WO2022149393A1 - Power storage element - Google Patents

Power storage element Download PDF

Info

Publication number
WO2022149393A1
WO2022149393A1 PCT/JP2021/044939 JP2021044939W WO2022149393A1 WO 2022149393 A1 WO2022149393 A1 WO 2022149393A1 JP 2021044939 W JP2021044939 W JP 2021044939W WO 2022149393 A1 WO2022149393 A1 WO 2022149393A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
current collector
secondary battery
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2021/044939
Other languages
French (fr)
Japanese (ja)
Inventor
ハルシユ ジヤガード
泰地 葛本
吉一 堀越
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022149393A1 publication Critical patent/WO2022149393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This technology relates to a power storage element.
  • the power storage element includes a battery element including a first electrode, a second electrode, and a separator.
  • the first electrode and the second electrode are wound via the separator.
  • At least one of the first electrode or the second electrode extends in one direction and is shorter than the length of the current collector having a substantially rectangular notch at one end and the notch in one direction from one end. It includes an exposed region provided in the range, an active material layer formed in the current collector in the region excluding the exposed region, and a current collector tab provided in the current collector in the exposed region.
  • the first electrode and the second electrode are wound via a separator, and at least one of the first electrode and the second electrode is one end.
  • a current collector having a substantially rectangular notch at the corner of the above an exposed area provided in a range shorter than the length in the longitudinal direction in which the notch is provided, and a current collector in an area excluding the exposed area. Includes the formed active material layer. Therefore, it is possible to realize a higher capacity.
  • the effect of this technique is not necessarily limited to the effect described here, and may be any of a series of effects related to this technique described later.
  • the type of power storage element is not particularly limited, but specifically, it is an electrochemical device such as a battery or a capacitor.
  • This battery may be a primary battery or a secondary battery.
  • a secondary battery which is an example of a power storage element, will be described.
  • the secondary battery described here is a secondary battery that obtains a battery capacity by utilizing the occlusion and release of an electrode reactant, and includes a positive electrode, a negative electrode, and an electrolytic solution.
  • the charge capacity of the negative electrode is larger than the discharge capacity of the positive electrode in order to prevent the electrode reactant from precipitating on the surface of the negative electrode during charging. That is, the electrochemical capacity per unit area of the negative electrode is larger than the electrochemical capacity per unit area of the positive electrode.
  • the electrode reactant is not particularly limited, but is a light metal such as an alkali metal and an alkaline earth metal.
  • Alkali metals include lithium, sodium and potassium.
  • Alkaline earth metals include beryllium, magnesium and calcium.
  • a secondary battery that obtains battery capacity by utilizing the occlusion and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is occluded and released in an ionic state.
  • FIG. 1 is a schematic vertical sectional view showing a sectional configuration of a secondary battery according to the present embodiment.
  • the secondary battery includes a battery element 10, a container member 11, a lid member 12, and a tab terminal 13.
  • the container member 11 is an accommodating member having a vessel-like structure for accommodating the battery element 10.
  • the container member 11 has a structure in which the side wall is upright from the outer edge of the bottom surface to the entire circumference and the upper surface facing the bottom surface is open. That is, the container member 11 has a concave cross-sectional shape.
  • the shape of the bottom surface of the container member 11 may be circular, elliptical, semi-circular or fan-shaped by cutting out a part of the circular shape, or polygonal.
  • the lid member 12 is an accommodating member having a vessel-like structure attached to the opening of the container member 11.
  • the lid member 12 has a structure in which a side wall is provided on the outer edge of the bottom surface over the entire circumference, and the upper surface facing the bottom surface is open. That is, the container member 11 has a concave cross-sectional shape whose height is lower than that of the container member 11.
  • the container member 11 and the lid member 12 may be coupled to each other by using at least one of gaskets, adhesives, or caulking structures.
  • the bottom surface of the lid member 12 is provided so as to have a similar shape to the bottom surface of the container member 11 and to be larger than the bottom surface of the container member 11. According to this, the lid member 12 can be fitted to the container member 11 while facing each other's openings to form a space in which the battery element 10 can be accommodated inside the container member 11 and the lid member 12. can.
  • the three-dimensional shape defined by the container member 11 and the lid member 12 described above is a columnar three-dimensional shape, and more specifically, a flat and columnar three-dimensional shape.
  • the flat and columnar three-dimensional shape has a pair of bottoms facing each other substantially parallel to each other and a side wall connecting the pair of bottoms, and the distance (that is, height) between the bottoms with respect to the outer diameter of the bottoms. It is a small three-dimensional shape.
  • the secondary battery according to the present embodiment may be a so-called coin-type secondary battery having a flat cylindrical shape, a button-type secondary battery, or the like.
  • the tab terminal 13 is a first terminal that protrudes outward from the inside of the lid member 12 and is provided in the center of the lid member 12 and is connected to either the positive electrode or the negative electrode of the battery element 10.
  • the tab terminal 13 is made of a material having electrical conductivity such as a metal material.
  • the tab terminal 13 may function as a positive electrode terminal by being connected to the positive electrode of the battery element 10
  • the container member 11 may function as a negative electrode terminal by being connected to the negative electrode of the battery element 10. good.
  • the tab terminal 13 and the container member 11 can each function as a positive electrode terminal or a negative electrode terminal by being electrically insulated from each other by an organic insulator such as a gasket or an adhesive.
  • Each of the container member 11, the lid member 12, and the tab terminal 13 described above is a Fe—Cr or Fe—Cr—Ni stainless steel material having good corrosion resistance (for example, in the JIS standard). It may be composed of a stainless steel material such as the symbol SUS304, SUS305, or SUS430).
  • the surface of the container member 11, the lid member 12, or the tab terminal 13 connected to the positive electrode facing the battery element 10 may be made of a metal such as aluminum, which is unlikely to deteriorate in corrosion resistance due to a high potential. preferable.
  • the container member 11, the lid member 12, or the tab terminal 13 may be made of a material in which aluminum is laminated or vapor-deposited on one surface of stainless steel, or is made of a clad material in which stainless steel and aluminum are joined. May be done. Further, the container member 11, the lid member 12, or the tab terminal 13 may be made of only aluminum.
  • the battery element 10 is a main element of a secondary battery that performs a charge / discharge reaction, and includes a positive electrode, a negative electrode, and a separator.
  • the battery element 10 is an electrode body in which a positive electrode and a negative electrode face each other via a separator, and the positive electrode, the negative electrode, and the separator are impregnated with an electrolytic solution.
  • the electrode body is a wound type electrode body in which the laminated separator, the positive electrode, and the negative electrode are wound around the height direction of the container member 11 and the lid member 12 in the axial direction.
  • the number of turns of each of the separator, the positive electrode, and the negative electrode is arbitrary and is not particularly limited.
  • the positive electrode is one of the electrodes constituting the battery element 10.
  • the positive electrode includes a positive electrode current collector, a positive electrode active material layer formed on both sides or one side of the positive electrode current collector, and a positive electrode tab bonded to the positive electrode current collector.
  • the positive electrode current collector is a metal leaf containing a metal material such as aluminum.
  • the positive electrode current collector may be composed of a long-shaped foil extending in one direction.
  • the positive electrode active material layer contains a positive electrode active material that occludes and releases lithium, and is provided on both sides or one side of the positive electrode current collector.
  • the positive electrode active material contains any one or more of lithium-containing compounds such as lithium-containing transition metal compounds.
  • the lithium-containing transition metal compound is an oxide, a phosphoric acid compound, a silicic acid compound, a boric acid compound or the like containing one or more kinds of transition metal elements as constituent elements together with lithium.
  • the positive electrode active material layer may further contain a positive electrode binder, a positive electrode conductive agent, and the like.
  • the positive electrode tab contains the same metal material or a different metal material as the positive electrode current collector, and is provided at the end of the longitudinal shape of the positive electrode current collector in the extending direction. One end of the positive electrode tab is joined to the positive electrode current collector, and the other end is joined to the tab terminal 13, so that electric charges can be taken out from the positive electrode current collector.
  • the negative electrode is the other electrode constituting the battery element 10. Like the positive electrode, the negative electrode includes a negative electrode current collector, a negative electrode active material layer formed on both sides or one side of the negative electrode current collector, and a negative electrode tab bonded to the negative electrode current collector.
  • the negative electrode current collector is a metal leaf containing a metal material such as copper. Like the positive electrode current collector, the negative electrode current collector may be composed of a long-shaped foil extending in one direction.
  • the negative electrode active material layer contains a negative electrode active material that occludes and releases lithium, and is provided on both sides or one side of the negative electrode current collector.
  • the negative electrode active material includes any one or more of carbon materials and metal-based materials.
  • the carbon material is graphite or the like.
  • the metal-based material is a material containing one or more of metal elements and metalloid elements capable of forming an alloy with lithium as constituent elements, and specifically includes silicon, tin, and the like. It is a material.
  • the metal-based material may be a simple substance, an alloy, a compound, or a mixture of two or more thereof.
  • the negative electrode active material layer may further contain a negative electrode binder, a negative electrode conductive agent, and the like.
  • the negative electrode tab contains the same metal material or a different metal material as the negative electrode current collector, and is provided at the end of the longitudinal shape of the negative electrode current collector in the extending direction. One end of the negative electrode tab is joined to the negative electrode current collector, and the other end is joined to the container member 11, so that electric charges can be taken out from the negative electrode current collector.
  • the separator is an insulating porous film interposed between the positive electrode and the negative electrode.
  • the separator can allow lithium to pass through while preventing a short circuit between the positive electrode and the negative electrode.
  • the separator may contain any one or more of the polymer materials such as polyethylene.
  • the electrolytic solution is impregnated in each of the positive electrode, the negative electrode and the separator, and contains a solvent and an electrolyte salt.
  • the solvent includes any one or more of non-aqueous solvents (organic solvents) such as carbonic acid ester-based compounds, carboxylic acid ester-based compounds and lactone-based compounds.
  • the electrolyte salt contains any one or more of light metal salts such as lithium salts.
  • FIG. 2 is a schematic plan view showing the configuration of electrodes included in the secondary battery according to the present embodiment.
  • FIG. 3 is a schematic plan view showing the configuration of the electrodes included in the secondary battery according to the comparative example.
  • both the positive electrode and the negative electrode may have the configuration described below, or only one of the positive electrode or the negative electrode may have the configuration described below.
  • both the positive electrode and the negative electrode have the configurations described below.
  • the electrodes 20 included in the secondary battery include a current collector 21, an active material layer 22 formed on both sides or one side of the current collector 21, and one end of the current collector 21 on the E1 side. It is provided with a current collecting tab 23 joined to the portion.
  • the electrode 20 is wound so that one end E1 side is inside the winding, and the lid member 12 is present in the upward direction facing FIG. 2, and the container member 11 is in the downward direction facing FIG. Is housed inside the secondary battery so that it is present.
  • the current collector 21 is a metal foil containing the above-mentioned metal material.
  • the current collector 21 has a longitudinal shape extending in one direction, and has a notch 21D having a substantially rectangular shape at one corner of E1 in the extending direction.
  • One end E1 side of the current collector 21 is the winding inside of the battery element 10 which is a winding type electrode body, and one end E1 side of the current collector 21 is a tab terminal 13 provided in the substantially center of the lid member 12.
  • a notch 21D is provided in order to avoid a short circuit between the current collector 21 and the current collector 21.
  • the central portion inside the winding of the battery element 10 can be recessed, so that the battery element 10 secures a clearance for the tab terminal 13 which is convex in the internal space of the secondary battery. can do.
  • the active material layer 22 is a layer containing the above-mentioned positive electrode active material or negative electrode active material, and is formed on one side or both sides of the current collector 21 excluding the exposed region 21C provided on one end E1 side of the current collector 21. ..
  • the exposed region 21C is provided for joining the current collector tab 23 to the current collector 21 by a welding method.
  • the current collector tab 23 is directly welded to the current collector 21 in the exposed region 21C, so that the joint strength between the current collector 21 and the current collector tab 23 can be further increased.
  • the current collector tab 23 contains the same metal material or a different metal material as the current collector 21 as described above. One end of the current collector tab 23 is joined to the exposed region 21C at one end of the current collector 21 on the E1 side, and the other end of the current collector tab 23 is connected to the tab terminal 13 or the container member 11.
  • the region where the length of the current collector 21 in the lateral direction is shortened by the notch 21D is defined as the notch region 21B, and the notch 21D makes the current collector 21 of the current collector 21.
  • the region where the length in the lateral direction is not shortened is referred to as the main region 21A.
  • the active material layer 22 is provided not only in the main region 21A but also in the region other than the exposed region 21C of the notch region 21B. At this time, the exposed region 21C is provided in a range shorter than the length provided with the notch 21D from one end E1 of the current collector 21. According to this, in the secondary battery according to the present embodiment, the area of the active material layer 22 formed on the current collector 21 can be made larger, so that the capacity can be further increased. Is.
  • the active material layer 22 is provided only in the main region 21A of the current collector 21.
  • the active material layer 22 is not formed in the entire notch region 21B, it is easy to grasp the region where the active material layer 22 is not formed, and the region where the active material layer 22 of the current collector 21 is not formed.
  • the current collector tab 23 can be joined more easily.
  • the active material layer 22 is not provided in the notch region 21B existing directly under the tab terminal 13, so that the active material layer 22 and the secondary battery The possibility of a short circuit with the tab terminal 13 can be further reduced.
  • the active material layer 22 is not formed on the current collector 21 in the notch region 21B, and the electrode 200 has many regions that do not contribute to the capacity of the secondary battery. It is difficult to increase the capacity of the battery.
  • the region where the active material layer 22 is not formed on the current collector 21 can be limited to the exposed region 21C, which is a narrower region than the notch region 21B. Therefore, the current collector 21 can be used. The area of the active material layer 22 formed on the top can be increased. Therefore, the secondary battery according to the present embodiment can realize a higher capacity.
  • the secondary battery according to this embodiment can perform charge / discharge operation as follows.
  • lithium ions are released from the positive electrode and lithium ions are stored in the negative electrode via the electrolytic solution.
  • lithium ions are released from the negative electrode and lithium ions are stored in the positive electrode via the electrolytic solution. That is, in the secondary battery, lithium ions can be charged and discharged by moving between the positive electrode and the negative electrode via the electrolytic solution.
  • the secondary battery is manufactured by manufacturing a positive electrode and a negative electrode in the process described below, and then assembling each configuration including the positive electrode and the negative electrode.
  • a positive electrode mixture is formed by mixing a positive electrode active material with a binder and a conductive material, if necessary.
  • a paste-like positive electrode mixture slurry is prepared by dispersing or dissolving the positive electrode mixture in water or an organic solvent.
  • a positive electrode mixture slurry is applied to predetermined regions on both sides of the positive electrode current collector and then dried to produce a positive electrode having positive electrode active material layers formed on both sides of the positive electrode current collector. ..
  • the positive electrode active material layer may be compression-molded using a roll press machine or the like. The compression molding may be performed while heating, or may be repeated a plurality of times.
  • the negative electrode can be manufactured by the same method as the above-mentioned method for manufacturing the positive electrode. Specifically, first, the negative electrode active material is mixed with a binder and a conductive material, if necessary, to form a negative electrode mixture. Next, a paste-like negative electrode mixture slurry is prepared by dispersing or dissolving the negative electrode mixture in water or an organic solvent. Subsequently, a negative electrode mixture slurry is applied to predetermined regions on both sides of the negative electrode current collector and then dried to produce a negative electrode having negative electrode active material layers formed on both sides of the negative electrode current collector. ..
  • the negative electrode active material layer may be compression-molded using a roll press machine or the like. The compression molding may be performed while heating, or may be repeated a plurality of times.
  • the positive electrode tab is connected to the positive electrode and the negative electrode tab is connected to the negative electrode by using a welding method or the like.
  • the positive electrode, the negative electrode, and the separator are wound to form a wound electrode body.
  • the electrode body is housed inside the container member 11.
  • the negative electrode tab is connected to the container member 11 by using a welding method or the like.
  • the electrolytic solution is impregnated into the electrode body by injecting the electrolytic solution into the inside of the container member 11. As a result, the electrolytic solution impregnates into each of the positive electrode, the negative electrode, and the separator, and the battery element 10 is formed.
  • the lid member 12 to which the tab terminal 13 is attached is fitted to the container member 11.
  • the space formed by the container member 11 and the lid member 12 is sealed.
  • the positive electrode tab is connected to the tab terminal 13 by using a welding method or the like.
  • the notch 21D is formed in the current collector 21 for the clearance with the tab terminal 13, and the notch 21D forms the length of the current collector 21 in the lateral direction.
  • the active material layer 22 is formed in a part of the notch region 21B in which is shortened. Further, the cutout region 21B is provided with an exposed region 21C in which the active material layer 22 is not formed at one end E1 of the current collector 21, and the current collector tab 23 is joined to the exposed region 21C. According to this, in the secondary battery according to the present embodiment, the area of the active material layer 22 formed on the current collector 21 can be made larger, so that the utilization efficiency of the internal space of the secondary battery can be improved. It is possible to improve and realize a higher capacity.
  • FIG. 4 is a schematic plan view illustrating the dimensions of each part of the electrode 20 in the secondary battery according to the present embodiment.
  • the length (width) of the current collector 21 in the lateral direction is We
  • the length (width) of the notch 21D in the lateral direction is Wd.
  • the length in the longitudinal direction of the region (that is, the main region 21A) of the current collector 21 in which the notch portion 21D is not provided is set to Le
  • the region of the notch region 21B excluding the exposed region 21C that is, the notch region.
  • the length in the longitudinal direction of 21B (the region where the active material layer 22 is formed) is defined as Ld.
  • the area Se of the active material layer 22 formed in the main region 21A can be expressed as the product of We and Le.
  • the area Sd of the active material layer 22 formed in the notch region 21B can be expressed as the product of (We—Wd) and Ld.
  • the active material layer 22 when the length in the longitudinal direction of the region (that is, the main region 21A) of the current collector 21 in which the notch 21D is not provided is changed with reference to the 1654 size secondary battery.
  • the estimated area of is shown in Table 1 below.
  • the inner diameter of the tab terminal 13 in the 1654 size secondary battery is 2.7 mm, and the height is 0.15 mm.
  • the increase rate of the area of the active material layer 22 by the present technique can be set to 2% or more.
  • the area of the active material layer 22 when the height of the secondary battery is changed (that is, when the width of the current collector 21 is changed) is estimated below with reference to the 1654 size secondary battery. It is shown in Table 2 of.
  • the inner diameter of the tab terminal 13 in the 1654 size secondary battery is 2.7 mm, and the height is 0.15 mm.
  • both the longitudinal length of the area of the current collector 21 without the notch 21D ie, the main area 21A
  • the width of the current collector 21 with respect to the 1654 size secondary battery is shown in Table 3 below.
  • the inner diameter of the tab terminal 13 in the 1654 size secondary battery is 2.7 mm, and the height is 0.15 mm.
  • the length in the longitudinal direction of the region of the notch region 21B excluding the exposed region 21C (that is, the region of the notch region 21B where the active material layer 22 is formed).
  • the estimation of the area of the active material layer 22 when the above is changed is shown in Table 4 below.
  • the inner diameter of the tab terminal 13 in the 1654 size secondary battery is 2.7 mm, and the height is 0.15 mm.
  • the application (application example) of the secondary battery is not particularly limited.
  • the secondary battery used as a power source may be used as a main power source for electronic devices and electric vehicles, or may be used as an auxiliary power source.
  • the main power source is a power source that is preferentially used regardless of the presence or absence of another power source
  • the auxiliary power source is a power source that is used in place of the main power source or a power source that can be switched from the main power source.
  • secondary batteries include video cameras, digital still cameras, mobile phones, laptop computers, headphone stereos, electronic devices such as portable radios and portable information terminals, and storage devices such as backup power supplies and memory cards.
  • Electric tools such as electric drills and saws, battery packs mounted on electronic devices, medical electronic devices such as pacemakers and hearing aids, electric vehicles such as electric vehicles (including hybrid vehicles), and in emergencies.
  • It is a power storage system such as a household or industrial battery system that stores power in preparation for it.
  • one secondary battery may be used, or a plurality of secondary batteries may be used.
  • the battery pack may be configured by using a single battery or may be configured by using an assembled battery.
  • the electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be a hybrid vehicle that also includes a driving source other than the secondary battery.
  • the household electric power storage system can operate household electric products and the like by using the electric power stored in the secondary battery which is the electric power storage source.
  • FIG. 5 shows the block configuration of the battery pack.
  • the battery pack described here is a battery pack (so-called soft pack) using one secondary battery, and is mounted on an electronic device represented by a smartphone.
  • the battery pack includes a power supply 410 and a circuit board 420.
  • the circuit board 420 is connected to the power supply 410 and includes a positive electrode terminal 210, a negative electrode terminal 310, and a temperature detection terminal 430.
  • the power supply 410 includes one secondary battery.
  • the positive electrode lead is connected to the positive electrode terminal 210
  • the negative electrode lead is connected to the negative electrode terminal 310.
  • the power supply 410 can be connected to the outside via the positive electrode terminal 210 and the negative electrode terminal 310, and can be charged and discharged via the positive electrode terminal 210 and the negative electrode terminal 310.
  • the circuit board 420 includes a control unit 440, a switch 450, a PTC element 460, and a temperature detection unit 470. However, the PTC element 460 may be omitted.
  • the control unit 440 includes a central processing unit (CPU: Central Processing Unit), a memory, and the like, and controls the operation of the entire battery pack.
  • the control unit 440 detects and controls the usage state of the power supply 410 as needed.
  • the control unit 440 cuts off the switch 450 so that the charging current does not flow in the current path of the power supply 410. Can be done.
  • the overcharge detection voltage and the overdischarge detection voltage are not particularly limited. As an example, the overcharge detection voltage is 4.2V ⁇ 0.05V, and the overdischarge detection voltage is 2.4V ⁇ 0.1V.
  • the switch 450 includes a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like, and switches whether or not the power supply 410 is connected to an external device according to an instruction from the control unit 440.
  • the switch 450 includes a metal-oxide-semiconductor field-effect transistor (MOSFET: Metal-Oxide-Semiconductor Dutor Field-Effective Transistor) and the like. The charge / discharge current is detected based on the ON resistance of the switch 450.
  • MOSFET Metal-Oxide-Semiconductor Dutor Field-Effective Transistor
  • the temperature detection unit 470 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 410 using the temperature detection terminal 430, and outputs the temperature measurement result to the control unit 440.
  • the temperature measurement result measured by the temperature detection unit 470 is that the control unit 440 performs charge / discharge control of the power supply 410 when abnormal heat generation occurs, and the control unit 440 corrects the remaining capacity of the power supply 410 when calculating the remaining capacity. It is used when doing so.
  • the electrode reactant is lithium
  • the electrode reactant is not particularly limited.
  • the electrode reactant may be another alkali metal such as sodium and potassium, or an alkaline earth metal such as beryllium, magnesium and calcium.
  • the electrode reactant may be another light metal such as aluminum.
  • the separator is described as being a porous membrane, but the configuration of the separator is not particularly limited.
  • the separator may be a laminated film containing a polymer compound layer.
  • the separator may include a base material layer which is the above-mentioned porous film and a polymer compound layer provided on one side or both sides of the base material layer.
  • the polymer compound layer contains a polymer compound such as polyvinylidene fluoride, which has excellent physical strength and is electrochemically stable. According to this, since the separator can improve the adhesion to each of the positive electrode and the negative electrode, it is possible to suppress the positional deviation inside the battery element 10. Therefore, a power storage element such as a secondary battery can suppress the occurrence of swelling even when a decomposition reaction of the electrolytic solution occurs.
  • the base material layer and the polymer compound layer may contain a plurality of particles.
  • the plurality of types of particles may be any one or more than one of particles such as inorganic particles and resin particles. According to this, since the power storage element such as a secondary battery can dissipate heat with a plurality of particles at the time of heat generation, heat resistance and safety can be improved.
  • the inorganic particles are not particularly limited, but are particles such as aluminum oxide (alumina), aluminum nitride, boehmite, silicon oxide (silica), titanium oxide (titania), magnesium oxide (magnesia) and zirconium oxide (zirconia).
  • the electrolyte is described as a liquid electrolyte, but the electrolyte is not limited to the liquid.
  • the electrolyte may be a gel-like electrolyte layer.
  • the positive electrode and the negative electrode are laminated with each other via the separator and the electrolyte layer, and then the positive electrode, the negative electrode, the separator and the electrolyte layer are wound.
  • the electrolyte layer is interposed between the positive electrode and the separator and is interposed between the negative electrode and the separator.
  • the electrolyte layer contains a polymer compound such as polyvinylidene fluoride together with the electrolytic solution, and the electrolytic solution can be held by the polymer compound.
  • the structure of the electrolytic solution is as described above. Even in such an electrolyte layer, lithium can be transferred between the positive electrode and the negative electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

This secondary cell comprises a cell element including a first electrode, a second electrode, and a separator, the first electrode and the second electrode being wound via the separator in the cell element. The first electrode and/or the second electrode include a current collector which extends in one direction and has a substantially rectangular notch part in a corner of one end thereof, an active material layer formed on the current collector in a region excluding the exposed region, and a current collection tab provided to the current collector in the exposed region.

Description

蓄電素子Power storage element
 本技術は、蓄電素子に関する。 This technology relates to a power storage element.
 近年、携帯電話、スマートフォン、又はウェアラブル端末等の電子機器の普及が進んでいる。そのため、これらの電子機器にて電源として採用されている蓄電素子として、二次電池の重要性が高まっている。 In recent years, electronic devices such as mobile phones, smartphones, and wearable terminals have become widespread. Therefore, the importance of a secondary battery is increasing as a power storage element used as a power source in these electronic devices.
 電子機器の高性能化に伴い、二次電池のさらなる高容量化が求められるようになっている。そのため、二次電池では、正極、負極、セパレータ、及び電解液に加えて、正極、負極、及びセパレータにて構成される電極体についても様々な開発が進められている(例えば、特許文献1,2参照)。 As the performance of electronic devices has improved, it has become necessary to further increase the capacity of secondary batteries. Therefore, in the secondary battery, in addition to the positive electrode, the negative electrode, the separator, and the electrolytic solution, various developments of an electrode body composed of the positive electrode, the negative electrode, and the separator are underway (for example, Patent Documents 1 and 1). 2).
米国特許出願公開第2014/0315061号明細書US Patent Application Publication No. 2014/0315061 欧州特許出願公開第2793285号明細書European Patent Application Publication No. 2793285
 このような二次電池では、電池素子に保持される活物質の量を増加させることで、さらなる高容量化を実現することが望まれる。 In such a secondary battery, it is desired to realize further increase in capacity by increasing the amount of active material held in the battery element.
 よって、さらなる高容量化が可能な蓄電素子を提供することが望ましい。 Therefore, it is desirable to provide a power storage element capable of further increasing the capacity.
 本技術の一実施形態に係る蓄電素子は、第1電極、第2電極およびセパレータを含む電池素子を備え、電池素子において、第1電極および第2電極はセパレータを介して巻回されており、第1電極または第2電極の少なくともいずれかは、一方向に延在し、一端の角部に略矩形形状の切欠部を有する集電体と、一端から一方向における切欠部の長さよりも短い範囲に設けられた露出領域と、露出領域を除いた領域の集電体に形成された活物質層と、露出領域の集電体に設けられた集電タブとを含む。 The power storage element according to an embodiment of the present technology includes a battery element including a first electrode, a second electrode, and a separator. In the battery element, the first electrode and the second electrode are wound via the separator. At least one of the first electrode or the second electrode extends in one direction and is shorter than the length of the current collector having a substantially rectangular notch at one end and the notch in one direction from one end. It includes an exposed region provided in the range, an active material layer formed in the current collector in the region excluding the exposed region, and a current collector tab provided in the current collector in the exposed region.
 本技術の一実施形態に係る蓄電素子によれば、電池素子において、第1電極および第2電極はセパレータを介して巻回されており、第1電極または第2電極の少なくともいずれかは、一端の角部に略矩形形状の切欠部を有する集電体と、切欠部が設けられた長手方向の長さよりも短い範囲に設けられた露出領域と、露出領域を除いた領域の集電体に形成された活物質層とを含む。よって、さらなる高容量化を実現することが可能である。 According to the power storage element according to the embodiment of the present technology, in the battery element, the first electrode and the second electrode are wound via a separator, and at least one of the first electrode and the second electrode is one end. For a current collector having a substantially rectangular notch at the corner of the above, an exposed area provided in a range shorter than the length in the longitudinal direction in which the notch is provided, and a current collector in an area excluding the exposed area. Includes the formed active material layer. Therefore, it is possible to realize a higher capacity.
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。 The effect of this technique is not necessarily limited to the effect described here, and may be any of a series of effects related to this technique described later.
本技術の一実施形態に係る蓄電素子の一例である二次電池の断面構成を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the sectional structure of the secondary battery which is an example of the power storage element which concerns on one Embodiment of this technique. 同実施形態に係る二次電池が備える電極の構成を示す模式的な平面図である。It is a schematic plan view which shows the structure of the electrode provided in the secondary battery which concerns on the same embodiment. 比較例に係る二次電池が備える電極の構成を示す模式的な平面図である。It is a schematic plan view which shows the structure of the electrode provided in the secondary battery which concerns on a comparative example. 同実施形態に係る二次電池における電極の各部の寸法を説明する模式的な平面図である。It is a schematic plan view explaining the dimension of each part of the electrode in the secondary battery which concerns on the same embodiment. 同実施形態に係る二次電池の適用例の一例である電池パックの構成を示すブロック図である。It is a block diagram which shows the structure of the battery pack which is an example of the application example of the secondary battery which concerns on the same embodiment.
 以下、本技術に係る一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、以下のとおりである。

 1.蓄電素子
   1-1.構成
   1-2.動作
   1-3.製造方法
   1-4.作用および効果
 2.蓄電素子の用途
Hereinafter, one embodiment of the present technology will be described in detail with reference to the drawings. The order of explanation is as follows.

1. 1. Power storage element 1-1. Configuration 1-2. Operation 1-3. Manufacturing method 1-4. Action and effect 2. Applications of power storage elements
<1.蓄電素子>
 まず、図1を参照して、本技術の一実施形態に係る蓄電素子に関して説明する。
<1. Power storage element>
First, with reference to FIG. 1, a power storage element according to an embodiment of the present technology will be described.
 蓄電素子の種類は、特に限定されないが、具体的には、電池およびキャパシタなどの電気化学デバイスなどである。この電池は、一次電池でもよいし、二次電池でもよい。以下では、蓄電素子の一例である二次電池に関して説明する。 The type of power storage element is not particularly limited, but specifically, it is an electrochemical device such as a battery or a capacitor. This battery may be a primary battery or a secondary battery. Hereinafter, a secondary battery, which is an example of a power storage element, will be described.
 ここで説明する二次電池は、電極反応物質の吸蔵放出を利用して電池容量を得る二次電池であり、正極、負極および電解液を備える。二次電池では、充電途中に負極の表面に電極反応物質が析出することを防止するために、負極の充電容量は、正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなっている。 The secondary battery described here is a secondary battery that obtains a battery capacity by utilizing the occlusion and release of an electrode reactant, and includes a positive electrode, a negative electrode, and an electrolytic solution. In the secondary battery, the charge capacity of the negative electrode is larger than the discharge capacity of the positive electrode in order to prevent the electrode reactant from precipitating on the surface of the negative electrode during charging. That is, the electrochemical capacity per unit area of the negative electrode is larger than the electrochemical capacity per unit area of the positive electrode.
 電極反応物質は、特に限定されないが、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属は、リチウム、ナトリウムおよびカリウムなどである。アルカリ土類金属は、ベリリウム、マグネシウムおよびカルシウムなどである。 The electrode reactant is not particularly limited, but is a light metal such as an alkali metal and an alkaline earth metal. Alkali metals include lithium, sodium and potassium. Alkaline earth metals include beryllium, magnesium and calcium.
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量を得る二次電池は、いわゆるリチウムイオン二次電池である。リチウムイオン二次電池では、リチウムがイオン状態で吸蔵および放出される。 In the following, the case where the electrode reactant is lithium will be taken as an example. A secondary battery that obtains battery capacity by utilizing the occlusion and release of lithium is a so-called lithium ion secondary battery. In a lithium-ion secondary battery, lithium is occluded and released in an ionic state.
<1-1.構成>
[全体構成]
 図1は、本実施形態に係る二次電池の断面構成を示す模式的な縦断面図である。図1に示すように、二次電池は、電池素子10と、容器部材11と、蓋部材12と、タブ端子13とを備える。
<1-1. Configuration>
[overall structure]
FIG. 1 is a schematic vertical sectional view showing a sectional configuration of a secondary battery according to the present embodiment. As shown in FIG. 1, the secondary battery includes a battery element 10, a container member 11, a lid member 12, and a tab terminal 13.
 容器部材11は、電池素子10を収容する器状構造の収容部材である。具体的には、容器部材11は、底面の外縁から全周に亘って側壁が直立し、底面と対向する上面が開口した構造を有する。すなわち、容器部材11は、凹型の断面形状を有する。容器部材11の底面の形状は、円形、楕円形、円形の一部を切り出した半円形若しくは扇形、又は多角形のいずれであってもよい。 The container member 11 is an accommodating member having a vessel-like structure for accommodating the battery element 10. Specifically, the container member 11 has a structure in which the side wall is upright from the outer edge of the bottom surface to the entire circumference and the upper surface facing the bottom surface is open. That is, the container member 11 has a concave cross-sectional shape. The shape of the bottom surface of the container member 11 may be circular, elliptical, semi-circular or fan-shaped by cutting out a part of the circular shape, or polygonal.
 蓋部材12は、容器部材11の開口に取り付けられる器状構造の収容部材である。具体的には、蓋部材12は、底面の外縁に全周に亘って側壁が設けられ、底面と対向する上面が開口した構造を有する。すなわち、容器部材11は、容器部材11と比較して高さが低い凹型の断面形状を有する。 The lid member 12 is an accommodating member having a vessel-like structure attached to the opening of the container member 11. Specifically, the lid member 12 has a structure in which a side wall is provided on the outer edge of the bottom surface over the entire circumference, and the upper surface facing the bottom surface is open. That is, the container member 11 has a concave cross-sectional shape whose height is lower than that of the container member 11.
 蓋部材12は、容器部材11に互いの開口を対向させるように取り付けられることで、容器部材11及び蓋部材12の内部に電池素子10が収容される空間を形成することができる。容器部材11及び蓋部材12は、ガスケット、接着剤、又はかしめ構造の少なくとも1つ以上を用いることで互いに結合されてもよい。 By attaching the lid member 12 to the container member 11 so that the openings face each other, it is possible to form a space in which the battery element 10 is housed inside the container member 11 and the lid member 12. The container member 11 and the lid member 12 may be coupled to each other by using at least one of gaskets, adhesives, or caulking structures.
 具体的には、蓋部材12の底面は、容器部材11の底面と相似形であり、かつ容器部材11の底面よりも大きくなるように設けられる。これによれば、蓋部材12は、容器部材11と互いの開口を対向させながら嵌合することで、容器部材11及び蓋部材12の内部に電池素子10を収容可能な空間を形成することができる。 Specifically, the bottom surface of the lid member 12 is provided so as to have a similar shape to the bottom surface of the container member 11 and to be larger than the bottom surface of the container member 11. According to this, the lid member 12 can be fitted to the container member 11 while facing each other's openings to form a space in which the battery element 10 can be accommodated inside the container member 11 and the lid member 12. can.
 上述した容器部材11、及び蓋部材12により画定される立体形状は、柱状の立体形状であり、より具体的には、扁平かつ柱状の立体形状である。扁平かつ柱状の立体形状とは、互いに略平行に対向する一対の底部と、該一対の底部を結ぶ側壁とを有し、底部の外径に対して底部間の距離(すなわち、高さ)が小さい立体形状である。本実施形態に係る二次電池は、扁平な円柱形状を有する、いわゆるコイン型の二次電池、及びボタン型の二次電池などであってもよい。 The three-dimensional shape defined by the container member 11 and the lid member 12 described above is a columnar three-dimensional shape, and more specifically, a flat and columnar three-dimensional shape. The flat and columnar three-dimensional shape has a pair of bottoms facing each other substantially parallel to each other and a side wall connecting the pair of bottoms, and the distance (that is, height) between the bottoms with respect to the outer diameter of the bottoms. It is a small three-dimensional shape. The secondary battery according to the present embodiment may be a so-called coin-type secondary battery having a flat cylindrical shape, a button-type secondary battery, or the like.
 タブ端子13は、蓋部材12の内部から外部に突出して蓋部材12の中央に設けられ、電池素子10の正極又は負極の一方と接続される第1端子である。タブ端子13は、金属材料などの電気導電性を有する材料で構成される。具体的には、タブ端子13は、電池素子10の正極と接続されることで正極端子として機能し、容器部材11は、電池素子10の負極と接続されることで負極端子として機能してもよい。タブ端子13及び容器部材11は、ガスケット又は接着剤等の有機絶縁体によって互いに電気的に絶縁されることで、正極端子又は負極端子としてそれぞれ機能することができる。 The tab terminal 13 is a first terminal that protrudes outward from the inside of the lid member 12 and is provided in the center of the lid member 12 and is connected to either the positive electrode or the negative electrode of the battery element 10. The tab terminal 13 is made of a material having electrical conductivity such as a metal material. Specifically, the tab terminal 13 may function as a positive electrode terminal by being connected to the positive electrode of the battery element 10, and the container member 11 may function as a negative electrode terminal by being connected to the negative electrode of the battery element 10. good. The tab terminal 13 and the container member 11 can each function as a positive electrode terminal or a negative electrode terminal by being electrically insulated from each other by an organic insulator such as a gasket or an adhesive.
 なお、上述した容器部材11、蓋部材12、及びタブ端子13の各々は、耐腐食性が良好なFe-Cr系又はFe-Cr-Ni系のステンレス鋼材料(一例を挙げると、JIS規格における記号SUS304、SUS305、又はSUS430等のステンレス鋼材料)で構成されてもよい。 Each of the container member 11, the lid member 12, and the tab terminal 13 described above is a Fe—Cr or Fe—Cr—Ni stainless steel material having good corrosion resistance (for example, in the JIS standard). It may be composed of a stainless steel material such as the symbol SUS304, SUS305, or SUS430).
 ただし、充電状態で4.0Vを超える正極単極電位の正極と接続された容器部材11、蓋部材12、及びタブ端子13では、ステンレス鋼材料から鉄、クロム、又はニッケル等のイオンが電解液中に溶出することで、ステンレス鋼の耐腐食性が低下することがあり得る。そのため、正極と接続された容器部材11、蓋部材12、又はタブ端子13の電池素子10と対向する面は、高電位による耐腐食性の低下が生じにくいアルミニウムなどの金属で構成されることが好ましい。具体的には、容器部材11、蓋部材12、又はタブ端子13は、ステンレス鋼の一面にアルミニウムを積層又は蒸着した材料により構成されてもよく、ステンレス鋼とアルミニウムとを接合したクラッド材により構成されてもよい。また、容器部材11、蓋部材12、又はタブ端子13は、アルミニウムのみで構成されてもよい。 However, in the container member 11, the lid member 12, and the tab terminal 13 connected to the positive electrode having a positive electrode unipolar potential exceeding 4.0 V in the charged state, ions such as iron, chromium, or nickel from the stainless steel material are electrolytic solutions. Elution into it can reduce the corrosion resistance of stainless steel. Therefore, the surface of the container member 11, the lid member 12, or the tab terminal 13 connected to the positive electrode facing the battery element 10 may be made of a metal such as aluminum, which is unlikely to deteriorate in corrosion resistance due to a high potential. preferable. Specifically, the container member 11, the lid member 12, or the tab terminal 13 may be made of a material in which aluminum is laminated or vapor-deposited on one surface of stainless steel, or is made of a clad material in which stainless steel and aluminum are joined. May be done. Further, the container member 11, the lid member 12, or the tab terminal 13 may be made of only aluminum.
 電池素子10は、充放電反応を行う二次電池の主要要素であり、正極、負極およびセパレータを含んでいる。詳細は図示しないが、電池素子10は、セパレータを介して正極及び負極が対向していると共に正極、負極及びセパレータに電解液が含浸されている電極体である。具体的には、電極体は、積層されたセパレータ、正極、及び負極が容器部材11及び蓋部材12の高さ方向を軸方向として巻回されている巻回型の電極体である。なお、セパレータ、正極、及び負極の各々の巻回数は、任意であり、特に限定されない。 The battery element 10 is a main element of a secondary battery that performs a charge / discharge reaction, and includes a positive electrode, a negative electrode, and a separator. Although details are not shown, the battery element 10 is an electrode body in which a positive electrode and a negative electrode face each other via a separator, and the positive electrode, the negative electrode, and the separator are impregnated with an electrolytic solution. Specifically, the electrode body is a wound type electrode body in which the laminated separator, the positive electrode, and the negative electrode are wound around the height direction of the container member 11 and the lid member 12 in the axial direction. The number of turns of each of the separator, the positive electrode, and the negative electrode is arbitrary and is not particularly limited.
 正極は、電池素子10を構成する一方の電極である。正極は、正極集電体と、正極集電体の両面又は片面に形成された正極活物質層と、正極集電体に接合された正極タブとを含む。 The positive electrode is one of the electrodes constituting the battery element 10. The positive electrode includes a positive electrode current collector, a positive electrode active material layer formed on both sides or one side of the positive electrode current collector, and a positive electrode tab bonded to the positive electrode current collector.
 正極集電体は、アルミニウムなどの金属材料を含む金属箔である。正極集電体は、一方向に延在する長手形状の箔で構成されてもよい。 The positive electrode current collector is a metal leaf containing a metal material such as aluminum. The positive electrode current collector may be composed of a long-shaped foil extending in one direction.
 正極活物質層は、リチウムを吸蔵放出する正極活物質を含み、正極集電体の両面又は片面に設けられる。正極活物質は、リチウム含有遷移金属化合物などのリチウム含有化合物のうちのいずれか1種類または2種類以上を含む。リチウム含有遷移金属化合物とは、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。正極活物質層は、さらに正極結着剤および正極導電剤などを含んでもよい。 The positive electrode active material layer contains a positive electrode active material that occludes and releases lithium, and is provided on both sides or one side of the positive electrode current collector. The positive electrode active material contains any one or more of lithium-containing compounds such as lithium-containing transition metal compounds. The lithium-containing transition metal compound is an oxide, a phosphoric acid compound, a silicic acid compound, a boric acid compound or the like containing one or more kinds of transition metal elements as constituent elements together with lithium. The positive electrode active material layer may further contain a positive electrode binder, a positive electrode conductive agent, and the like.
 正極タブは、正極集電体と同じ金属材料または異なる金属材料を含み、正極集電体の長手形状の延在方向の端部に設けられる。正極タブは、一端を正極集電体と接合され、他端をタブ端子13と接合されることで、正極集電体から電荷を取り出すことができる。 The positive electrode tab contains the same metal material or a different metal material as the positive electrode current collector, and is provided at the end of the longitudinal shape of the positive electrode current collector in the extending direction. One end of the positive electrode tab is joined to the positive electrode current collector, and the other end is joined to the tab terminal 13, so that electric charges can be taken out from the positive electrode current collector.
 負極は、電池素子10を構成する他方の電極である。負極は、正極と同様に、負極集電体と、負極集電体の両面又は片面に形成された負極活物質層と、負極集電体に接合された負極タブとを含む。 The negative electrode is the other electrode constituting the battery element 10. Like the positive electrode, the negative electrode includes a negative electrode current collector, a negative electrode active material layer formed on both sides or one side of the negative electrode current collector, and a negative electrode tab bonded to the negative electrode current collector.
 負極集電体は、銅などの金属材料を含む金属箔である。負極集電体は、正極集電体と同様に、一方向に延在する長手形状の箔で構成されてもよい。 The negative electrode current collector is a metal leaf containing a metal material such as copper. Like the positive electrode current collector, the negative electrode current collector may be composed of a long-shaped foil extending in one direction.
 負極活物質層は、リチウムを吸蔵放出する負極活物質を含み、負極集電体の両面又は片面に設けられる。負極活物質は、炭素材料および金属系材料などのうちのいずれか1種類または2種類以上を含む。炭素材料とは、黒鉛などである。金属系材料とは、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料であり、具体的にはケイ素およびスズなどを含む材料である。金属系材料は、単体でもよく、合金でもよく、化合物でもよく、それらの2種類以上の混合物でもよい。負極活物質層は、さらに負極結着剤および負極導電剤などを含んでもよい。 The negative electrode active material layer contains a negative electrode active material that occludes and releases lithium, and is provided on both sides or one side of the negative electrode current collector. The negative electrode active material includes any one or more of carbon materials and metal-based materials. The carbon material is graphite or the like. The metal-based material is a material containing one or more of metal elements and metalloid elements capable of forming an alloy with lithium as constituent elements, and specifically includes silicon, tin, and the like. It is a material. The metal-based material may be a simple substance, an alloy, a compound, or a mixture of two or more thereof. The negative electrode active material layer may further contain a negative electrode binder, a negative electrode conductive agent, and the like.
 負極タブは、正極タブと同様に、負極集電体と同じ金属材料または異なる金属材料を含み、負極集電体の長手形状の延在方向の端部に設けられる。負極タブは、一端を負極集電体と接合され、他端を容器部材11と接合されることで、負極集電体から電荷を取り出すことができる。 Like the positive electrode tab, the negative electrode tab contains the same metal material or a different metal material as the negative electrode current collector, and is provided at the end of the longitudinal shape of the negative electrode current collector in the extending direction. One end of the negative electrode tab is joined to the negative electrode current collector, and the other end is joined to the container member 11, so that electric charges can be taken out from the negative electrode current collector.
 セパレータは、正極と負極との間に介在する絶縁性の多孔質膜である。セパレータは、正極と負極との短絡を防止しつつ、リチウムを通過させることができる。セパレータは、ポリエチレンなどの高分子材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The separator is an insulating porous film interposed between the positive electrode and the negative electrode. The separator can allow lithium to pass through while preventing a short circuit between the positive electrode and the negative electrode. The separator may contain any one or more of the polymer materials such as polyethylene.
 電解液は、正極、負極およびセパレータの各々に含浸されており、溶媒および電解質塩を含む。溶媒は、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などの非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含む。電解質塩は、リチウム塩などの軽金属塩のうちのいずれか1種類または2種類以上を含む。 The electrolytic solution is impregnated in each of the positive electrode, the negative electrode and the separator, and contains a solvent and an electrolyte salt. The solvent includes any one or more of non-aqueous solvents (organic solvents) such as carbonic acid ester-based compounds, carboxylic acid ester-based compounds and lactone-based compounds. The electrolyte salt contains any one or more of light metal salts such as lithium salts.
[電極の詳細構成]
 続いて、図2及び図3を参照して、本実施形態に係る二次電池における電極の構成について、より詳細に説明する。図2は、本実施形態に係る二次電池が備える電極の構成を示す模式的な平面図である。図3は、比較例に係る二次電池が備える電極の構成を示す模式的な平面図である。
[Detailed configuration of electrodes]
Subsequently, with reference to FIGS. 2 and 3, the configuration of the electrodes in the secondary battery according to the present embodiment will be described in more detail. FIG. 2 is a schematic plan view showing the configuration of electrodes included in the secondary battery according to the present embodiment. FIG. 3 is a schematic plan view showing the configuration of the electrodes included in the secondary battery according to the comparative example.
 本実施形態では、正極及び負極の両方が以下で説明する構成を備えてもよく、正極又は負極の一方のみが以下で説明する構成を備えてもよい。ただし、本技術による二次電池の高容量化の効果をより効果的に得るためには、正極及び負極の両方が以下で説明する構成を備えていることが好ましい。 In the present embodiment, both the positive electrode and the negative electrode may have the configuration described below, or only one of the positive electrode or the negative electrode may have the configuration described below. However, in order to more effectively obtain the effect of increasing the capacity of the secondary battery by the present technology, it is preferable that both the positive electrode and the negative electrode have the configurations described below.
 図2に示すように、二次電池が備える電極20は、集電体21と、集電体21の両面又は片面に形成された活物質層22と、集電体21の一端E1側の端部に接合された集電タブ23とを備える。なお、電極20は、一端E1側が巻内側となるように巻回された上で、図2に正対して上方向に蓋部材12が存在し、図2に正対して下方向に容器部材11が存在するように二次電池の内部に収容される。 As shown in FIG. 2, the electrodes 20 included in the secondary battery include a current collector 21, an active material layer 22 formed on both sides or one side of the current collector 21, and one end of the current collector 21 on the E1 side. It is provided with a current collecting tab 23 joined to the portion. The electrode 20 is wound so that one end E1 side is inside the winding, and the lid member 12 is present in the upward direction facing FIG. 2, and the container member 11 is in the downward direction facing FIG. Is housed inside the secondary battery so that it is present.
 集電体21は、上述した金属材料を含む金属箔である。集電体21は、一方向に延在する長手形状を有し、延在方向の一端E1の角部に略矩形形状の切欠部21Dを有する。集電体21の一端E1側は、巻回型電極体である電池素子10の巻内側であり、集電体21の一端E1側には、蓋部材12の略中央に設けられたタブ端子13と集電体21との短絡を避けるために切欠部21Dが設けられる。切欠部21Dが設けられることにより、電池素子10の巻内側の中央部を凹に窪ませることができるため、電池素子10は、二次電池の内部空間に凸となるタブ端子13に対するクリアランスを確保することができる。 The current collector 21 is a metal foil containing the above-mentioned metal material. The current collector 21 has a longitudinal shape extending in one direction, and has a notch 21D having a substantially rectangular shape at one corner of E1 in the extending direction. One end E1 side of the current collector 21 is the winding inside of the battery element 10 which is a winding type electrode body, and one end E1 side of the current collector 21 is a tab terminal 13 provided in the substantially center of the lid member 12. A notch 21D is provided in order to avoid a short circuit between the current collector 21 and the current collector 21. By providing the notch 21D, the central portion inside the winding of the battery element 10 can be recessed, so that the battery element 10 secures a clearance for the tab terminal 13 which is convex in the internal space of the secondary battery. can do.
 活物質層22は、上述した正極活物質又は負極活物質を含む層であり、集電体21の一端E1側に設けられた露出領域21Cを除く集電体21の片面又は両面に形成される。露出領域21Cは、溶接法によって集電タブ23を集電体21に接合するために設けられる。集電タブ23は、露出領域21Cにて集電体21に直に溶接されることで、集電体21と集電タブ23との接合強度をより高めることができる。 The active material layer 22 is a layer containing the above-mentioned positive electrode active material or negative electrode active material, and is formed on one side or both sides of the current collector 21 excluding the exposed region 21C provided on one end E1 side of the current collector 21. .. The exposed region 21C is provided for joining the current collector tab 23 to the current collector 21 by a welding method. The current collector tab 23 is directly welded to the current collector 21 in the exposed region 21C, so that the joint strength between the current collector 21 and the current collector tab 23 can be further increased.
 集電タブ23は、上述したように集電体21と同じ金属材料又は異なる金属材料を含む。集電タブ23の一端は、集電体21の一端E1側の端部の露出領域21Cに接合され、集電タブ23の他端は、タブ端子13又は容器部材11と接続される。 The current collector tab 23 contains the same metal material or a different metal material as the current collector 21 as described above. One end of the current collector tab 23 is joined to the exposed region 21C at one end of the current collector 21 on the E1 side, and the other end of the current collector tab 23 is connected to the tab terminal 13 or the container member 11.
 ここで、長手形状である集電体21のうち、切欠部21Dによって集電体21の短手方向の長さが短くなっている領域を切欠領域21Bとし、切欠部21Dによって集電体21の短手方向の長さが短くなっていない領域を主要領域21Aとする。本実施形態に係る二次電池では、活物質層22は、主要領域21Aに加えて、切欠領域21Bの露出領域21Cを除いた領域にも設けられる。このとき、露出領域21Cは、集電体21の一端E1から切欠部21Dが設けられた長さよりも短い範囲に設けられる。これによれば、本実施形態に係る二次電池は、集電体21の上に形成される活物質層22の面積をより大きくすることができるため、さらなる高容量化を実現することが可能である。 Here, of the current collector 21 having a longitudinal shape, the region where the length of the current collector 21 in the lateral direction is shortened by the notch 21D is defined as the notch region 21B, and the notch 21D makes the current collector 21 of the current collector 21. The region where the length in the lateral direction is not shortened is referred to as the main region 21A. In the secondary battery according to the present embodiment, the active material layer 22 is provided not only in the main region 21A but also in the region other than the exposed region 21C of the notch region 21B. At this time, the exposed region 21C is provided in a range shorter than the length provided with the notch 21D from one end E1 of the current collector 21. According to this, in the secondary battery according to the present embodiment, the area of the active material layer 22 formed on the current collector 21 can be made larger, so that the capacity can be further increased. Is.
 一方、比較例に係る二次電池が備える電極200では、図3に示すように、活物質層22は、集電体21の主要領域21Aのみに設けられる。比較例に係る二次電池では、切欠領域21Bの全域に活物質層22が形成されないため、活物質層22が形成されない領域を把握しやすく、集電体21の活物質層22が形成されない領域に集電タブ23をより容易に接合することができる。また、比較例に係る二次電池では、電極200を電池素子10として巻き回した際にタブ端子13の直下に存在する切欠領域21Bに活物質層22が設けられないため、活物質層22とタブ端子13との短絡の可能性をより低減することができる。しかしながら、比較例に係る二次電池では、切欠領域21Bの集電体21の上に活物質層22が形成されず、電極200に二次電池の容量に寄与しない領域が多いため、二次電池の容量を高容量化することが困難である。 On the other hand, in the electrode 200 included in the secondary battery according to the comparative example, as shown in FIG. 3, the active material layer 22 is provided only in the main region 21A of the current collector 21. In the secondary battery according to the comparative example, since the active material layer 22 is not formed in the entire notch region 21B, it is easy to grasp the region where the active material layer 22 is not formed, and the region where the active material layer 22 of the current collector 21 is not formed. The current collector tab 23 can be joined more easily. Further, in the secondary battery according to the comparative example, when the electrode 200 is wound as the battery element 10, the active material layer 22 is not provided in the notch region 21B existing directly under the tab terminal 13, so that the active material layer 22 and the secondary battery The possibility of a short circuit with the tab terminal 13 can be further reduced. However, in the secondary battery according to the comparative example, the active material layer 22 is not formed on the current collector 21 in the notch region 21B, and the electrode 200 has many regions that do not contribute to the capacity of the secondary battery. It is difficult to increase the capacity of the battery.
 本実施形態に係る二次電池では、集電体21の上に活物質層22が形成されない領域を切欠領域21Bよりも狭い範囲である露出領域21Cのみとすることができるため、集電体21の上に形成される活物質層22の面積をより大きくすることができる。したがって、本実施形態に係る二次電池は、より高容量化を実現することが可能である。 In the secondary battery according to the present embodiment, the region where the active material layer 22 is not formed on the current collector 21 can be limited to the exposed region 21C, which is a narrower region than the notch region 21B. Therefore, the current collector 21 can be used. The area of the active material layer 22 formed on the top can be increased. Therefore, the secondary battery according to the present embodiment can realize a higher capacity.
<1-2.動作>
 本実施形態に係る二次電池は、以下のように充放電動作を行うことができる。
<1-2. Operation>
The secondary battery according to this embodiment can perform charge / discharge operation as follows.
 充電時の二次電池では、正極からリチウムイオンが放出されると共に、電解液を介してリチウムイオンが負極に吸蔵される。一方、放電時の二次電池では、負極からリチウムイオンが放出されると共に、電解液を介してリチウムイオンが正極に吸蔵される。すなわち、二次電池では、電解液を介してリチウムイオンが正極及び負極の間を移動することで充放電を行うことができる。 In the secondary battery during charging, lithium ions are released from the positive electrode and lithium ions are stored in the negative electrode via the electrolytic solution. On the other hand, in the secondary battery at the time of discharge, lithium ions are released from the negative electrode and lithium ions are stored in the positive electrode via the electrolytic solution. That is, in the secondary battery, lithium ions can be charged and discharged by moving between the positive electrode and the negative electrode via the electrolytic solution.
<1-3.製造方法>
 次に、二次電池の製造方法について説明する。二次電池は、以下で説明する工程にて正極及び負極を作製した後、正極及び負極を含む各構成を組み立てることで製造される。
<1-3. Manufacturing method>
Next, a method for manufacturing the secondary battery will be described. The secondary battery is manufactured by manufacturing a positive electrode and a negative electrode in the process described below, and then assembling each configuration including the positive electrode and the negative electrode.
[正極の作製]
 まず、正極活物質と、必要に応じて結着材及び導電材とを混合することにより、正極合剤を形成する。次に、水又は有機溶剤に正極合剤を分散又は溶解させることにより、ペースト状の正極合剤スラリーを調製する。続いて、正極集電体の両面の所定の領域に正極合剤スラリーを塗布した後、乾燥させることにより、正極集電体の両面に正極活物質層が形成された正極を作製することができる。なお、正極活物質層は、ロールプレス機などを用いて圧縮成型されてもよい。圧縮成型は、加熱しながら行われてもよく、複数回繰り返されてもよい。
[Preparation of positive electrode]
First, a positive electrode mixture is formed by mixing a positive electrode active material with a binder and a conductive material, if necessary. Next, a paste-like positive electrode mixture slurry is prepared by dispersing or dissolving the positive electrode mixture in water or an organic solvent. Subsequently, a positive electrode mixture slurry is applied to predetermined regions on both sides of the positive electrode current collector and then dried to produce a positive electrode having positive electrode active material layers formed on both sides of the positive electrode current collector. .. The positive electrode active material layer may be compression-molded using a roll press machine or the like. The compression molding may be performed while heating, or may be repeated a plurality of times.
[負極の作製]
 上述した正極の作製方法と同様の方法により、負極を作製することができる。具体的には、まず、負極活物質と、必要に応じて結着材及び導電材とを混合することにより、負極合剤を形成する。次に、水又は有機溶剤に負極合剤を分散又は溶解させることにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体の両面の所定の領域に負極合剤スラリーを塗布した後、乾燥させることにより、負極集電体の両面に負極活物質層が形成された負極を作製することができる。なお、負極活物質層は、ロールプレス機などを用いて圧縮成型されてもよい。圧縮成型は、加熱しながら行われてもよく、複数回繰り返されてもよい。
[Manufacturing of negative electrode]
The negative electrode can be manufactured by the same method as the above-mentioned method for manufacturing the positive electrode. Specifically, first, the negative electrode active material is mixed with a binder and a conductive material, if necessary, to form a negative electrode mixture. Next, a paste-like negative electrode mixture slurry is prepared by dispersing or dissolving the negative electrode mixture in water or an organic solvent. Subsequently, a negative electrode mixture slurry is applied to predetermined regions on both sides of the negative electrode current collector and then dried to produce a negative electrode having negative electrode active material layers formed on both sides of the negative electrode current collector. .. The negative electrode active material layer may be compression-molded using a roll press machine or the like. The compression molding may be performed while heating, or may be repeated a plurality of times.
[二次電池の組み立て]
 まず、溶接法などを用いて、正極に正極タブを接続し、かつ負極に負極タブを接続する。次に、セパレータを介して正極及び負極を互いに対向させた後、正極、負極、及びセパレータを巻回することにより、巻回型の電極体を形成する。
[Assembly of secondary battery]
First, the positive electrode tab is connected to the positive electrode and the negative electrode tab is connected to the negative electrode by using a welding method or the like. Next, after the positive electrode and the negative electrode are opposed to each other via the separator, the positive electrode, the negative electrode, and the separator are wound to form a wound electrode body.
 続いて、容器部材11の内部に電極体を収容する。このとき、溶接法などを用いて、負極タブを容器部材11に接続する。次に、容器部材11の内部に電解液を注入することで、電極体に電解液を含浸させる。これにより、正極、負極、及びセパレータの各々に電解液が含侵し、電池素子10が形成される。 Subsequently, the electrode body is housed inside the container member 11. At this time, the negative electrode tab is connected to the container member 11 by using a welding method or the like. Next, the electrolytic solution is impregnated into the electrode body by injecting the electrolytic solution into the inside of the container member 11. As a result, the electrolytic solution impregnates into each of the positive electrode, the negative electrode, and the separator, and the battery element 10 is formed.
 その後、タブ端子13を取り付けた蓋部材12を容器部材11に嵌合させる。これにより、容器部材11及び蓋部材12にて形成される空間が封止される。このとき、溶接法などを用いて、正極タブをタブ端子13に接続する。以上の工程により、本実施形態に係る二次電池を製造することができる。 After that, the lid member 12 to which the tab terminal 13 is attached is fitted to the container member 11. As a result, the space formed by the container member 11 and the lid member 12 is sealed. At this time, the positive electrode tab is connected to the tab terminal 13 by using a welding method or the like. By the above steps, the secondary battery according to the present embodiment can be manufactured.
<1-4.作用及び効果>
 本実施形態に係る蓄電素子である二次電池では、タブ端子13とのクリアランスのために集電体21に切欠部21Dが形成され、切欠部21Dによって集電体21の短手方向の長さが短くなっている切欠領域21Bの一部に活物質層22が形成される。また、切欠領域21Bには、集電体21の一端E1の端部に活物質層22が形成されていない露出領域21Cが設けられ、露出領域21Cに集電タブ23が接合される。これによれば、本実施形態に係る二次電池は、集電体21の上に形成される活物質層22の面積をより大きくすることができるため、二次電池の内部空間の利用効率を向上させ、さらなる高容量化を実現することが可能である。
<1-4. Actions and effects>
In the secondary battery which is the power storage element according to the present embodiment, the notch 21D is formed in the current collector 21 for the clearance with the tab terminal 13, and the notch 21D forms the length of the current collector 21 in the lateral direction. The active material layer 22 is formed in a part of the notch region 21B in which is shortened. Further, the cutout region 21B is provided with an exposed region 21C in which the active material layer 22 is not formed at one end E1 of the current collector 21, and the current collector tab 23 is joined to the exposed region 21C. According to this, in the secondary battery according to the present embodiment, the area of the active material layer 22 formed on the current collector 21 can be made larger, so that the utilization efficiency of the internal space of the secondary battery can be improved. It is possible to improve and realize a higher capacity.
[効果の見積もり]
 次に、図4を参照して、本実施形態に係る二次電池における電極20の活物質層22の面積増加効果の見積もり例について説明する。図4は、本実施形態に係る二次電池における電極20の各部の寸法を説明する模式的な平面図である。
[Estimation of effect]
Next, with reference to FIG. 4, an example of estimating the area increasing effect of the active material layer 22 of the electrode 20 in the secondary battery according to the present embodiment will be described. FIG. 4 is a schematic plan view illustrating the dimensions of each part of the electrode 20 in the secondary battery according to the present embodiment.
 図4に示すように、電極20において、集電体21の短手方向の長さ(幅)をWeとし、切欠部21Dの短手方向の長さ(幅)をWdとする。また、切欠部21Dが設けられていない集電体21の領域(すなわち、主要領域21A)の長手方向の長さをLeとし、切欠領域21Bのうち露出領域21Cを除いた領域(すなわち、切欠領域21Bのうち活物質層22が形成されている領域)の長手方向の長さをLdとする。これによれば、主要領域21Aに形成された活物質層22の面積Seは、WeとLeとの積として表すことができる。また、切欠領域21Bに形成された活物質層22の面積Sdは、(We-Wd)とLdとの積として表すことができる。 As shown in FIG. 4, in the electrode 20, the length (width) of the current collector 21 in the lateral direction is We, and the length (width) of the notch 21D in the lateral direction is Wd. Further, the length in the longitudinal direction of the region (that is, the main region 21A) of the current collector 21 in which the notch portion 21D is not provided is set to Le, and the region of the notch region 21B excluding the exposed region 21C (that is, the notch region). The length in the longitudinal direction of 21B (the region where the active material layer 22 is formed) is defined as Ld. According to this, the area Se of the active material layer 22 formed in the main region 21A can be expressed as the product of We and Le. Further, the area Sd of the active material layer 22 formed in the notch region 21B can be expressed as the product of (We—Wd) and Ld.
 ここで、1654サイズの二次電池を基準として、切欠部21Dが設けられていない集電体21の領域(すなわち、主要領域21A)の長手方向の長さを変化させた場合の活物質層22の面積の見積もりを以下の表1に示す。なお、1654サイズの二次電池におけるタブ端子13の内径は、2.7mmであり、高さは0.15mmである。 Here, the active material layer 22 when the length in the longitudinal direction of the region (that is, the main region 21A) of the current collector 21 in which the notch 21D is not provided is changed with reference to the 1654 size secondary battery. The estimated area of is shown in Table 1 below. The inner diameter of the tab terminal 13 in the 1654 size secondary battery is 2.7 mm, and the height is 0.15 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果によれば、主要領域21Aの長さ(すなわち、電極20の長さ)が小さくなるほど、本技術による活物質層22の面積増加効果が大きくなることがわかる。また、タブ端子13と電極20との短絡の安全率を1.5倍に見積もった場合でも、本技術による活物質層22の面積の増加割合を2%以上とすることが可能である。 According to the results shown in Table 1, it can be seen that the smaller the length of the main region 21A (that is, the length of the electrode 20), the greater the effect of increasing the area of the active material layer 22 by this technique. Further, even when the safety factor of the short circuit between the tab terminal 13 and the electrode 20 is estimated to be 1.5 times, the increase rate of the area of the active material layer 22 by the present technique can be set to 2% or more.
 次に、1654サイズの二次電池を基準として、二次電池の高さを変化させた場合(すなわち、集電体21の幅を変化させた場合)の活物質層22の面積の見積もりを以下の表2に示す。なお、1654サイズの二次電池におけるタブ端子13の内径は、2.7mmであり、高さは0.15mmである。 Next, the area of the active material layer 22 when the height of the secondary battery is changed (that is, when the width of the current collector 21 is changed) is estimated below with reference to the 1654 size secondary battery. It is shown in Table 2 of. The inner diameter of the tab terminal 13 in the 1654 size secondary battery is 2.7 mm, and the height is 0.15 mm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果によれば、集電体21の幅の変化に関わらず、本技術による活物質層22の面積増加効果が得られることがわかる。 According to the results shown in Table 2, it can be seen that the effect of increasing the area of the active material layer 22 by this technique can be obtained regardless of the change in the width of the current collector 21.
 続いて、1654サイズの二次電池を基準として、切欠部21Dが設けられていない集電体21の領域(すなわち、主要領域21A)の長手方向の長さ、及び集電体21の幅の両方をそれぞれ変化させた場合の活物質層22の面積の見積もりを以下の表3に示す。なお、1654サイズの二次電池におけるタブ端子13の内径は、2.7mmであり、高さは0.15mmである。 Subsequently, both the longitudinal length of the area of the current collector 21 without the notch 21D (ie, the main area 21A) and the width of the current collector 21 with respect to the 1654 size secondary battery. The estimation of the area of the active material layer 22 when each of the above is changed is shown in Table 3 below. The inner diameter of the tab terminal 13 in the 1654 size secondary battery is 2.7 mm, and the height is 0.15 mm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果によれば、主要領域21Aの長さ(すなわち、電極20の長さ)が小さくなるほど、本技術による活物質層22の面積増加効果が大きくなることがわかる。一方、表3に示す結果によれば、集電体21の幅の変化に関わらず、本技術による活物質層22の面積増加効果が得られることがわかる。 According to the results shown in Table 3, it can be seen that the smaller the length of the main region 21A (that is, the length of the electrode 20), the greater the effect of increasing the area of the active material layer 22 by this technique. On the other hand, according to the results shown in Table 3, it can be seen that the effect of increasing the area of the active material layer 22 by the present technique can be obtained regardless of the change in the width of the current collector 21.
 続いて、1654サイズの二次電池を基準として、切欠領域21Bのうち露出領域21Cを除いた領域(すなわち、切欠領域21Bのうち活物質層22が形成されている領域)の長手方向の長さを変化させた場合の活物質層22の面積の見積もりを以下の表4に示す。なお、1654サイズの二次電池におけるタブ端子13の内径は、2.7mmであり、高さは0.15mmである。 Subsequently, with reference to the 1654 size secondary battery, the length in the longitudinal direction of the region of the notch region 21B excluding the exposed region 21C (that is, the region of the notch region 21B where the active material layer 22 is formed). The estimation of the area of the active material layer 22 when the above is changed is shown in Table 4 below. The inner diameter of the tab terminal 13 in the 1654 size secondary battery is 2.7 mm, and the height is 0.15 mm.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果によれば、切欠領域21Bのうち露出領域21Cを除いた領域の長さが大きくなるほど、本技術による活物質層22の面積増加効果が大きくなることがわかる。 According to the results shown in Table 4, it can be seen that the larger the length of the notched region 21B excluding the exposed region 21C, the greater the effect of increasing the area of the active material layer 22 by this technique.
<2.蓄電素子の用途>
 ここでは、蓄電素子の一例である二次電池の用途に関して説明する。二次電池の用途(適用例)は、特に限定されない。電源として用いられる二次電池は、電子機器および電動車両などの主電源として用いられてもよく、補助電源として用いられてもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源であり、補助電源は、主電源の代わりに用いられる電源、または主電源から切り替えられる電源である。
<2. Applications of power storage elements>
Here, an application of a secondary battery, which is an example of a power storage element, will be described. The application (application example) of the secondary battery is not particularly limited. The secondary battery used as a power source may be used as a main power source for electronic devices and electric vehicles, or may be used as an auxiliary power source. The main power source is a power source that is preferentially used regardless of the presence or absence of another power source, and the auxiliary power source is a power source that is used in place of the main power source or a power source that can be switched from the main power source.
 二次電池の用途の具体例は、ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、ヘッドホンステレオ、携帯用ラジオおよび携帯用情報端末などの電子機器、バックアップ電源およびメモリーカードなどの記憶用装置、電動ドリルおよび電動鋸などの電動工具、電子機器などに搭載される電池パック、ペースメーカおよび補聴器などの医療用電子機器、電気自動車(ハイブリッド自動車を含む。)などの電動車両、ならびに非常時などに備えて電力を蓄積しておく家庭用または産業用のバッテリシステムなどの電力貯蔵システムである。これらの用途では、1個の二次電池が用いられてもよいし、複数個の二次電池が用いられてもよい。 Specific examples of applications for secondary batteries include video cameras, digital still cameras, mobile phones, laptop computers, headphone stereos, electronic devices such as portable radios and portable information terminals, and storage devices such as backup power supplies and memory cards. , Electric tools such as electric drills and saws, battery packs mounted on electronic devices, medical electronic devices such as pacemakers and hearing aids, electric vehicles such as electric vehicles (including hybrid vehicles), and in emergencies. It is a power storage system such as a household or industrial battery system that stores power in preparation for it. In these applications, one secondary battery may be used, or a plurality of secondary batteries may be used.
 電池パックは、単電池を用いて構成されてもよく、組電池を用いて構成されてもよい。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、二次電池以外の駆動源を併せて備えたハイブリッド自動車であってもよい。家庭用の電力貯蔵システムは、電力貯蔵源である二次電池に蓄積された電力を利用して家庭用の電気製品などを稼働させることが可能である。 The battery pack may be configured by using a single battery or may be configured by using an assembled battery. The electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be a hybrid vehicle that also includes a driving source other than the secondary battery. The household electric power storage system can operate household electric products and the like by using the electric power stored in the secondary battery which is the electric power storage source.
 ここで、二次電池の適用例の一例に関して具体的に説明する。以下で説明する適用例の構成は、あくまで一例であるため、適宜、変更可能である。 Here, an example of application of the secondary battery will be specifically described. The configuration of the application example described below is just an example, and can be changed as appropriate.
 図5は、電池パックのブロック構成を示す。ここで説明する電池パックは、1個の二次電池を用いた電池パック(いわゆるソフトパック)であり、スマートフォンに代表される電子機器などに搭載される。 FIG. 5 shows the block configuration of the battery pack. The battery pack described here is a battery pack (so-called soft pack) using one secondary battery, and is mounted on an electronic device represented by a smartphone.
 電池パックは、図5に示したように、電源410と、回路基板420とを備える。回路基板420は、電源410に接続されていると共に、正極端子210、負極端子310および温度検出端子430を含む。 As shown in FIG. 5, the battery pack includes a power supply 410 and a circuit board 420. The circuit board 420 is connected to the power supply 410 and includes a positive electrode terminal 210, a negative electrode terminal 310, and a temperature detection terminal 430.
 電源410は、1個の二次電池を含む。二次電池では、正極リードが正極端子210に接続されていると共に、負極リードが負極端子310に接続されている。電源410は、正極端子210および負極端子310を介して外部と接続可能であり、正極端子210および負極端子310を介して充放電可能である。回路基板420は、制御部440と、スイッチ450と、PTC素子460と、温度検出部470とを含む。ただし、PTC素子460は省略されてもよい。 The power supply 410 includes one secondary battery. In the secondary battery, the positive electrode lead is connected to the positive electrode terminal 210, and the negative electrode lead is connected to the negative electrode terminal 310. The power supply 410 can be connected to the outside via the positive electrode terminal 210 and the negative electrode terminal 310, and can be charged and discharged via the positive electrode terminal 210 and the negative electrode terminal 310. The circuit board 420 includes a control unit 440, a switch 450, a PTC element 460, and a temperature detection unit 470. However, the PTC element 460 may be omitted.
 制御部440は、中央演算処理装置(CPU:Central Processing Unit)およびメモリなどを含み、電池パック全体の動作を制御する。制御部440は、必要に応じて電源410の使用状態の検出および制御を行う。 The control unit 440 includes a central processing unit (CPU: Central Processing Unit), a memory, and the like, and controls the operation of the entire battery pack. The control unit 440 detects and controls the usage state of the power supply 410 as needed.
 なお、制御部440は、電源410(二次電池)の電圧が過充電検出電圧または過放電検出電圧に到達した場合、スイッチ450を切断することにより、電源410の電流経路に充電電流が流れないようにすることができる。過充電検出電圧および過放電検出電圧は、特に限定されない。一例を挙げると、過充電検出電圧は、4.2V±0.05Vであり、過放電検出電圧は、2.4V±0.1Vである。 When the voltage of the power supply 410 (secondary battery) reaches the overcharge detection voltage or the overdischarge detection voltage, the control unit 440 cuts off the switch 450 so that the charging current does not flow in the current path of the power supply 410. Can be done. The overcharge detection voltage and the overdischarge detection voltage are not particularly limited. As an example, the overcharge detection voltage is 4.2V ± 0.05V, and the overdischarge detection voltage is 2.4V ± 0.1V.
 スイッチ450は、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含み、制御部440の指示に応じて電源410と外部機器との接続の有無を切り換える。スイッチ450は、金属-酸化物-半導体を用いた電界効果トランジスタ(MOSFET:Metal-Oxide-Semiconductor Field-Effect Transistor)などを含む。充放電電流は、スイッチ450のON抵抗に基づいて検出される。 The switch 450 includes a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like, and switches whether or not the power supply 410 is connected to an external device according to an instruction from the control unit 440. The switch 450 includes a metal-oxide-semiconductor field-effect transistor (MOSFET: Metal-Oxide-Semiconductor Dutor Field-Effective Transistor) and the like. The charge / discharge current is detected based on the ON resistance of the switch 450.
 温度検出部470は、サーミスタなどの温度検出素子を含み、温度検出端子430を用いて電源410の温度を測定すると共に、温度の測定結果を制御部440に出力する。温度検出部470により測定される温度の測定結果は、異常発熱時に制御部440が電源410の充放電制御を行う場合、および残容量の算出時に制御部440が電源410の残容量の補正処理を行う場合などに用いられる。 The temperature detection unit 470 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 410 using the temperature detection terminal 430, and outputs the temperature measurement result to the control unit 440. The temperature measurement result measured by the temperature detection unit 470 is that the control unit 440 performs charge / discharge control of the power supply 410 when abnormal heat generation occurs, and the control unit 440 corrects the remaining capacity of the power supply 410 when calculating the remaining capacity. It is used when doing so.
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。 Although the present technique has been described above with reference to one embodiment and examples, the configuration of the technique is not limited to the configuration described in one embodiment and examples, and thus can be variously modified.
 上記では、電極反応物質がリチウムである場合に関して説明したが、電極反応物質は、特に限定されない。具体的には、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよく、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。このほか、電極反応物質は、アルミニウムなどの他の軽金属でもよい。 In the above, the case where the electrode reactant is lithium has been described, but the electrode reactant is not particularly limited. Specifically, as described above, the electrode reactant may be another alkali metal such as sodium and potassium, or an alkaline earth metal such as beryllium, magnesium and calcium. In addition, the electrode reactant may be another light metal such as aluminum.
 また、上記実施形態では、セパレータは、多孔質膜であるとして説明したが、セパレータの構成は、特に限定されない。セパレータは、高分子化合物層を含む積層膜であってもよい。 Further, in the above embodiment, the separator is described as being a porous membrane, but the configuration of the separator is not particularly limited. The separator may be a laminated film containing a polymer compound layer.
 具体的には、セパレータは、上記した多孔質膜である基材層と、基材層の片面または両面に設けられた高分子化合物層とを含んでもよい。高分子化合物層は、物理的強度に優れていると共に、電気化学的に安定なポリフッ化ビニリデンなどの高分子化合物を含む。これによれば、セパレータは、正極および負極のそれぞれに対する密着性を向上させることができるため、電池素子10の内部での位置ずれを抑制することができる。したがって、二次電池などの蓄電素子は、電解液の分解反応などが発生した場合でも、膨れの発生を抑制することができる。 Specifically, the separator may include a base material layer which is the above-mentioned porous film and a polymer compound layer provided on one side or both sides of the base material layer. The polymer compound layer contains a polymer compound such as polyvinylidene fluoride, which has excellent physical strength and is electrochemically stable. According to this, since the separator can improve the adhesion to each of the positive electrode and the negative electrode, it is possible to suppress the positional deviation inside the battery element 10. Therefore, a power storage element such as a secondary battery can suppress the occurrence of swelling even when a decomposition reaction of the electrolytic solution occurs.
 なお、基材層および高分子化合物層のうちの一方または双方は、複数の粒子を含んでいてもよい。複数の粒子の種類は、無機粒子および樹脂粒子などの粒子のうちのいずれか1種類または2種類以上であってもよい。これによれば、二次電池などの蓄電素子は、発熱時に複数の粒子にて放熱することができるため、耐熱性および安全性を向上させることができる。無機粒子は、特に限定されないが、酸化アルミニウム(アルミナ)、窒化アルミニウム、ベーマイト、酸化ケイ素(シリカ)、酸化チタン(チタニア)、酸化マグネシウム(マグネシア)および酸化ジルコニウム(ジルコニア)などの粒子である。 Note that one or both of the base material layer and the polymer compound layer may contain a plurality of particles. The plurality of types of particles may be any one or more than one of particles such as inorganic particles and resin particles. According to this, since the power storage element such as a secondary battery can dissipate heat with a plurality of particles at the time of heat generation, heat resistance and safety can be improved. The inorganic particles are not particularly limited, but are particles such as aluminum oxide (alumina), aluminum nitride, boehmite, silicon oxide (silica), titanium oxide (titania), magnesium oxide (magnesia) and zirconium oxide (zirconia).
 さらに、上記実施形態では、電解質は、液状の電解液であるとして説明したが、電解質は、液状に限定されない。電解質は、ゲル状の電解質層であってもよい。 Further, in the above embodiment, the electrolyte is described as a liquid electrolyte, but the electrolyte is not limited to the liquid. The electrolyte may be a gel-like electrolyte layer.
 ゲル状の電解質層を用いた電池素子10では、セパレータおよび電解質層を介して正極および負極が互いに積層されたのち、正極、負極、セパレータおよび電解質層が巻回されている。これによれば、電解質層は、正極とセパレータとの間に介在していると共に、負極とセパレータとの間に介在する。電解質層は、電解液と共に、ポリフッ化ビニリデンなどの高分子化合物を含んでおり、高分子化合物により電解液を保持することができる。電解液の構成は、上記した通りである。このような電解質層でも、正極と負極との間においてリチウムを移動させることができる。 In the battery element 10 using the gel-like electrolyte layer, the positive electrode and the negative electrode are laminated with each other via the separator and the electrolyte layer, and then the positive electrode, the negative electrode, the separator and the electrolyte layer are wound. According to this, the electrolyte layer is interposed between the positive electrode and the separator and is interposed between the negative electrode and the separator. The electrolyte layer contains a polymer compound such as polyvinylidene fluoride together with the electrolytic solution, and the electrolytic solution can be held by the polymer compound. The structure of the electrolytic solution is as described above. Even in such an electrolyte layer, lithium can be transferred between the positive electrode and the negative electrode.
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。 Since the effects described in the present specification are merely examples, the effects of the present technology are not limited to the effects described in the present specification. Therefore, other effects may be obtained with respect to this technique.

Claims (7)

  1.  第1電極、第2電極およびセパレータを含む電池素子を備え、
     前記電池素子において、前記第1電極および前記第2電極は前記セパレータを介して巻回されており、
     前記第1電極または前記第2電極の少なくともいずれかは、
     一方向に延在し、一端の角部に略矩形形状の切欠部を有する集電体と、
     前記一端から前記一方向における前記切欠部の長さよりも短い範囲に設けられた露出領域と、
     前記露出領域を除いた領域の前記集電体に形成された活物質層と、
     前記露出領域の前記集電体に設けられた集電タブと
     を含む、蓄電素子。
    A battery element including a first electrode, a second electrode and a separator is provided.
    In the battery element, the first electrode and the second electrode are wound around the separator.
    At least one of the first electrode or the second electrode
    A current collector that extends in one direction and has a substantially rectangular notch at one end.
    An exposed area provided in a range shorter than the length of the notch in the one direction from the one end.
    The active material layer formed on the current collector in the region excluding the exposed region,
    A power storage element including a current collector tab provided on the current collector in the exposed area.
  2.  前記一端は、前記電池素子の巻内側の一端である、
     請求項1に記載の蓄電素子。
    The one end is one end of the winding inside of the battery element.
    The power storage element according to claim 1.
  3.  さらに、
     一面に開口部を有し、前記電池素子を収納する柱状形状の器状部材と、
     前記開口部を覆って前記器状部材に取り付けられた蓋状部材と
     を備える、
     請求項1または請求項2に記載の蓄電素子。
    moreover,
    A columnar container-shaped member having an opening on one surface and accommodating the battery element,
    A lid-like member that covers the opening and is attached to the vessel-like member.
    The power storage element according to claim 1 or 2.
  4.  前記第1電極および前記第2電極は、それぞれ前記集電体と、前記露出領域と、前記活物質層と、前記集電タブとを含む、
     請求項3に記載の蓄電素子。
    The first electrode and the second electrode include the current collector, the exposed region, the active material layer, and the current collector tab, respectively.
    The power storage element according to claim 3.
  5.  前記第1電極および前記第2電極のいずれか一方の前記集電タブは、前記蓋状部材の中央に設けられたタブ端子に接続される、
     請求項4に記載の蓄電素子。
    The current collecting tab of either the first electrode or the second electrode is connected to a tab terminal provided in the center of the lid-shaped member.
    The power storage element according to claim 4.
  6.  前記第1電極および前記第2電極のいずれか他方の前記集電タブは、前記器状部材に接続される、
     請求項5に記載の蓄電素子。
    The current collecting tab of any one of the first electrode and the second electrode is connected to the vessel-shaped member.
    The power storage element according to claim 5.
  7.  リチウムイオン二次電池である、
     請求項1ないし請求項6のいずれか1項に記載の蓄電素子。
    Lithium-ion secondary battery,
    The power storage element according to any one of claims 1 to 6.
PCT/JP2021/044939 2021-01-06 2021-12-07 Power storage element WO2022149393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021001084 2021-01-06
JP2021-001084 2021-01-06

Publications (1)

Publication Number Publication Date
WO2022149393A1 true WO2022149393A1 (en) 2022-07-14

Family

ID=82357368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044939 WO2022149393A1 (en) 2021-01-06 2021-12-07 Power storage element

Country Status (1)

Country Link
WO (1) WO2022149393A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348754A (en) * 1999-06-02 2000-12-15 Toyota Central Res & Dev Lab Inc Rolled electrode type battery
JP2006278142A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Square battery with spiral electrode
JP2008034353A (en) * 2006-06-27 2008-02-14 Sony Corp Secondary battery
JP2008251256A (en) * 2007-03-29 2008-10-16 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
JP2011124091A (en) * 2009-12-10 2011-06-23 Sony Corp Battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348754A (en) * 1999-06-02 2000-12-15 Toyota Central Res & Dev Lab Inc Rolled electrode type battery
JP2006278142A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Square battery with spiral electrode
JP2008034353A (en) * 2006-06-27 2008-02-14 Sony Corp Secondary battery
JP2008251256A (en) * 2007-03-29 2008-10-16 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
JP2011124091A (en) * 2009-12-10 2011-06-23 Sony Corp Battery

Similar Documents

Publication Publication Date Title
US20220181725A1 (en) Secondary battery
EP2302717A1 (en) Electrode assembly for a rechargeable battery
US9209493B2 (en) Battery pack
KR20120132341A (en) Secondary battery
JP2019053862A (en) Laminated electrode body and power storage element
JP5989405B2 (en) Power supply
WO2022085318A1 (en) Secondary battery
US20240030570A1 (en) Secondary battery
JP2006080066A (en) Lithium-ion secondary battery
JP2003007346A (en) Secondary lithium battery and manufacturing method of the same
US20150079462A1 (en) Battery cell
US20220231384A1 (en) Secondary battery
JP2018056017A (en) Power storage element
WO2022149393A1 (en) Power storage element
KR101431726B1 (en) Electrode Assembly of Improved Safety And Secondary Battery with the Same
WO2022070565A1 (en) Secondary battery
WO2021261029A1 (en) Secondary battery
WO2021235154A1 (en) Secondary battery
KR101138482B1 (en) lithium ion capacitor
JP7351420B2 (en) Secondary batteries and secondary battery manufacturing methods
KR20070000799A (en) Electrod assembly and li ion secondary battery
WO2023243554A1 (en) Secondary battery electrode and secondary battery
CN212874708U (en) Secondary battery, battery module, battery pack, and device
JP7306576B2 (en) secondary battery
US20230299255A1 (en) Electrode for battery, manufacturing method thereof, and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP