JP2009140738A - Flat type battery with terminal - Google Patents

Flat type battery with terminal Download PDF

Info

Publication number
JP2009140738A
JP2009140738A JP2007315618A JP2007315618A JP2009140738A JP 2009140738 A JP2009140738 A JP 2009140738A JP 2007315618 A JP2007315618 A JP 2007315618A JP 2007315618 A JP2007315618 A JP 2007315618A JP 2009140738 A JP2009140738 A JP 2009140738A
Authority
JP
Japan
Prior art keywords
negative electrode
sealing plate
terminal
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007315618A
Other languages
Japanese (ja)
Inventor
Koichi Chikayama
浩一 近山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007315618A priority Critical patent/JP2009140738A/en
Publication of JP2009140738A publication Critical patent/JP2009140738A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat type battery with terminals for preventing an internal short circuit while lithium to constitute the negative electrode is liquified and contacts a positive electrode through a separator due to heat concentration to a negative electrode containing lithium when welding a negative electrode terminal. <P>SOLUTION: In the flat battery, the negative electrode 15 containing lithium, the positive electrode 16, an organic electrolytic solution, and the separator 18 are air-tightly sealed by a sealing plate 11, a gasket 19, and a positive electrode case 12. A negative electrode terminal 20 is welded to the sealing plate 11, and by installing a heat diffusion material 13 such as a graphite sheet having conductivity between the negative electrode 15 and an inside plane part of the sealing plate 11, suppression of heat concentration to the negative electrode 15 when welding the negative electrode is achieved, and the internal short circuit caused by liquefaction of lithium is prevented. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、小形、薄形の偏平形電池に関するものであり、特に負極と封口板の内側平面部の間に導電性を有する熱拡散材が設けられたことを特徴とする高信頼性の端子付偏平形電池に関する。   The present invention relates to a small and thin flat battery, and in particular, a highly reliable terminal characterized in that a conductive heat diffusion material is provided between the negative electrode and the inner flat portion of the sealing plate. The present invention relates to an attached flat battery.

近年、アルカリ金属またはその合金に非水電解液を組み合わせた発電要素を、偏平形の電池ケースに収容した偏平形非水電解液電池(以下、単に「偏平形電池」という。)は、優れた信頼性を有すると共に高いエネルギー密度を有することから、各種小型電子機器の駆動用電源、及びメモリーバックアップ用電源として、好適に用いられている。   In recent years, a flat nonaqueous electrolyte battery (hereinafter simply referred to as a “flat battery”) in which a power generation element in which a nonaqueous electrolyte is combined with an alkali metal or an alloy thereof is housed in a flat battery case is excellent. Since it has reliability and high energy density, it is suitably used as a driving power source for various small electronic devices and a memory backup power source.

これまで、この種の電池は充電できない一次電池が主流であったが、近年、充電可能な二次電池も各種開発され、メモリーや時計機能等のバックアップ用電源としてその需要が増大している。最近では、携帯電話やデジタルスチルカメラ等の電子機器への需要拡大が著しいが、これら電子機器の小形・薄形化に伴い、機器内部に配される偏平形電池に対しても小形・薄形化が要請されている。   Up to now, this type of battery has been mainly a primary battery that cannot be recharged. However, in recent years, various rechargeable secondary batteries have been developed, and the demand is increasing as a backup power source for memory and clock functions. Recently, the demand for electronic devices such as mobile phones and digital still cameras has been increasing rapidly. However, along with the downsizing and thinning of these electronic devices, the flat batteries placed inside the devices are also small and thin. Is required.

偏平形電池のこれら電子機器への取り付けは電池ホルダーを用いるものや、偏平形電池に端子を取り付け、この端子を電子機器に半田付けするものがあるが、小形・薄形化の観点から電池ホルダーと比較して有利な端子付偏平形電池が主流になりつつある。   The flat battery can be attached to these electronic devices using a battery holder, or the flat battery can be attached to a terminal and soldered to the electronic device. However, from the viewpoint of miniaturization and thinning, the battery holder Compared to the above, advantageous flat batteries with terminals are becoming mainstream.

一般的な端子付偏平形電池は図3に示すように、リチウムを含む負極、セパレータ、正極および有機電解液を、ステンレス材からなる封口板および正極ケースでガスケットを介して密封し、封口板および正極ケースにステンレス材からなる端子を抵抗溶接またはレーザー溶接することにより得られる。   As shown in FIG. 3, a general flat battery with a terminal seals a negative electrode containing lithium, a separator, a positive electrode, and an organic electrolyte solution with a sealing plate made of stainless steel and a positive electrode case via a gasket. It is obtained by resistance welding or laser welding of a terminal made of stainless steel to the positive electrode case.

また、負極にリチウム金属単体、正極にペレット状もしくはシート状の成型体を用いる一次電池では、特許文献1に示されるような方法で正極ケースの内側平面部にカーボン塗布層を設け、正極と正極ケースの電気的接触性を高めている。一方、負極にリチウムを含む酸化物、窒化物等をペレット状もしくはシート状にした成型体を用いる二次電池では、正極ケースにカーボン塗布層を設け、正極と正極ケースの電気的接触性を高めるとともに、封口板の内側平面部にカーボン塗布層を設け、負極と封口板との電気的接触性を高めている。
特開平11−135083号公報
Further, in a primary battery using a lithium metal simple substance for the negative electrode and a pellet-shaped or sheet-shaped molded body for the positive electrode, a carbon coating layer is provided on the inner plane portion of the positive electrode case by the method shown in Patent Document 1, and the positive electrode and the positive electrode Enhancing the electrical contact of the case. On the other hand, in a secondary battery that uses a molded body in which a negative electrode is made of an oxide or nitride containing lithium in the form of a pellet or sheet, a carbon coating layer is provided on the positive electrode case to increase the electrical contact between the positive electrode and the positive electrode case. At the same time, a carbon coating layer is provided on the inner plane portion of the sealing plate to enhance electrical contact between the negative electrode and the sealing plate.
JP-A-11-135083

しかしながら、図3に示す構造の電池で特に薄形の電池においては、封口板、正極ケースおよび端子材の薄形化が必須となり、端子付偏平形電池を得るには、板厚の薄いステンレス材同士を溶接する必要がある。ステンレス材同士を溶接するには溶接点に1300℃以上の熱を加える必要があるが、ステンレス材は金属の中でも熱伝導率の低い材料として知られており、板厚の薄いステンレス材の場合、端子溶接時、負極および正極に200℃以上の熱が局所的に集中する。特に封口板への負極端子の溶接は、封口板の内側平面部に接する位置に融点約180℃のリチウムを含む負極があり、この負極に200℃以上の熱が局所的に加えられると、リチウムが液状化してセパレータを貫通する。これにより内部短絡を引き起こすと言う課題があった。   However, in the battery having the structure shown in FIG. 3, particularly in a thin battery, it is essential to make the sealing plate, the positive electrode case, and the terminal material thin. To obtain a flat battery with a terminal, a thin stainless steel material is used. It is necessary to weld them together. In order to weld stainless steels, it is necessary to apply heat of 1300 ° C or higher to the welding point, but stainless steel is known as a material with low thermal conductivity among metals. During terminal welding, heat of 200 ° C. or higher is locally concentrated on the negative electrode and the positive electrode. In particular, welding of the negative electrode terminal to the sealing plate has a negative electrode containing lithium having a melting point of about 180 ° C. at a position in contact with the inner plane portion of the sealing plate, and when heat of 200 ° C. or higher is locally applied to the negative electrode, Liquefies and penetrates the separator. This caused a problem of causing an internal short circuit.

本発明は、このような課題を解決するもので、薄形であっても端子溶接時に内部短絡を引き起こさない高信頼性の端子付偏平形電池を提供することを目的とする。   An object of the present invention is to solve such a problem, and an object of the present invention is to provide a highly reliable flat battery with a terminal which does not cause an internal short circuit during terminal welding even if it is thin.

上記課題を解決するために、本発明の端子付偏平形電池は、リチウムを含む負極、正極、有機電解液およびセパレータを、封口板、ガスケットおよび正極ケースで密封封口する偏平形電池であって、前記封口板に負極端子が溶接され、前記負極と封口板の内側平面部の間に導電性を有する熱拡散材を設けたものである。   In order to solve the above problems, a flat battery with a terminal of the present invention is a flat battery in which a negative electrode containing lithium, a positive electrode, an organic electrolyte, and a separator are sealed with a sealing plate, a gasket, and a positive electrode case, A negative electrode terminal is welded to the sealing plate, and a conductive heat diffusing material is provided between the negative electrode and the inner flat portion of the sealing plate.

本発明の電池構造を用いることによって、偏平形電池の封口板に負極端子を溶接する際のリチウムを含む負極への熱集中を熱拡散材が緩和するため、リチウムの液状化を抑制し、内部短絡の発生を防止することができる。   By using the battery structure of the present invention, the thermal diffusion material relaxes the heat concentration on the negative electrode containing lithium when the negative electrode terminal is welded to the sealing plate of the flat battery. The occurrence of a short circuit can be prevented.

本発明により、小形・薄形の偏平形電池であっても、端子溶接時に内部短絡を起こすことのない高信頼性の端子付偏平形電池を提供することができる。   According to the present invention, it is possible to provide a highly reliable flat battery with a terminal that does not cause an internal short circuit during terminal welding even if it is a small and thin flat battery.

本発明の請求項1に記載の発明は、リチウムを含む負極、正極、有機電解液およびセパレータを、封口板、ガスケットおよび正極ケースで密封封口する偏平形電池であって、前記封口板に負極端子が溶接され、前記負極と封口板内側平面部の間に導電性を有する熱拡散材が設けられた構造であり、偏平形電池の封口板に負極端子を溶接する際に、熱拡散材によって前記負極への熱集中を緩和させるものである。   The invention according to claim 1 of the present invention is a flat battery in which a negative electrode containing lithium, a positive electrode, an organic electrolyte, and a separator are hermetically sealed with a sealing plate, a gasket, and a positive electrode case, and the negative electrode terminal is provided on the sealing plate. Is welded, and a heat diffusion material having conductivity is provided between the negative electrode and the inner flat surface of the sealing plate, and when the negative electrode terminal is welded to the sealing plate of the flat battery, the heat diffusion material It reduces the heat concentration on the negative electrode.

以下本発明の好ましい実施形態について、端子付偏平形一次電池を例として図面を参照しながら説明する。なお本発明は一次電池に限定されるものではない。   Preferred embodiments of the present invention will be described below with reference to the drawings, taking a flat primary battery with terminals as an example. The present invention is not limited to primary batteries.

図1に示す本発明の端子付偏平形一次電池は、ペレット状またはシート状に成型された正極16、ステンレスからなる正極ケース12と正極16との電気的接触性を高めるカーボン塗布層14、リチウム金属からなる負極15、導電性を有する熱拡散材13、ステンレスからなる封口板11と熱拡散材13との電気的接触性を高めるカーボン塗布層17、正極16と負極15を分離する樹脂からなるセパレータ18および有機電解液を発電要素とし、封口板11および正極ケース12で樹脂からなるガスケット19を介して密封封口してなる偏平形一次電池の封口板11、正極ケース12それぞれにステンレスからなる負極端子20、正極端子21を溶接した構造を有する。   The flat primary battery with a terminal of the present invention shown in FIG. 1 includes a positive electrode 16 molded into a pellet or sheet, a carbon coating layer 14 that improves the electrical contact between the positive electrode case 12 and the positive electrode 16 made of stainless steel, lithium It consists of a negative electrode 15 made of metal, a heat diffusion material 13 having conductivity, a carbon coating layer 17 that enhances electrical contact between the sealing plate 11 made of stainless steel and the heat diffusion material 13, and a resin that separates the positive electrode 16 and the negative electrode 15. The separator 18 and the organic electrolyte solution are used as power generation elements, and the sealing plate 11 and the positive electrode case 12 of the flat primary battery are hermetically sealed with the sealing plate 11 and the positive electrode case 12 via the gasket 19 made of resin. The terminal 20 and the positive electrode terminal 21 are welded.

本実施の形態においては、熱拡散材13を封口板11の内面平面部と負極15の間に設けることに最大の特徴を有する。ステンレス材は安価で耐食性に優れるため、電池材料として一般的に用いられるが、熱伝導率が約15〜30W/m・Kと金属の中でも熱伝導率が低い。一方、ステンレス材の融点は1300℃以上と高いため、ステンレス材同士を溶接する場合、溶接点にこの温度以上の熱を加える必要がある。厚みの大きなステンレス材を封口板11に用いれば溶接点と負極15との物理的距離が大きくできるため、負極15への熱伝導を抑制することができるが、内容積減少による放電容量低下を招くため不利となる。厚みの小さいステンレス材を封口板11に用いた場合、溶接点と負極15との物理的距離が小さくなるため、負極15への熱集中が起こる。本発明は熱拡散材13を封口板11の内面平面部と負極15の間に配置することにより、偏平形一次電池の封口板11に負極端子20を溶接する際に生じる負極15への局所的な熱集中を熱拡散材13が抑制するため、リチウムが液状化することなく、セパレータ17をリチウムが貫通することによる内部短絡を防ぐ作用を有する。   In the present embodiment, the greatest feature is that the thermal diffusion material 13 is provided between the inner surface plane portion of the sealing plate 11 and the negative electrode 15. Since stainless steel is inexpensive and excellent in corrosion resistance, it is generally used as a battery material. However, thermal conductivity is about 15 to 30 W / m · K, which is low among metals. On the other hand, since the melting point of stainless steel is as high as 1300 ° C. or higher, it is necessary to apply heat above this temperature to the welding point when the stainless steels are welded together. If a thick stainless steel material is used for the sealing plate 11, the physical distance between the welding point and the negative electrode 15 can be increased, so that heat conduction to the negative electrode 15 can be suppressed, but the discharge capacity is reduced due to the decrease in the internal volume. This is disadvantageous. When a stainless steel material having a small thickness is used for the sealing plate 11, the physical distance between the welding point and the negative electrode 15 becomes small, and heat concentration on the negative electrode 15 occurs. In the present invention, the heat diffusing material 13 is disposed between the inner surface flat portion of the sealing plate 11 and the negative electrode 15, whereby the negative electrode 15 is locally generated when the negative electrode terminal 20 is welded to the sealing plate 11 of the flat primary battery. Since the heat diffusing material 13 suppresses heat concentration, the lithium does not liquefy and has an effect of preventing an internal short circuit due to lithium penetrating the separator 17.

請求項2に記載の本発明は、熱拡散材13に銅箔を用いることを特徴とするものである。銅箔は加工性に優れ、導電性を有するので封口板11と負極15との電気的接触性の低下による電池の内部抵抗上昇を引きこすことがない。また、薄厚化が容易で熱伝導率も390W/m・Kと大きいため、偏平形電池の封口板11に負極端子20を溶接する際に生じる負極16への局所的な熱集中を抑制し、セパレータ17をリチウムが貫通することによる内部短絡を防ぐ作用を有する。   The present invention according to claim 2 is characterized in that a copper foil is used for the thermal diffusion material 13. Since the copper foil is excellent in workability and has electrical conductivity, it does not cause an increase in the internal resistance of the battery due to a decrease in electrical contact between the sealing plate 11 and the negative electrode 15. Moreover, since the thickness can be easily reduced and the thermal conductivity is as large as 390 W / m · K, local heat concentration on the negative electrode 16 that occurs when the negative electrode terminal 20 is welded to the sealing plate 11 of the flat battery is suppressed, It has an effect of preventing an internal short circuit due to lithium penetrating the separator 17.

請求項3に記載の本発明は、請求項2において銅箔の厚みを0.02mm以上に限定するものである。この限定によって、より高い内部短絡防止効果を得ることができる。   According to a third aspect of the present invention, in the second aspect, the thickness of the copper foil is limited to 0.02 mm or more. By this limitation, a higher internal short-circuit prevention effect can be obtained.

請求項4に記載の本発明は、熱拡散材13にグラファイトシートを用いることを特徴とするものである。グラファイトシートが有する導電性により、封口板11と負極15との電気的接触性の低下による電池の内部抵抗上昇を引きこすことがない。また、その構造上、平面方向の熱伝導率を厚さ方向の熱伝導率よりも著しく大きくできるため、薄厚であっても偏平形電池の封口板11に負極端子20を溶接する際に生じる負極16への局所的な熱集中を抑制し、セパレータ17をリチウムが貫通することによる内部短絡を防ぐ作用を有する。   The present invention according to claim 4 is characterized in that a graphite sheet is used for the thermal diffusion material 13. Due to the conductivity of the graphite sheet, the increase in the internal resistance of the battery due to a decrease in the electrical contact between the sealing plate 11 and the negative electrode 15 is not caused. Further, because of its structure, the thermal conductivity in the planar direction can be made significantly higher than the thermal conductivity in the thickness direction, the negative electrode produced when the negative electrode terminal 20 is welded to the sealing plate 11 of the flat battery even if it is thin. 16 has an effect of suppressing local heat concentration to 16 and preventing an internal short circuit due to lithium penetrating the separator 17.

以下、本発明の好ましい実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

(実施例1)
図1は本発明の端子付偏平形電池の断面図である。
(Example 1)
FIG. 1 is a sectional view of a flat battery with a terminal according to the present invention.

実施例1として、直径6.8mm、厚さ1.0mmの偏平形電池を以下の条件で作製し、これに負極端子および正極端子を溶接により取り付け、図1に示す端子付偏平形電池を得た。封口板11は耐食性に優れたステンレス材(SUS304、厚さ0.10mm)を用い、封口板の内側平面部にはカーボン塗料が塗着されカーボン塗布層17が形成されている。熱拡散材には厚み0.05mmで熱伝導率390W/m・Kの銅箔を径4.2mmの円形に打ち抜き、これをリチウム金属からなる負極15とカーボン塗布層17を有する封口板11の内側平面部の間に配置した。   As Example 1, a flat battery having a diameter of 6.8 mm and a thickness of 1.0 mm was produced under the following conditions, and a negative electrode terminal and a positive electrode terminal were attached thereto by welding to obtain a flat battery with a terminal shown in FIG. It was. A stainless steel material (SUS304, thickness 0.10 mm) having excellent corrosion resistance is used for the sealing plate 11, and a carbon coating layer 17 is formed by applying a carbon coating on the inner plane portion of the sealing plate. A copper foil having a thickness of 0.05 mm and a thermal conductivity of 390 W / m · K is punched into a circular shape having a diameter of 4.2 mm as the heat diffusion material, and this is formed into a sealing plate 11 having a negative electrode 15 made of lithium metal and a carbon coating layer 17. It arrange | positioned between the inner side plane parts.

正極ケース12は、耐食性に優れたステンレス材(SUS444、厚さ0.10mm)を用い、正極ケース12の内面にはカーボン塗料が塗着されカーボン塗布層14が形成されている。正極16と負極15との間に配されるセパレータ18にはポリプロピレン製の不織布を使用した。ガスケット19は、封口板11と正極ケース12とを絶縁するとともに、物理的に発電要素を電池容器内に封止しており、ポリプロピレンを使用している。このセパレータ18の周縁部はガスケット19の立ち上がり部と封口板11とで形成されてなるセパレータ収納部に収納させることにより、その形状をカップ状にさせている。ガスケット19と封口板11、および正極ケース12とガスケット19との間にブチルゴムをトルエンで希釈した溶液を塗布し、トルエンを蒸発させることによりブチルゴム膜からなるシーラントとした。   The positive electrode case 12 is made of a stainless material (SUS444, thickness 0.10 mm) having excellent corrosion resistance, and a carbon coating is applied to the inner surface of the positive electrode case 12 to form a carbon coating layer 14. For the separator 18 disposed between the positive electrode 16 and the negative electrode 15, a nonwoven fabric made of polypropylene was used. The gasket 19 insulates the sealing plate 11 and the positive electrode case 12 and physically seals the power generation element in the battery container, and uses polypropylene. The peripheral portion of the separator 18 is accommodated in a separator accommodating portion formed by the rising portion of the gasket 19 and the sealing plate 11 so that the shape thereof is cup-shaped. A solution obtained by diluting butyl rubber with toluene was applied between the gasket 19 and the sealing plate 11 and between the positive electrode case 12 and the gasket 19, and the toluene was evaporated to obtain a sealant made of a butyl rubber film.

正極16はフッ化黒鉛、導電剤のカーボンブラックおよびフッ素樹脂の結着剤の混合粉末に水を加えて混練し、造粒させた後に乾燥させ、一定寸法に加圧成型されており、ペレット状に成型されている。また有機電解液にはガンマブチロラクトンと1、2−ジメトキシエタンとの等容積混合溶媒に、ホウフッ化リチウムを1モル/リットルの割合で溶解したものを使用した。   The positive electrode 16 is formed by adding water to a mixed powder of fluorinated graphite, a conductive agent carbon black, and a fluororesin binder, kneading, granulating, drying, and press-molding to a certain size, in a pellet form Is molded. As the organic electrolyte, a solution obtained by dissolving lithium borofluoride at a ratio of 1 mol / liter in an equal volume mixed solvent of gamma butyrolactone and 1,2-dimethoxyethane was used.

負極端子20にはステンレス材(SUS304、厚さ0.08mm)を用い、封口板1
1への負極端子20の取り付けは抵抗溶接により行った。正極端子21も負極端子20と同様にステンレス材(SUS304、 厚さ0.08mm)を用い、抵抗溶接により正極ケース12に取り付けた。
The negative electrode terminal 20 is made of stainless steel (SUS304, thickness 0.08 mm), and the sealing plate 1
The negative electrode terminal 20 was attached to 1 by resistance welding. Similarly to the negative electrode terminal 20, the positive electrode terminal 21 was made of stainless steel (SUS304, thickness 0.08 mm) and attached to the positive electrode case 12 by resistance welding.

(実施例2)
実施例2として、図2に示す端子付偏平形電池を作製した。封口板11の内側平面部にはカーボン塗布がされておらず、熱拡散材13は厚み0.05mmで熱伝導率390W/m・Kの銅箔を径4.2mmの円形に打ち抜いたもので、リチウム金属からなる負極15と封口板11の内側平面部の間に配置されている。他の構成は、実施例1と同様である。
(Example 2)
As Example 2, a flat battery with a terminal shown in FIG. No carbon coating is applied to the inner flat surface of the sealing plate 11, and the heat diffusing material 13 is obtained by punching a copper foil having a thickness of 0.05 mm and a thermal conductivity of 390 W / m · K into a circular shape having a diameter of 4.2 mm. The negative electrode 15 made of lithium metal and the inner flat portion of the sealing plate 11 are disposed. Other configurations are the same as those of the first embodiment.

(比較例1)
比較例1として、図3に示す端子付偏平形電池を作製した。封口板11の内側平面部にはカーボン塗布がされておらず、熱拡散材が無いためリチウム金属からなる負極15が封口板11の内面に直接圧着されている。他の構成は、実施例1と同様である。
(Comparative Example 1)
As Comparative Example 1, a flat battery with a terminal shown in FIG. The inner flat portion of the sealing plate 11 is not coated with carbon, and since there is no heat diffusion material, the negative electrode 15 made of lithium metal is directly bonded to the inner surface of the sealing plate 11. Other configurations are the same as those of the first embodiment.

実施例1、実施例2および比較例1の電池を各100個ずつ作製し、端子溶接直後の電池電圧の測定により、内部短絡を起こした電池の割合の確認を行った。その結果を表1に示す。   100 batteries each of Example 1, Example 2, and Comparative Example 1 were prepared, and the ratio of the batteries that caused an internal short circuit was confirmed by measuring the battery voltage immediately after terminal welding. The results are shown in Table 1.

Figure 2009140738
Figure 2009140738

実施例1および実施例2の電池では、負極15と封口板11の間に熱拡散材13が設けられており、封口板11に負極端子20を溶接する際、熱拡散材13による負極15への熱集中を緩和するため、リチウムが液状化することがない。このためセパレータ17のリチウム貫通による内部短絡が起こらない。一方、比較例1の電池では負極15と封口板11の間に熱拡散材13が設けられておらず、封口板11に負極端子20を溶接する際の負極15への熱集中が起こり、リチウムが液状化する。このリチウムがセパレータ17を貫通し正極16と接触し、内部短絡を引き起こしたものと考えられる。   In the batteries of Example 1 and Example 2, the thermal diffusion material 13 is provided between the negative electrode 15 and the sealing plate 11, and when the negative electrode terminal 20 is welded to the sealing plate 11, the thermal diffusion material 13 leads to the negative electrode 15. Lithium is not liquefied in order to alleviate heat concentration. For this reason, the internal short circuit by the lithium penetration of the separator 17 does not occur. On the other hand, in the battery of Comparative Example 1, the heat diffusing material 13 is not provided between the negative electrode 15 and the sealing plate 11, and heat concentration on the negative electrode 15 occurs when the negative electrode terminal 20 is welded to the sealing plate 11. Liquefies. This lithium is thought to have penetrated the separator 17 and contacted the positive electrode 16 to cause an internal short circuit.

次に、交流法1kHzで電池の内部抵抗を測定した。表2にそれぞれの電池100個の内部抵抗の平均値を示す。
Next, the internal resistance of the battery was measured with an alternating current method of 1 kHz. Table 2 shows the average value of the internal resistance of 100 batteries.

Figure 2009140738
Figure 2009140738

内部抵抗に関しては、実施例1、比較例1において顕著な差が見られない。実施例1の場合、封口板11の内側平面部にカーボン塗布層17があるため、銅箔からなる熱拡散材13と封口板11の電気的接触が良好に保たれており、銅箔からなる熱拡散材13とリチウムからなる負極15も圧着により電気的接触が良好に保たれている。比較例1の場合、封口板11の内側平面部にカーボン層は形成されていないが、封口板11の内側平面部にリチウムからなる負極15が圧着されているため電気的接触は良好に保たれ、顕著な差が見られないと考えられる。   Regarding the internal resistance, there is no significant difference between Example 1 and Comparative Example 1. In the case of Example 1, since there is the carbon coating layer 17 on the inner plane part of the sealing plate 11, the electrical contact between the heat diffusion material 13 made of copper foil and the sealing plate 11 is well maintained and made of copper foil. The thermal diffusion material 13 and the negative electrode 15 made of lithium are also kept in good electrical contact by pressure bonding. In the case of Comparative Example 1, the carbon layer is not formed on the inner flat surface portion of the sealing plate 11, but the negative electrode 15 made of lithium is pressure-bonded to the inner flat surface portion of the sealing plate 11, so that the electrical contact is kept good. It is considered that there is no significant difference.

一方、実施例2では、銅箔からなる熱拡散材13とリチウムからなる負極15は圧着により電気的接触性が良好に保たれているが、封口板11の内側平面部にカーボン塗布層が形成されていないため、電気的接触性が不安定となり実施例1および比較例1と比べて大きくなったものと考えられる。内部短絡の防止と言う観点からは封口板11の内側平面部に形成されるカーボン塗布層の有無による差が認められないが、封口板11の内側平面部にカーボン塗布層を形成させる方が内部抵抗を安定化させることができるため、より好ましい。   On the other hand, in Example 2, the thermal diffusion material 13 made of copper foil and the negative electrode 15 made of lithium are kept in good electrical contact by pressure bonding, but a carbon coating layer is formed on the inner plane portion of the sealing plate 11. Therefore, it is considered that the electrical contact became unstable and increased compared to Example 1 and Comparative Example 1. From the viewpoint of preventing an internal short circuit, there is no difference due to the presence or absence of the carbon coating layer formed on the inner plane portion of the sealing plate 11, but it is better to form the carbon coating layer on the inner plane portion of the sealing plate 11. Since resistance can be stabilized, it is more preferable.

なお本実施例では封口板としてSUS304、正極ケースとしてSUS444、負極端子および正極端子としてSUS304を用いたがSUS316、SUS430等のステンレス材を用いても同様の効果が得られる。   In this embodiment, SUS304 is used as the sealing plate, SUS444 is used as the positive electrode case, and SUS304 is used as the negative electrode terminal and the positive electrode terminal. However, the same effect can be obtained by using a stainless material such as SUS316 or SUS430.

また本発明は、負極にリチウム金属を用いる一次電池に限定されるものではなく、リチウムを含む酸化物、窒化物を負極に用いる二次電池にも適用できる。さらに正極活物質や電解液の種類に限定されるものではない。   The present invention is not limited to a primary battery using lithium metal for the negative electrode, but can also be applied to a secondary battery using an oxide or nitride containing lithium for the negative electrode. Furthermore, it is not limited to the kind of positive electrode active material or electrolyte solution.

次に材料や厚みを変えた熱拡散材を用いて詳細な検討を行った。   Next, detailed examination was performed using heat diffusion materials with different materials and thicknesses.

(実施例3)
熱拡散材13に厚み0.02mmの銅箔を用いた以外は実施例1の電池と同様の実施例3の電池を作製した。
(Example 3)
A battery of Example 3 similar to the battery of Example 1 was prepared, except that a copper foil having a thickness of 0.02 mm was used as the thermal diffusion material 13.

(実施例4)
熱拡散材13に厚み0.015mmの銅箔を用いた以外は実施例1の電池と同様の実施例4の電池を作製した。
Example 4
A battery of Example 4 similar to the battery of Example 1 was produced, except that a copper foil having a thickness of 0.015 mm was used as the thermal diffusion material 13.

(実施例5)
熱拡散材13に平面方向の熱伝導率が1500〜1700W/m・K、厚さ方向の熱伝導率が15W/m・K、その厚みが0.025mmのグラファイトシートを径4.2mmの円形に打ち抜いたものを2枚重ねて厚みを0.05mmとしたもの以外は実施例1の電池と同様の実施例5の電池を作製した。
(Example 5)
The thermal diffusion material 13 has a planar thermal conductivity of 1500 to 1700 W / m · K, a thickness direction thermal conductivity of 15 W / m · K, and a 0.025 mm thick graphite sheet with a diameter of 4.2 mm. A battery of Example 5 was manufactured in the same manner as the battery of Example 1 except that two of the punched sheets were stacked to a thickness of 0.05 mm.

(実施例6)
熱拡散材13に平面方向の熱伝導率が1500〜1700W/m・K、厚さ方向の熱伝導率が15W/m・K、その厚みが0.025mmのグラファイトシートを径4.2mmの円形に打ち抜いたものを用いた以外は実施例1の電池と同様の実施例6の電池を作製した。
(Example 6)
The thermal diffusion material 13 has a planar thermal conductivity of 1500 to 1700 W / m · K, a thickness direction thermal conductivity of 15 W / m · K, and a 0.025 mm thick graphite sheet with a diameter of 4.2 mm. A battery of Example 6 was produced in the same manner as the battery of Example 1 except that one punched out was used.

実施例3〜実施例6の電池を各100個ずつ作製し、端子溶接直後の電池電圧の測定により、内部短絡を起こした電池の割合の確認を行った。その結果を表3に示す。   100 batteries of each of Examples 3 to 6 were prepared, and the ratio of the batteries that caused an internal short circuit was confirmed by measuring the battery voltage immediately after terminal welding. The results are shown in Table 3.

Figure 2009140738
Figure 2009140738

実施例3および実施例5〜実施例6の電池では、封口板11に負極端子20を溶接する際、負極15と封口板11の内側平面部の間に設けられた熱拡散材13が負極15への熱集中を緩和するため、リチウムが液状化することがない。このためセパレータ17をリチウムが貫通することによる内部短絡が起こらない。一方、実施例4の場合、銅箔が0.015mmと薄いため、熱拡散が十分に行われる前に負極15の表面に熱が素早く伝わり、このためにリチウムが液状化を起こし、内部短絡を生じさせたものと考えられる。   In the batteries of Example 3 and Examples 5 to 6, when the negative electrode terminal 20 was welded to the sealing plate 11, the thermal diffusion material 13 provided between the negative electrode 15 and the inner flat portion of the sealing plate 11 was the negative electrode 15. Lithium is not liquefied in order to alleviate heat concentration on the surface. For this reason, an internal short circuit due to the penetration of lithium through the separator 17 does not occur. On the other hand, in the case of Example 4, since the copper foil is as thin as 0.015 mm, the heat is quickly transmitted to the surface of the negative electrode 15 before sufficient thermal diffusion is performed, which causes liquefaction of lithium and internal short circuit. It is thought that it was made.

また、熱拡散材にグラファイトシートを用いる場合、グラファイトの構造上、平面方向の熱伝導率は非常に大きく、かつ厚み方向の熱伝導率は著しく小さいため、最適な素材と考えられる。   Further, when a graphite sheet is used as the heat diffusing material, the thermal conductivity in the plane direction is very large and the thermal conductivity in the thickness direction is extremely small due to the structure of the graphite.

なお本実施例では封口板としてSUS304、正極ケースとしてSUS444、負極端子および正極端子としてSUS304を用いたがSUS316、SUS430等のステンレス材を用いても同様の効果が得られる。   In this embodiment, SUS304 is used as the sealing plate, SUS444 is used as the positive electrode case, and SUS304 is used as the negative electrode terminal and the positive electrode terminal. However, the same effect can be obtained by using a stainless material such as SUS316 or SUS430.

また本発明は、負極にリチウム金属を用いる一次電池に限定されるものではなく、リチウムを含む酸化物、窒化物を負極に用いる二次電池にも適用できる。さらに正極活物質や電解液の種類に限定されるものではない。   The present invention is not limited to a primary battery using lithium metal for the negative electrode, but can also be applied to a secondary battery using an oxide or nitride containing lithium for the negative electrode. Furthermore, it is not limited to the kind of positive electrode active material or electrolyte solution.

また本発明は、正極活物質や電解液の種類に限定されるものではない。   Moreover, this invention is not limited to the kind of positive electrode active material or electrolyte solution.

本発明はリチウムを含む負極と封口板の内側平面部の間に熱拡散材を設けることにより、封口板に負極端子を溶接する際の負極への熱集中を緩和し、リチウムが液状化することによるセパレータのリチウム貫通による内部短絡を防止する。これにより高信頼性を有する端子付偏平形電池を提供することができる。   In the present invention, by providing a heat diffusion material between the negative electrode containing lithium and the inner flat portion of the sealing plate, the heat concentration on the negative electrode when the negative electrode terminal is welded to the sealing plate is alleviated, and lithium is liquefied. Prevents internal short circuit due to lithium penetration of separator. Thereby, the flat battery with a terminal which has high reliability can be provided.

本発明の実施例1及び実施例3〜5における端子付偏平形電池の断面図Sectional drawing of the flat battery with a terminal in Example 1 and Examples 3-5 of this invention 本発明の実施例2における端子付偏平形電池の断面図Sectional drawing of the flat battery with a terminal in Example 2 of this invention 従来の比較例1における端子付偏平形電池の断面図Sectional drawing of the flat battery with a terminal in the conventional comparative example 1

符号の説明Explanation of symbols

11 封口板
12 正極ケース
13 熱拡散材
14 カーボン塗布層
15 負極
16 正極
17 カーボン塗布層
18 セパレータ
19 ガスケット
20 負極端子
21 正極端子
DESCRIPTION OF SYMBOLS 11 Sealing plate 12 Positive electrode case 13 Thermal diffusion material 14 Carbon coating layer 15 Negative electrode 16 Positive electrode 17 Carbon coating layer 18 Separator 19 Gasket 20 Negative electrode terminal 21 Positive electrode terminal

Claims (4)

リチウムを含む負極、正極、有機電解液およびセパレータを、封口板、ガスケットおよび正極ケースで密封封口する偏平形電池であって、前記封口板に負極端子が溶接され、前記負極と封口板内側平面部の間に導電性を有する熱拡散材が設けられたことを特徴とする端子付偏平形電池。   A flat battery in which a negative electrode containing lithium, a positive electrode, an organic electrolyte, and a separator are hermetically sealed with a sealing plate, a gasket, and a positive electrode case, and a negative electrode terminal is welded to the sealing plate, and the inner surface of the negative electrode and the sealing plate A flat battery with a terminal, wherein a heat diffusion material having conductivity is provided between the two. 前記熱拡散材が銅箔である請求項1記載の端子付偏平形電池。   The flat battery with a terminal according to claim 1, wherein the heat diffusion material is a copper foil. 前記銅箔の厚みが0.02mm以上である請求項2記載の端子付偏平形電池。   The flat battery with a terminal according to claim 2, wherein the copper foil has a thickness of 0.02 mm or more. 前記熱拡散材がグラファイトシートである請求項1記載の端子付偏平形電池。   The flat battery with a terminal according to claim 1, wherein the thermal diffusion material is a graphite sheet.
JP2007315618A 2007-12-06 2007-12-06 Flat type battery with terminal Pending JP2009140738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315618A JP2009140738A (en) 2007-12-06 2007-12-06 Flat type battery with terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315618A JP2009140738A (en) 2007-12-06 2007-12-06 Flat type battery with terminal

Publications (1)

Publication Number Publication Date
JP2009140738A true JP2009140738A (en) 2009-06-25

Family

ID=40871165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315618A Pending JP2009140738A (en) 2007-12-06 2007-12-06 Flat type battery with terminal

Country Status (1)

Country Link
JP (1) JP2009140738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272979A (en) * 2009-07-17 2011-12-07 松下电器产业株式会社 Battery and battery unit
CN114659820A (en) * 2022-05-24 2022-06-24 中国飞机强度研究所 High-temperature-resistant combined type electrode system of heating device in aerospace plane test

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272979A (en) * 2009-07-17 2011-12-07 松下电器产业株式会社 Battery and battery unit
CN114659820A (en) * 2022-05-24 2022-06-24 中国飞机强度研究所 High-temperature-resistant combined type electrode system of heating device in aerospace plane test
CN114659820B (en) * 2022-05-24 2022-08-02 中国飞机强度研究所 High-temperature-resistant combined type electrode system of heating device in aerospace plane test

Similar Documents

Publication Publication Date Title
KR101509376B1 (en) Electrochemical cell
JP5268489B2 (en) Electrochemical cell with terminal
JP2006093134A (en) Lithium ion secondary battery
JP2006269288A (en) Thin battery
JP2016189246A (en) Square secondary battery
CN107919493B (en) Method for manufacturing battery
JP2008294001A5 (en)
JP2017098012A (en) Lithium battery
JP5472671B2 (en) Battery and manufacturing method thereof
JP2002203534A (en) Thin-type secondary battery and battery pack
JP2009146601A (en) Rectangular-shaped sealed battery
TWI609517B (en) Nonaqueous electrolytic secondary battery
JP2009140738A (en) Flat type battery with terminal
JP2010033888A (en) Lead wire for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2007214025A (en) Laminated cell and battery pack
JP2015079654A (en) Tab lead and power storage device
JP2008171649A (en) Nonaqueous electrolyte secondary battery
JP2010123410A (en) Square sealed battery
JP4909508B2 (en) Battery case and secondary battery using the same
KR20070056492A (en) Secondary battery containing safety member of bimetal base
CN115516706B (en) Sealed battery
JP2007193966A (en) Battery
WO2022149393A1 (en) Power storage element
JP4945993B2 (en) Non-aqueous electrolyte battery
JP2005346966A (en) Battery