JP2009141277A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2009141277A
JP2009141277A JP2007318850A JP2007318850A JP2009141277A JP 2009141277 A JP2009141277 A JP 2009141277A JP 2007318850 A JP2007318850 A JP 2007318850A JP 2007318850 A JP2007318850 A JP 2007318850A JP 2009141277 A JP2009141277 A JP 2009141277A
Authority
JP
Japan
Prior art keywords
opening
insulating film
silicon
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007318850A
Other languages
Japanese (ja)
Inventor
Fumiki Aiso
史記 相宗
Yoshio Ozawa
良夫 小澤
Ichiro Mizushima
一郎 水島
Takashi Suzuki
隆志 鈴木
Koichi Ishida
浩一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007318850A priority Critical patent/JP2009141277A/en
Publication of JP2009141277A publication Critical patent/JP2009141277A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the damage of a substrate silicon in an opening of an embedded insulating film of an SOI structure and prevent the reduction of contact area with the substrate in the opening of the embedded insulating film. <P>SOLUTION: A semiconductor device, which has SOI structure, is provided with: a silicon substrate 10; an insulating film 11 which is provided on the silicon substrate 10 and has an opening 12 in a part thereof, wherein an upper part of the opening 12 is formed to forward tapered shape structure, in which an upper surface side spread, and a lower part is formed to inverse tapered shape structure, in which a lower surface side spread; a single-crystal silicon layer 14 which is formed on the insulating film 11 and within the opening 12; and a semiconductor device which is formed in the single-crystal silicon layer 14. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、SOI(Silicon on Insulator)構造を有する半導体装置に係わり、特にシード部の改良をはかった半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device having an SOI (Silicon on Insulator) structure, and more particularly to a semiconductor device in which a seed part is improved and a manufacturing method thereof.

近年、メモリセルの微細化に伴う短チャネル効果の影響を抑制するために、メモリセルをSOI結晶上に形成する方法が提案されている。SOI結晶を作製するには、シリコン基板上に埋め込み酸化膜を形成した後、この酸化膜にシード部となる開口部を形成し、酸化膜上及び開口部内にアモルファスシリコン膜を形成する。そして、アモルファス膜をアニールすることにより固相成長させて単結晶化する。   In recent years, a method of forming a memory cell on an SOI crystal has been proposed in order to suppress the influence of the short channel effect accompanying the miniaturization of the memory cell. In order to manufacture an SOI crystal, a buried oxide film is formed on a silicon substrate, an opening serving as a seed portion is formed in the oxide film, and an amorphous silicon film is formed on and in the oxide film. Then, the amorphous film is annealed to be solid-phase grown to be single crystallized.

ここで、開口部の形成のために異方性のイオンエッチングを行うと、シリコン基板にダメージが発生するため、基板とエピタキシャル層界面に結晶欠陥を生じやすい。基板に残った結晶欠陥は、固相エピタキシャル成長時にも結晶の配列を乱してしまうため、局所的に結晶欠陥が発生しやすくなる。また、異方性エッチングの場合、埋め込み酸化膜が直角状に加工されてしまうが、コーナー部分に成膜されたアモルファスシリコンは水素の脱離が加速されるため結晶核が形成されやすくなる。そして、コーナー部分で結晶核が形成されると、積層欠陥や双晶が発生しやすくなる。   Here, when anisotropic ion etching is performed to form the opening, damage is generated in the silicon substrate, so that crystal defects are likely to occur at the interface between the substrate and the epitaxial layer. Since the crystal defects remaining on the substrate disturb the crystal arrangement even during solid phase epitaxial growth, local crystal defects are likely to occur locally. In the case of anisotropic etching, the buried oxide film is processed at a right angle. However, amorphous silicon deposited in the corner portion accelerates the desorption of hydrogen, so that crystal nuclei are easily formed. When crystal nuclei are formed at the corners, stacking faults and twins are likely to occur.

こうしたことから、埋め込み酸化膜の開口は基板にダメージを与えたり、直角に開口してしまう反応性イオンエッチングよりむしろ弗酸等を用いた等方的なエッチングが望ましい。等方的なエッチングを行って埋め込み酸化膜の加工を行った場合、埋め込み酸化膜は上面側が広がった順テーパー状に加工されるため、シード部付近やシード部から遠い領域でのエピタキシャル層での結晶欠陥の発生する確率は小さくなる。しかしながら、開口部が順テーパー形状であることから、埋め込み酸化膜の開口部における基板との接触面積が極めて小さくなってしまうという問題がある。さらに、等方性のエッチングの場合においては、埋め込み酸化膜の下部で酸化膜が裾を引いてしまい、これも基板との接触面積を小さくする要因となる。   For this reason, the opening of the buried oxide film is preferably isotropic etching using hydrofluoric acid or the like rather than reactive ion etching that damages the substrate or opens at a right angle. When the buried oxide film is processed by isotropic etching, the buried oxide film is processed into a forward taper shape with the upper surface widened. The probability of crystal defects is reduced. However, since the opening has a forward tapered shape, there is a problem that the contact area between the opening of the buried oxide film and the substrate becomes extremely small. Further, in the case of isotropic etching, the oxide film has a tail at the bottom of the buried oxide film, which also causes a reduction in the contact area with the substrate.

開口部における基板との接触面積が小さくなると、ウェハ上に局所的に抜け不良が発生する確率が高くなる。抜け不良が発生すると固相成長そのものが発生しなくなる。また、たとえ電気的に導通しても、シード層と基板との抵抗が高くなってしまうことで、シード層上に形成したトランジスタの基板電圧が一定しなくなる。このため、トランジスタの閾値がばらついてしまい、歩留まりを低下させる要因になっていた。   When the contact area with the substrate in the opening is reduced, the probability of occurrence of a defective defect locally on the wafer increases. When the omission defect occurs, solid phase growth itself does not occur. Moreover, even if it is electrically conductive, the resistance between the seed layer and the substrate becomes high, so that the substrate voltage of the transistor formed on the seed layer is not constant. For this reason, the threshold value of the transistor varies, which is a factor of decreasing the yield.

このように従来、SOI構造における埋め込み絶縁膜の開口部はなるべく小さくしたいが、これをRIEで形成すると、基板シリコンにダメージを与えてしまう。一方、開口部を等方性エッチングで形成すると、埋め込み絶縁膜下部での絶縁膜の裾引きなどにより基板との接触面積が小さくなり、固相成長に悪影響が生じる問題があった。
特開2006−294711号公報 特開平11−163303号公報
Thus, conventionally, the opening of the buried insulating film in the SOI structure is desired to be as small as possible. However, if this is formed by RIE, the substrate silicon is damaged. On the other hand, when the opening is formed by isotropic etching, the contact area with the substrate is reduced due to the bottom of the insulating film under the buried insulating film, and the solid phase growth is adversely affected.
JP 2006-294711 A Japanese Patent Laid-Open No. 11-163303

本発明は、SOI構造における埋め込み絶縁膜の開口部における基板シリコンのダメージを防止すると共に、埋め込み絶縁膜の開口部における基板との接触面積の低下を防止できる半導体装置及びその製造方法を提供することを目的とする。   The present invention provides a semiconductor device capable of preventing damage to the substrate silicon in the opening of the buried insulating film in the SOI structure and preventing a decrease in contact area with the substrate in the opening of the buried insulating film, and a method for manufacturing the same. With the goal.

上記課題を解決するために本発明は、次のような構成を採用している。   In order to solve the above problems, the present invention adopts the following configuration.

即ち、本発明の一態様に係わる半導体装置は、シリコン基板と、前記シリコン基板上に設けられ、一部に開口部を有し、該開口部の上部を上面側が広がった順テーパー構造に形成し、且つ下部を下面側が広がった逆テーパー構造に形成してなる絶縁膜と、前記絶縁膜上及び前記開口部内に形成された単結晶シリコン層と、前記単結晶シリコン層に形成された半導体素子と、を具備してなることを特徴とする。   In other words, a semiconductor device according to one embodiment of the present invention is formed using a silicon substrate and a forward tapered structure which is provided over the silicon substrate, has an opening in a part, and the upper portion of the opening widens on the upper surface side. And an insulating film formed in an inverted taper structure with the lower surface widened at the bottom, a single crystal silicon layer formed on the insulating film and in the opening, and a semiconductor element formed on the single crystal silicon layer, It is characterized by comprising.

また、本発明の別の一態様に係わる半導体装置の製造方法は、シリコン基板上に絶縁膜を形成する工程と、前記基板の表面にダメージを与えない条件で前記絶縁膜の一部をエッチングし、シード部領域となる開口部を形成する工程と、水素又は弗素を含むガスを用いて熱処理を行い、前記開口部の絶縁膜表面の角を丸めると共に、前記開口部に残った前記絶縁膜の裾引き部分を除去する工程と、前記熱処理後に前記絶縁膜上及び前記開口部内にアモルファスシリコン膜を形成する工程と、前記アモルファスシリコン膜をアニールし、前記開口部をシードとして固相成長させることにより該アモルファスシリコン膜を単結晶化する工程と、前記固相成長により形成されたシリコン単結晶層上に半導体素子を形成する工程と、を含むことを特徴とする。   According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: forming an insulating film on a silicon substrate; and etching a part of the insulating film under a condition that does not damage the surface of the substrate. A step of forming an opening serving as a seed region, and a heat treatment using a gas containing hydrogen or fluorine to round the corners of the insulating film surface of the opening, and the insulating film remaining in the opening Removing the tailing portion, forming an amorphous silicon film on the insulating film and in the opening after the heat treatment, annealing the amorphous silicon film, and solid-phase-growing using the opening as a seed. A step of single-crystallizing the amorphous silicon film, and a step of forming a semiconductor element on the silicon single-crystal layer formed by the solid phase growth. That.

本発明によれば、SOI構造における埋め込み絶縁膜の開口部における基板シリコンのダメージを防止すると共に、埋め込み絶縁膜の開口部における基板との接触面積の低下を防止することができる。   According to the present invention, it is possible to prevent the substrate silicon from being damaged at the opening of the buried insulating film in the SOI structure, and to prevent the contact area with the substrate at the opening of the buried insulating film from being reduced.

以下、本発明の詳細を図示の実施形態によって説明する。   The details of the present invention will be described below with reference to the illustrated embodiments.

本実施形態では、固相成長によりSOI構造の不揮発性半導体メモリを作製する上で問題となるエピタキシャル層での結晶欠陥を抑制し、かつ狭いシード部領域(開口部)にも安定した電気的導通を得る方法を提供する。   In the present embodiment, crystal defects in the epitaxial layer, which is a problem in manufacturing a non-volatile semiconductor memory having an SOI structure by solid phase growth, are suppressed, and stable electrical conduction is achieved even in a narrow seed region (opening). Provide a way to get.

本実施形態のメモリセル部の製造方法を、図1〜図7を用いて説明する。なお、図1〜図7において、(a)はチャネル長方向(ビット線方向)の断面図、(b)はチャネル幅方向(ワード線方向)の断面図、(c)は平面図である。また、(a)は平面図(c)のA−A’断面を、(b)は平面図(c)のB−B’断面を示している。   A method for manufacturing the memory cell portion of this embodiment will be described with reference to FIGS. 1 to 7, (a) is a cross-sectional view in the channel length direction (bit line direction), (b) is a cross-sectional view in the channel width direction (word line direction), and (c) is a plan view. Further, (a) shows an A-A ′ section in the plan view (c), and (b) shows a B-B ′ section in the plan view (c).

まず、図1(a)〜(c)に示すように、p型のシリコン結晶基板10の表面上に埋め込み絶縁膜となるシリコン酸化膜11を30nm程度形成する。続いて、開口幅約0.1〜0.2μm程度のパターニングしたレジスト(図示せず)をマスクに、希弗酸等を用いて等方的にシリコン酸化膜11の一部領域を除去してシリコン結晶基板の一部を露出させた。即ち、後述する固相成長のシード部領域となる順テーパー構造を有する開口部12をストライプ状に形成した。この弗酸のエッチングにおいては、開口幅12を広げすぎると後のアモルファスシリコン成長の際に十分なオーバーフィルができないため、広げすぎないように、深さとして30〜50nm程度のエッチングを行う。   First, as shown in FIGS. 1A to 1C, a silicon oxide film 11 serving as a buried insulating film is formed on the surface of a p-type silicon crystal substrate 10 to a thickness of about 30 nm. Subsequently, using a patterned resist (not shown) having an opening width of about 0.1 to 0.2 μm as a mask, a part of the silicon oxide film 11 is isotropically removed using dilute hydrofluoric acid or the like. A part of the silicon crystal substrate was exposed. That is, the openings 12 having a forward taper structure, which become seed regions for solid phase growth described later, were formed in a stripe shape. In this hydrofluoric acid etching, if the opening width 12 is too wide, sufficient overfilling cannot be performed in the subsequent growth of amorphous silicon. Therefore, the etching is performed to a depth of about 30 to 50 nm so as not to spread too much.

次に、図2(a)〜(c)に示すように、800℃〜900℃の温度下、CVD装置内で10〜200Torrの水素雰囲気下で1〜10分程度の熱処理を行う。これにより、開口部12の下部は下面側が広がった逆テーパー構造となる。これは、シリコン酸化膜11の薄い部分だけ除去され、開口部12の底部における埋め込み絶縁膜11の裾引きが除去されたためである。また、この熱処理によって、開口部12のシリコン酸化膜11の表面の角部が丸められることになる。   Next, as shown in FIGS. 2A to 2C, heat treatment is performed at a temperature of 800 ° C. to 900 ° C. in a CVD apparatus under a hydrogen atmosphere of 10 to 200 Torr for about 1 to 10 minutes. Thereby, the lower part of the opening part 12 becomes a reverse taper structure where the lower surface side spreads. This is because only the thin portion of the silicon oxide film 11 is removed, and the bottom of the buried insulating film 11 at the bottom of the opening 12 is removed. In addition, this heat treatment rounds the corners of the surface of the silicon oxide film 11 in the opening 12.

なお、上記の熱処理時に水素の代わりに弗素を用いることも可能である。この場合、シリコンが薄くエッチングされることにより、埋め込み絶縁膜11の裾引きをリフトオフで除去することができ、上記と同様に下部が逆テーパー構造となる開口部12を得ることができる。   Note that fluorine can be used instead of hydrogen during the heat treatment. In this case, the bottom of the buried insulating film 11 can be removed by lift-off by etching the silicon thinly, and the opening 12 having a reverse tapered structure at the lower portion can be obtained as described above.

引き続き、同一チャンバー内部で500〜550℃程度に温度を下げ、0.2〜2Torr程度の分圧下でシランガスを導入する。約2時間程度の成長を行うことで、約200nm程度のアモルファスシリコン膜13が成長される。シード部領域12が0.1〜0.2μm程度の開口幅であれば、約200nm程度のアモルファスシリコンを成長することにより、アモルファスシリコン表面を、埋め込み絶縁膜11のパターンによる段差を無くしほぼ平坦にすることができる。   Subsequently, the temperature is lowered to about 500 to 550 ° C. inside the same chamber, and silane gas is introduced under a partial pressure of about 0.2 to 2 Torr. By performing the growth for about 2 hours, an amorphous silicon film 13 of about 200 nm is grown. If the seed region 12 has an opening width of about 0.1 to 0.2 μm, an amorphous silicon surface of about 200 nm is grown so that the surface of the amorphous silicon is substantially flat without a step due to the pattern of the buried insulating film 11. can do.

次に、図3(a)〜(c)に示すように、600℃程度の窒素雰囲気中で約5時間程度の熱処理を行い、アモルファスシリコン膜13に対して、シード部領域12から埋め込み絶縁膜11上へ固相成長を行い、単結晶のエピタキシャルシリコン層14を形成する。続いて、埋め込み絶縁膜11上のエピタキシャルシリコン層14を反応性イオンエッチングでエッチバックを行い、図3(a)〜(c)にて示されるように埋め込み絶縁膜11上に約40nm程度のエピタキシャルシリコン層14を残す。   Next, as shown in FIGS. 3A to 3C, a heat treatment is performed for about 5 hours in a nitrogen atmosphere at about 600 ° C., and the amorphous silicon film 13 is buried from the seed region 12 into the buried insulating film. Solid-phase growth is performed on the layer 11 to form a single crystal epitaxial silicon layer 14. Subsequently, the epitaxial silicon layer 14 on the buried insulating film 11 is etched back by reactive ion etching, and an epitaxial layer of about 40 nm is formed on the buried insulating film 11 as shown in FIGS. The silicon layer 14 is left.

本実施形態では、埋め込み絶縁膜11に対して等方性のエッチングを行い、アモルファスシリコン成長前に成膜装置内で高温の還元性雰囲気で処理を行っている。このため、埋め込み絶縁膜11の開口部12に見られる数nm程度の裾の部分のみ消失させることができる。その結果、固相成長後の埋め込み絶縁膜11のシード付近の形状は図3(a)に示されるように、開口面の下部のシリコン基板部は拡大し、開口部上面は狭いくびれを持った開口部を得ることができた。   In the present embodiment, isotropic etching is performed on the buried insulating film 11, and the processing is performed in a high-temperature reducing atmosphere in the film forming apparatus before the amorphous silicon is grown. For this reason, only the skirt portion of about several nanometers seen in the opening 12 of the buried insulating film 11 can be eliminated. As a result, as shown in FIG. 3A, the shape of the buried insulating film 11 in the vicinity of the seed after the solid phase growth is expanded in the silicon substrate portion below the opening surface and has a narrow constriction on the upper surface of the opening portion. An opening could be obtained.

本発明者らの実験の結果、レジストでの開口幅0.1μmのシード部の開口パターンにおいて、埋め込み絶縁膜11のエッチング後に埋め込み絶縁膜11の上部では約0.18μmに開口幅が拡大されるが、埋め込み絶縁膜11の下部の露出したシード層の幅は0.08μm程度しか得られなかった。しかし、アモルファスシリコン成長前に850℃で10Torrの水素処理を行うことで、埋め込み絶縁膜11の下の裾が除去されるため、アモルファス−基板界面、即ちシード部領域12の幅を0.12μm程度まで広げることができ、シード部界面、埋め込み絶縁膜11の開口部付近、及び埋め込み絶縁膜11上のシード領域12より遠い部分で結晶欠陥は殆ど見られなかった。一方で、水素処理により埋め込み絶縁膜11の上面の開口幅が広がることは殆どなかった。   As a result of the experiments by the present inventors, in the opening pattern of the seed portion with an opening width of 0.1 μm in the resist, the opening width is expanded to about 0.18 μm above the buried insulating film 11 after the buried insulating film 11 is etched. However, the width of the exposed seed layer under the buried insulating film 11 was only about 0.08 μm. However, by performing 10 Torr hydrogen treatment at 850 ° C. before the amorphous silicon growth, the bottom of the buried insulating film 11 is removed. Crystal defects were hardly observed at the seed part interface, in the vicinity of the opening of the buried insulating film 11, and at the part far from the seed region 12 on the buried insulating film 11. On the other hand, the opening width of the upper surface of the buried insulating film 11 was hardly increased by the hydrogen treatment.

また、本実施形態によれば、シード部領域12で裾形状がアモルファスシリコン成長前の水素処理で改善され、シード部領域12の面積が拡大するために、エピタキシャル層14とシリコン基板10との電気的な導通を安定させることができる。このため、シード部領域12上に形成する選択ゲートトランジスタのしきい値のばらつきを改善できる。   In addition, according to the present embodiment, the skirt shape in the seed region 12 is improved by the hydrogen treatment before the growth of amorphous silicon, and the area of the seed region 12 is increased. Can be stabilized. For this reason, the variation in the threshold value of the selection gate transistor formed on the seed part region 12 can be improved.

なお、本実施形態では埋め込み絶縁膜11への開口部12の形成に関して、反応性イオンエッチングを行わずに等方性のエッチングだけで加工している。しかし、シード部領域12の上部を更に狭く加工する場合、若しくは埋め込み絶縁膜11が厚い場合においては、埋め込み絶縁膜11の途中まで異方性の反応性イオンエッチングを行い、その後にウェット処理やバイアスを与えないラジカル処理等の等方的なエッチングを行って開口してもよい。   In this embodiment, the formation of the opening 12 in the buried insulating film 11 is processed only by isotropic etching without performing reactive ion etching. However, when the upper portion of the seed region 12 is further narrowed or when the buried insulating film 11 is thick, anisotropic reactive ion etching is performed partway through the buried insulating film 11, and then wet treatment or bias is performed. Opening may be performed by performing isotropic etching such as radical treatment that does not give any other.

ここで、従来のようにシード部領域の開口に異方性のイオンエッチングのみを行うと、シリコン基板にダメージを発生するため、基板とエピタキシャル層界面に結晶欠陥を生じやすい。また、異方性エッチングの場合、埋め込み絶縁膜が直角状に加工されるため、結晶核が形成されやすくなり、積層欠陥や双晶が発生しやすくなる。さらに、シード部領域から距離が離れた領域においては、アモルファスシリコン形成時に埋め込み絶縁膜表面に形成された結晶核からの結晶成長の方が早く表面に到達してしまい、SOI層が多結晶シリコンとなってしまうことがあった。このSOI層の欠陥の存在は、キャリアのトラップになってしまい、SOI上のトランジスタの誤動作を招くことになる。   Here, if only anisotropic ion etching is performed on the opening of the seed region as in the conventional case, the silicon substrate is damaged, and thus crystal defects are likely to occur at the interface between the substrate and the epitaxial layer. In the case of anisotropic etching, since the buried insulating film is processed at a right angle, crystal nuclei are easily formed, and stacking faults and twins are easily generated. Furthermore, in a region away from the seed region, crystal growth from the crystal nucleus formed on the surface of the buried insulating film during the formation of amorphous silicon reaches the surface earlier, and the SOI layer becomes polycrystalline silicon. Sometimes it became. The presence of defects in the SOI layer becomes a carrier trap, which causes a malfunction of a transistor on the SOI.

一方、等方的なエッチングを行って埋め込み絶縁膜の加工を行った場合、埋め込み絶縁膜開口部で基板との接触面積が極めて小さくなってしまうという問題、更には埋め込み絶縁膜層下部で酸化膜が裾を引いてしまう問題がある。これは、SOI上のトランジスタの閾値のばらつきや製造歩留まりを低下させる要因となる。   On the other hand, when the buried insulating film is processed by isotropic etching, the contact area with the substrate becomes extremely small at the buried insulating film opening, and further, the oxide film is formed below the buried insulating film layer. There is a problem that pulls the tail. This becomes a factor that reduces variations in threshold values of transistors on the SOI and a manufacturing yield.

これに対して本実施形態のように、等方性エッチングの後に水素雰囲気で熱処理し、シード部領域の開口部12の下部を逆テーパー構造に形成することにより、これらの問題を全て解消することができる。   On the other hand, as in this embodiment, heat treatment is performed in a hydrogen atmosphere after isotropic etching, and the lower portion of the opening 12 in the seed region is formed in an inverted taper structure to eliminate all of these problems. Can do.

次に、図4(a)〜(c)に示すように、全面に、熱酸化法などで厚さ7nm程度のゲート絶縁膜(トンネル絶縁膜)21を形成し、その上にCVD(Chemical Vapor Deposition)法などで浮遊ゲート電極となる厚さ50nm程度のリンドープ多結晶シリコン層22を堆積した。次いで、ストライプ状にパターニングしたレジスト(図示せず)をマスクに、リンドープ多結晶シリコン層22、ゲート絶縁膜(トンネル絶縁膜)21、エピタキシャルシリコン層14、埋め込み絶縁膜11、シリコン結晶基板10の一部をRIE法などで除去して、素子分離溝23を形成した。続いて、塗布法などを用いて、素子分離溝23にシリコン酸化膜24を埋め込んだ。例えば、ポリシラザンなどの塗布絶縁膜を塗布することで、ボイドと呼ばれる埋め込み不完全領域の形成を回避することができる。   Next, as shown in FIGS. 4A to 4C, a gate insulating film (tunnel insulating film) 21 having a thickness of about 7 nm is formed on the entire surface by a thermal oxidation method or the like, and a CVD (Chemical Vapor) is formed thereon. A phosphorus-doped polycrystalline silicon layer 22 having a thickness of about 50 nm to be a floating gate electrode was deposited by a Deposition method or the like. Next, a phosphorus-doped polycrystalline silicon layer 22, a gate insulating film (tunnel insulating film) 21, an epitaxial silicon layer 14, a buried insulating film 11, and a silicon crystal substrate 10 are formed using a resist (not shown) patterned in a stripe shape as a mask. The part was removed by the RIE method or the like to form an element isolation trench 23. Subsequently, a silicon oxide film 24 was embedded in the element isolation trench 23 using a coating method or the like. For example, by applying a coating insulating film such as polysilazane, formation of an imperfect buried region called a void can be avoided.

なお、素子分離材料の絶縁膜24の誘電率は低い方が、隣接するメモリセル間の絶縁耐圧は向上するので、塗布した後に水蒸気酸化をして、膜中の窒素及び炭素や水素などの不純物を脱離させてシリコン酸化膜に変換するのが望ましい。また、素子分離溝23の形成時に溝表面部に生成する結晶欠陥を修復するために、塗布絶縁膜24を埋め込む前又は後に、熱酸化やラジカル酸化を施しても良い。さらに、埋め込み絶縁膜24の絶縁性を向上するために、CVD絶縁膜と塗布絶縁膜を組み合わせて、埋め込んでも良い。   The lower the dielectric constant of the insulating film 24 of the element isolation material, the higher withstand voltage between adjacent memory cells. Therefore, after application, water vapor oxidation is performed, and impurities such as nitrogen, carbon and hydrogen in the film are formed. It is desirable to desorb and convert it into a silicon oxide film. Further, in order to repair crystal defects generated on the surface of the groove when the element isolation groove 23 is formed, thermal oxidation or radical oxidation may be performed before or after the coating insulating film 24 is embedded. Furthermore, in order to improve the insulating property of the buried insulating film 24, a CVD insulating film and a coating insulating film may be combined and buried.

次に、図5(a)〜(c)に示すように、全面に、ALD(Atomic Layer Deposition)法などで電極間絶縁膜となる厚さ15nm程度のアルミナ膜25を形成した。次いで、パターニングしたレジスト(図示せず)をマスクに、RIE法などを用いて、選択ゲートトランジスタの形成予定領域に幅50nm程度のスリット部26を形成して、リンドープ多結晶シリコン層22の一部を露出させた。   Next, as shown in FIGS. 5A to 5C, an alumina film 25 having a thickness of about 15 nm serving as an interelectrode insulating film was formed on the entire surface by an ALD (Atomic Layer Deposition) method or the like. Next, using a patterned resist (not shown) as a mask, a slit portion 26 having a width of about 50 nm is formed in a region where the selection gate transistor is to be formed by using the RIE method or the like, and a part of the phosphorus-doped polycrystalline silicon layer 22 is formed. Was exposed.

次に、図6(a)〜(c)に示すように、全面に、再びリンドープシリコン層27を形成した。このとき、スリット部26ではリンドープ多結晶シリコン層22とリンドープシリコン層27が電気的に接続された。その後、ストライプ状にパターニングしたレジスト(図示せず)をマスクに、リンドープシリコン層27、アルミナ膜25、リンドープシリコン層22の一部をRIE法などで除去して、メモリセルの2層ゲート構造と選択ゲートトランジスタの積層ゲート電極構造を形成した。即ち、シード部12上のシリコン層14に選択トランジスタのゲート構造を形成し、埋め込み絶縁膜11上のシリコン層14に不揮発性メモリセルのゲート構造を形成した。   Next, as shown in FIGS. 6A to 6C, a phosphorus-doped silicon layer 27 was formed again on the entire surface. At this time, the phosphorus-doped polycrystalline silicon layer 22 and the phosphorus-doped silicon layer 27 were electrically connected in the slit portion 26. Thereafter, using a resist (not shown) patterned in a stripe shape as a mask, the phosphorus-doped silicon layer 27, the alumina film 25, and part of the phosphorus-doped silicon layer 22 are removed by the RIE method or the like to form a two-layer gate of the memory cell. A stacked gate electrode structure of structure and select gate transistor was formed. That is, the gate structure of the selection transistor was formed in the silicon layer 14 on the seed portion 12, and the gate structure of the nonvolatile memory cell was formed in the silicon layer 14 on the buried insulating film 11.

次に、図7(a)〜(c)に示すように、エピタキシャルシリコン層14に、イオン注入法と熱拡散法などを組み合わせて、所望の不純物濃度分布を有するn型不純物拡散層14aを形成した。次いで、CVD法などで層間絶縁膜28を形成して、メモリセルの2層ゲート構造と選択ゲートトランジスタの積層ゲート電極構造を被い、さらに周知の方法で選択ゲートトランジスタの不純物拡散層上を開口して、タングステンなどの導電体を埋め込んでビット線コンタクト29(及びソース線コンタクト)を形成した。その後は、周知の方法で、不揮発性半導体記憶装置を完成させた。   Next, as shown in FIGS. 7A to 7C, an n-type impurity diffusion layer 14a having a desired impurity concentration distribution is formed in the epitaxial silicon layer 14 by combining an ion implantation method and a thermal diffusion method. did. Next, an interlayer insulating film 28 is formed by CVD or the like to cover the two-layer gate structure of the memory cell and the stacked gate electrode structure of the select gate transistor, and an opening is formed on the impurity diffusion layer of the select gate transistor by a well-known method. Then, a bit line contact 29 (and source line contact) was formed by embedding a conductor such as tungsten. Thereafter, the nonvolatile semiconductor memory device was completed by a known method.

このように本実施形態によれば、シード部領域12の埋め込み絶縁膜11の形が滑らかに形成されるため、メモリセル領域で双晶や積層欠陥の少ない優れた結晶性のメモリセルを得ることができる。また、埋め込み絶縁膜11の裾が除去されているため、エピタキシャルシリコン層14と基板10との確実なコンタクトを実現することができ、選択ゲートトランジスタに加わる実効的な基板電圧のばらつきを抑えることができる。   As described above, according to this embodiment, since the shape of the buried insulating film 11 in the seed region 12 is smoothly formed, an excellent crystalline memory cell with few twins and stacking faults can be obtained in the memory cell region. Can do. Further, since the bottom of the buried insulating film 11 is removed, reliable contact between the epitaxial silicon layer 14 and the substrate 10 can be realized, and the variation in effective substrate voltage applied to the select gate transistor can be suppressed. it can.

なお、本発明は上述した実施形態に限定されるものではない。前記図7(a)〜(c)では、チャネル長方向の各メモリセルのn型不純物拡散層14aがつながっている例を示したが、セルトランジスタのゲート電極をマスクにp型の拡散層を形成するようにしても良い。また、実施形態では、浮遊ゲート電極を電荷蓄積層とするメモリセルの製造方法を説明したが、シリコン窒化膜などの絶縁膜を電荷蓄積層とするMONOS型セルなどのメモリセルでも、同様の方法が適用できる。   In addition, this invention is not limited to embodiment mentioned above. FIGS. 7A to 7C show an example in which the n-type impurity diffusion layer 14a of each memory cell in the channel length direction is connected. However, a p-type diffusion layer is used with the gate electrode of the cell transistor as a mask. You may make it form. In the embodiment, the method of manufacturing the memory cell using the floating gate electrode as the charge storage layer has been described. However, the same method can be used for a memory cell such as a MONOS type cell using an insulating film such as a silicon nitride film as the charge storage layer. Is applicable.

また、実施形態では不揮発性半導体メモリを例に取り説明したが、SOI結晶上に半導体素子を形成する各種の半導体装置に適用することが可能である。その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。   In the embodiment, the nonvolatile semiconductor memory has been described as an example. However, the present invention can be applied to various semiconductor devices in which a semiconductor element is formed on an SOI crystal. In addition, various modifications can be made without departing from the scope of the present invention.

実施形態に係わるSOI構造の不揮発性半導体メモリの製造工程を示す平面図と断面図であり、シード部領域となる開口部を設けた状態を示している。FIG. 4 is a plan view and a cross-sectional view showing a manufacturing process of a nonvolatile semiconductor memory having an SOI structure according to the embodiment, and shows a state where an opening serving as a seed part region is provided. 実施形態に係わるSOI構造の不揮発性半導体メモリの製造工程を示す平面図と断面図であり、アモルファスシリコン膜を形成した状態を示している。FIG. 4 is a plan view and a cross-sectional view showing a manufacturing process of a nonvolatile semiconductor memory having an SOI structure according to the embodiment, and shows a state in which an amorphous silicon film is formed. 一実施形態に係わるSOI構造の不揮発性半導体メモリの製造工程を示す平面図と断面図であり、固相アニールによりシリコン単結晶層を形成した状態を示している。FIG. 7 is a plan view and a cross-sectional view showing a manufacturing process of a nonvolatile semiconductor memory having an SOI structure according to an embodiment, and shows a state in which a silicon single crystal layer is formed by solid-phase annealing. 一実施形態に係わるSOI構造の不揮発性半導体メモリの製造工程を示す平面図と断面図であり、フローティングゲートを形成した状態を示している。It is the top view and sectional view which show the manufacturing process of the non-volatile semiconductor memory of SOI structure concerning one Embodiment, and has shown the state in which the floating gate was formed. 一実施形態に係わるSOI構造の不揮発性半導体メモリの製造工程を示す平面図と断面図であり、電極間絶縁膜を形成した状態を示している。It is the top view and sectional view which show the manufacturing process of the non-volatile semiconductor memory of SOI structure concerning one Embodiment, and has shown the state in which the insulating film between electrodes was formed. 一実施形態に係わるSOI構造の不揮発性半導体メモリの製造工程を示す平面図と断面図であり、コントロールゲートを形成した状態を示している。FIG. 4 is a plan view and a cross-sectional view showing a manufacturing process of a nonvolatile semiconductor memory having an SOI structure according to an embodiment, showing a state in which a control gate is formed. 一実施形態に係わるSOI構造の不揮発性半導体メモリの製造工程を示す平面図と断面図であり、層間絶縁膜を形成した状態を示している。It is the top view and sectional view which show the manufacturing process of the non-volatile semiconductor memory of SOI structure concerning one Embodiment, and has shown the state in which the interlayer insulation film was formed.

符号の説明Explanation of symbols

10…p型のシリコン結晶基板
11…シリコン酸化膜(埋め込み絶縁膜)
12…シード部(開口部)
13…アモルファスシリコン膜
14…エピタキシャルシリコン層
14a…n型不純物拡散層
21…ゲート酸化膜(トンネル絶縁膜)
22…リンドープ多結晶シリコン層
23…素子分離溝
24…シリコン酸化膜(素子分離絶縁膜)
25…アルミナ膜
26…スリット部
27…リンドープシリコン層
28…層間絶縁膜
29…ビット線コンタクト
10 ... p-type silicon crystal substrate 11 ... silicon oxide film (buried insulating film)
12 ... Seed part (opening)
DESCRIPTION OF SYMBOLS 13 ... Amorphous silicon film 14 ... Epitaxial silicon layer 14a ... N-type impurity diffusion layer 21 ... Gate oxide film (tunnel insulating film)
22 ... Phosphorus-doped polycrystalline silicon layer 23 ... Element isolation trench 24 ... Silicon oxide film (element isolation insulating film)
25 ... Alumina film 26 ... Slit portion 27 ... Phosphorus doped silicon layer 28 ... Interlayer insulating film 29 ... Bit line contact

Claims (5)

シリコン基板と、
前記シリコン基板上に設けられ、一部に開口部を有し、該開口部の上部を上面側が広がった順テーパー構造に形成し、且つ下部を下面側が広がった逆テーパー構造に形成してなる絶縁膜と、
前記絶縁膜上及び前記開口部内に形成された単結晶シリコン層と、
前記単結晶シリコン層に形成された半導体素子と、
を具備してなることを特徴とする半導体装置。
A silicon substrate;
Insulation formed on the silicon substrate, having an opening in a part, an upper portion of the opening formed in a forward taper structure with the upper surface widened, and a lower portion formed in a reverse taper structure with the lower surface widened. A membrane,
A single crystal silicon layer formed on the insulating film and in the opening;
A semiconductor element formed in the single crystal silicon layer;
A semiconductor device comprising:
前記半導体素子は2層ゲート構成の不揮発性メモリセルと選択ゲートトランジスタを有する不揮発性半導体メモリであり、前記開口部のシリコン層上に選択ゲートトランジスタが形成され、前記絶縁膜上のシリコン層上に不揮発性メモリセルが形成されていることを特徴とする請求項1記載の半導体装置。   The semiconductor element is a non-volatile semiconductor memory having a non-volatile memory cell having a two-layer gate structure and a select gate transistor, wherein a select gate transistor is formed on the silicon layer of the opening, and on the silicon layer on the insulating film The semiconductor device according to claim 1, wherein a nonvolatile memory cell is formed. シリコン基板上に絶縁膜を形成する工程と、
前記基板の表面にダメージを与えない条件で前記絶縁膜の一部をエッチングし、シード部領域となる開口部を形成する工程と、
水素又は弗素を含むガスを用いて熱処理を行い、前記開口部の絶縁膜表面の角を丸めると共に、前記開口部に残った前記絶縁膜の裾引き部分を除去する工程と、
前記熱処理後に前記絶縁膜上及び前記開口部内にアモルファスシリコン膜を形成する工程と、
前記アモルファスシリコン膜をアニールし、前記開口部をシードとして固相成長させることにより該アモルファスシリコン膜を単結晶化する工程と、
前記固相成長により形成されたシリコン単結晶層上に半導体素子を形成する工程と、
を含むことを特徴とする半導体装置の製造方法。
Forming an insulating film on the silicon substrate;
Etching a part of the insulating film under a condition that does not damage the surface of the substrate to form an opening to be a seed region;
Performing a heat treatment using a gas containing hydrogen or fluorine, rounding the corners of the insulating film surface of the opening, and removing a tailing portion of the insulating film remaining in the opening;
Forming an amorphous silicon film on the insulating film and in the opening after the heat treatment;
Annealing the amorphous silicon film and subjecting the amorphous silicon film to a single crystal by solid phase growth using the opening as a seed; and
Forming a semiconductor element on the silicon single crystal layer formed by the solid phase growth;
A method for manufacturing a semiconductor device, comprising:
前記開口部を形成するためのエッチングとして等方性エッチングを行い、上方側が広がった順テーパー状の開口部を形成することを特徴とする請求項3記載の半導体装置の製造方法。   4. The method of manufacturing a semiconductor device according to claim 3, wherein isotropic etching is performed as the etching for forming the opening to form a forward tapered opening having an upper side widened. 前記半導体素子は2層ゲート構成の不揮発性メモリセルと選択ゲートトランジスタを有する不揮発性半導体メモリであり、前記開口部のシリコン層に選択ゲートトランジスタを形成し、前記絶縁膜上のシリコン層に不揮発性メモリセルを形成することを特徴とする請求項4記載の半導体装置の製造方法。   The semiconductor element is a non-volatile semiconductor memory having a non-volatile memory cell having a two-layer gate structure and a select gate transistor, the select gate transistor is formed in the silicon layer of the opening, and the non-volatile semiconductor layer is formed on the silicon layer on the insulating film 5. The method of manufacturing a semiconductor device according to claim 4, wherein a memory cell is formed.
JP2007318850A 2007-12-10 2007-12-10 Semiconductor device and its manufacturing method Withdrawn JP2009141277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007318850A JP2009141277A (en) 2007-12-10 2007-12-10 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318850A JP2009141277A (en) 2007-12-10 2007-12-10 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009141277A true JP2009141277A (en) 2009-06-25

Family

ID=40871565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007318850A Withdrawn JP2009141277A (en) 2007-12-10 2007-12-10 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009141277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186474A (en) * 2011-03-03 2012-09-27 Imec Floating gate semiconductor memory device and method for producing such device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186474A (en) * 2011-03-03 2012-09-27 Imec Floating gate semiconductor memory device and method for producing such device

Similar Documents

Publication Publication Date Title
US7858508B2 (en) Semiconductor device and method of manufacturing the same
TWI255012B (en) Method of manufacturing a flash memory cell
CN100524653C (en) Anisotropic wet etch device and its production method
JP2009016692A (en) Manufacturing method of semiconductor storage device, and semiconductor storage device
TWI441333B (en) Semiconductor device and method of manufacturing the same
CN113178454B (en) 3D NAND memory and manufacturing method thereof
JP2009010041A (en) Method of manufacturing semiconductor storage device
JP2004186185A (en) Semiconductor device and its fabricating process
EP2455967A1 (en) A method for forming a buried dielectric layer underneath a semiconductor fin
JP2008124189A (en) Semiconductor device and its manufacturing method
US7049230B2 (en) Method of forming a contact plug in a semiconductor device
JP4834304B2 (en) Manufacturing method of semiconductor device
JP2004111547A (en) Semiconductor device, and manufacturing method of semiconductor device
WO2021146878A1 (en) Three-dimensional memory devices with enlarged joint critical dimension and methods for forming the same
KR20050002252A (en) Method of manufacturing a semiconductor device
US7799648B2 (en) Method of forming a MOSFET on a strained silicon layer
US8344446B2 (en) Nonvolatile storage device and method for manufacturing the same in which insulating film is located between first and second impurity diffusion regions but absent on first impurity diffusion region
JP2009141277A (en) Semiconductor device and its manufacturing method
US7785965B2 (en) Dual storage node memory devices and methods for fabricating the same
JP2004241503A (en) Semiconductor storage device and manufacturing method thereof
JP2009010166A (en) Semiconductor device and method of manufacturing the same
JP2005175499A (en) Memory device and its manufacturing method
US6809038B2 (en) Method of manufacturing semiconductor device
US7998814B2 (en) Semiconductor memory device and method of fabricating the same
KR100705212B1 (en) method for fabricating flash memory device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301