no strong spots on the nonwoven fabric.

実施例2〜3、比較例1〜2実施例2〜3、比較例1〜2については、繊度を表1のようにした以外は、実施例1と同様に行った。   Examples 2-3 and Comparative Examples 1-2 Examples 2-3 and Comparative Examples 1-2 were performed in the same manner as Example 1 except that the fineness was as shown in Table 1.

実施例2、3は製糸性、熱処理後捲縮数、ECローターからの排出、梱包時の嵩高、廃材との混合状態は良好で、不織布の強力斑がなかった。   In Examples 2 and 3, the yarn forming property, the number of crimps after heat treatment, the discharge from the EC rotor, the bulkiness at the time of packing, and the mixed state with the waste material were good, and there were no strong spots of the nonwoven fabric.

比較例1は紡糸段階で密着が激しく、紡糸操業性が悪かった。比較例2は繊度が太すぎて廃材との混合状態が悪く、不織布の強力斑があった。実施例1〜3、比較例1〜2の評価結果を表1に示す。   In Comparative Example 1, adhesion was intense at the spinning stage, and spinning operability was poor. In Comparative Example 2, the fineness was too thick, the state of mixing with the waste material was poor, and there were strong spots on the nonwoven fabric. The evaluation results of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 1.

実施例4〜5、比較例3〜4実施例4〜5、比較例3〜4については、ポリエステルBの重合体の極限粘度を表2に示すごとく変更した以外は、実施例1と同様に行った。   Examples 4-5, Comparative Examples 3-4 About Examples 4-5 and Comparative Examples 3-4, except that the intrinsic viscosity of the polymer of polyester B was changed as shown in Table 2, it was the same as Example 1. went.

実施例4、5は製糸性、熱処理後捲縮数、ECローターからの排出、梱包時の嵩高、廃材との混合状態は良好で、不織布の強力斑もなかった。   In Examples 4 and 5, the yarn forming property, the number of crimps after heat treatment, the discharge from the EC rotor, the bulkiness at the time of packing, and the mixed state with the waste material were good, and there were no strong spots of the nonwoven fabric.

比較例3は熱処理後捲縮数が少なくなるため、廃材との混合状態が悪く、不織布の強力斑があった。比較例4は紡糸段階で密着が激しく、紡糸操業性が悪かった。実施例4〜5、比較例3〜4の評価結果を表2に示す。   In Comparative Example 3, the number of crimps after heat treatment was small, so the state of mixing with the waste material was poor and there were strong spots on the nonwoven fabric. In Comparative Example 4, adhesion was intense at the spinning stage, and spinning operability was poor. Table 2 shows the evaluation results of Examples 4 to 5 and Comparative Examples 3 to 4.

実施例6〜7、比較例5〜6実施例6〜7、比較例5〜6については、繊維長を表3に示すごとく変更した以外は、実施例1と同様に行った。   Examples 6 to 7, Comparative Examples 5 to 6 Examples 6 to 7 and Comparative Examples 5 to 6 were performed in the same manner as Example 1 except that the fiber length was changed as shown in Table 3.

実施例6、7は製糸性、熱処理後捲縮数、ECローターからの排出、梱包時の嵩高、廃材との混合状態は良好で、不織布の強力斑もなかった。   In Examples 6 and 7, the yarn forming property, the number of crimps after heat treatment, the discharge from the EC rotor, the bulkiness at the time of packing, and the mixed state with the waste material were good, and there were no strong spots of the nonwoven fabric.

比較例5は繊維長が短かいため、廃材との混合状態が悪く、不織布の強力斑があった。比較例6は繊維長が長いため、ECローターからの排出、廃材との混合状態が悪く、不織布の強力斑があった。実施例6〜7、比較例5〜6の評価結果を表3に示す。   Since Comparative Example 5 had a short fiber length, the state of mixing with the waste material was poor, and there were strong spots on the nonwoven fabric. In Comparative Example 6, since the fiber length was long, the discharge from the EC rotor and the mixed state with the waste material were bad, and there were strong spots of the nonwoven fabric. Table 3 shows the evaluation results of Examples 6 to 7 and Comparative Examples 5 to 6.

実施例8〜9、比較例7実施例8〜9、比較例7については、廃材との混合比率を表4に示すごとく変更した以外は、実施例1と同様に行った。   Examples 8 to 9, Comparative Example 7 Examples 8 to 9 and Comparative Example 7 were performed in the same manner as Example 1 except that the mixing ratio with the waste material was changed as shown in Table 4.

実施例8、9は製糸性、熱処理後捲縮数、ECローターからの排出、梱包時の嵩高、廃材との混合状態は良好で、不織布の強力斑もないものであった。   In Examples 8 and 9, the yarn forming property, the number of crimps after heat treatment, the discharge from the EC rotor, the bulkiness at the time of packing, and the mixed state with the waste material were good, and there were no strong spots of the nonwoven fabric.

比較例7は熱接着性複合繊維の混合比率が少ないため、不織布の強力斑があり、強力が低かった。実施例8〜9、比較例7の評価結果を表4に示す。   In Comparative Example 7, since the mixing ratio of the heat-adhesive conjugate fiber was small, there were strong spots on the nonwoven fabric and the strength was low. Table 4 shows the evaluation results of Examples 8 to 9 and Comparative Example 7.

実施例10実施例1において、後述する熱接着性繊維を用い、不織布の熱接着処理を180℃×5分とした以外は、実施例1と同様にした。   Example 10 Example 1 was carried out in the same manner as in Example 1 except that the heat-adhesive fiber described later was used and the heat-bonding treatment of the nonwoven fabric was changed to 180 ° C. × 5 minutes.

熱接着性繊維は、次のようにして作成した。すなわち、ポリエステルAとして極限粘度0.67、Tm256℃のPETを、ポリエステルBとしてテレフタル酸とエチレングリコールとのエステル化反応で得られたテレフタル酸成分とエチレングリコール成分との比が1/1.13のPETオリゴマーに、ε−カプロラクトン(ε−CL)を酸成分に対して15モル%及び1,4−ブタンジオールをジオール成分に対して50モル%の割合で添加し、1時間エステル化反応を行った後、重縮合触媒としてテトラブチルチタネートを添加し、温度260℃、圧力1hPaで3時間重縮合反応を行い、Tg40℃、Tc94℃、Tm160℃、極限粘度0.57の共重合ポリエステルポリマーを使用し、耐熱性を有するノークリンプトウを得た。実施例10は製糸性、熱処理後捲縮数、ECロ−タ−からの排出、梱包時の嵩高、廃材との混合状態は良好で、不織布の強力斑もないものであった。   The heat-bondable fiber was prepared as follows. That is, the ratio of the terephthalic acid component and the ethylene glycol component obtained by the esterification reaction of terephthalic acid and ethylene glycol as polyester B is 0.1.13. Ε-caprolactone (ε-CL) was added to the PET oligomer of 15 mol% with respect to the acid component and 1,4-butanediol was added at a ratio of 50 mol% with respect to the diol component, and the esterification reaction was carried out for 1 hour. After that, tetrabutyl titanate was added as a polycondensation catalyst, a polycondensation reaction was performed at a temperature of 260 ° C. and a pressure of 1 hPa for 3 hours, and a copolymer polyester polymer having Tg of 40 ° C., Tc of 94 ° C., Tm of 160 ° C., and an intrinsic viscosity of 0.57 was obtained. Used to obtain heat-resistant noclamptow. In Example 10, the yarn forming property, the number of crimps after heat treatment, the discharge from the EC rotor, the bulkiness at the time of packing, and the mixed state with the waste material were good, and there were no strong spots on the nonwoven fabric.

実施例11〜12、比較例8〜9実施例11〜12、比較例8〜9は、ポリエステルBの極限粘度を表5に示すごとく変更した以外は、実施例10と同様に行った。   Examples 11 to 12, Comparative Examples 8 to 9 Examples 11 to 12 and Comparative Examples 8 to 9 were performed in the same manner as Example 10 except that the intrinsic viscosity of polyester B was changed as shown in Table 5.

実施例11、12は製糸性、熱処理後捲縮数、ECロ−タ−からの排出、梱包時の嵩高、廃材との混合状態は良好で、不織布の強力斑もなかった。   In Examples 11 and 12, the yarn forming property, the number of crimps after heat treatment, the discharge from the EC rotor, the bulkiness at the time of packing, the mixed state with the waste material were good, and there were no strong spots of the nonwoven fabric.

比較例8は熱処理後捲縮数が少なくなるため、廃材との混合状態が悪く、不織布の強力斑があった。比較例9は紡糸段階で密着が激しく、紡糸操業性が悪かった。実施例10〜12、比較例8〜9の評価結果を表5に示す。   In Comparative Example 8, the number of crimps after the heat treatment was reduced, so that the mixed state with the waste material was poor, and there were strong spots on the nonwoven fabric. In Comparative Example 9, adhesion was intense at the spinning stage, and spinning operability was poor. Table 5 shows the evaluation results of Examples 10 to 12 and Comparative Examples 8 to 9.

Claims (3)

融点220℃以上のポリエステルAと、流動開始温度がポリエステルAの融点より40℃以上低いポリエステルBとがサイドバイサイド型に接合した複合繊維であり、ポリエステルAとポリエステルBの極限粘度差が0.05〜0.15の範囲で、繊維長5〜25mm、繊度1〜10デニールである潜在捲縮性能を有し、クリンプが発現していない熱接着性複合繊維を、ポリエステルBが溶融しない温度で弛緩熱処理を施して5〜15個/25mmのスパイラル捲縮を発現させた後、主体繊維と混綿し、ポリエステルBが溶融する温度にて熱処理し、構成繊維同士を熱接着することを特徴とする熱接着性複合繊維を含む不織布の製造方法。 Polyester A having a melting point of 220 ° C. or more and a polyester B having a flow start temperature of 40 ° C. or more lower than the melting point of the polyester A are joined in a side-by-side type, and the intrinsic viscosity difference between the polyester A and the polyester B is 0.05 to Heat-adhesive conjugate fiber that has a latent crimping performance of 5 to 25 mm, a fineness of 1 to 10 denier within a range of 0.15, and does not develop crimp, is subjected to relaxation heat treatment at a temperature at which polyester B does not melt 5-15 pieces / 25 mm spiral crimps are applied, then mixed with the main fiber, heat treated at a temperature at which polyester B melts, and the constituent fibers are thermally bonded to each other. Of a non-woven fabric containing a functional composite fiber. 熱接着性複合繊維を少なくとも10重量%以上混綿させることを特徴とする請求項1記載の不織布の製造方法。 The method for producing a nonwoven fabric according to claim 1, wherein at least 10% by weight or more of the heat-adhesive conjugate fiber is mixed. 主体繊維が、繊維廃材であることを特徴とする請求項1または2記載の不織布の製造方法。
The method for producing a nonwoven fabric according to claim 1 or 2, wherein the main fiber is a fiber waste material.
JP2009081979A 2009-03-30 2009-03-30 Method for producing nonwoven fabric containing heat-adhesive conjugate fiber Expired - Lifetime JP4918111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081979A JP4918111B2 (en) 2009-03-30 2009-03-30 Method for producing nonwoven fabric containing heat-adhesive conjugate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081979A JP4918111B2 (en) 2009-03-30 2009-03-30 Method for producing nonwoven fabric containing heat-adhesive conjugate fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2735199A Division JP4312867B2 (en) 1999-02-04 1999-02-04 Thermal adhesive conjugate fiber, nonwoven fabric using the same, and method for producing the nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2009144319A true JP2009144319A (en) 2009-07-02
JP4918111B2 JP4918111B2 (en) 2012-04-18

Family

ID=40915244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081979A Expired - Lifetime JP4918111B2 (en) 2009-03-30 2009-03-30 Method for producing nonwoven fabric containing heat-adhesive conjugate fiber

Country Status (1)

Country Link
JP (1) JP4918111B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291573B1 (en) 2011-12-30 2013-08-08 웅진케미칼 주식회사 The high elastic nonwoven fabric for cushion, and its preparation method
KR20160079304A (en) * 2014-12-26 2016-07-06 도레이케미칼 주식회사 Thermally adhesive-biodegradeble crimping fiber and Manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136255A (en) * 1990-09-25 1992-05-11 Kuraray Co Ltd Fiber sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136255A (en) * 1990-09-25 1992-05-11 Kuraray Co Ltd Fiber sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291573B1 (en) 2011-12-30 2013-08-08 웅진케미칼 주식회사 The high elastic nonwoven fabric for cushion, and its preparation method
KR20160079304A (en) * 2014-12-26 2016-07-06 도레이케미칼 주식회사 Thermally adhesive-biodegradeble crimping fiber and Manufacturing method thereof
KR101642607B1 (en) 2014-12-26 2016-07-25 도레이케미칼 주식회사 Thermally adhesive-biodegradeble crimping fiber for thermal bonding non-woven fabric and Manufacturing method thereof

Also Published As

Publication number Publication date
JP4918111B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP2013011051A (en) Polylactic acid-based composite fiber, nonwoven fabric and cushioning material using the same and method for manufacturing the same
JP2007126780A (en) Polylactic acid-based conjugate fiber, and non-woven fabric and cushioning material using the same
JP2001172829A (en) Polyester-based conjugate fiber with crimping potential and nonwoven fabric using the same
JP4918111B2 (en) Method for producing nonwoven fabric containing heat-adhesive conjugate fiber
JP2008303323A (en) Low-melting polyester resin, thermally adhesive composite binder fiber comprising the same and polyester-base nonwoven fabric
JP4312867B2 (en) Thermal adhesive conjugate fiber, nonwoven fabric using the same, and method for producing the nonwoven fabric
JP4043492B2 (en) Hard cotton structure with improved settling resistance
JP7448194B2 (en) Polyester core-sheath composite fiber
JP2003286640A (en) Short fiber nonwoven fabric
JP2006169653A (en) Polyester resin composition for binder fiber and nonwoven fabric using the same
JPS63203818A (en) Hot-melt type binder fiber
JP3432936B2 (en) Method for producing hollow composite fiber
JPH04240219A (en) Polyester-based heat bonding conjugate fiber
JP2007002126A (en) Polyester resin, heat adhesive composite binder fiber, and nonwoven fabric and solid cotton
JP2795742B2 (en) Low melting crystalline polyester, method for producing the same, and polyester-based heat-bondable fiber
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JP2008045241A (en) Heat-adhesive conjugate fiber and fiber assembly
JP3793301B2 (en) Hard cotton structure with improved settling resistance
JP6110144B2 (en) Short cut composite fiber for wet nonwoven fabric
JP4847042B2 (en) Low melting point polyester composition for fiber and fiber using the same
JPH03249213A (en) Heat-weldable hollow conjugate fiber
JP2006118067A (en) Method for producing thermoadhesive conjugate fiber
JP4838600B2 (en) Cotton for clothing
JP2009114610A (en) Polyester conjugate short fiber and short fiber nonwoven fabric
JP2007131777A (en) Polyester resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term