JP2006269288A - Thin battery - Google Patents

Thin battery Download PDF

Info

Publication number
JP2006269288A
JP2006269288A JP2005086742A JP2005086742A JP2006269288A JP 2006269288 A JP2006269288 A JP 2006269288A JP 2005086742 A JP2005086742 A JP 2005086742A JP 2005086742 A JP2005086742 A JP 2005086742A JP 2006269288 A JP2006269288 A JP 2006269288A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
positive electrode
frame member
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005086742A
Other languages
Japanese (ja)
Inventor
Sadamitsu Harada
定光 原田
Hiroshi Matsumoto
弘 松本
Koji Ito
孝二 伊東
Tomohisa Goto
智久 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005086742A priority Critical patent/JP2006269288A/en
Publication of JP2006269288A publication Critical patent/JP2006269288A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin battery which is effective in forming a seal thicker than a battery body and excellent in heat resistance and pressure resistance for preventing an electrode frame member and a negative electrode frame member from breaking widely. <P>SOLUTION: A lithium primary battery 1A comprises a battery body 14, in an active material filling room 10 of which a separator 9, an anode active substance layer 4, and a cathode active substance layer 5 are housed, and a seal 11 in a shape of a frame, which keeps the active material filling chamber 10 hermetic by sealing the periphery of the battery body 14. The seal 11 is thicker than the battery body 14 in a section parallel to the thickness direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、薄型電池に関する。   The present invention relates to a thin battery.

昨今、磁気カードに代わる簡易記憶媒体として、マイクロコンピュータを内蔵したICカードの需要が拡大しつつある。ICカードに採用されている電力供給方式で主流なのは電磁誘導方式であるが、内部電源を持たず電磁誘導による起電力のみで機能するICカードは、記憶している情報を端末装置でしか知ることができない不便さがある。そこで、こうしたICカードにも内部電源を設ける試みがある。ICカードに組み込む電池には、特許文献1,2に記載されているような、薄くて柔軟性に富む電池が適している。
特許第2935427号公報 特開平8−055627号公報
Recently, the demand for IC cards with built-in microcomputers is increasing as a simple storage medium replacing magnetic cards. The mainstream power supply method used in IC cards is the electromagnetic induction method, but IC cards that do not have an internal power supply and function only by electromotive force by electromagnetic induction can only know the stored information from the terminal device. There is inconvenience that cannot be done. Therefore, there is an attempt to provide an internal power supply for such an IC card. As a battery incorporated in an IC card, a thin and flexible battery as described in Patent Documents 1 and 2 is suitable.
Japanese Patent No. 2935427 JP-A-8-055627

一般にICカードは、図10に示すごとく、ICや電池71等の電気部品を実装したインナシート73にコアシート72を重ね、さらに上下からオーバシート74,75で挟み、これらのシート群を一体に熱圧着することにより製造される。この熱圧着の工程において、電池71に熱と圧力が加わってシール破壊が起こるという問題がある。コアシート72には、電池71を嵌め込むためのキャビティ72aをくり貫いているが、プレス機の圧力が電池71におよぶことを防ぐには不十分である。また、ICカードには表面の平坦性が要求されるので、電池71のところを避けてプレスすることが技術的に難しいという事情もある。   In general, as shown in FIG. 10, an IC card is formed by stacking a core sheet 72 on an inner sheet 73 on which electrical components such as an IC and a battery 71 are mounted, and sandwiching the sheet group from above and below by oversheets 74 and 75. Manufactured by thermocompression bonding. In this thermocompression bonding process, there is a problem that heat and pressure are applied to the battery 71 to cause seal breakage. The core sheet 72 penetrates a cavity 72 a for fitting the battery 71, but is insufficient to prevent the pressure of the press from reaching the battery 71. Further, since the IC card is required to have flatness on the surface, it is technically difficult to press the battery card away from the battery 71.

上記の問題に鑑み、本発明は耐熱耐圧性能に優れる薄型電池を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a thin battery excellent in heat and pressure resistance.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために本発明の薄型電池は、セパレータと、セパレータの一方の面側に配置された正極活物質層と、セパレータの他方の面側に配置された負極活物質層と、セパレータ、正極活物質層および負極活物質層を活物質充填室に収容した電池本体部と、電池本体部の周囲を封じて活物質充填室の気密を保持する枠状のシール部とを備え、厚さ方向に平行な断面において、シール部の厚さが電池本体部の厚さ以上に調整されていることを主要な特徴とする。   In order to solve the above problems, a thin battery of the present invention includes a separator, a positive electrode active material layer disposed on one surface side of the separator, a negative electrode active material layer disposed on the other surface side of the separator, and a separator. A battery main body portion in which the positive electrode active material layer and the negative electrode active material layer are accommodated in the active material filling chamber, and a frame-shaped seal portion that seals the periphery of the battery main body portion to keep the active material filling chamber airtight. The main feature is that the thickness of the seal portion is adjusted to be equal to or greater than the thickness of the battery body in a cross section parallel to the vertical direction.

また、別の観点から見た本発明は、電池本体部のところが凹となるように、それら電池本体部とシール部とが構成されていることを特徴とする。   In addition, the present invention viewed from another viewpoint is characterized in that the battery body and the seal are configured so that the battery body is concave.

上記本発明の薄型電池によれば、ICカード製造時の熱圧着工程において、プレス機からの圧力をシール部で受け止めることができる。電池本体部にかかる圧力が軽減するので、活物質充填室の内圧が過度に上がることもない。すなわち、耐圧性が改善されて、シール破壊の起こり難い薄型電池を実現できる。   According to the thin battery of the present invention, the pressure from the pressing machine can be received by the seal portion in the thermocompression bonding process at the time of manufacturing the IC card. Since the pressure applied to the battery body is reduced, the internal pressure of the active material filling chamber does not increase excessively. That is, it is possible to realize a thin battery having improved pressure resistance and less likely to cause seal breakage.

より好適には、電池本体部の2つの主表面のうち少なくとも一方を凹面とし、かつシール部の厚さを電池本体部の厚さよりも大とすることである。このようにすれば、電池本体部に圧力が集中することを確実に抑制できる。ただし、電池本体部の厚さとシール部の厚さとが等しい、平坦な表面を持ったリチウム一次電池も好適であることに違いはない。   More preferably, at least one of the two main surfaces of the battery main body portion is a concave surface, and the thickness of the seal portion is larger than the thickness of the battery main body portion. If it does in this way, it can suppress reliably that a pressure concentrates on a battery main-body part. However, there is no doubt that a lithium primary battery having a flat surface in which the thickness of the battery body and the thickness of the seal portion are equal is also suitable.

また、シール部を構成する熱融着性を有する樹脂の融点が110℃以上200℃以下であることが望ましい。このような構成によれば、ICカード製造時の加熱によってシール部が軟化および変形しにくくなるので、プレス機からの圧力をシール部で確実に受け止めることができる。   Moreover, it is desirable that the melting point of the resin having the heat-fusibility constituting the seal portion is 110 ° C. or higher and 200 ° C. or lower. According to such a configuration, since the seal portion is not easily softened and deformed by heating at the time of manufacturing the IC card, the pressure from the press can be reliably received by the seal portion.

一つの好適な態様において、上記シール部は、熱融着性を有する樹脂からなるシール材としての枠部材と、該枠部材よりも高い融点を有する材料からなり当該シール部の厚さを嵩上げするスペーサとを含むものとして構成することができる。このようにしてシール部の厚さを大きくすれば、電池本体部の主表面を凹面とすることができる。   In one preferable aspect, the seal part is made of a frame member as a seal material made of a resin having heat-fusibility and a material having a melting point higher than that of the frame member, and increases the thickness of the seal part. It can comprise as a thing containing a spacer. If the thickness of the seal portion is increased in this manner, the main surface of the battery main body portion can be made concave.

一つの好適な態様において、本発明にかかる薄型電池は、セパレータ、正極活物質層および負極活物質層を包囲する樹脂製の枠部材と、セパレータとの間に正極活物質層を保持する正極集電体と、セパレータとの間に負極活物質層を保持する負極集電体とをさらに備える。正極集電体と負極集電体との間に活物質充填室が形成され、その活物質充填室にセパレータ、正極活物質層および負極活物質層を収容することによって正極集電体と負極集電体とを外装材とした電池本体部が構成される。また、枠部材は互いに接着された正極側枠部材と負極側枠部材とからなる。正極側枠部材に正極集電体の外周部分が固定され、負極側枠部材に負極集電体の外周部分が固定されることにより、枠部材の上下に正極集電体と負極集電体を配置したシール部が構成される。そして、正極側枠部材の厚さと負極側枠部材の厚さとが相違している。   In one preferred embodiment, the thin battery according to the present invention includes a positive electrode active material layer that holds a positive electrode active material layer between a separator, a positive electrode active material layer, a resin frame member that surrounds the negative electrode active material layer, and the separator. And a negative electrode current collector that holds the negative electrode active material layer between the electric current separator and the separator. An active material filling chamber is formed between the positive electrode current collector and the negative electrode current collector, and the positive electrode current collector and the negative electrode current collector are accommodated by accommodating the separator, the positive electrode active material layer, and the negative electrode active material layer in the active material filling chamber. A battery main body using an electric body as an exterior material is configured. The frame member is composed of a positive electrode side frame member and a negative electrode side frame member bonded to each other. The outer peripheral part of the positive electrode current collector is fixed to the positive electrode side frame member, and the outer peripheral part of the negative electrode current collector is fixed to the negative electrode side frame member, so that the positive electrode current collector and the negative electrode current collector are placed above and below the frame member. The arranged seal portion is configured. The thickness of the positive electrode side frame member is different from the thickness of the negative electrode side frame member.

シール部の厚さを電池本体部の厚さよりも大きくするためには、シール部を構成する枠部材の厚さを、セパレータ、正極活物質層および負極活物質層の三者の合計厚さよりも大きくする構成が考えられる。上記本発明においては、枠部材を全体的に厚くするのではなく、正極側枠部材と負極側枠部材との一方を積極的に厚くする点に特徴がある。このように正極側枠部材と負極側枠部材との一方を薄く他方を厚くすることにより、両者の境界近傍に熱溶着治具(または超音波溶着治具)のエネルギーが伝達しやすくなる。そのため、両者を接着してシール部を形成する際、両者の境界近傍を素早く溶融・固化させることができ、ひいては正極側枠部材および負極側枠部材が大きく潰れてしまうことを抑制することができる。したがって、シール部の厚さを電池本体部の厚さよりも大きくするための構成として、上記本発明は有効である。   In order to make the thickness of the seal part larger than the thickness of the battery body part, the thickness of the frame member constituting the seal part is set to be larger than the total thickness of the separator, the positive electrode active material layer, and the negative electrode active material layer. A configuration to enlarge is conceivable. The present invention is characterized in that one of the positive electrode side frame member and the negative electrode side frame member is positively thickened instead of thickening the frame member as a whole. Thus, by making one of the positive electrode side frame member and the negative electrode side frame member thin and the other thick, the energy of the heat welding jig (or ultrasonic welding jig) is easily transmitted to the vicinity of the boundary between the two. Therefore, when the two are bonded to form a seal portion, the vicinity of the boundary between the two can be quickly melted and solidified, and as a result, the positive frame member and the negative frame member can be prevented from being largely crushed. . Therefore, the present invention is effective as a configuration for making the thickness of the seal portion larger than the thickness of the battery body portion.

以下、添付の図面を参照しつつ本発明の実施形態について説明する。
図1に示すのは、本発明にかかる薄型電池の一実施形態であるリチウム一次電池の斜視図である。図2は図1中のA−A断面図である。リチウム一次電池1Aは全体として方形かつ板状であり、枠部材2,3、正極活物質層4、正極集電体6、負極活物質層5、負極集電体7およびセパレータ9を備える。正極集電体6および負極集電体7は、それぞれ、枠部材2,3の開口を塞ぐように該枠部材2,3に固定されてリチウム一次電池1Aの外装材を兼ねている。また、正極集電体6および負極集電体7は、それぞれ、電力取出部6t,7tを有する。電力取出部6t,7tは、リチウム一次電池1Aの厚さ方向に直交する面内において枠部材2,3よりも外側に延び出ている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a perspective view of a lithium primary battery which is an embodiment of a thin battery according to the present invention. FIG. 2 is a cross-sectional view taken along line AA in FIG. The primary lithium battery 1A is rectangular and plate-shaped as a whole, and includes frame members 2 and 3, a positive electrode active material layer 4, a positive electrode current collector 6, a negative electrode active material layer 5, a negative electrode current collector 7, and a separator 9. The positive electrode current collector 6 and the negative electrode current collector 7 are fixed to the frame members 2 and 3 so as to close the openings of the frame members 2 and 3, respectively, and also serve as an exterior material of the lithium primary battery 1A. Further, the positive electrode current collector 6 and the negative electrode current collector 7 have power extraction portions 6t and 7t, respectively. The power extraction portions 6t and 7t extend outward from the frame members 2 and 3 in a plane orthogonal to the thickness direction of the lithium primary battery 1A.

図2に示すごとく、枠部材2,3は、正極枠部材2と負極側枠部材3とからなる。正極側枠部材2および負極側枠部材3は向かい合う面で相互に接着されている。枠部材2,3、正極集電体6および負極集電体7によって活物質充填室10が形成され、その活物質充填室10にセパレータ9、正極活物質層4および負極活物質層5を収容することにより電池本体部14が形成されている。また、セパレータ9とは反対側に位置するように、正極集電体6が正極側枠部材2に、負極集電体7が負極側枠部材3にそれぞれ接着されている。これにより、活物質充填室10の気密を保持するシール部11が形成されている。セパレータ9の周縁部9kを負極側枠部材3に固定することにより、活物質充填室10を正極活物質層4が配置された正極側と、負極活物質層5が配置された負極側とに分断している。活物質充填室10内において、正極集電体6とセパレータ9との間に正極活物質層4が保持され、負極集電体7とセパレータ9との間に負極活物質層5が保持されている。   As shown in FIG. 2, the frame members 2 and 3 include a positive electrode frame member 2 and a negative electrode side frame member 3. The positive electrode side frame member 2 and the negative electrode side frame member 3 are bonded to each other on the facing surfaces. An active material filling chamber 10 is formed by the frame members 2 and 3, the positive electrode current collector 6 and the negative electrode current collector 7, and the separator 9, the positive electrode active material layer 4 and the negative electrode active material layer 5 are accommodated in the active material filling chamber 10. As a result, the battery body 14 is formed. Further, the positive electrode current collector 6 is bonded to the positive electrode side frame member 2 and the negative electrode current collector 7 is bonded to the negative electrode side frame member 3 so as to be located on the side opposite to the separator 9. Thereby, the seal part 11 which maintains the airtightness of the active material filling chamber 10 is formed. By fixing the peripheral edge portion 9k of the separator 9 to the negative electrode side frame member 3, the active material filling chamber 10 is divided into a positive electrode side where the positive electrode active material layer 4 is arranged and a negative electrode side where the negative electrode active material layer 5 is arranged. It is divided. In the active material filling chamber 10, the positive electrode active material layer 4 is held between the positive electrode current collector 6 and the separator 9, and the negative electrode active material layer 5 is held between the negative electrode current collector 7 and the separator 9. Yes.

電池本体部14は、活物質充填室10内が大気圧よりも減圧された雰囲気であるとともに、正極側の主表面6pが凹面になっている。これに対しシール部11の2つの主表面6g,7gは略平坦である。電池本体部14の負極側の主表面7pについても略平坦である。すなわち、電池本体部14のところが凹となるように、それら電池本体部14とシール部11が構成されている。具体的には、図3の模式図に示すごとく、リチウム一次電池1Aは厚さ方向に平行な断面において、シール部11の厚さをD1、電池本体部14の厚さをD2としたとき、D1≧D2の関係を満足する(好ましくはD1>D2)。このような構造によれば、図4に示すごとくICカードの構成部品であるシート群77,78の間にリチウム一次電池1Aを収容し、プレス機80,81で加圧したときに、シール部11が支えになるので電池本体部14に圧力が集中することを抑制することができる。したがって、シール破壊が起こり難い。   The battery body 14 has an atmosphere in which the inside of the active material filling chamber 10 is depressurized from atmospheric pressure, and the main surface 6p on the positive electrode side is concave. On the other hand, the two main surfaces 6g and 7g of the seal part 11 are substantially flat. The main surface 7p on the negative electrode side of the battery body 14 is also substantially flat. That is, the battery body 14 and the seal 11 are configured so that the battery body 14 is concave. Specifically, as shown in the schematic diagram of FIG. 3, when the lithium primary battery 1A has a cross section parallel to the thickness direction, the thickness of the seal portion 11 is D1, and the thickness of the battery main body portion 14 is D2. The relationship of D1 ≧ D2 is satisfied (preferably D1> D2). According to such a structure, as shown in FIG. 4, when the primary lithium battery 1 </ b> A is accommodated between the sheet groups 77 and 78 that are components of the IC card and pressed by the press machines 80 and 81, the seal portion Since 11 becomes a support, it can suppress that a pressure concentrates on the battery main-body part 14. FIG. Therefore, seal breakage is unlikely to occur.

次に、個々の部品について説明する。
枠部材2,3は、窓枠のような形状を持つ薄い樹脂シートであって、シール材としての機能を持たせるために熱融着性を有する熱可塑性樹脂で構成している。ICカード等のカード型簡易記憶媒体の素材は大半が塩化ビニルであり、カード製造時に加える温度は110℃〜140℃と比較的高い。したがって、枠部材2,3に用いる樹脂としてもそれより融点が高いことが重要である。しかしながら、単に融点が高いだけでは集電体6,7との接着性が問題となるし、融点が高いと電池製造時のシール工程で電解液等に熱の影響が及ぶ可能性もある。したがって、枠部材2,3に用いる樹脂は、融点が110℃以上200℃以下(好適には140℃以上200℃以下)であることが望ましい。たとえば、酸変性ポリプロピレン(融点約160℃)は、こうした条件を満足するので好適である。なお、枠部材2,3としては、ポリプロピレン、ポリエチレンテレフタラート等の熱可塑性樹脂で構成された基材の両面または片面に、酸変性ポリプロピレン(PP−a)からなる樹脂接着剤層を設けた複数層構造の樹脂シートを使用することもできる。
Next, individual components will be described.
The frame members 2 and 3 are thin resin sheets having a shape like a window frame, and are made of a thermoplastic resin having a heat-sealing property so as to have a function as a sealing material. Most of the material of the card-type simple storage medium such as an IC card is vinyl chloride, and the temperature applied at the time of card production is relatively high at 110 ° C. to 140 ° C. Therefore, it is important that the resin used for the frame members 2 and 3 has a higher melting point. However, if the melting point is simply high, adhesion to the current collectors 6 and 7 becomes a problem, and if the melting point is high, there is a possibility that the electrolyte solution or the like may be affected by heat in the sealing process during battery manufacture. Therefore, it is desirable that the resin used for the frame members 2 and 3 has a melting point of 110 ° C. or higher and 200 ° C. or lower (preferably 140 ° C. or higher and 200 ° C. or lower). For example, acid-modified polypropylene (melting point: about 160 ° C.) is preferable because it satisfies these conditions. In addition, as the frame members 2 and 3, a plurality of resin adhesive layers made of acid-modified polypropylene (PP-a) are provided on both sides or one side of a base material made of a thermoplastic resin such as polypropylene or polyethylene terephthalate. A resin sheet having a layer structure can also be used.

図2に示すごとく、正極側枠部材2と負極側枠部材3の合計厚さは、正極活物質層4、セパレータ9および負極活物質層5の合計厚さよりも大である。これにより、正極側が台地状に隆起した構造ではなく、電池本体部14の主表面を凹面とすることができる。正極側枠部材2の厚さと負極側枠部材3の厚さは等しくすることができる。また、ISO規格(ISO/IEC 7810)のICカード用途である場合には、リチウム一次電池1Aの厚さは、シール部11において、たとえば200μm以上500μm以下とすることができる。なお、“主表面”とは、面積が最も大きい面のことである。   As shown in FIG. 2, the total thickness of the positive electrode side frame member 2 and the negative electrode side frame member 3 is larger than the total thickness of the positive electrode active material layer 4, the separator 9 and the negative electrode active material layer 5. Thereby, the main surface of the battery main body part 14 can be made into a concave surface instead of the structure which the positive electrode side protruded in plateau shape. The thickness of the positive electrode side frame member 2 and the thickness of the negative electrode side frame member 3 can be made equal. Further, in the case of an IC card application of ISO standard (ISO / IEC 7810), the thickness of the lithium primary battery 1A can be, for example, 200 μm or more and 500 μm or less in the seal portion 11. The “main surface” is a surface having the largest area.

正極活物質層4は、たとえば60質量%以上70質量%以下の正極活物質と、1質量%以上5質量%以下の導電助剤と、25質量%以上35質量%以下の電解液とを含む正極合材で構成される。正極活物質としては、MnOなどリチウムと複合酸化物を形成する遷移金属酸化物の粉末を使用できる。導電助剤には、アセチレンブラック等のカーボン材料を使用できる。電解液としては、ジメトキシエタン(DME)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などの有機溶媒にリチウム塩を溶解させたものを使用できる。 The positive electrode active material layer 4 includes, for example, 60% by mass or more and 70% by mass or less of a positive electrode active material, 1% by mass or more and 5% by mass or less of a conductive auxiliary agent, and 25% by mass or more and 35% by mass or less of an electrolytic solution. It consists of a positive electrode composite. As the positive electrode active material, a transition metal oxide powder that forms a composite oxide with lithium such as MnO 2 can be used. A carbon material such as acetylene black can be used for the conductive assistant. As the electrolytic solution, a lithium salt dissolved in an organic solvent such as dimethoxyethane (DME), ethylene carbonate (EC), or propylene carbonate (PC) can be used.

負極活物質層5はリチウム箔で構成されている。リチウム箔の代わりにリチウム合金箔(たとえばリチウム−アルミニウム合金)を使用することも可能である。負極活物質層5であるリチウム箔の厚さは、ISO規格のICカード用にリチウム一次電池1Aを設計する場合、たとえば30μm以上150μm以下に調整することができる。正極活物質層4と負極活物質層5の各質量は、正極の電池容量が負極の電池容量よりも大となるように調整されている。これにより、完全放電後に負極活物質層5をなすリチウム箔が残存しないようにしている。   The negative electrode active material layer 5 is composed of a lithium foil. It is also possible to use lithium alloy foil (for example, lithium-aluminum alloy) instead of lithium foil. When the lithium primary battery 1A is designed for an ISO standard IC card, the thickness of the lithium foil that is the negative electrode active material layer 5 can be adjusted to, for example, 30 μm or more and 150 μm or less. The masses of the positive electrode active material layer 4 and the negative electrode active material layer 5 are adjusted such that the battery capacity of the positive electrode is larger than the battery capacity of the negative electrode. This prevents the lithium foil forming the negative electrode active material layer 5 from remaining after complete discharge.

集電体6,7とリード端子6t,7tの材質としては、銅、銅合金、ステンレス鋼、アルミニウム、アルミニウム合金、ニッケルおよびニッケル合金からなる良導性金属群から選択される1種を好適に使用することができる。とりわけ、ステンレス鋼は加工性、耐食性、経済性に優れるので好適である。長期の安定性を得るには、集電体の構成材料が電池内部に溶出しないことが重要である。この点について、ステンレス鋼には分がある。具体的には、オーステナイト系ステンレス鋼として代表的なSUS301、SUS304、SUS316、SUS316Lや、析出硬化系ステンレス鋼として代表的なSUS631は、バネ性にも優れるのでその採用が推奨される。   As the material for the current collectors 6 and 7 and the lead terminals 6t and 7t, one kind selected from a highly conductive metal group consisting of copper, copper alloy, stainless steel, aluminum, aluminum alloy, nickel and nickel alloy is preferably used. Can be used. In particular, stainless steel is preferable because it is excellent in workability, corrosion resistance, and economy. In order to obtain long-term stability, it is important that the constituent material of the current collector does not elute into the battery. In this regard, stainless steel has a minute. Specifically, SUS301, SUS304, SUS316, SUS316L, which are typical as austenitic stainless steel, and SUS631, which is typical as precipitation hardened stainless steel, are also excellent in spring properties, and therefore their use is recommended.

セパレータ9は、正極と負極を隔離し且つ電解液が充分浸透する薄い膜であり、多孔質、多層構造を持つ。具体的には、ポリエチレンやポリプロピレンなどの樹脂からなる不織布が利用できる。本実施形態では、ポリエチレン製の多孔質シートをセパレータ9に採用している。また、セパレータ9の厚さは、たとえば10μm以上60μm以下とすることができる。   The separator 9 is a thin film that separates the positive electrode and the negative electrode and sufficiently penetrates the electrolyte, and has a porous and multilayer structure. Specifically, a nonwoven fabric made of a resin such as polyethylene or polypropylene can be used. In the present embodiment, a polyethylene porous sheet is used for the separator 9. Moreover, the thickness of the separator 9 can be 10 micrometers or more and 60 micrometers or less, for example.

次に、リチウム一次電池1Aの製造方法について説明する。
図6は、リチウム一次電池1Aの製造工程説明図である。まず、適切な大きさに成形した負極集電体7を枠部材3の一方の開口を塞ぐ位置に配置し、超音波または加熱により負極側枠部材3を溶融および固化させて、負極集電体7を負極側枠部材3に固定する(6−1)。こうして、負極側枠部材3と負極集電体7とを組付けたケース13を得る。次に、ケース13内に負極活物質であるリチウム箔5を収容させる。さらに、リチウム箔5を覆うようにして負極側枠部材3にセパレータ9を載せる。セパレータ9は、周縁部9kが負極側枠部材3の内周部分に掛かるように位置合わせして負極側枠部材3に接着する(6−2)。
Next, a manufacturing method of the lithium primary battery 1A will be described.
FIG. 6 is an explanatory diagram of the manufacturing process of the lithium primary battery 1A. First, the negative electrode current collector 7 formed in an appropriate size is disposed at a position where one opening of the frame member 3 is closed, and the negative electrode side frame member 3 is melted and solidified by ultrasonic waves or heating, so that the negative electrode current collector is obtained. 7 is fixed to the negative electrode side frame member 3 (6-1). Thus, the case 13 in which the negative electrode side frame member 3 and the negative electrode current collector 7 are assembled is obtained. Next, the lithium foil 5 as the negative electrode active material is accommodated in the case 13. Further, the separator 9 is placed on the negative electrode side frame member 3 so as to cover the lithium foil 5. The separator 9 is aligned and bonded to the negative electrode side frame member 3 so that the peripheral edge 9k is hooked on the inner peripheral part of the negative electrode side frame member 3 (6-2).

次に、セパレータ9の上に予めフィルム状に成形した正極合材を配置し、正極活物質層4を形成する(6−3)。必要な電解液は、正極集電体6を配置する前に含浸させればよい。もちろん、フィルム状の正極合材の代わりに、ペースト状の正極合材を印刷することもできる。正極活物質層4を形成した後、前もって作製しておいた正極側のケース12を正極活物質層4に被せる(6−4)。ケース12は、正極側枠部材2に正極集電体6を組付けた(固定した)部品である。そして、吸引圧力を−0.06MPa以上とした真空チャンバ内で正極側枠部材2と負極側枠部材3を溶融および固化させて、両者を互いに接着する。これにより、本発明のリチウム一次電池1Aが得られる(6−5)。なお、上記の組立工程に供する各部品の厚さは、セパレータ9、正極活物質層4および負極活物質層5の合計厚さが、電池組立後の正極側枠部材2と負極側枠部材3の合計厚さよりも小さくなるように調整する。   Next, the positive electrode mixture previously formed into a film shape is disposed on the separator 9 to form the positive electrode active material layer 4 (6-3). The necessary electrolyte may be impregnated before the positive electrode current collector 6 is disposed. Of course, a paste-like positive electrode mixture can be printed instead of the film-like positive electrode mixture. After forming the positive electrode active material layer 4, the positive electrode side case 12 prepared in advance is put on the positive electrode active material layer 4 (6-4). The case 12 is a component in which the positive electrode current collector 6 is assembled (fixed) to the positive electrode side frame member 2. Then, the positive electrode side frame member 2 and the negative electrode side frame member 3 are melted and solidified in a vacuum chamber in which the suction pressure is set to −0.06 MPa or more, and both are bonded to each other. Thereby, the lithium primary battery 1A of the present invention is obtained (6-5). In addition, the thickness of each part used for said assembly process is the total thickness of the separator 9, the positive electrode active material layer 4, and the negative electrode active material layer 5, and the positive electrode side frame member 2 and the negative electrode side frame member 3 after battery assembly. It adjusts so that it may become smaller than the total thickness of.

(第二実施形態)
図5は、本発明にかかるリチウム一次電池の第二実施形態の断面模式図である。リチウム一次電池1Bは、正極集電体6と正極側枠部材2との間にスペーサ16を配置した点において、図2の実施形態と相違する。後の構成は、同符号にて示すように図2に実施形態と共通である。スペーサ16は、枠部材2,3と同様の枠状の形態を有する樹脂シートであるが、枠部材2,3よりも融点が高い樹脂(たとえばPET:融点約260℃)を用いている。そのため、シール部11の形成時にも溶融したりせず、シール部11の厚さを嵩上げする役割を果たす。また、スペーサ16は図5の断面において正極側枠部材2よりも小幅であり、正極枠部材2の開口を取り囲む位置に配置されている。したがって、正極集電体6はスペーサ16を乗り越えたところで正極側枠部材2に接着されている。このような構成によれば、電池本体部14の主表面6pを凹みが大きい凹面とすることができる。そして、スペーサ16の位置で圧力を受け止めることができるため、電池本体部14に圧力が集中することを防止できる。なお、スペーサ16は、負極側枠部材3の開口を取り囲む位置であって、負極集電体5と負極側枠部材3との間に配置してもよい。また、正極側と負極側との両方に配置することもできる。
(Second embodiment)
FIG. 5 is a schematic cross-sectional view of a second embodiment of a lithium primary battery according to the present invention. The lithium primary battery 1B is different from the embodiment of FIG. 2 in that a spacer 16 is disposed between the positive electrode current collector 6 and the positive electrode side frame member 2. The subsequent configuration is the same as that of the embodiment shown in FIG. The spacer 16 is a resin sheet having a frame shape similar to that of the frame members 2 and 3, but a resin having a higher melting point than that of the frame members 2 and 3 (for example, PET: melting point of about 260 ° C.) is used. Therefore, it does not melt even when the seal portion 11 is formed, and plays a role of increasing the thickness of the seal portion 11. Further, the spacer 16 is narrower than the positive electrode side frame member 2 in the cross section of FIG. 5, and is disposed at a position surrounding the opening of the positive electrode frame member 2. Therefore, the positive electrode current collector 6 is bonded to the positive electrode side frame member 2 at a position over the spacer 16. According to such a configuration, the main surface 6p of the battery body 14 can be a concave surface having a large dent. And since a pressure can be received in the position of the spacer 16, it can prevent that a pressure concentrates on the battery main-body part 14. FIG. The spacer 16 is a position surrounding the opening of the negative electrode side frame member 3 and may be disposed between the negative electrode current collector 5 and the negative electrode side frame member 3. It can also be arranged on both the positive electrode side and the negative electrode side.

(第三実施形態)
図7は、本発明にかかるリチウム一次電池の第三実施形態の断面模式図である。リチウム一次電池1Cは、電池本体部24の正極側の主表面26pと負極側の主表面27pとの両方が凹面になっている点、負極側枠部材23の厚さと正極側枠部材22の厚さとを相違させたシール部21を備える点について、先の実施形態と相違する。シール部21の厚さが電池本体部24の厚さ以上に調整されている点、シール部21の2つの主表面26g,27gはいずれも平坦である点、活物質充填室20にセパレータ9、正極活物質層4および負極活物質層5を配置している点、正極集電体26および負極集電体27が外装材に兼用されている点などは先の実施形態と共通である。
(Third embodiment)
FIG. 7 is a schematic cross-sectional view of a third embodiment of a lithium primary battery according to the present invention. The lithium primary battery 1C is such that both the positive-side main surface 26p and the negative-side main surface 27p of the battery body 24 are concave, the thickness of the negative-side frame member 23 and the thickness of the positive-side frame member 22 This is different from the previous embodiment in that a seal portion 21 is provided. The thickness of the seal portion 21 is adjusted to be equal to or greater than the thickness of the battery body portion 24, the two main surfaces 26g and 27g of the seal portion 21 are both flat, the separator 9 in the active material filling chamber 20, The point that the positive electrode active material layer 4 and the negative electrode active material layer 5 are disposed, the point that the positive electrode current collector 26 and the negative electrode current collector 27 are also used as an exterior material, and the like are the same as in the previous embodiment.

シール部21の厚さを電池本体部24の厚さよりも大きくするためには、正極側枠部材22と負極側枠部材23の合計厚さを、セパレータ9、正極活物質層4および負極活物質層5の合計厚さよりも大とすることが有効である。併せて、正極側枠部材22の厚さが大、負極側枠部材23の厚さが小となるようにする。たとえば、電池組立前における正極側枠部材22の厚さをD3、負極側枠部材23の厚さをD4としたとき、1/4≦D4/D3≦1/2を満足するように調整する。そして、図8に示すごとく正極側枠部材22と負極側枠部材23とを接着するシール工程で、薄い負極側枠部材23の方にのみ超音波溶着治具29(または熱溶着治具)を接触させる。このようにすれば、図2および図6で説明した実施形態のように同じ厚さの枠部材2,3同士を用いる場合に比べて、正極側枠部材22と負極側枠部材23との境界近傍に超音波溶着治具29のエネルギーが伝達しやすい。そのため、両者の境界近傍を素早く溶融・固化させることができ、ひいては正極側枠部材22および負極側枠部材23が過度に潰れてしまうことを阻止することができる。この結果、比較的容易にシール部21の厚さを電池本体部24の厚さよりも大きくすることが可能となる。   In order to make the thickness of the seal portion 21 larger than the thickness of the battery body portion 24, the total thickness of the positive electrode side frame member 22 and the negative electrode side frame member 23 is set to the separator 9, the positive electrode active material layer 4, and the negative electrode active material. It is effective to make it larger than the total thickness of the layer 5. In addition, the thickness of the positive electrode side frame member 22 is made large and the thickness of the negative electrode side frame member 23 is made small. For example, when the thickness of the positive electrode side frame member 22 before battery assembly is D3 and the thickness of the negative electrode side frame member 23 is D4, adjustment is performed so as to satisfy 1/4 ≦ D4 / D3 ≦ 1/2. Then, as shown in FIG. 8, an ultrasonic welding jig 29 (or a heat welding jig) is attached only to the thin negative electrode side frame member 23 in the sealing step of bonding the positive electrode side frame member 22 and the negative electrode side frame member 23 to each other. Make contact. In this case, the boundary between the positive electrode side frame member 22 and the negative electrode side frame member 23 is compared with the case where the frame members 2 and 3 having the same thickness are used as in the embodiment described in FIGS. The energy of the ultrasonic welding jig 29 is easily transmitted to the vicinity. Therefore, the vicinity of the boundary between the two can be quickly melted and solidified, and as a result, the positive frame member 22 and the negative frame member 23 can be prevented from being excessively crushed. As a result, the thickness of the seal portion 21 can be made relatively larger than the thickness of the battery body portion 24 relatively easily.

また、熱溶着治具を上下に配置して図8のシール工程を行なうようにすれば、厚さの等しい一対の枠部材を使用しても大差ないと考えられる。ただし、図8のシール工程は真空雰囲気で行なう必要があるので製造装置の大幅な改良が必要となり、却ってコスト高である。また、リチウム一次電池1Cにおいては、負極活物質層5を構成するリチウム箔は正極活物質層4に比べて薄い。したがって、同じ厚さの枠部材2,3を用いると図2に示す実施形態のようにセパレータ9が活物質充填室10内で撓みを生ずる。一方、負極側枠部材23の厚さを小とすることにより、セパレータ9の撓みを小さくすることができる。このような構造によれば、リチウム一次電池1Cの耐屈曲性の向上が期待できる。   Further, if the heat welding jigs are arranged vertically and the sealing process shown in FIG. 8 is performed, it is considered that there is not much difference even if a pair of frame members having the same thickness are used. However, since the sealing process of FIG. 8 needs to be performed in a vacuum atmosphere, the manufacturing apparatus needs to be greatly improved, and the cost is high. In the lithium primary battery 1 </ b> C, the lithium foil constituting the negative electrode active material layer 5 is thinner than the positive electrode active material layer 4. Therefore, when the frame members 2 and 3 having the same thickness are used, the separator 9 is bent in the active material filling chamber 10 as in the embodiment shown in FIG. On the other hand, the bending of the separator 9 can be reduced by reducing the thickness of the negative electrode side frame member 23. According to such a structure, an improvement in the bending resistance of the lithium primary battery 1C can be expected.

より好適には、正極側枠部材22の厚さD3と負極側枠部材23の厚さD4との比率が、正極活物質層4の厚さと負極活物質層5の厚さとの比率に略等しくなるように設定することである。なお、本実施形態ではセパレータ9を負極側枠部材23に固定することとしているが、厚い方の枠部材である正極側枠部材22に固定する構造を採用してもよい。ただし、薄い方の枠部材である負極側枠部材23の開口周縁部23aにセパレータ9を固定し、図8に示す要領でシール工程を行なうようにすれば、セパレータ9を固定している開口周縁部23aが熱の影響で変形したとしても負極側枠部材23自体が薄いのでその変形量は小さく済む。この結果、より平坦な仕上がりのシール部21を形成することができる。   More preferably, the ratio between the thickness D3 of the positive electrode side frame member 22 and the thickness D4 of the negative electrode side frame member 23 is substantially equal to the ratio between the thickness of the positive electrode active material layer 4 and the thickness of the negative electrode active material layer 5. It is set to be. In this embodiment, the separator 9 is fixed to the negative electrode side frame member 23. However, a structure in which the separator 9 is fixed to the positive electrode side frame member 22 which is a thicker frame member may be adopted. However, if the separator 9 is fixed to the opening peripheral portion 23a of the negative electrode side frame member 23 which is the thinner frame member and the sealing step is performed as shown in FIG. Even if the portion 23a is deformed by the influence of heat, the amount of deformation is small because the negative electrode side frame member 23 itself is thin. As a result, a flatter finished seal portion 21 can be formed.

(第四実施形態)
図9は、本発明にかかる薄型電池をリチウムイオン二次電池として構成した例を示す断面図である。リチウムイオン二次電池1Dは、発電要素であるセル32をラミネート外装材41,42で包装してなる電池本体部44と、その電池本体部44の活物質充填室30の気密を保持するシール部31とを備えている。セル32は、セパレータ39の一方の面側に正極48、他方の面側に負極49を配置した構造を有する。正極48は正極活物質層34と正極集電体36、負極49は負極活物質層35と負極集電体37で構成されている。
(Fourth embodiment)
FIG. 9 is a cross-sectional view showing an example in which the thin battery according to the present invention is configured as a lithium ion secondary battery. The lithium ion secondary battery 1D includes a battery main body portion 44 in which cells 32 as power generation elements are packaged with laminate outer packaging materials 41 and 42, and a seal portion that maintains the airtightness of the active material filling chamber 30 of the battery main body portion 44. 31. The cell 32 has a structure in which a positive electrode 48 is disposed on one surface side of the separator 39 and a negative electrode 49 is disposed on the other surface side. The positive electrode 48 includes a positive electrode active material layer 34 and a positive electrode current collector 36, and the negative electrode 49 includes a negative electrode active material layer 35 and a negative electrode current collector 37.

正極活物質層34は、LiCoO2などのリチウム複合酸化物と、PVDFとHFPの共重合体などのフッ素樹脂からなるバインダと、導電性カーボンなどの導電助剤と、LiPFなどのリチウム塩をエチレンカーボネートなどの有機溶媒に溶解させた非水電解液とを含有する。負極活物質層35は、メソフューズカーボン材などの黒鉛系炭素材料と、導電助剤と、非水電解液とを含有する。セパレータ39は、ポリエチレンやポリプロピレンなどの絶縁性樹脂の微多孔膜である。正極集電体36は、AlまたはAl合金からなる箔または金属メッシュである。負極集電体37は、CuまたはCu合金からなる箔または金属メッシュである。ラミネート外装材41,42は、アルミニウム箔などの金属箔の両面に樹脂フィルムを貼りつけた金属−樹脂複合フィルムである。 The positive electrode active material layer 34 includes a lithium composite oxide such as LiCoO 2, a binder made of a fluororesin such as a PVDF and HFP copolymer, a conductive auxiliary agent such as conductive carbon, and a lithium salt such as LiPF 6 in ethylene. And a nonaqueous electrolytic solution dissolved in an organic solvent such as carbonate. The negative electrode active material layer 35 contains a graphite-based carbon material such as a mesofused carbon material, a conductive additive, and a nonaqueous electrolytic solution. The separator 39 is a microporous film of an insulating resin such as polyethylene or polypropylene. The positive electrode current collector 36 is a foil or a metal mesh made of Al or an Al alloy. The negative electrode current collector 37 is a foil or a metal mesh made of Cu or a Cu alloy. Laminate exterior materials 41 and 42 are metal-resin composite films in which resin films are attached to both surfaces of a metal foil such as an aluminum foil.

図9に示すごとく、リチウムイオン二次電池1Dは、シール部31の厚さが電池本体部44の厚さよりも大であるとともに、電池本体部44の両主表面41p,42pが凹面となっている。ラミネート外装材41,42は、もともとポリプロピレンなどの熱融着性を有する樹脂層を持っているが、シール部31の厚みを確保するために、一方のラミネート外装材41と他方のラミネート外装材42との間に枠状のシール材33を挟み、これら三者を互いに接着する。このようにすれば、ラミネート外装材41,42の樹脂層を部分的に分増しすることになるから、シール部31の厚さを電池本体部44の厚さよりも大とすることができる。   As shown in FIG. 9, in the lithium ion secondary battery 1 </ b> D, the thickness of the seal portion 31 is larger than the thickness of the battery main body 44, and both main surfaces 41 p and 42 p of the battery main body 44 are concave. Yes. Although the laminate exterior materials 41 and 42 originally have a resin layer having heat fusion properties such as polypropylene, in order to secure the thickness of the seal portion 31, one laminate exterior material 41 and the other laminate exterior material 42. A frame-shaped sealing material 33 is sandwiched between them and these three members are bonded to each other. In this way, the resin layers of the laminate exterior materials 41 and 42 are partially increased, so that the thickness of the seal portion 31 can be made larger than the thickness of the battery body portion 44.

本発明にかかるリチウム一次電池の斜視図。The perspective view of the lithium primary battery concerning this invention. 図1中のA−A断面図。AA sectional drawing in FIG. シール部の厚さと電池本体部の厚さとの関係を説明する模式図。The schematic diagram explaining the relationship between the thickness of a seal | sticker part and the thickness of a battery main-body part. ICカード製造時の作用説明図。Action explanatory drawing at the time of IC card manufacture. 第二実施形態のリチウム一次電池の断面図。Sectional drawing of the lithium primary battery of 2nd embodiment. 図1のリチウム一次電池の組立手順を示す工程説明図。Process explanatory drawing which shows the assembly procedure of the lithium primary battery of FIG. 第三実施形態のリチウム一次電池の断面図。Sectional drawing of the lithium primary battery of 3rd embodiment. シール工程を説明する図。The figure explaining a sealing process. 第四実施形態のリチウムイオン二次電池の断面図。Sectional drawing of the lithium ion secondary battery of 4th embodiment. ICカードの製造手順を説明するための分解斜視図。The exploded perspective view for demonstrating the manufacture procedure of an IC card.

Claims (7)

セパレータ(9,39)と、
前記セパレータ(9,39)の一方の面側に配置された正極活物質層(4,34)と、
前記セパレータ(9,39)の他方の面側に配置された負極活物質層(5,35)と、
前記セパレータ(9,39)、前記正極活物質層(4,34)および前記負極活物質層(5,35)を活物質充填室(10,20,30)に収容した電池本体部(14,24,44)と、
前記電池本体部(14,24,44)の周囲を封じて前記活物質充填室(10,20,30)の気密を保持する枠状のシール部(11,15,21,31)とを備え、
厚さ方向に平行な断面において、前記シール部(11,15,21,31)の厚さが前記電池本体部(14,24,44)の厚さ以上に調整されていることを特徴とする薄型電池(1A,1B,1C,1D)。
A separator (9, 39);
A positive electrode active material layer (4, 34) disposed on one surface side of the separator (9, 39);
A negative electrode active material layer (5, 35) disposed on the other surface side of the separator (9, 39);
A battery body (14, 40) in which the separator (9, 39), the positive electrode active material layer (4, 34) and the negative electrode active material layer (5, 35) are accommodated in an active material filling chamber (10, 20, 30). 24, 44),
A frame-shaped seal portion (11, 15, 21, 31) that seals the periphery of the battery body portion (14, 24, 44) and maintains the airtightness of the active material filling chamber (10, 20, 30). ,
In a cross section parallel to the thickness direction, the thickness of the seal part (11, 15, 21, 31) is adjusted to be greater than the thickness of the battery body part (14, 24, 44). Thin battery (1A, 1B, 1C, 1D).
前記電池本体部(14,24,44)の2つの主表面(6p,26p,42p,7p,27p,41p)のうち少なくとも一方が凹面であり、かつ前記シール部(11,15,21,31)の厚さが前記電池本体部(14,24,44)の厚さよりも大である請求項1記載の薄型電池(1A,1B,1C,1D)。   At least one of the two main surfaces (6p, 26p, 42p, 7p, 27p, 41p) of the battery body (14, 24, 44) is a concave surface, and the seal portion (11, 15, 21, 31). The thin battery (1A, 1B, 1C, 1D) according to claim 1, wherein the thickness of the battery main body (14, 24, 44) is larger than the thickness of the battery main body (14, 24, 44). セパレータ(9,39)と、
前記セパレータ(9,39)の一方の面側に配置された正極活物質層(4,34)と、
前記セパレータ(9,39)の他方の面側に配置された負極活物質層(5,35)と、
前記セパレータ(9,39)、前記正極活物質層(4,34)および前記負極活物質層(5,35)を活物質充填室(10,20,30)に収容した電池本体部(14,24,44)と、
前記電池本体部(14,24,44)の周囲を封じて前記活物質充填室(10,20,30)の気密を保持する枠状のシール部(11,15,21,31)とを備え、
厚さ方向に平行な断面において、前記電池本体部(14,24,44)のところが凹となるように、それら電池本体部(14,24,44)と前記シール部(11,15,21,31)とが構成されていることを特徴とする薄型電池(1A,1B,1C,1D)。
A separator (9, 39);
A positive electrode active material layer (4, 34) disposed on one surface side of the separator (9, 39);
A negative electrode active material layer (5, 35) disposed on the other surface side of the separator (9, 39);
A battery body (14, 40) in which the separator (9, 39), the positive electrode active material layer (4, 34) and the negative electrode active material layer (5, 35) are accommodated in an active material filling chamber (10, 20, 30). 24, 44),
A frame-shaped seal portion (11, 15, 21, 31) that seals the periphery of the battery body portion (14, 24, 44) and maintains the airtightness of the active material filling chamber (10, 20, 30). ,
In the cross section parallel to the thickness direction, the battery body (14, 24, 44) and the seal (11, 15, 21, 44) are arranged so that the battery body (14, 24, 44) is concave. 31) and a thin battery (1A, 1B, 1C, 1D).
前記シール部(11,15,21,31)を構成する熱融着性を有する樹脂の融点が110℃以上200℃以下である請求項1ないし3のいずれか1項に記載の薄型電池(1A,1B,1C,1D)。   The thin battery (1A) according to any one of claims 1 to 3, wherein a melting point of a resin having heat-fusibility constituting the seal portion (11, 15, 21, 31) is 110 ° C or higher and 200 ° C or lower. , 1B, 1C, 1D). 前記シール部(15)は、前記熱融着性を有する樹脂からなるシール材としての枠部材(2,3)と、該枠部材(2,3)よりも高い融点を有する材料からなり当該シール部(15)の厚さを嵩上げするスペーサ(16)とを含む請求項1ないし4のいずれか1項に記載の薄型電池(1B)。   The seal part (15) is made of a frame member (2, 3) as a seal material made of the resin having the heat-fusibility and a material having a melting point higher than that of the frame member (2, 3). The thin battery (1B) of any one of Claims 1 thru | or 4 including the spacer (16) which raises the thickness of a part (15). 前記セパレータ(9)、前記正極活物質層(4)および前記負極活物質層(5)を包囲する樹脂製の枠部材(22,23)と、
前記セパレータ(9)との間に前記正極活物質層(4)を保持する正極集電体(26)と、
前記セパレータ(9)との間に前記負極活物質層(5)を保持する負極集電体(27)とを備え、
前記正極集電体(26)と前記負極集電体(27)との間に前記活物質充填室(20)が形成され、その活物質充填室(20)に前記セパレータ(9)、前記正極活物質層(4)および前記負極活物質層(5)を収容することによって前記正極集電体(26)と前記負極集電体(27)とを外装材とした前記電池本体部(24)が構成される一方、
前記枠部材(22,23)は互いに接着された正極側枠部材(22)と負極側枠部材(23)とからなり、
前記正極側枠部材(22)に前記正極集電体(26)の外周部分が固定され、前記負極側枠部材(23)に前記負極集電体(27)の外周部分が固定されることにより、当該薄型電池(1C)の厚さ方向において前記枠部材(22,23)の上下に前記正極集電体(26)と前記負極集電体(27)が位置する前記シール部(21)が構成されるとともに、
前記正極側枠部材(22)の厚さと前記負極側枠部材(23)の厚さとが相違している請求項1ないし4のいずれか1項に記載の薄型電池(1C)。
Resin frame members (22, 23) surrounding the separator (9), the positive electrode active material layer (4), and the negative electrode active material layer (5);
A positive electrode current collector (26) holding the positive electrode active material layer (4) between the separator (9), and
A negative electrode current collector (27) holding the negative electrode active material layer (5) between the separator (9),
The active material filling chamber (20) is formed between the positive electrode current collector (26) and the negative electrode current collector (27), and the separator (9) and the positive electrode are formed in the active material filling chamber (20). The battery main body (24) having the positive electrode current collector (26) and the negative electrode current collector (27) as exterior materials by accommodating the active material layer (4) and the negative electrode active material layer (5). While
The frame member (22, 23) comprises a positive electrode side frame member (22) and a negative electrode side frame member (23) bonded to each other,
By fixing the outer peripheral part of the positive electrode current collector (26) to the positive electrode side frame member (22) and fixing the outer peripheral part of the negative electrode current collector (27) to the negative electrode side frame member (23). The seal portion (21) where the positive electrode current collector (26) and the negative electrode current collector (27) are positioned above and below the frame members (22, 23) in the thickness direction of the thin battery (1C). Composed and
The thin battery (1C) according to any one of claims 1 to 4, wherein a thickness of the positive electrode side frame member (22) is different from a thickness of the negative electrode side frame member (23).
前記負極活物質層(5)がリチウムまたはリチウム合金からなるリチウム一次電池として構成され、
前記セパレータ(9)の外周部を前記正極側枠部材(22)または前記負極側枠部材(23)に固定した構造を有し、
前記正極側枠部材(22)の厚さが前記負極側枠部材(23)の厚さよりも大である請求項6記載の薄型電池(1C)。
The negative electrode active material layer (5) is configured as a lithium primary battery made of lithium or a lithium alloy,
Having an outer peripheral portion of the separator (9) fixed to the positive electrode side frame member (22) or the negative electrode side frame member (23);
The thin battery (1C) according to claim 6, wherein a thickness of the positive electrode side frame member (22) is larger than a thickness of the negative electrode side frame member (23).
JP2005086742A 2005-03-24 2005-03-24 Thin battery Pending JP2006269288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086742A JP2006269288A (en) 2005-03-24 2005-03-24 Thin battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086742A JP2006269288A (en) 2005-03-24 2005-03-24 Thin battery

Publications (1)

Publication Number Publication Date
JP2006269288A true JP2006269288A (en) 2006-10-05

Family

ID=37205017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086742A Pending JP2006269288A (en) 2005-03-24 2005-03-24 Thin battery

Country Status (1)

Country Link
JP (1) JP2006269288A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090058A (en) * 2007-10-03 2009-04-30 Susumu Naoyuki Power generation sheet
JP2016028402A (en) * 2010-10-27 2016-02-25 東レフィルム加工株式会社 Secondary battery and heat-bonding insulative film for secondary batteries
JP2018139219A (en) * 2012-05-18 2018-09-06 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. Electrochemical cell and manufacturing method thereof
WO2019054216A1 (en) * 2017-09-14 2019-03-21 日産自動車株式会社 Separator for lithium ion battery
CN110534790A (en) * 2018-05-23 2019-12-03 松下知识产权经营株式会社 Battery and layer-built battery
US10566581B2 (en) 2012-05-18 2020-02-18 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US10566603B2 (en) 2011-09-07 2020-02-18 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
US10637038B2 (en) 2014-11-05 2020-04-28 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US20200313123A1 (en) * 2018-03-28 2020-10-01 Ngk Insulators, Ltd. Lithium rechargeable battery and card with built-in battery
US11024903B2 (en) 2015-06-18 2021-06-01 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
US11742525B2 (en) 2020-02-07 2023-08-29 24M Technologies, Inc. Divided energy electrochemical cell systems and methods of producing the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090058A (en) * 2007-10-03 2009-04-30 Susumu Naoyuki Power generation sheet
JP2016028402A (en) * 2010-10-27 2016-02-25 東レフィルム加工株式会社 Secondary battery and heat-bonding insulative film for secondary batteries
US11888144B2 (en) 2011-09-07 2024-01-30 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
US11309531B2 (en) 2011-09-07 2022-04-19 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
US10566603B2 (en) 2011-09-07 2020-02-18 24M Technologies, Inc. Stationary semi-solid battery module and method of manufacture
JP2018139219A (en) * 2012-05-18 2018-09-06 24エム・テクノロジーズ・インコーポレイテッド24M Technologies, Inc. Electrochemical cell and manufacturing method thereof
US12068445B2 (en) 2012-05-18 2024-08-20 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US11646437B2 (en) 2012-05-18 2023-05-09 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US10566581B2 (en) 2012-05-18 2020-02-18 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US11121437B2 (en) 2012-05-18 2021-09-14 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same
US10886521B2 (en) 2014-11-05 2021-01-05 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US10637038B2 (en) 2014-11-05 2020-04-28 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US11611061B2 (en) 2014-11-05 2023-03-21 24M Technologies, Inc. Electrochemical cells having semi-solid electrodes and methods of manufacturing the same
US11024903B2 (en) 2015-06-18 2021-06-01 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
US11831026B2 (en) 2015-06-18 2023-11-28 24M Technologies, Inc. Single pouch battery cells and methods of manufacture
CN111095605B (en) * 2017-09-14 2023-09-12 日产自动车株式会社 Separator for lithium ion battery
CN111095605A (en) * 2017-09-14 2020-05-01 日产自动车株式会社 Separator for lithium ion battery
WO2019054216A1 (en) * 2017-09-14 2019-03-21 日産自動車株式会社 Separator for lithium ion battery
JP2019053877A (en) * 2017-09-14 2019-04-04 三洋化成工業株式会社 Separator for lithium ion battery
US20200313123A1 (en) * 2018-03-28 2020-10-01 Ngk Insulators, Ltd. Lithium rechargeable battery and card with built-in battery
US11664499B2 (en) * 2018-03-28 2023-05-30 Ngk Insulators, Ltd. Lithium rechargeable battery and card with built-in battery
JP7262018B2 (en) 2018-05-23 2023-04-21 パナソニックIpマネジメント株式会社 Batteries and laminated batteries
CN110534790A (en) * 2018-05-23 2019-12-03 松下知识产权经营株式会社 Battery and layer-built battery
JP2019207872A (en) * 2018-05-23 2019-12-05 パナソニックIpマネジメント株式会社 Cell and laminated cell
US11742525B2 (en) 2020-02-07 2023-08-29 24M Technologies, Inc. Divided energy electrochemical cell systems and methods of producing the same

Similar Documents

Publication Publication Date Title
JP2006269288A (en) Thin battery
JP5256589B2 (en) An assembled battery in which a plurality of film-clad batteries are arranged adjacent to each other
KR101473145B1 (en) Lectrode assembly, battery cell, manufacturing mathod of electrode assembly and manufacturing mathod of battery cell
JP5589737B2 (en) Battery and manufacturing method thereof
KR20180010073A (en) Flexible rechargeable battery
WO2005086258A1 (en) Film enclosed electric device and collector covering member for the film enclosed electric device
JP2008130360A (en) Nonaqueous electrolyte secondary battery
KR101533574B1 (en) Method for Manufacturing of Battery Cell Having Bent Sealing Surplus Portion
JP2005142028A (en) Stacked battery
US20130149600A1 (en) Battery pack
JP2006313655A (en) Thin battery
KR20160134331A (en) Pouch type secondary battery and method for fabricating the same
KR20180047992A (en) Battery Cell Comprising Protection Circuit Module Assembly Having Lead Plate
JP2002203534A (en) Thin-type secondary battery and battery pack
JP2006164784A (en) Film-armored electric device
KR20120006730A (en) Process for preparing lithium polymer secondary batteries employing gel polymerelectrolyte
JP2006269295A (en) Thin battery and its manufacturing method
US20230246313A1 (en) Secondary battery
JP2018195495A (en) Laminate type power storage element
CN110419133B (en) Electrode assembly and method of manufacturing the same
JP5769467B2 (en) Thin film primary battery
KR102216744B1 (en) Battery cell, and battery module
JP2017073238A (en) Laminate type power storage device
CN115516704B (en) Secondary battery
KR20160046477A (en) Battery cell, and battery module