JP2009143331A - Buoy for tsunami-ocean wave observation - Google Patents

Buoy for tsunami-ocean wave observation Download PDF

Info

Publication number
JP2009143331A
JP2009143331A JP2007321442A JP2007321442A JP2009143331A JP 2009143331 A JP2009143331 A JP 2009143331A JP 2007321442 A JP2007321442 A JP 2007321442A JP 2007321442 A JP2007321442 A JP 2007321442A JP 2009143331 A JP2009143331 A JP 2009143331A
Authority
JP
Japan
Prior art keywords
buoy
tsunami
observation
propulsion
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007321442A
Other languages
Japanese (ja)
Other versions
JP5072566B2 (en
Inventor
Hideyuki Niisato
英幸 新里
Toshihide Miyake
寿英 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2007321442A priority Critical patent/JP5072566B2/en
Publication of JP2009143331A publication Critical patent/JP2009143331A/en
Application granted granted Critical
Publication of JP5072566B2 publication Critical patent/JP5072566B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a buoy for tsunami-ocean wave observation reducing a measurement error of wave height. <P>SOLUTION: The buoy for tsunami-ocean wave observation is mounted with an observer 17 for observing tsunami and ocean waves, and is provided with a buoy staying device for propelling a stationary buoy 11 having a tail pipe 13 hung from a buoy body 12 by a propulsion unit 31 to stay the buoy in a predetermined sea area. The buoy staying device is constituted to control the propulsion unit 31 to stay the stationary buoy 11 in the predetermined sea area based on a positional deviation between the position of the stationary buoy 11 detected by a GPS receiver and a target position. Oscillation of the stationary buoy 11 is free from constraint by a mooring rope. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、所定海域に停留され、波浪の観測や津波の予測などに使用される津波・波浪観測用ブイに関する。   The present invention relates to a tsunami / wave observation buoy that is stopped in a predetermined sea area and used for wave observation, tsunami prediction, and the like.

たとえば、図14(a)に示すように、海底に設置されたアンカー2および/または沈錘3に連結された係留索4により、観測用ブイ1が所定海域に係留されるものが、たとえば特許文献1,2などに開示されている。
特開平8−110226号公報 特開2002−13923号公報
For example, as shown in FIG. 14 (a), an observation buoy 1 is moored in a predetermined sea area by a mooring line 4 connected to an anchor 2 and / or a sink weight 3 installed on the seabed. It is disclosed in documents 1, 2 and the like.
JP-A-8-110226 JP 2002-13923 A

海面に浮かぶ浮体の動揺は、図14(c)に示すように、前後方向の直線動揺(surge:入射波の進行方向に沿うx軸方向の揺れ)、上下方向の直線動揺(heave:鉛直方向に沿うz軸方向の揺れ)、左右方向の旋回動揺(pitch:入射波の進行方向と鉛直方向に直交するy軸周りの旋回揺れ)、左右方向の直線動揺(sway:入射波の進行方向と鉛直方向に直交するy軸方向の揺れ)、前後方向の旋回動揺(roll:入射波の進行方向に沿うx軸周りの旋回揺れ)、周方向の旋回動揺(yaw:鉛直方向のz軸周りの旋回揺れ)からなる複雑な連成運動と見ることができる。   As shown in FIG. 14 (c), the floating body floating on the sea surface is oscillated linearly in the front-rear direction (surge: x-axis direction along the traveling direction of the incident wave) and vertically swayed (heave: vertical direction). Z-axis direction fluctuation), left-right swirl movement (pitch: swivel movement around the y-axis perpendicular to the incident wave traveling direction and vertical direction), left-right linear movement (sway: incident wave traveling direction) Y-axis swing perpendicular to the vertical direction), forward / backward swing motion (roll: swing swing around the x-axis along the traveling direction of the incident wave), circumferential swing motion (yaw: vertical motion around the z-axis) It can be viewed as a complex coupled motion consisting of swirling motion.

波の計測では、上下方向の直線動揺[以下、直線動揺(heave)という]と左右方向の旋回動揺[以下、旋回動揺(pitch)という]とを計測し、図14(b)に示すように、直線動揺(heave)の計測値ηを、旋回動揺(pitch)の計測値により補正して入射波高Hを求めている。   In the wave measurement, vertical linear motion [hereinafter referred to as linear heave] and horizontal rotational motion [hereinafter referred to as rotational pitch] are measured, as shown in FIG. The incident wave height H is obtained by correcting the measured value η of the linear shake (heave) with the measured value of the turning shake (pitch).

図14(a)に示すように、係留索4が緩んでいる場合には、観測用ブイ1は自由に浮かぶ状態で、入射波により観測用ブイ1が直線動揺(heave)する場合にも、旋回動揺(pitch)する場合にも、大きな影響が無く、波や津波の計測に問題がない。   As shown in FIG. 14 (a), when the mooring line 4 is loose, the observation buoy 1 is in a freely floating state, and even when the observation buoy 1 is linearly shaken by an incident wave, There is no big influence when turning, and there is no problem in measuring waves and tsunamis.

しかし、図14(b)に示すように、潮流により観測用ブイ1が押し流されて係留索4の伸長限となると、係留索4により観測用ブイ1が引っ張られてその動揺が抑制される。すなわち、係留索4の張力Fの鉛直方向の分力Fvが、観測用ブイ1の直線動揺(heave)に作用するとともに、張力Fの水平方向の分力Fhが観測用ブイ1の旋回動揺(pitch)に作用する。これにより、正確な入射波高Hを計測できないという問題があった。   However, as shown in FIG. 14B, when the observation buoy 1 is swept away by the tidal current and the mooring line 4 reaches the extension limit, the observation buoy 1 is pulled by the mooring line 4 and its oscillation is suppressed. That is, the vertical component force Fv of the tension F of the mooring line 4 acts on the linear sway (heave) of the observation buoy 1, and the horizontal component Fh of the tension F turns the sway ( pitch). As a result, there is a problem that the accurate incident wave height H cannot be measured.

本発明は上記問題点を解決して、波高の計測誤差を少なくできる津波・波浪観測用ブイを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a tsunami / wave observation buoy that solves the above-described problems and can reduce a measurement error of wave height.

請求項1記載の発明は、津波および/または波浪を観測する観測装置を搭載した津波・波浪観測用ブイであって、推進装置によりブイ本体を推進してブイ本体を所定海域に停留させるブイ停留装置を具備し、前記ブイ停留装置は、GPS受信機により検出されたブイ本体の位置と、目標位置との間の位置偏差に基づき、前記推進装置を制御してブイ本体を所定海域に停留させるように構成されたものである。   The invention according to claim 1 is a tsunami / wave observation buoy equipped with an observing device for observing tsunami and / or waves, wherein the buoy main body is propelled by the propulsion device to stop the buoy main body in a predetermined sea area. The buoy stop device controls the propulsion device based on a position deviation between the position of the buoy main body detected by the GPS receiver and the target position to stop the buoy main body in a predetermined sea area. It is comprised as follows.

請求項2記載の発明は、請求項1記載の構成において、推進装置は、ブイ停留装置により推進方向と推力が制御される推力発生装置と、当該推力発生装置に駆動電力を供給する電源装置を具備し、電源装置は、太陽電池パネルを有する太陽光発電装置と、潮流により回転駆動される発電用水車を有する水力発電装置の少なくとも一方を有するものである。   According to a second aspect of the present invention, in the configuration of the first aspect, the propulsion device includes a thrust generation device in which a propulsion direction and thrust are controlled by the buoy stop device, and a power supply device that supplies driving power to the thrust generation device. The power supply device includes at least one of a solar power generation device having a solar battery panel and a hydroelectric power generation device having a power generation turbine that is rotationally driven by a tidal current.

請求項3記載の発明は、請求項2記載の構成において、ブイ本体に、その底部中央から垂下された尾筒を設け、推力発生装置をスラスター装置により構成するとともに、当該スラスター装置を尾筒の下端部に配置し、発電用水車を、前記尾筒の中間部に尾筒の軸心周りに回転自在に配置したものである。   According to a third aspect of the present invention, in the configuration according to the second aspect, the buoy body is provided with a tail tube suspended from the center of the bottom thereof, and the thrust generating device is constituted by a thruster device, and the thruster device is mounted on the tail tube. It arrange | positions at a lower end part, and arrange | positions the water turbine for electric power generation in the intermediate part of the said tail cylinder so that rotation is possible around the axis center of a tail cylinder.

請求項4記載の発明は、請求項1乃至3記載の構成において、ブイ本体に昇降自在および傾動自在に保持された遊動ブイを設け、遊動ブイは、ブイ本体に水平方向に貫通された昇降ガイド穴に昇降自在および傾動自在に嵌合されたフレームバーと、当該フレームバーの両端部にそれぞれ取り付けられてブイ本体の両側に浮かぶ計測浮体とで構成され、前記計測浮体にそれぞれ当該計測浮体の変位を検出可能な海面変位検出部を設けたものである。   According to a fourth aspect of the present invention, in the configuration according to the first to third aspects, the buoy body is provided with a floating buoy that is held up and down and tiltable, and the floating buoy is vertically moved through the buoy body in the horizontal direction. It consists of a frame bar fitted in a hole so that it can move up and down and tiltable, and a measurement floating body that is attached to both ends of the frame bar and floats on both sides of the buoy body. Is provided with a sea level displacement detector capable of detecting

請求項1記載の発明によれば、ブイ停留装置により推進装置を制御してブイ本体を目的位置に向けて推進させ、所定海域に停留させるように構成したので、従来のように、移動限で係留索にブイ本体が引っ張られて動揺が抑制されることがない。したがって、観測装置により正確な入射波高を計測することができる。   According to the first aspect of the present invention, the propulsion device is controlled by the buoy stop device to propel the buoy body toward the target position and stop in the predetermined sea area. The main body of the buoy is pulled by the mooring line and the shaking is not suppressed. Therefore, an accurate incident wave height can be measured by the observation device.

請求項2記載の発明によれば、推進装置では、太陽電池パネルまたは/および発電用水車により得られる電力で推力発生装置を駆動して、ブイ本体を目標位置に向けて推進させ所定海域に良好に停留させることができる。   According to the invention described in claim 2, in the propulsion device, the thrust generator is driven by the electric power obtained from the solar cell panel and / or the power generation water turbine, and the buoy body is propelled toward the target position, so that it is good for a predetermined sea area. Can be stopped at.

請求項3記載の発明によれば、尾筒の中間部に設けられた発電用水車により、潮流を利用して効率よく発電することができ、また尾筒の下端部に設けられたスラスター装置により、推進方向を自在に制御することができる。   According to the third aspect of the present invention, the power generation turbine provided in the middle portion of the transition piece can efficiently generate power using the tidal current, and the thruster device provided in the lower end portion of the transition piece. The propulsion direction can be freely controlled.

請求項4記載の発明によれば、ブイ本体に形成された昇降ガイド穴に、フレームバーを昇降および傾動自在に保持させるとともに、このフレームバーの両端に計測浮体をそれぞれ設け、計測浮体に海面変位検出部を設けたので、渦流などによるブイ本体の挙動に左右されることなく、計測浮体を波面の変動に良好に追従させて高精度で入射波高を検出することができる。   According to the invention of claim 4, the frame bar is held up and down and tiltably held in the lifting guide hole formed in the buoy body, and the measurement floating bodies are provided at both ends of the frame bar, respectively. Since the detection unit is provided, it is possible to detect the incident wave height with high accuracy by making the measurement floating body follow the fluctuation of the wave front well without being influenced by the behavior of the buoy main body due to the eddy current or the like.

以下、本発明の実施の形態を図面に基づいて説明する。
[実施の形態]
図1および図2に示すように、この津波・波浪観測用ブイは、ブイ本体12と、このブイ本体12から垂下された尾筒13とを有して所定海域に停留される停留ブイ11と、ブイ本体12に昇降自在および傾動自在に保持された遊動ブイ21と、停留ブイ11を推進可能な推進装置31と、推進装置31を制御して停留ブイ11を所定海域の中心位置に設定された目標位置x,y(図4)に向かって推進させ所定海域に停留させるブイ停留装置41と、遊動ブイ21に設けられた海面変位検出部24により波高を検出する観測装置17とを具備している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment]
As shown in FIGS. 1 and 2, this tsunami / wave observation buoy includes a buoy main body 12 and a buoy 11 that has a tail tube 13 suspended from the buoy main body 12 and is stopped in a predetermined sea area. The floating buoy 21 held up and down and tiltably held by the buoy body 12, the propulsion device 31 capable of propelling the stop buoy 11, and the propulsion device 31 are controlled to set the stop buoy 11 at the center position of a predetermined sea area. The buoy stop device 41 that is propelled toward the target position x r , y r (FIG. 4) and stops in a predetermined sea area, and the observation device 17 that detects the wave height by the sea surface displacement detector 24 provided in the floating buoy 21. It has.

(停留ブイ)
停留ブイ11は、円柱状のブイ本体12の底部中心から垂下された尾筒13と、ブイ本体12上に設置された観測室14と、観測室14上に立設されたタワー構造体15とを具備し、ブイ本体12または尾筒13に、潮流の流速と流れ方向を計測する潮流用の流向・流速計51(図3)が設けられている。またタワー構造体15には、洋上の風向きや風速を計測する風向・風速計52や、GPS衛星からの信号を受信して停留ブイ11の座標位置を検出するGPS受信アンテナ53、地上基地局との間で計測データや位置データ、操作信号を送受信するための送受信用アンテナ19が設けられている。また観測室14やタワー構造体15の外面に太陽電池パネル18が設けられている。
(Stop buoy)
The stationary buoy 11 includes a tail tube 13 suspended from the center of the bottom of the columnar buoy body 12, an observation room 14 installed on the buoy body 12, and a tower structure 15 erected on the observation room 14. The buoy body 12 or the tail tube 13 is provided with a tidal current direction / velocimeter 51 (FIG. 3) for measuring the tidal current velocity and direction. In addition, the tower structure 15 includes a wind direction / anemometer 52 for measuring the wind direction and wind speed over the ocean, a GPS receiving antenna 53 for receiving a signal from a GPS satellite and detecting the coordinate position of the stop buoy 11, a ground base station, A transmission / reception antenna 19 for transmitting / receiving measurement data, position data, and operation signals is provided. A solar cell panel 18 is provided on the outer surface of the observation room 14 or the tower structure 15.

さらに観測室14には、遊動ブイ21に設けられた海面変位検出部24からの計測データを受信する送受信機付の観測装置17や、停留ブイ11を一定海域に停留させるブイ停留装置41、GPS衛星からの信号をGPS受信アンテナ53を介して受信し自己位置を検出するGPS受信機54、停留ブイ11の向きを計測する方位計55、停留ブイ11の傾斜角度を計測する傾斜計56が装備されている。   Further, the observation room 14 has an observation device 17 with a transmitter / receiver that receives measurement data from a sea surface displacement detector 24 provided in the floating buoy 21, a buoy stop device 41 that stops the stop buoy 11 in a certain sea area, GPS A GPS receiver 54 that receives a signal from a satellite via a GPS receiving antenna 53 and detects its own position, an azimuth meter 55 that measures the direction of the stationary buoy 11, and an inclinometer 56 that measures the inclination angle of the stationary buoy 11 are provided. Has been.

また尾筒13の中間部には、潮流により尾筒13の軸心周りに回転自在に設けられた複数のフィンが回転駆動されるプロペラ形の発電用水車36aと、蓄電装置(バッテリー)38と、停留ブイ11の重心を下方に下げるためのバラスト用錘39とが設けられている。また尾筒13の下端部に、ブイ停留装置41により制御される推進装置31が設けられている。前記バラスト用錘39は、停留ブイ11の重心Gを下方に下げることにより、推進装置31の推力による停留ブイ11の傾斜を抑制するためのものである。   Further, in the middle portion of the tail tube 13, a propeller-type power generation water wheel 36 a in which a plurality of fins rotatably provided around the axis of the tail tube 13 is rotated by a tidal current, a power storage device (battery) 38, and the like. A ballast weight 39 for lowering the center of gravity of the stopping buoy 11 is provided. A propulsion device 31 controlled by a buoy stop device 41 is provided at the lower end of the tail cylinder 13. The ballast weight 39 is for suppressing the inclination of the stationary buoy 11 due to the thrust of the propulsion device 31 by lowering the center of gravity G of the stationary buoy 11 downward.

(推進装置)
推進装置31は、推力発生装置であるスラスター装置32と、このスラスター装置32に駆動電力を供給する電源装置33を具備している。スラスター装置32は操舵部34と駆動部35とを有し、操舵部34には、操舵軸34bを介してスラスターダクト35aを鉛直軸心周りに旋回させる減速機付操舵用モータ34aが設けられ、駆動部35には、スラスターダクト35a内でスクリュー35cを回転駆動する推進用モータ35bが設けられている。
(Propulsion device)
The propulsion device 31 includes a thruster device 32 that is a thrust generating device, and a power supply device 33 that supplies driving power to the thruster device 32. The thruster device 32 includes a steering unit 34 and a drive unit 35. The steering unit 34 is provided with a steering motor 34a with a speed reducer that rotates the thruster duct 35a around a vertical axis via a steering shaft 34b. The drive unit 35 is provided with a propulsion motor 35b that rotationally drives the screw 35c within the thruster duct 35a.

電源装置33は、水力発電部36と太陽光発電部37と蓄電装置38からなり、太陽光発電部37は太陽電池パネル18により構成されている。また水力発電部36は、発電用水車36aから得られた回転動力により、回転軸36bおよび増速用ギヤ装置36cを介して発電機36dを回転駆動し発電するように構成されている。そして発電機36dと太陽電池パネル18で得られた電力が蓄電装置38に蓄電される。   The power supply device 33 includes a hydroelectric power generation unit 36, a solar power generation unit 37, and a power storage device 38, and the solar power generation unit 37 is configured by the solar cell panel 18. Further, the hydroelectric power generation unit 36 is configured to generate electric power by rotationally driving the generator 36d through the rotating shaft 36b and the speed increasing gear device 36c by the rotational power obtained from the power generation water turbine 36a. Then, the electric power obtained by the generator 36 d and the solar cell panel 18 is stored in the power storage device 38.

上記構成により、蓄電装置38から推進用モータ35bと操舵用モータ34aにそれぞれ電力が供給されてスクリュー35cが回転駆動されるとともに、スラスターダクト35aの方向が制御されて、停留ブイ11が所定方向に推進される。ここで、停留ブイ11に加えて、後述する2つの計測浮体22の造波抵抗、推進抵抗が増加するが、スラスター装置32の有効馬力を十分に確保して大きい推進力を得るように構成されている。   With the above configuration, electric power is supplied from the power storage device 38 to the propulsion motor 35b and the steering motor 34a to rotate the screw 35c, and the direction of the thruster duct 35a is controlled so that the stationary buoy 11 is in a predetermined direction. Promoted. Here, in addition to the stationary buoy 11, wave-making resistance and propulsion resistance of two measurement floating bodies 22 to be described later increase, but the effective horsepower of the thruster device 32 is sufficiently secured to obtain a large propulsive force. ing.

(ブイ停留装置)
ブイ停留装置41は、図3に示すように、減算器42、フィードバック計算部43、フィードフォワード計算部44、加算器45、指令推力制限部46、指令操作量演算部47、操舵用操作部48および推進用操作部49を具備している。
(Buoy stop device)
As shown in FIG. 3, the buoy stop device 41 includes a subtractor 42, a feedback calculator 43, a feedforward calculator 44, an adder 45, a command thrust limiter 46, a command operation amount calculator 47, and a steering operation unit 48. And a propulsion operating section 49.

前記減算器42では、図4に示すように、平面直角座標系(x,y座標)において、予め設定された目標位置x,yとGPS受信機54により計測された位置座標x,yから位置偏差x,yを求める。 In the subtractor 42, as shown in FIG. 4, in the plane rectangular coordinate system (x, y coordinates), the preset target positions x r , y r and the position coordinates x, y measured by the GPS receiver 54 are used. Position deviations x e and y e are obtained.

フィードバック計算部43では、図5に示すように、平面直角座標系の位置偏差x,yを方位計55の計測値に基づいてブイ固定座標系(X,Y座標)に変換し、ブイ固定座標系(X,Y)において、PID制御により位置偏差x,yを打ち消す制御指令推力Tx,Tyを求める。 As shown in FIG. 5, the feedback calculation unit 43 converts the positional deviations x e and y e of the plane rectangular coordinate system into a buoy fixed coordinate system (X, Y coordinates) based on the measurement value of the azimuth meter 55. In the fixed coordinate system (X, Y), control command thrusts Tx, Ty for canceling the position deviations x e , y e by PID control are obtained.

たとえばブイ固定座標系におけるX軸方向の制御指令推力:Tx、Y軸方向の制御指令推力:Tyとすると、
Tx=Kp・x+Ki∫xdt+Kd・dx/dt
Ty=Kp・y+Ki∫ydt+Kd・dy/dtとなる。
ここで、xe:偏差、ye:偏差、Kp:比例ゲイン、Ki:積分ゲイン、Kd:微分ゲインである。
For example, when the control command thrust in the X-axis direction in the buoy fixed coordinate system is Tx and the control command thrust in the Y-axis direction is Ty,
Tx = Kp · x e + Ki∫x e dt + Kd · dx e / dt
Ty = Kp · y e + K i ∫e dt + Kd · dy e / dt.
Here, xe: deviation, ye: deviation, Kp: proportional gain, Ki: integral gain, Kd: differential gain.

フィードフォワード計算部44では、風向・風速計52により計測された洋上の風向・風速の計測値と、流向・流速計51により計測された潮流の流向・流速の計測値とにより定常外力を求め、この定常外力を打ち消すフィードフォワード制御推力を演算する。   The feedforward calculation unit 44 obtains a steady external force from the measured values of the wind direction and wind speed measured by the wind direction and anemometer 52, and the measured values of the tidal current and flow velocity measured by the flow direction and anemometer 51, A feedforward control thrust that cancels the steady external force is calculated.

加算器45では、フィードバック計算部43の制御指令推力Tx,Tyとフィードフォワード計算部44のフィードフォワード制御推力を加算して指令推力を求める。
指令推力制限部46では、図6(a)(c)に示すように、スラスター装置32の立ち上がり、または立ち下がりを急激に行うと、スラスター装置32の破損につながるおそれがあるため、図6(b)(d)に示すように、スラスター装置32の保護のために、指令推力に変化率制限をかけて制限指令推力を求める。ここで許容する最大の変化率α1、α2は、スラスター装置32の仕様により変化する。またこの指令推力制限部46では、図7に示すように、消費電力の節約や指令方位角の頻繁な変化を抑制するために、入力値が微小な場合に、制限指令推力の出力値を0とする不感帯β1,β2を設けている。
The adder 45 adds the control command thrusts Tx and Ty of the feedback calculation unit 43 and the feedforward control thrust of the feedforward calculation unit 44 to obtain the command thrust.
In the command thrust limiter 46, as shown in FIGS. 6A and 6C, if the thruster device 32 is suddenly raised or lowered, the thruster device 32 may be damaged. b) As shown in (d), in order to protect the thruster device 32, a limit command thrust is obtained by limiting the rate of change to the command thrust. The maximum change rates α1 and α2 allowed here vary depending on the specifications of the thruster device 32. In addition, as shown in FIG. 7, the command thrust limiter 46 reduces the output value of the limit command thrust to 0 when the input value is very small in order to save power consumption and suppress frequent changes in the command azimuth. Dead zones β1 and β2 are provided.

指令操作量演算部47では、指令推力制限部46の制限指令推力値からスラスター装置32の操舵角および回転数を求める。この指令操作量演算部47で求められた回転数に基づいて、推進用操作部49から推進用指令信号が推進用モータ35bに出力される。また指令操作量演算部47で求められた操舵角に基づいて、操舵用操作部48から操舵用指令信号が操舵用モータ34aに出力される。   The command operation amount calculation unit 47 obtains the steering angle and rotation speed of the thruster device 32 from the limit command thrust value of the command thrust limiter 46. A propulsion command signal is output from the propulsion operation unit 49 to the propulsion motor 35b based on the rotational speed obtained by the command operation amount calculation unit 47. Further, based on the steering angle obtained by the command operation amount calculation unit 47, a steering command signal is output from the steering operation unit 48 to the steering motor 34a.

したがって、所定海域に浮かべられた停留ブイ11では、GPS受信機54により一定時間ごとに現在の位置座標x,yが計測されており、ブイ停留装置41では、減算器42で目標位置x,yと現在の位置座標x,yから位置偏差x,yが求められている。そして、この位置偏差x,yから制御指令推力Tx,Tyが求められ、さらに風向・風速計52と流向・流速計51から求められた定常外力を打ち消すフィードフォワード制御推力と、制御指令推力Tx,Tyから指令推力が求められる。さらに、指令推力に、変化率制限をかけ、さらに微小入力値に対して不感帯β1,β2を除いて制限指令推力が求められる。さらにこの制限指令推力値からスラスター装置32の操舵角および回転数が求められ、推進用操作部49から推進用モータ35bに推進用指令信号が出力され、また操舵用操作部48から操舵用モータ34aに操舵用指令信号が出力される。これにより推進装置31が駆動制御されて停留ブイ11が、目標位置x,yを中心とする所定海域に停留される。 Accordingly, in the stationary buoy 11 floating in a predetermined sea area, the current position coordinates x and y are measured at regular intervals by the GPS receiver 54, and in the buoy stationary device 41, the target position x r , Position deviations x e and y e are obtained from yr and current position coordinates x and y. Then, the control command thrusts Tx, Ty are obtained from the position deviations x e , y e , and the feedforward control thrust for canceling the steady external force obtained from the wind direction / anemometer 52 and the flow direction / velocimeter 51, and the control command thrust The command thrust is obtained from Tx and Ty. Further, the command thrust is subjected to a rate of change restriction, and the limit command thrust is obtained by excluding the dead zones β1 and β2 with respect to the minute input value. Further, the steering angle and the rotational speed of the thruster device 32 are obtained from the limit command thrust value, a propulsion command signal is output from the propulsion operation unit 49 to the propulsion motor 35b, and the steering motor 34a is operated from the steering operation unit 48. The steering command signal is output to Stationary buoy 11 thereby propulsion device 31 is controlled drive, the target position x r, is stationary in a predetermined sea area around the y r.

(遊動ブイと波高検出装置)
停留ブイ11が単純な形状で渦流による影響がない場合には、波に対する応答特性が線形的で、補正により正確な波高を求めることができる。しかし上記停留ブイ11は、尾筒13にスラスター装置32と発電用水車36aが設けられているため、渦流が発生しやすい構造となっている。この渦流による影響で、停留ブイ11が非線形的に運動して、波に対する応答特性が把握しにくく、補正することが困難なことがあり、海面変位検出部24を直接、観測室14に設置すると、正確な波高が検出できないおそれがある。
(Loose buoy and wave height detector)
When the stationary buoy 11 has a simple shape and is not affected by the eddy current, the response characteristic to the wave is linear, and an accurate wave height can be obtained by correction. However, since the stop buoy 11 is provided with the thruster device 32 and the power generation water turbine 36a on the tail cylinder 13, it has a structure in which eddy currents are likely to occur. Due to the influence of this eddy current, the stationary buoy 11 moves non-linearly, and it may be difficult to grasp the response characteristic to the wave and to correct it. When the sea level displacement detector 24 is installed directly in the observation room 14, There is a possibility that an accurate wave height cannot be detected.

このため、本発明では、停留ブイ11に昇降および傾動自在な遊動ブイ21を設け、遊動ブイ21の計測浮体22に介して海面変位検出部24を設けている。すなわち、図8〜図11に示すように、遊動ブイ21は、ブイ本体12の喫水上方の近傍位置に昇降ガイド穴26を水平方向に貫通形成し、ブイ本体12の両側に海面に浮かぶ一対の計測浮体22を配置し、これら計測浮体22を、昇降ガイド穴26に昇降自在および傾動自在に遊嵌されたフレームバー23により互いに連結している。そして両計測浮体22に、海面の変位を検出するための送信機付の海面変位検出部24をそれぞれ設けている。   For this reason, in the present invention, a floating buoy 21 that can be moved up and down and tilted is provided on the stationary buoy 11, and a sea level displacement detector 24 is provided via a measurement floating body 22 of the floating buoy 21. That is, as shown in FIGS. 8 to 11, the floating buoy 21 includes a pair of floating guide holes 26 that are horizontally penetrating in the vicinity of the buoy body 12 above the draft, and float on the sea surface on both sides of the buoy body 12. The measurement floating bodies 22 are arranged, and these measurement floating bodies 22 are connected to each other by a frame bar 23 that is loosely fitted in the elevation guide hole 26 so as to be movable up and down and tilted. Each measurement floating body 22 is provided with a sea level displacement detector 24 with a transmitter for detecting the sea level displacement.

ブイ本体12の昇降ガイド穴26の開口部周囲には、計測浮体22との接触による衝撃を緩衝するために、たとえば合成ゴム製などの緩衝用の防舷部材27が取り付けられており、これら防舷部材27により、ブイ本体12と計測浮体22との衝突による損傷を防止するとともに、海面変位検出部24への衝撃を緩衝して計測データにノイズが混入するのを防止している。なお、防舷部材27は計測浮体22に取り付けてもよいし、ブイ本体12と計測浮体22の両方にそれぞれ取り付けてもよい。   Around the opening of the elevating guide hole 26 of the buoy main body 12, in order to buffer the impact caused by the contact with the measurement floating body 22, a buffer fender 27 made of synthetic rubber or the like is attached. The anchor member 27 prevents damage caused by the collision between the buoy main body 12 and the measurement floating body 22 and also buffers the impact on the sea surface displacement detection unit 24 to prevent noise from being mixed into measurement data. The fender member 27 may be attached to the measurement floating body 22 or may be attached to both the buoy body 12 and the measurement floating body 22.

前記計測浮体22は、互いに同一形状で同一の浮力を有し、たとえば図のように球体状に形成されるとともに、その殻体内が中空か、または発泡樹脂などの浮力付与材料が充填された中実状に構成され、計測浮体22の浮心位置にそれぞれ海面変位検出部24が水密状態で、かつ計測データを観測装置17に送信可能に設けられている。またフレームバー23は中空で密閉されたたとえば耐食性の金属で形成され、両計測浮体22の上部間を互いに連結固定しており、入射波の影響を受けにくいように、フレームバー23が遊動ブイ21の喫水線より所定距離上方位置に配置されている。そしてフレームバー23の中心位置の下位近傍に、遊動ブイ21の浮心gがある。なお、前記計測浮体22は、球体以外に、円柱体状などのように入射波などの影響ができるだけ少ない形状であればよく、その形状は問われない。   The measurement floating bodies 22 have the same shape and the same buoyancy. For example, the measurement float 22 is formed in a spherical shape as shown in the figure, and the shell is hollow or filled with a buoyancy imparting material such as a foamed resin. The sea surface displacement detection unit 24 is provided in a watertight state at each buoyant position of the measurement floating body 22 and is capable of transmitting measurement data to the observation device 17. Further, the frame bar 23 is formed of a hollow and hermetically sealed metal, for example, and the upper parts of the two measurement floating bodies 22 are connected and fixed to each other, so that the frame bar 23 is free from the influence of incident waves. It is arranged at a position above the water line by a predetermined distance. A floating center g of the floating buoy 21 is located near the lower position of the center position of the frame bar 23. The measurement floating body 22 may have any shape other than a sphere, such as a cylindrical body, and may have as little influence as possible from incident waves, and the shape is not limited.

そして昇降ガイド穴26は、ブイ本体12の中央部で、遊動ブイ21のフレームバー23の上方と下方とに等間隔をあけてフレームバー23を昇降可能な高さ:GHが形成され、また天面と底面とに中央部から開口部側に向かって、所定の傾斜角θで上方および下方に漸次広がる傾斜面26u,26dがそれぞれ形成され、フレームバー23の昇降と傾動を許容している。なお、これら位相差や振幅差が生じた場合にその変位を十分許容可能なように、昇降ガイド穴26の高さ:GHと傾斜面26u,26dの傾斜角θが設定されている。   The elevating guide hole 26 is formed at the center of the buoy body 12 at a height GH at which the frame bar 23 can be raised and lowered at equal intervals above and below the frame bar 23 of the floating buoy 21. Inclined surfaces 26u and 26d that gradually spread upward and downward at a predetermined inclination angle θ are formed on the surface and the bottom surface from the central portion toward the opening portion, respectively, to allow the frame bar 23 to be raised and lowered. Note that the height of the elevating guide hole 26: GH and the inclination angle θ of the inclined surfaces 26u, 26d are set so that the displacement is sufficiently allowed when these phase differences and amplitude differences occur.

これにより、渦流などによる停留ブイ11の傾斜や挙動などと関係なく、波面の昇降に精度よく追従して計測浮体22がそれぞれ昇降され、計測浮体22に内装された海面変位計測部24により、高精度で海面の昇降(波高)を高精度で検出することができる。   Thus, regardless of the inclination or behavior of the stationary buoy 11 due to eddy current or the like, the measurement floating bodies 22 are moved up and down with high accuracy following the wavefront ascent and lift, and the sea level displacement measuring unit 24 built in the measurement floating body 22 The sea level elevation (wave height) can be detected with high accuracy.

また海面変位検出部24は、計測データを観測室14の観測装置17に送信する送信機がそれぞれ内蔵されている。この海面変位検出部24をGPS受信機と送信機とで構成した場合、海面変位検出部24では、GPS用の人工衛星から受信した電波から得られる計測データを観測装置17にそれぞれ送信し、観測装置17から送受信用アンテナ19を介して地上基地局に送信する。また海面変位検出部24を、計測浮体22の加速度を検出する加速度計と送信機とで構成した場合、海面変位検出部24で計測した加速度データを観測装置17にそれぞれ送信し、観測装置17に設けられたGPS受信機によりGPS用の人工衛星から受信した電波から得られる計測データと共に、観測装置17から送受信用アンテナ19を介して地上基地局に送信する。地上基地局では、送信された受信データを処理し、計測浮体22の直線動揺(heave)と旋回動揺(pitch)の周期や振幅から入射波高を演算する。   Each of the sea surface displacement detection units 24 includes a transmitter that transmits measurement data to the observation device 17 in the observation room 14. When this sea level displacement detector 24 is composed of a GPS receiver and transmitter, the sea level detector 24 transmits measurement data obtained from radio waves received from GPS artificial satellites to the observation device 17 for observation. The data is transmitted from the device 17 to the ground base station via the transmission / reception antenna 19. When the sea level displacement detection unit 24 includes an accelerometer that detects the acceleration of the measurement floating body 22 and a transmitter, the acceleration data measured by the sea level displacement detection unit 24 is transmitted to the observation device 17. Along with the measurement data obtained from the radio wave received from the GPS satellite by the provided GPS receiver, the data is transmitted from the observation device 17 to the ground base station via the transmission / reception antenna 19. The ground base station processes the received reception data, and calculates the incident wave height from the period and amplitude of the linear motion (heave) and the turning motion (pitch) of the measurement floating body 22.

(推進時の姿勢)
推進開始時に、2つの計測浮体22の抵抗の相違で停留ブイ11と遊動ブイ21が旋回するが、ブイ停留装置41により、方位計55の検出値に基づいて操舵部34が制御されることにより、推進方向に対して左右両側に計測浮体22が配置されて、推進抵抗や造波抵抗が左右均等となる姿勢で推進される。
(Promotion posture)
At the start of propulsion, the stationary buoy 11 and the idle buoy 21 turn due to the difference in resistance between the two measurement floating bodies 22, but the buoy stationary device 41 controls the steering unit 34 based on the detected value of the azimuth meter 55. The measurement floating bodies 22 are disposed on both the left and right sides with respect to the propulsion direction, and are propelled in a posture in which the propulsion resistance and the wave-making resistance are equal on the left and right.

またスラスター装置32の推力により、停留ブイ11に重心Gを中心とするモーメントが働き、停留ブイ11が傾斜する。この時の遊動ブイ21では、フレームバー23が昇降ガイド穴26の内面を摺動するおそれがあるが、摺動抵抗がきわめて小さいことから、計測浮体22の昇降に与える影響はきわめて少ない。さらに、観測室14に設置された傾斜計56により停留ブイ11の傾斜を計測し、波に対する傾斜姿勢の停留ブイ11の応答特性と、計測浮体22との応答特性を考慮して、補正することもできる。   Further, due to the thrust of the thruster device 32, a moment about the center of gravity G acts on the stationary buoy 11 and the stationary buoy 11 is inclined. In the floating buoy 21 at this time, there is a possibility that the frame bar 23 slides on the inner surface of the lifting guide hole 26. However, since the sliding resistance is very small, the influence on the lifting of the measurement floating body 22 is very small. Furthermore, the inclination of the stationary buoy 11 is measured by an inclinometer 56 installed in the observation room 14 and corrected in consideration of the response characteristics of the stationary buoy 11 in an inclined posture with respect to waves and the response characteristics of the measurement floating body 22. You can also.

(実施の形態の効果)
上記構成によれば、ブイ停留装置41により、GPS衛星からの信号をGPS受信機で受信して停留ブイ11の位置を計測し、推進装置31を駆動制御して停留ブイ11を目的位置に向けて推進させ、所定海域に停留させるように構成したので、従来のように、移動限で係留索により観測用ブイが引っ張られて動揺が抑制されることがない。したがって、観測装置17により正確な入射波高を計測することができる。
(Effect of embodiment)
According to the above configuration, the buoy stop device 41 receives a signal from a GPS satellite by the GPS receiver, measures the position of the stop buoy 11, drives the propulsion device 31, and directs the stop buoy 11 to the target position. Since the buoy for observation is pulled by the mooring line at the movement limit, the shaking is not suppressed as in the conventional case. Therefore, an accurate incident wave height can be measured by the observation device 17.

また、太陽電池パネル18からなる太陽光発電部37と、発電用水車36aを有する水力発電部36とを設け、これら自前の電力でスラスター装置32を駆動して、停留ブイ11を目標位置に向けて推進させることができ、所定海域に良好に停留させることができる。   Moreover, the solar power generation part 37 which consists of the solar cell panel 18, and the hydraulic power generation part 36 which has the water turbine 36a for electric power generation are provided, the thruster apparatus 32 is driven with these own electric power, and the stop buoy 11 is turned to the target position. It can be propelled and stopped well in a predetermined sea area.

さらに、尾筒13の中間部に設けられた発電用水車36aにより、潮流を利用して効率よく発電することができ、また尾筒13の下端部に設けられたスラスター装置32により、推進方向を自在に制御することができる。   Further, the power generation turbine 36a provided in the middle part of the transition piece 13 can efficiently generate power using the tidal current, and the thruster device 32 provided at the lower end part of the transition piece 13 changes the propulsion direction. It can be freely controlled.

さらにまた、ブイ本体12に形成された昇降ガイド穴26に、フレームバー23を昇降および傾動自在に保持させるとともに、このフレームバー23の両端に計測浮体22をそれぞれ設け、計測浮体22に海面変位検出部24を設けたので、停留ブイ11の挙動に左右されることなく、計測浮体22を波面の変動に良好に追従させて、海面変位検出部24により高精度で入射波高を検出することができる。   Furthermore, the frame bar 23 is held in the lift guide hole 26 formed in the buoy main body 12 so that the frame bar 23 can be moved up and down and tilted, and measurement floats 22 are provided at both ends of the frame bar 23, respectively. Since the unit 24 is provided, the sea level displacement detection unit 24 can detect the incident wave height with high accuracy by making the measurement floating body 22 follow the fluctuation of the wave front well without being influenced by the behavior of the stationary buoy 11. .

なお、上記実施の形態では、計測浮体22に海面変位検出部24を設けたが、渦流による停留ブイ11の波に対する応答特性が容易に把握でき補正が可能な場合には、遊動ブイ21を無くし、観測室14に海面変位検出部24を設けてもよい。   In the above embodiment, the sea surface displacement detector 24 is provided in the measurement floating body 22. However, when the response characteristic to the wave of the stationary buoy 11 due to the eddy current can be easily grasped and corrected, the floating buoy 21 is eliminated. The sea level displacement detector 24 may be provided in the observation room 14.

また、停留ブイ11に尾筒13を有しない構造として、ブイ本体12に推進装置31と発電用水車32とを設けることもできる。
さらに図12に示すように、推力発生装置を、尾筒13の下端部に設けられたスラスター装置32に替えて、ブイ本体12の下部で重心Gに対応して対称位置に左右一対の翼形支持体62を水平方向に突設し、これら翼形支持体62に、操舵部61aにより鉛直軸心周りに旋回可能なポッド型推進器61を重心Gを含む水平面近傍に設置したもので、これにより推力による停留ブイ11の傾斜を防止することができる。ポッド型推進器61は、紡錘形の推進駆動モータ61bの出力軸に一体にプロペラ61cが設けられている。
Further, as a structure in which the stationary buoy 11 does not have the tail cylinder 13, the propulsion device 31 and the power generation water turbine 32 can be provided in the buoy main body 12.
Further, as shown in FIG. 12, the thrust generating device is replaced by a thruster device 32 provided at the lower end portion of the transition piece 13, and a pair of left and right airfoils at symmetrical positions corresponding to the center of gravity G at the lower portion of the buoy body 12. The support body 62 is projected in the horizontal direction, and a pod type propulsion device 61 capable of turning around the vertical axis by the steering portion 61a is installed in the vicinity of the horizontal plane including the center of gravity G. Thus, the inclination of the stationary buoy 11 due to thrust can be prevented. The pod type propulsion device 61 is provided with a propeller 61c integrally with an output shaft of a spindle type propulsion drive motor 61b.

さらに、図13に示すように、推力発生装置をウォータージェット型推進器71により構成することもできる。この場合には、取水口72をブイ本体12の底部に開口するとともに、ブイ本体12下部の周囲に90°毎4箇所に取水口72が連通する排出口73を形成し、各排出口73に、ウォーターポンプ71aと可変式吐出ダクト71bとをそれぞれ設け、図示しない操舵装置により90°を越える操舵角αの範囲で吐出ダクト71bを揺動して吐出方向を変更可能とし、選択的にウォーターポンプ71aを起動停止することにより、停留ブイ11の推進方向を任意に設定することができる。   Furthermore, as shown in FIG. 13, the thrust generating device can be configured by a water jet type propulsion device 71. In this case, the water intake 72 is opened at the bottom of the buoy main body 12, and the discharge ports 73 communicating with the water intake 72 at four positions every 90 ° are formed around the bottom of the buoy main body 12. The water pump 71a and the variable discharge duct 71b are provided respectively, and the discharge duct 71b can be swung in a range of a steering angle α exceeding 90 ° by a steering device (not shown) so that the discharge direction can be changed. By starting and stopping 71a, the propulsion direction of the stationary buoy 11 can be arbitrarily set.

また、上記スラスター装置32やポッド型推進器61、ウォータージェット型推進器71に、操舵用ラダー(舵板)を設けて推進方向を制御することもできる。
水力発電部36の発電用水車36aをプロペラ形としたが、図12に示すように、回転軸部82から対称方向に突設された複数のアーム83と、各アーム83の先端部に球面形や円筒面形の翼体84とを有する抗力水車タイプの発電用水車81としてもよい。
Further, the thrust direction can be controlled by providing a steering ladder (steering plate) in the thruster device 32, the pod type propulsion unit 61, and the water jet type propulsion unit 71.
The power generation water turbine 36a of the hydroelectric power generation unit 36 has a propeller shape. However, as shown in FIG. 12, a plurality of arms 83 projecting in a symmetric direction from the rotating shaft portion 82, and a spherical shape at the tip of each arm 83. Alternatively, a drag turbine type power generation turbine 81 having a cylindrical surface-shaped wing body 84 may be used.

ところで、上記実施の形態では、観測する所定海域の中心に目標位置x,yとを予め設定したが、この目標位置を地上基地局やメンテナンス船からの操作信号や、搭載したタイマーなどにより、目標位置をたとえば別の海域に変更することで、自動的に観測用ブイをメンテナンス用海域に移動させたり、観測用海域を変更したりすることができる。 Incidentally, in the above embodiment, the center target position x r of a predetermined sea area to be observed has been set in advance and y r, and operation signals of the target position from the ground base station and maintenance ship, due equipped with timer By changing the target position to, for example, another sea area, the observation buoy can be automatically moved to the maintenance sea area or the observation sea area can be changed.

本発明に係る津波・波浪観測用ブイの実施の形態を示す斜視図である。1 is a perspective view showing an embodiment of a tsunami / wave observation buoy according to the present invention. FIG. 津波・波浪観測用ブイの構成図である。It is a block diagram of a tsunami / wave observation buoy. ブイ停留装置を示すブロック図である。It is a block diagram which shows a buoy stop apparatus. ブイ停留装置による位置保持制御の説明図である。It is explanatory drawing of position holding control by a buoy stop apparatus. ブイ停留装置のフィードバック制御部における座標系の説明図である。It is explanatory drawing of the coordinate system in the feedback control part of a buoy stop apparatus. ブイ停留装置の指令推力制限部における変化制限を示し、(a)は制限しない場合の正方向(出力増加方向)のグラフ、(b)は制限する場合の正方向のグラフ、(c)は制限しない場合の負方向(出力減少方向)のグラフ、(d)は制限する場合の出力減少方向のグラフである。The change restriction | limiting in the command thrust limiting part of a buoy stop apparatus is shown, (a) is the graph of the positive direction (output increase direction) when not restrict | limiting, (b) is the graph of the positive direction when restrict | limited, (c) is a restriction | limiting. A graph in the negative direction (output decreasing direction) when not limiting, and (d) is a graph in the output decreasing direction when limiting. ブイ停留装置の指令推力制限部における不感帯を説明するグラフである。It is a graph explaining the dead zone in the command thrust limiting part of a buoy stop device. ブイ本体の昇降ガイド穴を示す正面図である。It is a front view which shows the raising / lowering guide hole of a buoy main body. ブイ本体の昇降ガイド穴を示す平面断面図である。It is plane sectional drawing which shows the raising / lowering guide hole of a buoy main body. ブイ本体の昇降ガイド穴を示し、遊動ブイの直線動揺(heave)を説明する部分縦断面図である。It is a partial longitudinal cross-sectional view which shows the raising / lowering guide hole of a buoy main body, and demonstrates the linear oscillation (heave) of a floating buoy. ブイ本体の昇降ガイド穴を示し、遊動ブイの旋回動揺(pitch)を説明する部分縦断面図である。FIG. 5 is a partial vertical cross-sectional view illustrating the lifting guide hole of the buoy body and illustrating the turning movement (pitch) of the floating buoy. 推進駆動部にポッド型推進器を使用し、水力発電部に抗力水車タイプの発電用水車を使用した他の実施の形態を示す斜視図である。It is a perspective view which shows other embodiment which uses a pod type propulsion unit for a propulsion drive part, and uses a water turbine for power generation of a drag turbine type for a hydroelectric power generation part. 推進駆動部にウォータージェット型推進器を使用した実施の形態を示し、(a)は縦断面図、(b)は(a)に示すA−A断面図である。An embodiment in which a water jet type propulsion device is used for a propulsion drive unit is shown, (a) is a longitudinal sectional view, and (b) is an AA sectional view shown in (a). 従来の浮体または観測用ブイの動揺を説明する説明図で、(a)は通常状態の観測用ブイを示し、(b)は潮流により係留索が伸長限にある観測用ブイを示し、(c)は浮体の動揺を示す。It is explanatory drawing explaining the fluctuation of the conventional floating body or observation buoy, (a) shows the observation buoy in a normal state, (b) shows the observation buoy where the mooring line is in the extension limit by the tidal current, (c ) Indicates the sway of the floating body.

符号の説明Explanation of symbols

G 重心
11 停留ブイ
12 ブイ本体
13 尾筒
14 観測室
15 タワー構造体
17 観測装置
18 太陽電池パネル
19 送受信用アンテナ
21 遊動ブイ
22 計測浮体
23 フレームバー
24 海面変位検出部
31 推進装置
32 スラスター装置
33 電源装置
34 操舵部
35 駆動部
36 水力発電部
36a 発電用水車
37 太陽光発電部
38 蓄電装置
41 ブイ停留装置
51 流向・流速計
52 風向・風速計
53 GPS受信アンテナ
54 GPS受信機
55 方位計
G Center of gravity 11 Stop buoy 12 Buoy body 13 Obstacle 14 Observation room 15 Tower structure 17 Observation device 18 Solar panel 19 Transmitting / receiving antenna 21 Floating buoy 22 Measurement floating body 23 Frame bar 24 Sea surface displacement detection unit 31 Propulsion device 32 Thruster device 33 Power unit 34 Steering unit 35 Drive unit 36 Hydroelectric power generation unit 36a Power generation turbine 37 Solar power generation unit 38 Power storage device 41 Buoy stop device 51 Flow direction / velocimeter 52 Wind direction / velocimeter 53 GPS reception antenna 54 GPS receiver 55 Direction meter

Claims (4)

津波および/または波浪を観測する観測装置を搭載した津波・波浪観測用ブイであって、
推進装置によりブイ本体を推進してブイ本体を所定海域に停留させるブイ停留装置を具備し、
前記ブイ停留装置は、GPS受信機により検出されたブイ本体の位置と、目標位置との間の位置偏差に基づき、前記推進装置を制御してブイ本体を所定海域に停留させるように構成された
ことを特徴とする津波・波浪観測用ブイ。
A tsunami / wave observation buoy equipped with an observation device for tsunami and / or wave observation,
Providing a buoy stopping device that propels the buoy body by a propulsion device and stops the buoy body in a predetermined sea area,
The buoy stopping device is configured to control the propulsion device to stop the buoy main body in a predetermined sea area based on a position deviation between a position of the buoy main body detected by the GPS receiver and a target position. A tsunami / wave observation buoy characterized by this.
推進装置は、ブイ停留装置により推進方向と推力が制御される推力発生装置と、当該推力発生装置に駆動電力を供給する電源装置を具備し、
電源装置は、太陽電池パネルを有する太陽光発電装置と、潮流により回転駆動される発電用水車を有する水力発電装置の少なくとも一方を有する
ことを特徴とする請求項1記載の津波・波浪観測用ブイ。
The propulsion device includes a thrust generator whose propulsion direction and thrust are controlled by a buoy stop device, and a power supply device that supplies driving power to the thrust generator,
2. The tsunami / wave observation buoy according to claim 1, wherein the power supply device includes at least one of a solar power generation device having a solar battery panel and a hydroelectric power generation device having a power generation turbine rotated by a tidal current. .
ブイ本体に、その底部中央から垂下された尾筒を設け、
推力発生装置をスラスター装置により構成するとともに、当該スラスター装置を尾筒の下端部に配置し、
発電用水車を、前記尾筒の中間部に尾筒の軸心周りに回転自在に配置した
ことを特徴とする請求項2記載の津波・波浪観測用ブイ。
The buoy body is provided with a tail tube suspended from the bottom center,
The thrust generating device is constituted by a thruster device, and the thruster device is arranged at the lower end of the tail cylinder,
The tsunami / wave observation buoy according to claim 2, wherein a power generation water turbine is rotatably disposed around an axis of the tail cylinder at an intermediate portion of the tail cylinder.
ブイ本体に昇降自在および傾動自在に保持された遊動ブイを設け、
遊動ブイは、ブイ本体に水平方向に貫通された昇降ガイド穴に昇降自在および傾動自在に嵌合されたフレームバーと、当該フレームバーの両端部にそれぞれ取り付けられてブイ本体の両側に浮かぶ計測浮体とで構成され、
前記計測浮体にそれぞれ当該計測浮体の変位を検出可能な海面変位検出部を設けた
ことを特徴とする請求項1乃至3の何れかに記載の津波・波浪観測用ブイ。
The buoy body is provided with a floating buoy that can be moved up and down and tilted,
The floating buoy includes a frame bar that is vertically and tiltably fitted in an elevating guide hole that penetrates the buoy body in the horizontal direction, and a measurement floating body that is attached to both ends of the frame bar and floats on both sides of the buoy body. And consists of
The tsunami / wave observation buoy according to any one of claims 1 to 3, wherein each of the measurement floating bodies is provided with a sea surface displacement detection unit capable of detecting the displacement of the measurement floating body.
JP2007321442A 2007-12-13 2007-12-13 Tsunami and wave observation buoy Expired - Fee Related JP5072566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007321442A JP5072566B2 (en) 2007-12-13 2007-12-13 Tsunami and wave observation buoy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007321442A JP5072566B2 (en) 2007-12-13 2007-12-13 Tsunami and wave observation buoy

Publications (2)

Publication Number Publication Date
JP2009143331A true JP2009143331A (en) 2009-07-02
JP5072566B2 JP5072566B2 (en) 2012-11-14

Family

ID=40914501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007321442A Expired - Fee Related JP5072566B2 (en) 2007-12-13 2007-12-13 Tsunami and wave observation buoy

Country Status (1)

Country Link
JP (1) JP5072566B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048492B1 (en) 2011-03-03 2011-07-11 이종조 Floating offshore structure
JP2011157795A (en) * 2010-02-04 2011-08-18 Nec Corp Mineral collection system and mineral collection method
KR101364165B1 (en) 2013-04-30 2014-02-17 (주)엠앤알테크 Approaching buoy increase be absorb and buoyancy
KR101488945B1 (en) * 2013-05-31 2015-02-03 삼성중공업(주) Ship, Floating measuring apparatus and Position keeping
RU2555498C2 (en) * 2013-10-14 2015-07-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Open ocean tsunami wave indicator-signalling device
WO2017029869A1 (en) * 2015-08-20 2017-02-23 株式会社コベルコ科研 Subsea buoy
CN108357634A (en) * 2017-09-29 2018-08-03 国家海洋局南海调查技术中心 No anchor system automatically resets far-reaching extra large ocean weather station observation buoy and method
CN109131749A (en) * 2018-08-29 2019-01-04 国家海洋局第二海洋研究所 A kind of long-range real-time control formula oceanographic buoy of self-propulsion type
CN110194257A (en) * 2019-06-26 2019-09-03 自然资源部第二海洋研究所 A kind of recyclable seabed monitoring device
JP2019156078A (en) * 2018-03-09 2019-09-19 有限会社金鹿哲学承継塾 Autonomous navigation-type ocean buoy and marine information system using the same
CN110422283A (en) * 2019-08-30 2019-11-08 天津大学 It is a kind of based on Beidou communication can automatic position adjusting function oceanographic buoy
WO2020258090A1 (en) * 2019-06-26 2020-12-30 唐山哈船科技有限公司 Autonomous positioning buoy and use method thereof
CN112815928A (en) * 2021-02-04 2021-05-18 周新星 Deep sea detection equipment adjusting device and using method
KR20210092996A (en) * 2020-01-17 2021-07-27 홍쿠이 진 Floating unit and floating platform having the same
KR102309588B1 (en) * 2021-04-06 2021-10-07 주식회사 케이에스티 Mooring Structure for Floating Platform
CN113619731A (en) * 2021-07-26 2021-11-09 淮阴师范学院 Ecological environment monitoring device and monitoring method
CN113650741A (en) * 2021-09-13 2021-11-16 浙江省长三角城市基础设施科学研究院 Self-floating towing offshore wind power floating foundation and construction method thereof
CN114019130A (en) * 2021-11-12 2022-02-08 浙江大京生态环境科技有限公司 Sea area giving-out early-stage surveying platform and using method
KR102379117B1 (en) * 2022-01-04 2022-03-25 황용희 IOT smart buoy with reduced standby power consumption
KR20220068533A (en) * 2020-11-19 2022-05-26 한국수력원자력 주식회사 Floating meteorological observation apparatus
KR102448527B1 (en) * 2021-12-27 2022-09-29 황용희 IOT Smart Buoy
WO2022239145A1 (en) * 2021-05-12 2022-11-17 日本電信電話株式会社 Fixed-point observation device and fixed-point observation system
CN117550017A (en) * 2024-01-12 2024-02-13 集美大学 Spar-shaped wave energy power generation buoy device and method with variable tail pipe length

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063195B (en) * 2016-11-09 2019-09-27 哈尔滨工程大学 A kind of extensive underwater network locating method based on recurrence location estimation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110294A (en) * 1975-03-24 1976-09-29 Shin Meiwa Ind Co Ltd MUJINKANSOKUBUI
JPS63170189A (en) * 1986-12-29 1988-07-14 Nec Corp Buoy system for fixed point holding
JPH08110226A (en) * 1994-10-11 1996-04-30 Murata Mfg Co Ltd Peak value measuring apparatus
JPH092391A (en) * 1995-06-15 1997-01-07 Amusuko Internatl:Kk Fixed point keeping craft
JPH10160461A (en) * 1996-12-04 1998-06-19 Ishikawajima Harima Heavy Ind Co Ltd Wave measuring instrument
JP2000289688A (en) * 1999-04-06 2000-10-17 Mitsui Eng & Shipbuild Co Ltd Position-holding control method of floating body type rig and its control device
JP2002013923A (en) * 2000-06-29 2002-01-18 Kawasaki Heavy Ind Ltd Method and device for measuring wave information by large floating body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110294A (en) * 1975-03-24 1976-09-29 Shin Meiwa Ind Co Ltd MUJINKANSOKUBUI
JPS63170189A (en) * 1986-12-29 1988-07-14 Nec Corp Buoy system for fixed point holding
JPH08110226A (en) * 1994-10-11 1996-04-30 Murata Mfg Co Ltd Peak value measuring apparatus
JPH092391A (en) * 1995-06-15 1997-01-07 Amusuko Internatl:Kk Fixed point keeping craft
JPH10160461A (en) * 1996-12-04 1998-06-19 Ishikawajima Harima Heavy Ind Co Ltd Wave measuring instrument
JP2000289688A (en) * 1999-04-06 2000-10-17 Mitsui Eng & Shipbuild Co Ltd Position-holding control method of floating body type rig and its control device
JP2002013923A (en) * 2000-06-29 2002-01-18 Kawasaki Heavy Ind Ltd Method and device for measuring wave information by large floating body

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157795A (en) * 2010-02-04 2011-08-18 Nec Corp Mineral collection system and mineral collection method
KR101048492B1 (en) 2011-03-03 2011-07-11 이종조 Floating offshore structure
KR101364165B1 (en) 2013-04-30 2014-02-17 (주)엠앤알테크 Approaching buoy increase be absorb and buoyancy
KR101488945B1 (en) * 2013-05-31 2015-02-03 삼성중공업(주) Ship, Floating measuring apparatus and Position keeping
RU2555498C2 (en) * 2013-10-14 2015-07-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Министерства обороны Российской Федерации Open ocean tsunami wave indicator-signalling device
JP2017039486A (en) * 2015-08-20 2017-02-23 株式会社コベルコ科研 Sea buoy
WO2017029869A1 (en) * 2015-08-20 2017-02-23 株式会社コベルコ科研 Subsea buoy
CN108357634A (en) * 2017-09-29 2018-08-03 国家海洋局南海调查技术中心 No anchor system automatically resets far-reaching extra large ocean weather station observation buoy and method
CN108357634B (en) * 2017-09-29 2023-12-19 国家海洋局南海调查技术中心(国家海洋局南海浮标中心) Anchor-free automatic reset deep-open sea fixed-point observation buoy and method
JP2019156078A (en) * 2018-03-09 2019-09-19 有限会社金鹿哲学承継塾 Autonomous navigation-type ocean buoy and marine information system using the same
CN109131749A (en) * 2018-08-29 2019-01-04 国家海洋局第二海洋研究所 A kind of long-range real-time control formula oceanographic buoy of self-propulsion type
CN110194257A (en) * 2019-06-26 2019-09-03 自然资源部第二海洋研究所 A kind of recyclable seabed monitoring device
WO2020258090A1 (en) * 2019-06-26 2020-12-30 唐山哈船科技有限公司 Autonomous positioning buoy and use method thereof
CN110422283A (en) * 2019-08-30 2019-11-08 天津大学 It is a kind of based on Beidou communication can automatic position adjusting function oceanographic buoy
KR20210092996A (en) * 2020-01-17 2021-07-27 홍쿠이 진 Floating unit and floating platform having the same
KR102389699B1 (en) * 2020-01-17 2022-04-21 홍쿠이 진 Floating platform having floating unit
KR20220068533A (en) * 2020-11-19 2022-05-26 한국수력원자력 주식회사 Floating meteorological observation apparatus
KR102440251B1 (en) * 2020-11-19 2022-09-06 한국수력원자력 주식회사 Floating meteorological observation apparatus
CN112815928A (en) * 2021-02-04 2021-05-18 周新星 Deep sea detection equipment adjusting device and using method
KR102309588B1 (en) * 2021-04-06 2021-10-07 주식회사 케이에스티 Mooring Structure for Floating Platform
WO2022239145A1 (en) * 2021-05-12 2022-11-17 日本電信電話株式会社 Fixed-point observation device and fixed-point observation system
CN113619731A (en) * 2021-07-26 2021-11-09 淮阴师范学院 Ecological environment monitoring device and monitoring method
CN113650741A (en) * 2021-09-13 2021-11-16 浙江省长三角城市基础设施科学研究院 Self-floating towing offshore wind power floating foundation and construction method thereof
CN113650741B (en) * 2021-09-13 2022-09-13 国网上海市电力公司 Self-floating towing offshore wind power floating foundation and construction method thereof
CN114019130A (en) * 2021-11-12 2022-02-08 浙江大京生态环境科技有限公司 Sea area giving-out early-stage surveying platform and using method
KR102448527B1 (en) * 2021-12-27 2022-09-29 황용희 IOT Smart Buoy
KR102379117B1 (en) * 2022-01-04 2022-03-25 황용희 IOT smart buoy with reduced standby power consumption
CN117550017A (en) * 2024-01-12 2024-02-13 集美大学 Spar-shaped wave energy power generation buoy device and method with variable tail pipe length
CN117550017B (en) * 2024-01-12 2024-03-29 集美大学 Spar-shaped wave energy power generation buoy device and method with variable tail pipe length

Also Published As

Publication number Publication date
JP5072566B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5072566B2 (en) Tsunami and wave observation buoy
KR101407461B1 (en) Underwater Moving Apparatus and Moving method thereof
KR102231461B1 (en) Floating wind power plant
KR101815064B1 (en) System and method for dynamic positioning of vessel
CN109703705B (en) Semi-submersible unmanned platform
US8197208B2 (en) Floating underwater support structure
US10011337B2 (en) Water drone
US11254390B2 (en) Hydrofoil unit for a mobile offshore apparatus
JP6982681B2 (en) Azimuth thrusters, ships, floating platforms, diving equipment and submarines
JP2019506321A (en) Rollover floating multihabitat diving device with built-in drive
JP2017515033A (en) Wind turbine having floating foundation and position adjustment control system, and position adjustment control method thereof
JPH0749277B2 (en) A glider-type submersible with control of boat attitude by adjusting gravity and buoyancy
CN210592382U (en) Underwater towed body with stable course
JP7026935B2 (en) Anti-vibration device using swirling flow and anti-vibration method using swirling flow
CN106926990B (en) Yacht longitudinal direction dynamic stabilization method based on wave suppression plate
KR101794603B1 (en) Attitude Control System For Submersed Floating Structure
JP2001278190A (en) Strut for semi-submerged body
WO1997034128A1 (en) Method of submarine crustal survey
CN114313131B (en) Engineering ship stabilization method based on spiral balance slurry
KR20230149528A (en) A spar-buoy floater for offshore wind which can control the rotation of the whole system
JPH05213266A (en) Device and method for controlling attitude of floating body type ocean structure
CN114670996B (en) Three-body underwater robot
EP4269228A1 (en) Stabilisation system
KR101824479B1 (en) Offshore structure
JP2017035998A (en) Inclined spur buoy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees