WO1997034128A1 - Method of submarine crustal survey - Google Patents

Method of submarine crustal survey Download PDF

Info

Publication number
WO1997034128A1
WO1997034128A1 PCT/JP1997/000781 JP9700781W WO9734128A1 WO 1997034128 A1 WO1997034128 A1 WO 1997034128A1 JP 9700781 W JP9700781 W JP 9700781W WO 9734128 A1 WO9734128 A1 WO 9734128A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
omnidirectional
propelled
pipe
survey
Prior art date
Application number
PCT/JP1997/000781
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuru Hoshino
Hiroo Jin
Satoshi Kashima
Mitsushige Sakamoto
Original Assignee
Honshu-Shikoku Bridge Authority
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu-Shikoku Bridge Authority filed Critical Honshu-Shikoku Bridge Authority
Publication of WO1997034128A1 publication Critical patent/WO1997034128A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B35/4413Floating drilling platforms, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/001Survey of boreholes or wells for underwater installation

Definitions

  • the present invention is based on the fact that the survey point is moved over a short period of several weeks to several months on the sea where the water depth is deep (100 to 200 m) and the tidal current is fast (about 5 knots). It relates to a seabed survey method for conducting a seabed drilling survey of the ground. Background art
  • Offshore drilling for undersea ground surveys is restricted by the natural environment, such as water depth, tides, waves, and seafloor topography, and by the social environment, such as the use of the sea for fishing and navigation of ships.
  • the offshore drilling method is classified mainly based on work scaffolds, because it is greatly affected by natural conditions such as water depth and tidal current among the above restrictions.
  • Typical methods are the offshore installation type shown in Fig. 10 (a), the seabed sitting type shown in Fig. 10 (b), and Fig. 10 ( c) There are shipboard types as shown in c).
  • Offshore installation type Fixed or installation type scaffolds 11 are connected by welding, bolts, etc. using copper or copper pipes, assembled in a turret type, and directly installed on the seabed 10 and fixed or installed.
  • a boring machine 13 is mounted on a base 16 on the upper part of the scaffold 11, a casing pipe 12 is provided at the center, and the seabed 10 is dug through the boring pipe 14 in the casing pipe 12.
  • This method has become the mainstream of offshore scaffolds. There are examples of use from shallow water to about 30 to 40 m.
  • anchor blocks 22 and anchors are submerged on the seabed 10 to prevent rocking of the ship and the float, and the survey ship 18 (or float) is fixed by the detent wire 20 and the survey ship It is operated by a boring machine 13 mounted on 18.
  • Each of the above methods has the following problems when conducting seabed drilling surveys at a site with large water depth and strong tide while moving to the survey site every short period.
  • the offshore installation type shown in Fig. 10 (a) is suitable for long-term drilling because of the high cost of assembling and installation, but is also suitable for boring surveys where the survey point is moved every short period. Not. Also, if the water depth is more than 10 Om and the current is strong, the cost is too high.
  • the seabed seating type shown in Fig. 10 (b) is also used when the water depth exceeds 100m, but since the boring machine 13 is installed on the seabed, Dive work is required, and full-automatic or semi-automatic control is required.Since the control is complicated, the mechanism is complicated and expensive, and it is suitable for long-term boring. It is not suitable for boring surveys where the survey points are moved every time.
  • the shipboard type shown in Fig. 10 (c) is simple in equipment and easy to move the survey point, but has large fluctuations and difficulties in survey accuracy.
  • the boring pipe 14 is tilted more than 3 degrees with respect to the vertical, it may be damaged, so the range of use is limited.
  • the detent wire 20 generally needs to be about three times as long as the water depth, for example, if the water depth is 100 m, the sea area is as large as 60 Om X 60 Om vertically and horizontally. Occupying the river, obstructing the navigation of ships, and infringement of fishing rights.
  • An object of the present invention is to provide a method that is inexpensive and has a simple mechanism when conducting a seabed drilling survey while moving over the sea at high water depths and strong currents at short intervals. Things.
  • the present invention does not use a detent wire for mooring a self-propelled barge, occupy the sea area, hinder the navigation of the ship, or infringe the fishing right It is intended to provide a method. Disclosure of the invention
  • the present invention is provided with a plurality of omnidirectional thrusters 42 at the head and stern of the self-propelled barge 30, and the plurality of omnidirectional thrusters 42 are respectively connected to motors 43.
  • the motor 43 is a position control device consisting of a position measuring device 45, a gyro compass 46, an anemometer 47, and a control arithmetic device 48.
  • the self-propelled barge 30 is equipped with a pipe supporting device 12 to install a ricketing pipe 12 on the self-propelled barge 30 to investigate the seabed 10. This is the method of surveying the seabed ground.
  • a drilling survey is conducted by drilling the seabed 10 with a boring pipe 14.
  • each omnidirectional thruster 42 is adjusted to maintain the position and orientation of the self-propelled barge 30 at a fixed point.
  • FIG. 1 is a front view showing a state in which a casing pipe 12 is installed on a self-propelled barge 30 for explaining a seabed investigation method according to the present invention.
  • FIG. 2 is a plan view of FIG.
  • FIG. 3 is a cross-sectional view of the casing pipe 12 used in the seabed survey method according to the present invention.
  • FIG. 4 is a partially cutaway sectional view showing a connection state of the casing pipe 12 and the sinker 34 used in the seabed survey method according to the present invention.
  • FIG. 5 (a), (b), (c) and (d) are explanatory diagrams showing the work sequence for installing the casing pipe 12 at the survey site.
  • FIG. 6 is a flowchart of the fixed point holding system of the self-propelled barge 30.
  • FIG. 7 (a) is a waveform diagram showing the behavior of the self-propelled barge 30 until it converges to the destination point of the casing pipe 12 by the fixed point holding system.
  • FIG. 9 is a waveform diagram showing a behavior of the fixed point holding system until the casing pipe 12 converges to a destination point when an external force is applied to the casing pipe.
  • FIG. 8 is a plan view showing an example in which the casing pipe 12 is installed on the side surface of the self-propelled barge 30.
  • FIG. 9 is a plan view showing an example in which the self-propelled barge 30 is provided with three omnidirectional thrusters 42.
  • FIG. 10 shows different examples of conventional offshore scaffolds for offshore drilling.
  • Fig. 10 (a) is a sea-based scaffold
  • Fig. 10 (b) is a seat on the seabed.
  • FIG. 10 (c) is an explanatory diagram of the shipboard type.
  • reference numeral 30 denotes a self-propelled barge equipped with an automatic fixed point holding system for a ship.
  • This self-propelled barge 30 is, for example, a half catamaran type, and is equipped with a total of four omnidirectional thrusters 42, one at each of the four corners of the bow and stern of each catamaran. .
  • Each of these omnidirectional thrusters 42 is connected to a motor 43, and these motors 43 consist of a position measuring device 45, a gyro compass 46, a wind anemometer 47, and a control arithmetic device 48.
  • the position control device 49 automatically holds the fixed point.
  • the upper deck of the self-propelled barge 30 is equipped with a boring machine 13 and a hoist 28 at the center, and a drive unit 44 at the stern.
  • Each of the omnidirectional propulsion units 42 and the motors 43 provided in the four corners can be configured as four electric propulsion units driven by one main engine and a generator.
  • one independent main engine can be provided for each omnidirectional thruster 42.
  • the omnidirectional turning propulsion device 42 employs a variable pitch propeller to save power and improve response time by shortening response time.
  • the hull structure of the self-propelled barge 30 is considered to have different fixed point holding accuracy depending on the support position of the casing pipe 12 (center, front, side, etc.).
  • the work space is large and the workability is good.
  • the hull structure of the self-propelled barge 30 is a semi-twin-hull type in which the entrance groove 33 is formed from the bow side to the center of the hull.
  • the hull dimensions are about 50 to 60 m in length and about 15 to 20 m in width when the water depth is 100 to 20 Om.
  • the casing pipe is provided by the pipe support device 29 of the self-propelled barge 30.
  • the cross section of the casing pipe 12 is made to have a streamlined shape as shown in Fig. 3. By doing so, the tidal force can be reduced to one-third that of a circular section.
  • the connecting portion of the sinker 34 on the seabed 10 and the pipe supporting device 29 of the self-propelled barge 30 are automatically connected so that the casing pipe 12 automatically turns to the direction with the least tidal force.
  • the part has a rotatable structure.
  • a streamline wing section 38 is integrally provided on one side in the length direction of 2, and a buoyancy is provided as a double structure in which an inner pipe 27 is housed so that the specific gravity is substantially the same as that of seawater.
  • a ball part 40 integrally provided at the lower end of the casing pipe 12 and a ball receiver provided on the sinker 34.
  • Part 4 consisting of part 1 ?
  • a buoy 35 is provided above the casing pipe 12 so that the casing pipe 12 can stand vertically vertically in the sea.
  • the buoy 35 is not particularly essential in the present invention. The ship automatic fixed point holding system will be described in more detail.
  • the self-propelled barge 30 is equipped with four omnidirectional thrusters 42, one at each of the four corners of the hull and stern of each catamaran. However, these omnidirectional thrusters 42 generate thrust toward the center O of the self-propelled barge 30 and generate the same hydraulic power in the standard state, and there is no tidal current or wind disturbance. The position and bearing of the self-propelled barge 30 are maintained.
  • each omnidirectional thruster 42 has thrust adjusting means capable of adjusting the magnitude of thrust, and thrust direction adjusted.
  • Propulsion device turning means This automatic fixed point holding system is designed to maintain the position and orientation of the self-propelled barge 30 by adjusting the direction and magnitude of each thrust of the four omnidirectional thrusters 42 according to the disturbance.
  • a control arithmetic unit 48 including first arithmetic means 51, second arithmetic means 52, third arithmetic means 53, and fourth arithmetic means 54 is provided.
  • the first arithmetic means 51 is configured to determine the direction of the thrust required for maintaining a fixed point of the self-propelled barge 30 based on the detection signals from the position measuring device 45 of the self-propelled barge 30 and the gyro compass 46. Function to calculate the size and turning moment have.
  • the second calculating means 52 has a function of calculating each thrust at the current turning angle of each omnidirectional thruster 42 to obtain the turning moment obtained by the first calculating means 51. Is provided. Then, with the current turning angle of each omnidirectional turning propulsion device 42, if the above-mentioned turning moment cannot be obtained by the second calculating means 52, the current turning angle of each omnidirectional turning propulsion device 42 becomes A slight adjustment is made by the propulsion device turning means attached to the direction turning propulsion device 42.
  • the third calculation means 53 is provided with all the components for performing the required horizontal movement of the self-propelled barge 30 when the second calculation means 52 can obtain the turning moment. It has a function to calculate the thrust of the directional turning thruster 42.
  • the fourth arithmetic means 54 has a function of adding the thrust of each omnidirectional thruster 42 obtained by the second arithmetic means 52 and the third arithmetic means 53.
  • the thrust adjusting means attached to each omnidirectional thruster 42 must be A command is sent from a command means in the control arithmetic unit 48.
  • the casing pipe 12 becomes vertical the self-propelled hull 30 enters so that the upper end portion of the casing pipe 12 enters the intake groove 33 of the self-propelled hull 30.
  • the self-propelled barge 30 is allowed to slide up and down so as to be allowed to move up and down the sea surface 17 due to tides and waves.
  • the self-propelled barge 30 is transferred to the automatic fixed point holding system.
  • the boring machine 13 is driven while maintaining the fixed point, and the boring pipe 14 is used to excavate the seabed 10 to conduct a boring survey.
  • each omnidirectional thruster 42 In order to hold the casing pipe 12 approximately vertically during the boring survey, it is necessary to adjust the thrust of each omnidirectional thruster 42 to maintain the position and orientation of the self-propelled barge 30 at a fixed point. The necessary operations are described below, and the operation thereof is described below with reference to the flowchart of FIG.
  • the self-propelled hull 30 is calculated based on the self-propelled hull 30.
  • the position control device 49 for detecting the position of the self-propelled hull 30 and the detection signal The direction and magnitude of thrust required for ship 30 and The operation of calculating the turning moment of the 1 Q hull 30 is performed.
  • the second calculating means 52 performs an operation of calculating the magnitude of each thrust at the current turning angle of the plurality of omnidirectional thrusters 42. At the current turning angle of each omnidirectional turning propulsion device 42, if the turning moment cannot be obtained even when the thrust is changed, that is, has the turning moment been obtained? But
  • the third calculating means 53 when the turning moment can be obtained by the second calculating means 52, ie, has the turning moment been obtained?
  • a calculation is performed to obtain the thrust of each omnidirectional thruster 42 for horizontal movement necessary to return the self-propelled barge 30 to its current position.
  • the thrust of each omnidirectional thruster 42 obtained by the second arithmetic means 52 and the third arithmetic means 53 is added.
  • the operation of instructing the thrust adjusting means of each omnidirectional thruster 42 from the command means of the control arithmetic unit 48 ⁇ is effective. Done.
  • each omnidirectional thruster 42 has its thrust direction directed toward the center O of the hull as a reference state, and the turning angle of each omnidirectional thruster 42 from this reference state is It is suppressed to be as small as possible.
  • each omnidirectional thruster 42 depends greatly on the speed of the water flowing into the same omnidirectional thruster 42, and the higher the inflow speed, the smaller the thrust tends to be. If thrust flows into the omnidirectional thruster 42, sufficient thrust cannot be obtained.
  • the omnidirectional thrusters 4 2 Each of the omni-directional thrusters 42 has the required thrust in response to a command from the thrust adjusting means, since the water flow containing bubbles that generate air is prevented from flowing into the other omni-directional thrusters 42. As a result, the position and orientation of the self-propelled barge 30 can be properly maintained.
  • the self-propelled barge 30 is maintained at a fixed point by adjusting the hydraulic power of each omnidirectional thruster 42 while minimizing the adjustment of the turning angle of each omnidirectional thruster 42.
  • the response to the disturbance is made quickly.
  • a boring pipe 14 was attached to the center of the self-propelled barge 30 and the casing pipe 12 had a diameter of 1.
  • the direction of action of the external force was set to the front in order to detect the tidal current direction and always direct the direction of the self-propelled hull 30 to the tidal current direction.
  • the direction of the wave was changed by 20 degrees and the direction of the wind was changed by 30 degrees to confirm the detection error of the tidal current direction and the responsiveness of sudden changes in the wind direction.
  • the single pipe 12 had a streamlined cross section of 1.2 ⁇ 2.4 m in diameter as shown in FIG.
  • a casing support pipe 12 can be provided by providing a pipe support device 29 on the side surface of the self-propelled barge 30. Although not shown, it may be installed at the bow of the self-propelled barge 30.
  • the installation position of the casing pipes 12 is determined by the reason that the convergence time for maintaining the fixed point of the self-propelled barge 30 is fast, the necessary materials for boring, and the installation space of the equipment is large.
  • the center of the self-propelled barge 30 is the best.
  • the self-propelled barge 30 is provided with a total of four omnidirectional thrusters 42, one at each of the forward and rear corners of the stern.
  • the present invention is not limited to this.
  • one omnidirectional turning propulsion unit 42 having thrust in the forward direction is provided at each of the two corners of the stern of the self-propelled barge 30.
  • a total of three omnidirectional thrusters 42 having a thrust in the left-right direction at the center of the bow may be provided.
  • the method of investigating the seabed ground according to the present invention can be applied to a deep pier (100 to 200 m), a tidal current (approximately 5 knots), a pier to the seabed ground, and other structures. It is suitable to be used when conducting surveys on the seabed under the seabed while moving from one survey point to another every few weeks, such as a preliminary survey of the seabed for the construction of a submarine ground.

Abstract

A method of seafloor survey using a pontoon moving at short time intervals on the surface of a deep sea of strong tidal current, which can be applied economically and accurately in a simple constitution requiring a smaller sea surface area, as compared with a conventional method. To attain this method, a plurality of omnidirectional screw propellers (42) are provided on the bow and stern of a self-propelling pontoon (30). The motors (43) for these propellers (42) are controlled by a position controller (49) comprising position measuring unit (45), gyrocompass (46), an anemoscope-anemometer (47) and a control arithmetic unit (48), whereby the self-propelling pontoon (30) is automatically retained in a predetermined site. After a casing pipe (12) has been fixed to the self-propelling pontoon (30) via a pipe support unit (29) and extended and set up substantially perpendicularly on a survey site, a boring machine (13) is driven as the self-propelling pontoon (30) is retained on a predetermined site by an automatic retaining system, in order to excavate the sea bottom (10) by a boring pipe (14).

Description

明 細 書 海底地盤調査方法 技術分野  Description Submarine ground survey method Technical field
本発明は、 水深の深い(1 0 0〜 2 0 0 m)、 潮流の速い(5ノッ ト程 度)海上において、 数週間から数か月間という短期間毎に調査地点を移 動しながら海底地盤の海底ボーリング調査を実施するための海底地盤調 査方法に関するものである。 背景技術  The present invention is based on the fact that the survey point is moved over a short period of several weeks to several months on the sea where the water depth is deep (100 to 200 m) and the tidal current is fast (about 5 knots). It relates to a seabed survey method for conducting a seabed drilling survey of the ground. Background art
海底地盤調査のための海上ボーリングには、 水深、 潮流、 波、 海底地 形などの自然環境の制約と、 漁業上の海の利用状況、 船舶の航行などの 社会環境の制約がある。  Offshore drilling for undersea ground surveys is restricted by the natural environment, such as water depth, tides, waves, and seafloor topography, and by the social environment, such as the use of the sea for fishing and navigation of ships.
海上ボーリングの方式は、 作業足場を主体として分類されているが、 その理由は、 前記制約のうち、 特に水深、 潮流などの自然条件によって 大きく左右されるからである。  The offshore drilling method is classified mainly based on work scaffolds, because it is greatly affected by natural conditions such as water depth and tidal current among the above restrictions.
この作業足場には、 種々の方式があるが、 代表的な方式として、 第 1 0図(a )に示す海上設置式、 第 1 0図(b )に示す海底着座式、 第 1 0図 ( c )に示す船上式などがある。  There are various methods for this work scaffold. Typical methods are the offshore installation type shown in Fig. 10 (a), the seabed sitting type shown in Fig. 10 (b), and Fig. 10 ( c) There are shipboard types as shown in c).
( a )海上設置式: 固定または設置式足場 1 1は、 型銅や銅管を用い、 溶接、 ボルトなどによって接続し、 櫓式に組み立てて海底 1 0に直接設 置し、 この固定または設置式足場 1 1の上部のベース 1 6にボーリング 機械 1 3を搭載し、 中心にケーシングパイプ 1 2を設け、 その中にボー リングパイプ 1 4を通して海底 1 0を掘進するものである。 現在では、 この方式が海上足場の主流になっている。 水深の浅いものから 3 0〜4 0 m程度までの使用例がある。 (a) Offshore installation type: Fixed or installation type scaffolds 11 are connected by welding, bolts, etc. using copper or copper pipes, assembled in a turret type, and directly installed on the seabed 10 and fixed or installed. A boring machine 13 is mounted on a base 16 on the upper part of the scaffold 11, a casing pipe 12 is provided at the center, and the seabed 10 is dug through the boring pipe 14 in the casing pipe 12. Currently, This method has become the mainstream of offshore scaffolds. There are examples of use from shallow water to about 30 to 40 m.
( b )海底着座式 :海上からの調査では、 水深および海水の動揺が調査 の大きな障害となるような場合、 この障害を除くためにボーリング機械 1 3を海底に沈め、 調査船 1 8からのリモートコントロールによリ掘進 するのがこの方式である。 さらに詳しくは、 ボーリング機械 1 3を載せ たベース 1 6をレグ装置 1 5によリ海底 1 0に固定し、 海面 1 7には制 御装置 1 9を搭載した調査船 1 8を浮かべ、 この調査船 1 8を海底のベ ース 1 6に回り止めワイヤ 2 0によリ連結しておく。 そして調査船 1 8 からケーブル 2 1により電力や制御信号を送り、 海底のボーリング機械 1 3を制御しよう とするものである。  (b) Seabed-bottomed type: In the survey from the sea, if the depth of the water and the sway of the seawater are major obstacles to the survey, the boring machine 13 should be submerged in the seabed to eliminate these obstacles, and the survey vessel 18 This is the method of excavating by remote control. In more detail, the base 16 on which the boring machine 13 is mounted is fixed to the seabed 10 by the leg device 15, and the survey ship 18 equipped with the control device 19 is floated on the sea surface 17, The research vessel 18 is connected to the seabed base 16 by a detent wire 20. Then, power and control signals are sent from the research vessel 18 via the cable 21 to control the boring machine 13 on the seabed.
( c )船上式:水深が深くなると、 前記海上設置式や海底着座式は、 費 用がかかリすぎるので、 船上やフロートからのボ一リングが有利となる。 この方式は、 船上やフロートの動揺を防ぐために、 海底 1 0にアンカー ブロック 2 2や錨を沈め、 回リ止めワイヤ 2 0によって調査船 1 8 (ま たはフロート)を固定し、 この調査船 1 8に搭載したボーリング機械 1 3によって操作するものである。  (c) Shipboard type: When the water depth becomes deeper, the above sea-mounted type and seabed-mounted type are too expensive, so that boring from the ship or from the float is advantageous. In this method, anchor blocks 22 and anchors are submerged on the seabed 10 to prevent rocking of the ship and the float, and the survey ship 18 (or float) is fixed by the detent wire 20 and the survey ship It is operated by a boring machine 13 mounted on 18.
以上のような各方式には、 大水深、 強潮流の地点において、 短期間毎 に調査地点を移動しながら海底ボーリング調査を実施する場合、 つぎの ような問題があった。  Each of the above methods has the following problems when conducting seabed drilling surveys at a site with large water depth and strong tide while moving to the survey site every short period.
1 0図(a )に示す海上設置式は、 組立て設置に大きな費用がかかる ので、 長期間のボーリングの場合に適しているが、 短期間毎に調査地点 を移動しながらのボーリング調査には適していない。 また、 水深が 1 0 O m以上で、 強潮流の場合には費用がかかりすぎる。  The offshore installation type shown in Fig. 10 (a) is suitable for long-term drilling because of the high cost of assembling and installation, but is also suitable for boring surveys where the survey point is moved every short period. Not. Also, if the water depth is more than 10 Om and the current is strong, the cost is too high.
第 1 0図(b )に示す海底着座式は、 水深が 1 0 0 mを越えるような場 合にも使用されているが、 ボーリ ング機械 1 3が海底に設置されるため 潜水しての工事が必要で、 また全自動、 または半自動制御となるので、 制御が面倒なばかリカ、、 機構が複雑で高価になり、 長期間のボーリ ング の場合に適しているが、 短期間毎に調査地点を移動しながらのボーリン グ調査には適していない。 The seabed seating type shown in Fig. 10 (b) is also used when the water depth exceeds 100m, but since the boring machine 13 is installed on the seabed, Dive work is required, and full-automatic or semi-automatic control is required.Since the control is complicated, the mechanism is complicated and expensive, and it is suitable for long-term boring. It is not suitable for boring surveys where the survey points are moved every time.
第 1 0図(c )に示す船上式は、 装置が簡便で、 調査点移動も容易であ るが、 動揺が大きく、 調査精度に難点がある。 海底 1 0の硬さによって は、 ボーリングパイプ 1 4が垂直に対し 3度以上傾く と破損するおそれ があるので、 利用範囲が限られてしまう。 また、 回リ止めワイヤ 2 0は、 一般に水深の 3倍程度の長さを必要とするので、 たとえば水深が 1 0 0 mとすると、 縦 X横で 6 0 O m X 6 0 O mもの海域を占拠することとな リ、 船舶の航行の邪魔になったリ、 漁業権の侵害の問題などがある。 本発明は、 大水深、 強潮流の海上を短期間毎に移動しながら海底ボー リング調査を実施する場合において、 費用があまりかからず、 機構が簡 単な方法を提供することを目的とするものである。  The shipboard type shown in Fig. 10 (c) is simple in equipment and easy to move the survey point, but has large fluctuations and difficulties in survey accuracy. Depending on the hardness of the seabed 10, if the boring pipe 14 is tilted more than 3 degrees with respect to the vertical, it may be damaged, so the range of use is limited. In addition, since the detent wire 20 generally needs to be about three times as long as the water depth, for example, if the water depth is 100 m, the sea area is as large as 60 Om X 60 Om vertically and horizontally. Occupying the river, obstructing the navigation of ships, and infringement of fishing rights. An object of the present invention is to provide a method that is inexpensive and has a simple mechanism when conducting a seabed drilling survey while moving over the sea at high water depths and strong currents at short intervals. Things.
また、 本発明は、 自航台船による装置の簡便な方法でぁリながら、 動 揺が極めて小さく、 調査精度が高い方法を提供することを目的とするも のである。  It is another object of the present invention to provide a method in which the fluctuation is extremely small and the survey accuracy is high, while using a simple method of the apparatus using the self-propelled barge.
さらに、 本発明は、 自航台船を係留するための回リ止めワイヤなどに ょリ、 海域を占拠したり、 船舶の航行の邪魔をしたり、 漁業権を侵害し たリすることのない方法を提供することを目的とするものである。 発明の開示  In addition, the present invention does not use a detent wire for mooring a self-propelled barge, occupy the sea area, hinder the navigation of the ship, or infringe the fishing right It is intended to provide a method. Disclosure of the invention
本発明は、 自航台船 3 0の船頭と船尾に複数の全方向旋回推進機 4 2 を装備し、 これら複数の全方向旋回推進機 4 2は、 それぞれモータ 4 3 に連結され、 これらのモータ 4 3は、 位置測定装置 4 5、 ジャイロコン パス 4 6、 風向風速計 4 7、 制御演算装置 4 8からなる位置制御装置 4 9によリ自動定点保持されるようになっているものからなり、 この自航 台船 3 0に、 パイプ支持装置 2 9によリケ一シングパイプ 1 2を設置し て海底 1 0の調査をするようにしたことを特徴とする海底地盤調査方法 である。 The present invention is provided with a plurality of omnidirectional thrusters 42 at the head and stern of the self-propelled barge 30, and the plurality of omnidirectional thrusters 42 are respectively connected to motors 43. The motor 43 is a position control device consisting of a position measuring device 45, a gyro compass 46, an anemometer 47, and a control arithmetic device 48. The self-propelled barge 30 is equipped with a pipe supporting device 12 to install a ricketing pipe 12 on the self-propelled barge 30 to investigate the seabed 10. This is the method of surveying the seabed ground.
以上のような構成により、 ケーシングパイプ 1 2を調査地点に略垂直 に建て込んだら、 自航台船 3 0を自動定点保持システムによリ、 定点に 保持しながらボーリ ング機械 1 3を駆動し、 ボーリングパイブ 1 4で海 底 1 0を掘削してボーリング調査を行う。  With the above configuration, after the casing pipe 12 is built almost vertically at the survey point, the boring machine 13 is driven while the self-propelled barge 30 is held at a fixed point by the automatic fixed point holding system. A drilling survey is conducted by drilling the seabed 10 with a boring pipe 14.
ボーリング調査に際し、 ケーシングパイプ 1 2を略垂直に保持するた めには、 各全方向旋回推進機 4 2の推力を調整して自航台船 3 0の位置 と方位を定点に保持する。 図面の簡単な説明  In order to keep the casing pipe 12 approximately vertical during the boring survey, the thrust of each omnidirectional thruster 42 is adjusted to maintain the position and orientation of the self-propelled barge 30 at a fixed point. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明による海底地盤調査方法を説明するための自航台船 3 0にケーシングパイプ 1 2を設置した状態の正面図である。  FIG. 1 is a front view showing a state in which a casing pipe 12 is installed on a self-propelled barge 30 for explaining a seabed investigation method according to the present invention.
第 2図は、 第 1図の平面図である。  FIG. 2 is a plan view of FIG.
第 3図は、 本発明による海底地盤調査方法に使用したケーシングパイ ブ 1 2の横断面図である。  FIG. 3 is a cross-sectional view of the casing pipe 12 used in the seabed survey method according to the present invention.
第 4図は、 本発明による海底地盤調査方法に使用したケ一シングパイ プ 1 2とシンカー 3 4の連結状態を示す一部切リ欠いた断面図である。 第 5図 (a ) ( b ) ( c ) ( d ) は、 ケーシングパイプ 1 2を調査地 点に設置するための作業順序を示した説明図である。  FIG. 4 is a partially cutaway sectional view showing a connection state of the casing pipe 12 and the sinker 34 used in the seabed survey method according to the present invention. FIG. 5 (a), (b), (c) and (d) are explanatory diagrams showing the work sequence for installing the casing pipe 12 at the survey site.
第 6図は、 自航台船 3 0の定点保持システムの流れ図である。  FIG. 6 is a flowchart of the fixed point holding system of the self-propelled barge 30.
第 7図(a )は、 自航台船 3 0の定点保持システムによるケーシングパ イブ 1 2の目的地点に収束するまでの挙動を示す波形図である。  FIG. 7 (a) is a waveform diagram showing the behavior of the self-propelled barge 30 until it converges to the destination point of the casing pipe 12 by the fixed point holding system.
第 7図(b )は、 定点位置にある自航台船 3 0とケーシングパイプ 1 2 に外力が加えられたときの定点保持システムによるケーシングパイプ 1 2の目的地点に収束するまでの挙動を示す波形図である。 Fig. 7 (b) shows the self-propelled barge 30 and the casing pipe 1 2 FIG. 9 is a waveform diagram showing a behavior of the fixed point holding system until the casing pipe 12 converges to a destination point when an external force is applied to the casing pipe.
第 8図は、 ケ一シングパイプ 1 2を自航台船 3 0の側面に設置した例 を示す平面図である。  FIG. 8 is a plan view showing an example in which the casing pipe 12 is installed on the side surface of the self-propelled barge 30.
第 9図は、 自航台船 3 0に 3個の全方向旋回推進機 4 2を具備した例 を示す平面図である。  FIG. 9 is a plan view showing an example in which the self-propelled barge 30 is provided with three omnidirectional thrusters 42.
第 1 0図は、 従来の海上ボ一リングのための海上足場の異なる例を示 すもので、 第 1 0図(a )は、 海上設置式、 第 1 0図(b )は、 海底着座式、 第 1 0図(c )は、 船上式の説明図である。 発明を実施するための最良の形態  Fig. 10 shows different examples of conventional offshore scaffolds for offshore drilling. Fig. 10 (a) is a sea-based scaffold, and Fig. 10 (b) is a seat on the seabed. Formula, FIG. 10 (c) is an explanatory diagram of the shipboard type. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図ないし第 4図において、 3 0は、 船舶用自動定点保持システム を具備した自航台船である。 この自航台船 3 0は、 たとえば、 半双胴型 をなし、 各双胴の船頭と船尾の 4隅にそれぞれ 1個ずつ、 計 4個の全方 向旋回推進機 4 2が装備されている。 これらの全方向旋回推進機 4 2は、 それぞれモータ 4 3に連結され、 これらのモータ 4 3は、 位置測定装置 4 5、 ジャイ ロコンパス 4 6、 風向風速計 4 7、 制御演算装置 4 8から なる位置制御装置 4 9によリ自動定点保持されるようになっている。 前記自航台船 3 0の上甲板には、 中央にボーリング機械 1 3とホイス ト 2 8が装備され、 船尾に駆動装置 4 4が装備されている。  In FIGS. 1 to 4, reference numeral 30 denotes a self-propelled barge equipped with an automatic fixed point holding system for a ship. This self-propelled barge 30 is, for example, a half catamaran type, and is equipped with a total of four omnidirectional thrusters 42, one at each of the four corners of the bow and stern of each catamaran. . Each of these omnidirectional thrusters 42 is connected to a motor 43, and these motors 43 consist of a position measuring device 45, a gyro compass 46, a wind anemometer 47, and a control arithmetic device 48. The position control device 49 automatically holds the fixed point. The upper deck of the self-propelled barge 30 is equipped with a boring machine 13 and a hoist 28 at the center, and a drive unit 44 at the stern.
前記 4隅に装備した各全方向旋回推進機 4 2とモータ 4 3は、 1台の 主機関と発電機によリ駆動される 4台の電動推進機と して構成すること ができるが、 その他、 各全方向旋回推進機 4 2毎に独立した主機関を 1 台ずつ装備することもできる。  Each of the omnidirectional propulsion units 42 and the motors 43 provided in the four corners can be configured as four electric propulsion units driven by one main engine and a generator. In addition, one independent main engine can be provided for each omnidirectional thruster 42.
前記全方向旋回推進機 4 2は、 可変ピッチプロペラを採用することに よリ、 動力の節減と応答時間の短縮による定点保持精度の向上が図られ a The omnidirectional turning propulsion device 42 employs a variable pitch propeller to save power and improve response time by shortening response time. a
6 る。  6
前記自航台船 3 0の船体構造は、 ケーシングパイプ 1 2の支持位置( 中央、 前方、 側方など)によって定点保持精度が異なると考えられるが、 中央支持方法が、 ケーシングパイプ 1 2の回リに作業スペースが大きく とれ、 作業性もよく、 最も優れている。  The hull structure of the self-propelled barge 30 is considered to have different fixed point holding accuracy depending on the support position of the casing pipe 12 (center, front, side, etc.). The work space is large and the workability is good.
このため、 自航台船 3 0の船体構造は、 船首側から船体中心部まで呼 び込み溝 3 3を形成した半双胴型となす。 また、 船体寸法は、 水深 1 0 0〜 2 0 O mとした場合、 長さ 5 0〜6 0 m、 幅 1 5〜2 0 m程度とす る。  For this reason, the hull structure of the self-propelled barge 30 is a semi-twin-hull type in which the entrance groove 33 is formed from the bow side to the center of the hull. The hull dimensions are about 50 to 60 m in length and about 15 to 20 m in width when the water depth is 100 to 20 Om.
前記自航台船 3 0のパイプ支持装置 2 9によリ前記ケーシングパイプ The casing pipe is provided by the pipe support device 29 of the self-propelled barge 30.
1 2が垂直に取り付けられ、 このケーシングパイブ 1 2の下端部は、 海 底 1 0に固定されるシンカー 3 4に連結される。 1 and 2 are vertically mounted, and the lower end of the casing pipe 12 is connected to a sinker 34 fixed to the seabed 10.
このケ一シングパイプ 1 2の受ける潮流力が自航台船 3 0の規模を決 定する支配的な要因となるので、 ケーシングパイプ 1 2の断面を、 第 3 図に示すような流線形とすることによリ、 潮流力を円形断面の場合の 3 分の 1に低減することができる。  Since the tidal force received by the casing pipe 12 is a dominant factor that determines the size of the self-propelled barge 30, the cross section of the casing pipe 12 is made to have a streamlined shape as shown in Fig. 3. By doing so, the tidal force can be reduced to one-third that of a circular section.
この場合、 ケーシングパイプ 1 2は、 自動的に最も潮流力の少ない方 向に向く ように、 海底 1 0のシンカー 3 4の連結部分と、 自航台船 3 0 のパイプ支持装置 2 9の連結部分を、 回転自在な構造とする。  In this case, the connecting portion of the sinker 34 on the seabed 10 and the pipe supporting device 29 of the self-propelled barge 30 are automatically connected so that the casing pipe 12 automatically turns to the direction with the least tidal force. The part has a rotatable structure.
具体的には、 第 3図および第 4図に示すように、 ケーシングパイプ 1 Specifically, as shown in Figs. 3 and 4, the casing pipe 1
2の長さ方向の一側部に流線翼部 3 8を一体に設け、 内部に内側パイプ 2 7を収納した 2重構造として浮力を持たせて、 海水と略同一比重にす る。 A streamline wing section 38 is integrally provided on one side in the length direction of 2, and a buoyancy is provided as a double structure in which an inner pipe 27 is housed so that the specific gravity is substantially the same as that of seawater.
前記ケーシングパイプ 1 2を回転自在に連結する構造と して、 第 4図 に示すように、 ケーシングパイプ 1 2の下端部に一体に設けたボール部 4 0と、 シンカー 3 4に設けたボール受け部 4 1 とからなるボ一ルジョ ? As a structure for rotatably connecting the casing pipe 12, as shown in FIG. 4, a ball part 40 integrally provided at the lower end of the casing pipe 12 and a ball receiver provided on the sinker 34. Part 4 consisting of part 1 ?
イン ト 3 9にて全方向に回転自在に支持されている。 第 2図に示す自航 台船 3 0のパイプ支持装置 2 9側にても同様の構成によリ支持されてい る。 It is supported rotatably in all directions at point 39. A similar configuration is also supported on the pipe support device 29 side of the self-propelled barge 30 shown in FIG.
また、 前記ケーシングパイプ 1 2の上方部には、 第 1図に示すように、 ケーシングパイプ 1 2が海中で垂直に自立するためのブイ 3 5が取リ付 けられる。 ただし、 このブイ 3 5は、 本発明では特に必須ではない。 前記船舶用自動定点保持システムをさらに詳しく説明する。  As shown in FIG. 1, a buoy 35 is provided above the casing pipe 12 so that the casing pipe 12 can stand vertically vertically in the sea. However, the buoy 35 is not particularly essential in the present invention. The ship automatic fixed point holding system will be described in more detail.
第 1図および第 2図において、 前記自航台船 3 0には、 各双胴の船頭 と船尾の 4隅にそれぞれ 1個ずつ、 計 4個の全方向旋回推進機 4 2が装 備され、 これらの全方向旋回推進機 4 2は、 それぞれ自航台船 3 0の中 心 Oへ向けて推力を発生して基準状態で同じ水力を発生することにょリ、 潮流や風の外乱がない限リ 自航台船 3 0の位置および方位が保持される ようになつている。  In FIGS. 1 and 2, the self-propelled barge 30 is equipped with four omnidirectional thrusters 42, one at each of the four corners of the hull and stern of each catamaran. However, these omnidirectional thrusters 42 generate thrust toward the center O of the self-propelled barge 30 and generate the same hydraulic power in the standard state, and there is no tidal current or wind disturbance. The position and bearing of the self-propelled barge 30 are maintained.
なお、 第 2図において、 符号 aは、 自航台船 3 0の中心 Oへ向いた各 全方向旋回推進機 4 2の推力の方向を示し、 符号 bは、 前記推力 aを得 るための各全方向旋回推進機 4 2から発生する水流の方向を示している また、 各全方向旋回推進機 4 2には、 推力の大きさを調整し得る推力調 整手段と、 推力の方向を調整し得る推進機旋回手段とを具備している。 本自動定点保持システムには、 外乱に応じて 4個の全方向旋回推進機 4 2の各推力の方向および大きさを調整して自航台船 3 0の位置および 方位を保持できるように、 第 1 の演算手段 5 1、 第 2の演算手段 5 2、 第 3の演算手段 5 3、 第 4の演算手段 5 4を具備した制御演算装置 4 8 が設けられている。  In FIG. 2, the symbol a indicates the direction of the thrust of each omnidirectional thruster 42 toward the center O of the self-propelled barge 30, and the symbol b indicates the thrust for obtaining the thrust a. Shows the direction of water flow generated from each omnidirectional thruster 42.Each omnidirectional thruster 42 has thrust adjusting means capable of adjusting the magnitude of thrust, and thrust direction adjusted. Propulsion device turning means. This automatic fixed point holding system is designed to maintain the position and orientation of the self-propelled barge 30 by adjusting the direction and magnitude of each thrust of the four omnidirectional thrusters 42 according to the disturbance. A control arithmetic unit 48 including first arithmetic means 51, second arithmetic means 52, third arithmetic means 53, and fourth arithmetic means 54 is provided.
前記第 1 の演算手段 5 1は、 自航台船 3 0の位置測定装置 4 5とジャ イロコンパス 4 6からの検出信号に基づき、 自航台船 3 0の定点保持に 必要な推力の方向および大きさならびに回頭モ一メントを演算する機能 を有している。 The first arithmetic means 51 is configured to determine the direction of the thrust required for maintaining a fixed point of the self-propelled barge 30 based on the detection signals from the position measuring device 45 of the self-propelled barge 30 and the gyro compass 46. Function to calculate the size and turning moment have.
前記第 2の演算手段 5 2は、 前記第 1の演算手段 5 1で求められた回 頭モーメン トを得るための各全方向旋回推進機 4 2の現在旋回角度での 各推力を演算する機能を具備している。 そして、 各全方向旋回推進機 4 2の現在旋回角度では、 第 2の演算手段 5 2で上記回頭モーメントが得 られない場合に、 各全方向旋回推進機 4 2の現在旋回角度が、 この全方 向旋回推進機 4 2に付設された前記推進機旋回手段によって少しだけ調 整されるようになっている。  The second calculating means 52 has a function of calculating each thrust at the current turning angle of each omnidirectional thruster 42 to obtain the turning moment obtained by the first calculating means 51. Is provided. Then, with the current turning angle of each omnidirectional turning propulsion device 42, if the above-mentioned turning moment cannot be obtained by the second calculating means 52, the current turning angle of each omnidirectional turning propulsion device 42 becomes A slight adjustment is made by the propulsion device turning means attached to the direction turning propulsion device 42.
前記第 3の演算手段 5 3は、 前記第 2の演算手段 5 2で上記回頭モー メントが得られるようになった場合に、 自航台船 3 0の所要の水平移動 を行うための各全方向旋回推進機 4 2の推力を演算する機能を具備して いる。  The third calculation means 53 is provided with all the components for performing the required horizontal movement of the self-propelled barge 30 when the second calculation means 52 can obtain the turning moment. It has a function to calculate the thrust of the directional turning thruster 42.
前記第 4の演算手段 5 4は、 前記第 2の演算手段 5 2と第 3の演算手 段 5 3でそれぞれ求められた各全方向旋回推進機 4 2の推力の加算を行 う機能を備えてぉリ、 この第 4の演算手段 5 4で求められた各全方向旋 回推進機 4 2の推力を実現するように、 各全方向旋回推進機 4 2に付設 された推力調整手段へ、 前記制御演算装置 4 8内の指令手段から指令が 送られるようになっている。  The fourth arithmetic means 54 has a function of adding the thrust of each omnidirectional thruster 42 obtained by the second arithmetic means 52 and the third arithmetic means 53. In order to realize the thrust of each omnidirectional thruster 42 obtained by the fourth arithmetic means 54, the thrust adjusting means attached to each omnidirectional thruster 42 must be A command is sent from a command means in the control arithmetic unit 48.
つぎに、 第 5図 (a ) ( b ) ( c ) ( d ) によリ、 ケーシングパイプ 1 2を調査地点まで移動して設置する作業順序を説明する。  Next, referring to FIGS. 5 (a), (b), (c), and (d), the work sequence of moving the casing pipe 12 to the survey point and installing it will be described.
第 5図(a ) : ケ一シングパイプ 1 2の下端部に連結されたシンカー 3 4側を、 揚錨船 3 1のクレーン 3 2の吊り上げワイヤ 3 6により吊リ下 げ、 上端部をブイ 3 5で浮かし、 このケーシングパイプ 1 2が海面上で 略水平になるようにして揚錨船 3 1で調査地点まで曳航する。 このとき. ケーシングパイプ 1 2の上端部は、 連結ワイヤ 3 7で自航台船 3 0に連 結しておく。 第 5図( b ) :調査地点に到着したら、 ク レーン 3 2の吊リ上げワイヤ 3 6を繰り出す。 すると、 シンカー 3 4は、 自重にて海中に沈み込み、 ケーシングパイプ 1 2の上端はブイ 3 5で浮いたままとなり、 ケーシン グパイプ 1 2は次第に垂直になる。 Fig. 5 (a): The sinker 34 connected to the lower end of the casing pipe 12 is suspended by the lifting wire 36 of the crane 32 of the anchorage vessel 31 and the upper end is buoyed. Float at 35, and tow up to the survey point with a docking boat 31 so that the casing pipe 12 is substantially horizontal on the sea surface. At this time, the upper end of the casing pipe 12 is connected to the self-propelled barge 30 by a connecting wire 37. Fig. 5 (b): When the vehicle arrives at the survey site, the lifting wire 36 of the crane 32 is paid out. Then, the sinker 34 sinks underwater by its own weight, the upper end of the casing pipe 12 remains floating on the buoy 35, and the casing pipe 12 gradually becomes vertical.
第 5図( c ) : シン力一 3 4が調査地点の上に落下してケーシングパイ プ 1 2は略垂直に建て込まれる。 ケーシングパイプ 1 2が垂直になった ら、 ケーシングパイプ 1 2の上端部分が自航台船 3 0の呼び込み溝 3 3 に入り込むように自航台船 3 0を進入する。  Fig. 5 (c): Shin power 34 falls on the survey point and casing pipe 12 is built almost vertically. When the casing pipe 12 becomes vertical, the self-propelled hull 30 enters so that the upper end portion of the casing pipe 12 enters the intake groove 33 of the self-propelled hull 30.
第 5図(d ) : ケーシングパイプ 1 2が自航台船 3 0のパイプ支持装置 2 9に位置するまで自航台船 3 0を進入してケーシングパイプ 1 2を連 結する。 ケーシングパイブ 1 2をパイプ支持装置 2 9に連結する際、 自 航台船 3 0が潮の干満や波による海面 1 7の上下するのを許容できるよ うに上下スライ ド可能にする。  Fig. 5 (d): The self-propelled hull 30 enters and connects the casing pipes 12 until the casing pipe 12 is positioned on the pipe support device 29 of the self-propelled hull 30. When connecting the casing pipe 12 to the pipe support device 29, the self-propelled barge 30 is allowed to slide up and down so as to be allowed to move up and down the sea surface 17 due to tides and waves.
以上、 第 5図 ( a ) ( b ) ( c ) ( d ) によリケーシングパイプ 1 2 を調査地点に略垂直に建て込んだら、 自航台船 3 0を自動定点保持シス テムにょリ、 定点に保持しながらボーリング機械 1 3を駆動し、 ボーリ ングパイプ 1 4で海底 1 0を掘削してボーリング調査を行う。  As described above, after the recapping pipe 12 is erected almost vertically at the survey point according to Figs. 5 (a), (b), (c), and (d), the self-propelled barge 30 is transferred to the automatic fixed point holding system. The boring machine 13 is driven while maintaining the fixed point, and the boring pipe 14 is used to excavate the seabed 10 to conduct a boring survey.
ボーリング調査に際し、 ケーシングパイブ 1 2を略垂直に保持するた めには、 各全方向旋回推進機 4 2の推力を調整して自航台船 3 0の位置 と方位を定点に保持することが必要でぁリ、 そのための作用を第 6図の 流れ図によリ以下に説明する。  In order to hold the casing pipe 12 approximately vertically during the boring survey, it is necessary to adjust the thrust of each omnidirectional thruster 42 to maintain the position and orientation of the self-propelled barge 30 at a fixed point. The necessary operations are described below, and the operation thereof is described below with reference to the flowchart of FIG.
第 1の演算手段 5 1では、 自航台船 3 0が潮流や風の外乱を受けて、 自航台船 3 0の位置および方位に変化が生じると、 自航台船 3 0をもと の状態に戻すために、 自航台船 3 0の位置を検出する位置制御装置 4 9 と自航台船 3 0の方位を検出するジャィ口コンパス 4 6からの検出信号 に基づき、 自航台船 3 0に対する必要な推力の方向および大きさと、 自 1 Q 航台船 3 0の回頭モーメントとを演算する作用が行われる。 In the first calculation means 51, when the position and direction of the self-propelled hull 30 are affected by the tidal current and wind disturbance, the self-propelled hull 30 is calculated based on the self-propelled hull 30. In order to return to the state of self-propelled hull 30, the position control device 49 for detecting the position of the self-propelled hull 30 and the detection signal The direction and magnitude of thrust required for ship 30 and The operation of calculating the turning moment of the 1 Q hull 30 is performed.
ついで、 第 2の演算手段 5 2では、 複数の全方向旋回推進機 4 2の現 在旋回角度での各推力の大きさを演算する作用が行われる。 各全方向旋 回推進機 4 2の現在旋回角度では、 各推力を変化させても前記回頭モー メン トが得られない場合、 すなわち、 回頭モーメ ン トが得られたか?が Next, the second calculating means 52 performs an operation of calculating the magnitude of each thrust at the current turning angle of the plurality of omnidirectional thrusters 42. At the current turning angle of each omnidirectional turning propulsion device 42, if the turning moment cannot be obtained even when the thrust is changed, that is, has the turning moment been obtained? But
N Oの場合には、 推進機旋回手段によリ各全方向旋回推進機 4 2の旋回 角度を少しだけ調整する作用が行われる。 In the case of NO, an operation of slightly adjusting the turning angle of each omnidirectional turning propulsion device 42 is performed by the propulsion device turning means.
第 3の演算手段 5 3では、 第 2の演算手段 5 2で前記回頭モ一メ ント が得られるようになった場合、 すなわち、 回頭モーメントが得られたか? が Y E Sの場合には、 自航台船 3 0を現位置に戻すのに必要な水平移動 のための各全方向旋回推進機 4 2の推力を求める演算が行われる。  In the third calculating means 53, when the turning moment can be obtained by the second calculating means 52, ie, has the turning moment been obtained? In the case of YS, a calculation is performed to obtain the thrust of each omnidirectional thruster 42 for horizontal movement necessary to return the self-propelled barge 30 to its current position.
第 4の演算手段 5 4では、 前記第 2の演算手段 5 2と第 3の演算手段 5 3で得られた各全方向旋回推進機 4 2についての推力の加算が行われ る。 このようにして得られた各全方向旋回推進機 4 2の推力を実現する ように、 制御演算装置 4 8內の指令手段から各全方向旋回推進機 4 2の 推力調整手段に指令する作用が行われる。  In the fourth arithmetic means 54, the thrust of each omnidirectional thruster 42 obtained by the second arithmetic means 52 and the third arithmetic means 53 is added. In order to realize the thrust of each omnidirectional thruster 42 obtained in this way, the operation of instructing the thrust adjusting means of each omnidirectional thruster 42 from the command means of the control arithmetic unit 48 內 is effective. Done.
以上の作用により、 各全方向旋回推進機 4 2は、 その推力方向が船体 中心 Oに向けられるのを基準状態にして、 この基準状態からの各全方向 旋回推進機 4 2の旋回角度は、 極力小さくなるように抑制される。  With the above operation, each omnidirectional thruster 42 has its thrust direction directed toward the center O of the hull as a reference state, and the turning angle of each omnidirectional thruster 42 from this reference state is It is suppressed to be as small as possible.
したがって、 各全方向旋回推進機 4 2から発生する気泡を含んだ水流 は, 他の全方向旋回推進機 4 2へ吸いこまれることはない。  Therefore, the water flow containing bubbles generated from each omnidirectional thruster 42 is not sucked into the other omnidirectional thrusters 42.
各全方向旋回推進機 4 2の推力は、 同じ全方向旋回推進機 4 2へ流入 する水流の速さに大きく左右され、 流入速度が大きいほど推力は小さく なるという傾向がぁリ、 また、 気泡が全方向旋回推進機 4 2に流入して も十分な推力が得られなくなる。  The thrust of each omnidirectional thruster 42 depends greatly on the speed of the water flowing into the same omnidirectional thruster 42, and the higher the inflow speed, the smaller the thrust tends to be. If thrust flows into the omnidirectional thruster 42, sufficient thrust cannot be obtained.
しかし、 上述のようなシステムの採用により各全方向旋回推進機 4 2 の生じる気泡を含んだ水流が他の全方向旋回推進機 4 2へ流入するのを 防止されるため、 各全方向旋回推進機 4 2は、 推力調整手段からの指令 に応じて所要の推力を確保できるようになり、 これにより 自航台船 3 0 の位置および方位が適確に保持されるようになる。 However, the omnidirectional thrusters 4 2 Each of the omni-directional thrusters 42 has the required thrust in response to a command from the thrust adjusting means, since the water flow containing bubbles that generate air is prevented from flowing into the other omni-directional thrusters 42. As a result, the position and orientation of the self-propelled barge 30 can be properly maintained.
このようにして、 各全方向旋回推進機 4 2の旋回角度の調整を極力小 さく しながら各全方向旋回推進機 4 2の水力の調整で自航台船 3 0の定 点保持が行われ、 外乱に対処する応答が迅速に行われる。  In this way, the self-propelled barge 30 is maintained at a fixed point by adjusting the hydraulic power of each omnidirectional thruster 42 while minimizing the adjustment of the turning angle of each omnidirectional thruster 42. The response to the disturbance is made quickly.
自航台船 3 0の定点保持の制御をしながらボーリング機械 1 3を操作 して海底 1 0の地盤を調査する。 その地点の調査が完了したら前述の第 5図の要領で他の調査地点に移動して同様に自航台船 3 0を定点に保持 しながら調査を繰リ返す。  Operate the boring machine 13 while controlling the fixed point of the self-propelled barge 30 to investigate the ground on the seabed 10. When the survey at that point is completed, move to another survey point as described in Fig. 5 and repeat the survey while maintaining the self-propelled barge 30 at the fixed point.
つぎに、 前記定点保持制御の精度を確認したところ、 以下のような結 果が得られたので、 それを説明する。  Next, when the accuracy of the fixed point holding control was confirmed, the following results were obtained, which will be described.
定点保持制御の精度を確認のための条件として、 ボーリ ングパイプ 1 4を自航台船 3 0の中央に取リ付け、 ケーシングパイプ 1 2は、 直径 1 . As a condition for confirming the accuracy of the fixed point holding control, a boring pipe 14 was attached to the center of the self-propelled barge 30 and the casing pipe 12 had a diameter of 1.
2 mの円形断面とし、 外力を、 潮流 5 k n、 風速 1 5 mZ秒、 波高 1 m とし、 前後に 3 m ( x =— 3 m)、 左右方向に 5 m ( y = 5 m )の位置から 収束するまでの挙動を求めた。 2 m circular cross section, external force, tidal current 5 kn, wind speed 15 mZ seconds, wave height 1 m, 3 m in front and back (x = 3 m), 5 m in left and right direction (y = 5 m) The behavior from to was converged.
なお、 自航台船 3 0の制御は、 潮流方向を検出して自航台船 3 0の方 位を常に潮流方向に向けるため、 前記外力の作用方向は、 すべて正面と した。  In the control of the self-propelled barge 30, the direction of action of the external force was set to the front in order to detect the tidal current direction and always direct the direction of the self-propelled hull 30 to the tidal current direction.
この結果、 第 7図(a )に示すように 4 0秒足らずで略収束した。  As a result, as shown in FIG. 7 (a), it almost converged in less than 40 seconds.
つづいて、 目標位置に収束している状態から、 波の方向を 2 0度、 風 の方向を 3 0度ステップ変化させて、 潮流方向の検出誤差と風向の急変 の応答性を確認した。  Next, while converging to the target position, the direction of the wave was changed by 20 degrees and the direction of the wind was changed by 30 degrees to confirm the detection error of the tidal current direction and the responsiveness of sudden changes in the wind direction.
この結果、 第 7図(b )に示すように約 5 0秒で略収束した。 なお、 ケ χ ^ 一シングパイプ 1 2は、 第 3図に示すような直径 1 . 2 X 2 . 4 mの流 線形断面とした。 As a result, almost converged in about 50 seconds as shown in FIG. 7 (b). In addition, The single pipe 12 had a streamlined cross section of 1.2 × 2.4 m in diameter as shown in FIG.
前記実施例では、 第 2図に示すように、 ケーシングパイプ 1 2を自航 台船 3 0の中央に設置した場合を説明した。 しかし、 これに限られるも のではなく、 第 8図に示すように、 自航台船 3 0の側面にパイプ支持装 置 2 9を設けてケ一シングパイプ 1 2を設置することもできる。 また、 図示しないが、 自航台船 3 0の船首に設置するようにしてもよい。  In the embodiment, as shown in FIG. 2, the case where the casing pipe 12 is installed at the center of the self-propelled barge 30 has been described. However, the present invention is not limited to this, and as shown in FIG. 8, a casing support pipe 12 can be provided by providing a pipe support device 29 on the side surface of the self-propelled barge 30. Although not shown, it may be installed at the bow of the self-propelled barge 30.
ただし、 ケーシングパイプ 1 2の設置位置は、 自航台船 3 0の定点保 持のための収束時間が速いこと、 ボーリングに必要な資材、 機材の設置 スペースの自由度が大きいなどの理由から、 自航台船 3 0の中央が最も 優れている。  However, the installation position of the casing pipes 12 is determined by the reason that the convergence time for maintaining the fixed point of the self-propelled barge 30 is fast, the necessary materials for boring, and the installation space of the equipment is large. The center of the self-propelled barge 30 is the best.
前記実施例では、 自航台船 3 0の船頭と船尾の 4隅にそれぞれ 1個ず つ、 計 4個の全方向旋回推進機 4 2が装備されている場合を説明した。 しかし、 これに限られるものではなく、 第 9図に示すように、 自航台船 3 0の船尾の 2隅に前方向に推力を有する全方向旋回推進機 4 2をそれ ぞれ 1個ずつ、 船首の中央に左右方向に推力を有する全方向旋回推進機 4 2を 1個、 計 3個の全方向旋回推進機 4 2を装備するようにしてもよ レ、。 産業上の利用可能性  In the above-described embodiment, a case has been described in which the self-propelled barge 30 is provided with a total of four omnidirectional thrusters 42, one at each of the forward and rear corners of the stern. However, the present invention is not limited to this. As shown in Fig. 9, one omnidirectional turning propulsion unit 42 having thrust in the forward direction is provided at each of the two corners of the stern of the self-propelled barge 30. However, a total of three omnidirectional thrusters 42 having a thrust in the left-right direction at the center of the bow may be provided. Industrial applicability
以上のように、 本発明による海底地盤調査方法は、 水深の深い( 1 0 0〜 2 0 0 m )、 潮流の速い(5ノ ッ ト程度)海上において、 海底地盤へ の橋脚、 その他の構造物を建設するための海底地盤の予備調査など、 数 週間から数か月間という短期間毎に調査地点を移動しながら海底地盤の 海底ボーリング調査を実施する場合に採用するのに適している。  As described above, the method of investigating the seabed ground according to the present invention can be applied to a deep pier (100 to 200 m), a tidal current (approximately 5 knots), a pier to the seabed ground, and other structures. It is suitable to be used when conducting surveys on the seabed under the seabed while moving from one survey point to another every few weeks, such as a preliminary survey of the seabed for the construction of a submarine ground.

Claims

請 求 の 範 囲  The scope of the claims
1 , 海面 1 7における定点保持のための位置制御装置 4 9を具備した自 航台船 3 0に、 パイプ支持装置 2 9によリケーシングパイプ 1 2を設置 して海底 1 0の調査をするようにしたことを特徴とする海底地盤調査方 法。 1, a self-propelled hull 30 equipped with a position control device 49 for maintaining a fixed point on the sea surface 17 A submarine ground survey method characterized by the following.
2 . ケーシングパイプ 1 2は、 下端にシンカー 3 4を具備し、 上方にブ ィ 3 5を具備したものを利用するようにした請求項 1記載の海底地盤調 査方法。  2. The method of claim 1, wherein the casing pipe 12 is provided with a sinker 34 at a lower end and a pipe 35 at an upper side.
3 . 自航台船 3 0は、 船頭と船尾に複数の全方向旋回推進機 4 2が装備 されているものを利用するようにした請求項 1または 2記載の海底地盤 調査方法。  3. The method of claim 1 or 2, wherein the self-propelled barge 30 is provided with a plurality of omnidirectional turning propulsion units 42 at the head and stern.
4 . 複数の全方向旋回推進機 4 2は、 それぞれモータ 4 3に連結され、 これらのモータ 4 3は、 位置測定装置 4 5、 ジャイロコンパス 4 6、 風 向風速計 4 7、 制御演算装置 4 8からなる位置制御装置 4 9によリ自動 定点保持されるようになつているものを利用するようにした請求項 3記 載の海底地盤調査方法。  4. A plurality of omnidirectional propulsion devices 4 2 are connected to motors 4 3, respectively. These motors 4 3 are a position measuring device 45, a gyro compass 46, a wind anemometer 47, and a control arithmetic device 4. 4. The method according to claim 3, wherein a position control device configured to automatically maintain a fixed point is used by a position control device composed of the position control device.
5 . 制御演算装置 4 8は、 外乱に応じて複数の全方向旋回推進機 4 2の 各推力の方向および大きさを調整して自航台船 3 0の位置および方位を 保持できるように、 制御演算装置 4 8に、 第 1の演算手段 5 1、 第 2の ^算手段 5 2、 第 3の演算手段 5 3、 第 4の演算手段 5 4を内蔵し、 前 記第 1の演算手段 5 1は、 自航台船 3 0の位置測定装置 4 5とジャイロ コンパス 4 6からの検出信号に基づき、 自航台船 3 0の定点保持に必要 な推力の方向および大きさならびに回頭モーメントを演算する機能を有 し、 前記第 2の演算手段 5 2は、 前記第 1の演算手段 5 1で求められた 回頭モ一メントを得るための各全方向旋回推進機 4 2の現在旋回角度で の各推力を演算する機能を具備し、 そして、 各全方向旋回推進機 4 2の 現在旋回角度では、 第 2の演算手段 5 2で上記回頭モーメントが得られ ない場合に、 各全方向旋回推進機 4 2の現在旋回角度が、 この全方向旋 回推進機 4 2に付設された前記推進機旋回手段によって少しだけ調整さ れるようになっており、 前記第 3の演算手段 5 3は、 前記第 2の演算手 段 5 2で上記回頭モーメン卜が得られるようになった場合に、 自航台船 3 0の所要の水平移動を行うための各全方向旋回推進機 4 2の推力を演 算する機能を具備し、 前記第 4の演算手段 5 4は、 前記第 2の演算手段 5 2と第 3の演算手段 5 3でそれぞれ求められた各全方向旋回推進機 4 2の推力の加算を行う機能を備えておリ、 この第 4の演算手段 5 4で求 められた各全方向旋回推進機 4 2の推力を実現するように、 各全方向旋 回推進機 4 2に付設された推力調整手段へ、 前記制御演算装置 4 8内の 指令手段から指令が送られるようになっていることを特徴とする請求項 3記載の海底地盤調査方法。 5. The control arithmetic unit 48 adjusts the direction and magnitude of each thrust of the plurality of omnidirectional thrusters 42 according to the disturbance so that the position and orientation of the self-propelled barge 30 can be maintained. First arithmetic means 51, second arithmetic means 52, third arithmetic means 53, and fourth arithmetic means 54 are built in control arithmetic unit 48, and the first arithmetic means is provided. 51 indicates the direction and magnitude of thrust necessary to maintain the fixed point of the self-propelled barge 30 and the turning moment based on the detection signals from the position measurement device 45 of the self-propelled barge 30 and the gyro compass 46. The second calculating means 52 has a function of calculating the current turning angle of each omnidirectional propulsion device 42 for obtaining the turning moment calculated by the first calculating means 51. In the present turning angle of each omnidirectional turning propulsion device 42, when the above-mentioned turning moment cannot be obtained by the second calculating means 52, each omnidirectional turning propulsion device is provided. The current turning angle of the thruster 42 is slightly adjusted by the thruster turning means attached to the omnidirectional thruster 42, and the third arithmetic means 53 is When the turning moment can be obtained by the second calculation means 52, the thrust of each omnidirectional thruster 4 2 for performing the required horizontal movement of the self-propelled barge 30 is performed. The fourth arithmetic means 54 includes an addition of the thrusts of the omnidirectional thrusters 42 obtained by the second arithmetic means 52 and the third arithmetic means 53, respectively. The thrust of each omnidirectional thruster 42 obtained by the fourth arithmetic means 54 is provided. A command is sent from a command means in the control arithmetic unit 48 to a thrust adjusting means attached to each omnidirectional thruster 42 so as to be realized. Submarine ground survey method described in 3.
6 . ケーシングパイプ 1 2を調査地点まで移動して設置するために、 ケ 一シングパイプ 1 2を揚錨船 3 1 のク レーン 3 2によリ吊リ下げ、 調查 地点まで曳航し、 調査地点に到着したら、 ク レーン 3 2によリケーシン グパイプ 1 2を繰リ出して略垂直に建て込み、 このケーシングパイプ 1 2を自航台船 3 0のパイプ支持装置 2 9に連結し、 自航台船 3 0を自動 定点保持しながらボーリング機械 1 3を駆動し、 ボーリングパイプ 1 4 で海底 1 0を掘削してボーリング調査を行うようにした請求項 1、 2、 3、 4または 5記載の海底地盤調査方法。  6. In order to move the casing pipe 12 to the survey point and install it, the casing pipe 12 is suspended by the crane 32 of the anchorage vessel 31 and towed to the control point. When arriving, the crane 32 draws out the relocating pipe 12 and builds it almost vertically, connects this casing pipe 12 to the pipe support device 29 of the self-propelled hull 30, and connects the self-propelled The seabed according to claim 1, 2, 3, 4, or 5, wherein the boring machine 13 is driven while the ship 30 is automatically held at a fixed point, and the boring pipe 14 is used to excavate the seabed 10 to perform a boring survey. Ground survey method.
PCT/JP1997/000781 1996-03-14 1997-03-12 Method of submarine crustal survey WO1997034128A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8085705A JPH09250935A (en) 1996-03-14 1996-03-14 Method for investigating sea bottom ground
JP8/85705 1996-03-14

Publications (1)

Publication Number Publication Date
WO1997034128A1 true WO1997034128A1 (en) 1997-09-18

Family

ID=13866246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000781 WO1997034128A1 (en) 1996-03-14 1997-03-12 Method of submarine crustal survey

Country Status (2)

Country Link
JP (1) JPH09250935A (en)
WO (1) WO1997034128A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102001428A (en) * 2010-11-12 2011-04-06 武汉理工大学 Fin lifting system of comprehensive marine science research ship
CN102168561A (en) * 2011-04-13 2011-08-31 长春金世纪矿业技术开发有限公司 Air lift method and air lift device in deep actual mining of tailings

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173079A (en) * 2000-12-08 2002-06-18 Mitsubishi Heavy Ind Ltd Method for estimating capacity of propulsion actuator for ocean platform
JP2006273247A (en) * 2005-03-30 2006-10-12 Tomac:Kk Anchoring support system and anchoring support method
KR101245765B1 (en) * 2010-11-11 2013-03-25 삼성중공업 주식회사 System and method for derrick shimming of drilling vessel
JP6178907B2 (en) * 2016-08-10 2017-08-09 川崎重工業株式会社 Fixed point holding control device and work ship equipped with the same
JP7248422B2 (en) * 2018-12-28 2023-03-29 川崎重工業株式会社 Self-elevating barge
KR102459186B1 (en) * 2020-12-09 2022-10-27 레인보우스케이프주식회사 Apparatus for remote contorol type inhale removing sludge by using siphonprinciple

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220089A (en) * 1990-01-25 1991-09-27 Oyo Corp Spar buoy type working scaffolding
JPH0547093U (en) * 1991-11-27 1993-06-22 三井造船株式会社 Work boat reentry equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220089A (en) * 1990-01-25 1991-09-27 Oyo Corp Spar buoy type working scaffolding
JPH0547093U (en) * 1991-11-27 1993-06-22 三井造船株式会社 Work boat reentry equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102001428A (en) * 2010-11-12 2011-04-06 武汉理工大学 Fin lifting system of comprehensive marine science research ship
CN102001428B (en) * 2010-11-12 2013-04-24 武汉理工大学 Fin lifting system of comprehensive marine science research ship
CN102168561A (en) * 2011-04-13 2011-08-31 长春金世纪矿业技术开发有限公司 Air lift method and air lift device in deep actual mining of tailings
CN102168561B (en) * 2011-04-13 2013-02-06 长春金世纪矿业技术开发有限公司 Air lift method and air lift device in deep actual mining of tailings

Also Published As

Publication number Publication date
JPH09250935A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
US5507596A (en) Underwater work platform support system
KR101815064B1 (en) System and method for dynamic positioning of vessel
US6848382B1 (en) Portable dynamic positioning system with self-contained electric thrusters
US7806065B1 (en) Modular system for fast and easy conversion of anchor moored semi-submersibles to dynamically positioned semis without the need for dry docking, using a diesel electric thruster system
US6799528B1 (en) Portable dynamic positioning system with self-contained diesel hydraulic thrusters
EP0169219B1 (en) Remotely operated underwater vehicle and method of operating same
US7985108B1 (en) Modular diesel hydraulic thurster system for dynamically positioning semi submersibles
KR101380722B1 (en) System and method for dynamic positioning of vessel
US7942051B2 (en) Method and device for survey of sea floor
RU2514296C2 (en) Mooring system for arctic floating facility
JP2018526259A (en) Floating wind turbine assembly and method for mooring such a floating wind turbine assembly
US20140378012A1 (en) Vessel
CN108516058A (en) A kind of unmanned boat recycled in real time for deep-sea observation data
JP2017132358A (en) Position control system and position control method of on-water robot
CA2916763A1 (en) Platform for tidal turbines
WO1997034128A1 (en) Method of submarine crustal survey
JP6519218B2 (en) Ocean Current Generator
CN113148017A (en) Attitude adjusting device and method and submerged buoy system
JP2004256070A (en) Method for laying long member such as cable and the like
KR101901817B1 (en) Vortex induced motion reduction device for marine floating body
KR102016337B1 (en) Survey system for ocean topography
WO2001074657A1 (en) Multi-use vessel
KR20110092564A (en) Optimized shape of skeg
JP2988948B2 (en) Super buoy type work scaffold
KR20160080757A (en) Apparatus for damping heave motion of offshore plant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase