JP2009137514A - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JP2009137514A
JP2009137514A JP2007317925A JP2007317925A JP2009137514A JP 2009137514 A JP2009137514 A JP 2009137514A JP 2007317925 A JP2007317925 A JP 2007317925A JP 2007317925 A JP2007317925 A JP 2007317925A JP 2009137514 A JP2009137514 A JP 2009137514A
Authority
JP
Japan
Prior art keywords
neutral position
value
position signal
torque
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007317925A
Other languages
English (en)
Inventor
Hideyuki Nagai
秀幸 永井
Hideyuki Yamaguchi
秀幸 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007317925A priority Critical patent/JP2009137514A/ja
Publication of JP2009137514A publication Critical patent/JP2009137514A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】経年変化によるトルクセンサの中点位置のズレを、出荷後であっても自動的に補正することで操舵フィーリングの悪化を抑制し、市場クレームに至る可能性を低減する。
【解決手段】トルクセンサに予め設定された設定中立位置信号を記憶保持する記憶手段と、トルクセンサで検出される現在中立位置信号のオフセット補正値を演算する補正値演算値手段と、現在中立位置信号の補正の可否を判定する補正可否判定手段とを備え、補正可否判定手段の判定に基づいて現在中立位置信号をオフセット補正値で補正する。
【選択図】図2

Description

本発明は、車両の操舵系にモータによる操舵補助力を付与するようにした電動パワーステアリング装置に関し、特に操舵トルクを検出するトルクセンサに劣化が生じた際に、トルクセンサからの操舵トルクを補正して操舵性能の低下を抑制する電動パワーステアリング装置に関する。
車両のステアリング装置をモータの回転力で補助負荷付勢する電動パワーステアリング装置は、モータの駆動力を減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に補助負荷付勢するようになっている。かかる従来の電動パワーステアリング装置は、アシストトルク(操舵補助力)を正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、電流指令値とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御のデュ−ティ比の調整で行っている。
ここで、電動パワーステアリング装置の一般的な構成を図8に示して説明すると、ハンドル1のコラム軸2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5を経て操向車輪のタイロッド6に連結されている。コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10が設けられており、ハンドル1の操舵力を補助するモータ20が、減速ギア3を介してコラム軸2に連結されている。パワーステアリング装置を制御するコントロールユニット30には、バッテリ14から電力が供給されると共に、イグニッションキー11を経てイグニッション信号Igが入力され、コントロールユニット30は、トルクセンサ10で検出された操舵トルクTtと車速センサ12で検出された車速Vとに基づいてアシスト指令の操舵補助指令値Iの演算を行い、演算された操舵補助指令値Iに基づいてモータ20に供給する電流を制御する。
コントロールユニット30は主としてCPU(MPUやMCUを含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと図9のようになる。
図9を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10で検出された操舵トルクTtは操舵補助指令値演算部32に入力され、車速センサ12で検出された車速Vも操舵補助指令値演算部32に入力される。操舵補助指令値演算部32は、入力された操舵トルクTt及び車速Vに基づいて、メモリ33に記憶されているアシストマップを参照してモータ20に供給する電流の制御目標値である操舵補助指令値Iを決定する。操舵補助指令値Iは減算部30Aに入力されると共に、応答速度を高めるためのフィードフォワード系の微分補償部34に入力され、減算部30Aの偏差(I−i)は比例演算部35に入力されると共に、フィードバック系の特性を改善するための積分演算部36に入力され、その比例出力は加算部30Bに入力される。微分補償部34及び積分補償部36の出力も加算部30Bに加算入力され、加算部30Bでの加算結果である電流制御値Eが、モータ駆動信号としてモータ駆動回路37に入力される。モータ駆動回路37にはバッテリ14から電力が供給され、モータ20のモータ電流値iはモータ電流検出部38で検出され、モータ電流値iは減算部30Aに入力されてフィードバックされる。
このような電動パワーステアリング装置では、製造工程において車両に搭載されたトルクセンサの中点位置の調整を行う。トルクセンサの中立位置にズレが生じている場合、ハンドルを操舵する際の左右の操舵フィーリングに誤差が発生し、運転者の操舵フィーリングを損なうため、ハンドルからの入力及び外部からの干渉を全く受けない状態で、トルクセンサから検出される中点位置信号と、電動パワーステアリング装置が中点位置と認識する中点位置信号とを完全に一致させるように設定する必要がある。
しかし、トルクセンサに供給される電力は、接触抵抗や回路抵抗等の影響によって電圧降下が生じて予定よりも下回ってしまう場合があり、そのため中立位置として出力される中立位置信号が予定より下回り、アシスト動作の誤作動や操舵フィーリングの悪化を招いてしまう問題があった。
かかる問題を解決する電動パワーステアリング装置として、例えば特開2001−304983号公報(特許文献1)に示される装置があり、特許文献1に示される電動パワーステアリング装置では、トルクセンサの組み付けに伴う外力の作用に起因する中点電位のズレや、電動パワーステアリング装置のコントローラから操舵力検出用トルクセンサに至る電気的な接続経路で生じる電圧降下に起因する中点電位のズレ等の外乱を確実に吸収して、実際に自動車が使用される状況と略同等の条件で操舵力検出用トルクセンサの中点電位を精密に調整するようにしている。即ち、操舵力検出用トルクセンサを自動車の操舵力伝達経路上に組み付けて電動パワーステアリング装置のコントローラと接続した後、ステアリング・ハンドルに作用する外力を取り除いた状態で、中点電位調整回路から出力されるトルク検出信号(操舵トルク)が電動パワーステアリング装置のコントローラが、中点電位として認識する電位となるように中点電位調整回路を調整するようにしている。
特開2001−304983号公報
しかしながら、特許文献1の装置では、中点電位調整回路から出力されるトルク検出信号が電動パワーステアリング装置のコントローラによって中点電位として認識される電位となるように、中点電位調整回路あるいは電動パワーステアリング装置のコントローラを精密に調整することができるが、出荷後の経年変化によって改めて補正が必要になった場合には、専用の補正装置や補正プログラムを起動する装置が必要になると共に、補正するための時間を意図的に用意しなければ補正することができない問題がある。また、出荷後のトルクセンサの中点位置を補正するには、運転者が違和感を感じて、車両を整備工場等に持込むまで実施することができない問題がある。
本発明は上述のような事情によりなされたものであり、本発明の目的は、経年変化によるトルクセンサの中点位置のズレを、出荷後であっても自動的に補正することで操舵フィーリングの悪化を抑制し、市場クレームに至る可能性を低減する、より信頼性の高い電動パワーステアリング装置を提供することにある。
本発明は、少なくともトルクセンサからの操舵トルクに基づいて演算された電流指令値により、操舵系にアシストトルクを付与する電動パワーステアリング装置に関し、本発明の上記目的は前記トルクセンサに予め設定された設定中立位置信号を記憶保持する記憶手段と、前記トルクセンサで検出される現在中立位置信号のオフセット補正値を演算する補正値演算値手段と、前記現在中立位置信号の補正の可否を判定する補正可否判定手段とを備え、前記補正可否判定手段の判定に基づいて前記現在中立位置信号を前記オフセット補正値で補正することにより、達成される。
また、本発明の上記目的は、前記補正値演算手段が、前記現在中立位置信号と前記設定中立位置信号との差に基づいて前記オフセット補正値を演算することにより、或いは前記現在中立位置信号を所定回数検出して前記記憶手段に記憶保持するハンドルトルク入力検出手段と、前記所定回数検出された前記現在中立位置信号の平均値である中立位置平均値を演算して前記記憶手段に記憶保持する残留トルク検出手段とをさらに備え、前記補正値演算手段が、前記記憶手段に記憶保持された前記中立位置平均値と前記設定中立位置信号との差に基づいて前記オフセット補正値を演算することにより、或いは前記補正可否判定手段が、前記オフセット補正値と閾値1及び2とを比較することで前記トルクセンサの前記現在中立位置信号の補正の可否を判定することにより、或いは前記ハンドルトルク入力検出手段が、イグニッションOFFの確定に応じて第1検査を開始し、前記現在中立位置信号が前記閾値2の範囲内であれば第2検査を開始し、前記所定回数検出される前記現在中立位置信号の最大値と最小値との差が閾値3の範囲内であれば前記所定回数の前記現在中立位置信号を検出して前記記憶手段に記憶保持すると共に、前記残留トルク検出手段が、前記第2検査の終了毎に前記記憶手段から前記所定回数の前記現在中立位置信号を読込み、前記中立位置平均値を演算することにより、或いは前記残留トルク検出手段が、前記中立位置平均値と前回の前記中立位置平均値との差を閾値4と比較すると共に、前記複数回の前記中立位置平均値からオフセット方向を想定して前記オフセット補正値による補正の可否を判定することにより、より効果的に達成される。
本発明の電動パワーステアリング装置によれば、トルクセンサの中点位置信号のズレを出荷後であっても自動的に補正することにより、操舵フィーリングの悪化を抑制し、市場クレームに至る可能性を低減することができる。また、本発明によれば、検出される現在中立位置信号のズレの大きさに応じて補正の可否を判定するので、より信頼性の高いオフセット補正を行うことができると共に、ハンドルからの入力や外部からの干渉の有無を確実に検出することができるので、精度良くオフセット補正値を演算することが可能になる。
本発明に係る電動パワーステアリング装置は、トルクセンサの現在の中立位置信号を検出し、検出される現在中立位置信号と予め設定された設定中立位置信号とに基づいてオフセット補正値を演算し、現在中立位置信号にオフセット補正値を加算して補正を行う。
また、オフセット補正値による補正は、検出される現在中立位置信号、或いは演算されるオフセット補正値の大きさを予め設定された上下限の閾値と比較判定することで必要以上の補正を行わないようにする。
さらに、オフセット補正値の演算及びオフセット補正値によるトルクセンサの中立位置補正は、ハンドルからの入力及び外部干渉の無い状態で実施されることが望ましいので、ハンドルトルク入力検出手段及び残留トルク検出手段を設けることにより、オフセット補正値の演算及び補正の精度及び信頼性を向上させることができる。
以下に本発明の実施の形態を、図面を参照して説明する。
図1は、本発明の原理を従来技術と対比して示す図であり、予め設定されている太線の理想の中立位置300から、検出されるトルクセンサの中立位置信号(CPU認識電圧)にズレが生じた場合の操舵状況の変化の様子を示している。
前述したような従来技術の例を左ブロック100に示し、本願発明の例を右ブロック200に示し、縦軸は、トルクセンサからの電圧レベルVをCPUが認識できる範囲の例として“0〜5.0V”で示している。実際の電圧は“0〜5.0V”の範囲で、中立位置300の電圧は“2.5V”であるが、以下の閾値Th1、Th2の関係では便宜的に中立位置300を“0V”とし、その上下を正負電圧で表記する。即ち、例えば閾値+Th1は実際は“+2.8V”であるが“+0.3V”、閾値−Th1は実際は+2.2Vであるが“−0.3V”のように表記する。
検出されるトルクセンサの中立位置信号は、製造工程或いは調整時等においてコントロールユニットに予め設定された設定中立位置300の線上にあることが理想であるが、車両の使用状況や環境等による経年変化によって、トルクセンサからの出力レベルに変化が発生した場合、設定中立位置300と実際に検出されるトルクセンサからの中立位置信号との間にズレが生じ、中立位置信号が設定中立位置300の線上から上下してズレる。このような中立位置信号のズレの大きさを、予め設定された正負の閾値Th1及び閾値Th2によって判定する。
閾値Th1及び閾値Th2は、設定中立位置300を基軸として上下対称に正負閾値Th1及び正負閾値Th2としてそれぞれ設定されており、例えばトルクセンサの中立位置信号にズレが生じて±閾値Th1の範囲を超えた場合、従来技術では操舵フィーリングが悪化する操舵フィーリングの悪化領域101及び101’になる。これに対し、本願発明ではトルクセンサからの中立位置信号にズレが生じて±閾値Th1の範囲を超えた場合には、中立位置信号にオフセット補正を行うオフセット補正領域201及び201’となり、正常な操舵フィーリングを提供することができる領域としている。さらに、中立位置信号にズレが生じて±閾値Th2の範囲を超えた場合には、従来技術及び本願発明共に、異常判定領域102、102’、202、202’となり、フェールセーフによってトルクセンサの中立位置信号の異常が確定される。
なお、CPUが認識できる電圧レベルVの例として“0〜5.0V”としたが、ノイズ等を考慮して“0V”や“5.0V”を除く範囲であっても良く、例えば“1.0〜4.0V”や“1.0〜5.0V”等の範囲でも良い。
このように、本発明では+閾値Th1〜+閾値Th2の範囲或いは−閾値Th1〜−閾値Th2の範囲のトルクセンサの中立位置信号のズレを自動的にオフセット補正し、これにより操舵フィーリングの悪化を抑制し、出荷後のクレームに至る可能性を低減する。また、トルクセンサの中立位置信号が±閾値Th2の範囲を超えるような場合には、オフセット補正を行わないで異常と判定する。
上述した原理に基づいて、本発明を実施する基本構成の例を図2に示して説明する。
イグニッションキーがOFFの状態において、トルクセンサ10によって検出された操舵トルクTtとしてのメイントルク信号Tm及びサブトルク信号Tsは現在の中立位置信号(現在中立位置信号)を示しており、検出されたメイントルク信号Tm及びサブトルク信号Tsはメイン・サブトルク異常判定手段43に入力され、メイントルク信号Tmは乗算手段41でゲインを上げるために所定値(例えば3倍)が乗算され、現在中立位置信号Tcとして補正値演算手段42及び加算手段47に入力される。
メイン・サブトルク異常判定手段43は、入力されたメイントルク信号Tm及びサブトルク信号Tsに基づいてトルクセンサ10の検出信号の異常を所定値と比較して検出する異常判定手段である。メイン・サブトルク異常判定手段43において所定値よりも小さく正常と判定されたメイントルク信号Tcは、切替手段46の接点c2に入力される。一方、現在中立位置信号Tcが入力された補正値演算手段42は、記憶手段44に記憶保持された設定中立位置信号Tccを読込み、現在中立位置信号Tcと設定中立位置信号Tccとの差であるオフセット補正値To(=Tc−Tcc)を演算する。演算されたオフセット補正値Toは閾値Th1及び閾値Th2を入力している補正可否判定手段45に入力されると共に、加算手段47に入力され、加算手段47において乗算手段41からの現在中立位置信号Tcと加算処理され、加算された補正中立位置信号Tco(=Tc+To)が切替手段46の接点c1に入力される。
また、補正可否判定手段45にはイグニッションキーのON/OFFを示すイグニッションキー信号Igが入力されており、補正可否判定手段45は補正値演算手段42から入力されたオフセット補正値Toに基づいて、その絶対値(|To|)と予め設定された閾値Th1及びTh2を比較判定すると共に、イグニッションキーがONされたときに、切替手段46の接点c1或いはc2を切替える切替信号S1を出力するようになっている。例えば、オフセット補正値の絶対値|To|が閾値Th1以上であり、かつ閾値Th2より小さければ、オフセット補正値Toによる補正を行うため、イグニッションキーがONされたときに切替手段46の接点をc1に切替える切替信号S1を出力する。また、オフセット補正値の絶対値|To|が閾値Th1より小さければ、正常な中立位置の範囲であるため、イグニッションキーがONされたときに切替信号S1を切替手段46に出力して接点をc2に切替えるようになっている。
切替手段46の出力Ttは操舵トルクとして操舵補助指令値の演算に用いられる。また、オフセット補正値の絶対値|To|が閾値Th2以上の場合には、トルクセンサ信号の異常(故障)のレベルが大きく、補正してアシストを継続するのは危険であるため、異常判定してフェールセーフによりアシスト制御を停止させる。
このような構成において、その動作例を図3のフローチャートを参照して説明する。
補正値演算手段42は、トルクセンサ10からのメイントルク信号Tmを乗算手段41で所定値を乗算された現在中立位置信号Tcを入力し、記憶手段44から予め記憶保持された設定中立位置信号Tccを読込んでオフセット補正値Toを演算する(ステップS10)。補正値演算手段42は、オフセット補正値Toを加算手段47に入力すると共に、補正可否判定手段45に入力する(ステップS11)。補正可否判定手段45は、入力されたオフセット補正値Toの絶対値(|To|)と閾値Th1とを比較し(ステップS12)、オフセット補正値の絶対値|To|が閾値Th1よりも小さい場合は、正常な中立位置であるため、次にイグニッションキーがONされたときに、補正可否判定手段45は切替信号S1を切替手段46に出力して接点c2に切替えて終了となる。これにより、メイントルク信号Tcが操舵トルクTtとして出力される。また、オフセット補正値の絶対値|To|が閾値Th1以上の場合、ステップS13に移行する。
ステップS13では、オフセット補正値の絶対値|To|と閾値Th2とを比較し、オフセット補正値の絶対値|To|が閾値Th2より小さい場合、補正可否判定手段45は、オフセット補正値Toによって現在中立位置信号Tcをオフセット補正するため、次にイグニッションキーがONされたときに切替信号S1を切替手段46に出力して接点c1に切替え、加算手段47でオフセット補正された補正中立位置信号Tcoが操舵トルクTtとして出力される(ステップS14)。一方、オフセット補正値の絶対値|To|が閾値Th2以上の場合には異常のレベルが大きく、オフセット補正してアシストを継続するのは危険であるため異常と判定する(ステップS15)。異常判定となった場合には、補正可否判定手段45は、フェールセーフ機能でアシスト制御を停止する。また、メイントルク・サブトルク異常判定手段43において、メイントルクTm若しくはサブトルク信号Tsが所定値を超えた場合も異常と判定され、異常判定された場合にはフェールセーフ機能でアシスト制御を停止する。
次に、さらにオフセット補正値の絶対値|To|の精度を向上させるため、現在中立位置信号Tcを複数回検出することで、ハンドル操舵による入力トルク及び車両の停車状況による残留トルク等を考慮し、より確実なオフセット補正を実施する例を図4及び図5を参照して説明する。
先ず、ハンドル操舵による入力トルクの有無を検出し、安定した状態において現在中立位置信号Tcを検出する例を図4のタイムチャートに示して説明する。
運転者によってイグニッションキーがOFFにされると、所定時間経過後にイグニッションOFFを確定し(時点t1)、時点t6までの第1検査(検査時間Ct1=t6−t1)を開始する。第1検査では、上述した閾値Th2に基づいて現在中立位置信号Tcと比較し、現在中立位置信号Tc変化量が±閾値Th2(一点鎖線)の範囲内であれば、第2検査を開始する。本例では、時点t3以降時点t5まで第2検査を行う。
第2検査では、閾値Th2よりも小さい閾値Th3に基づいて入力トルク変化量の確認を行い、閾値Th3の範囲内で現在中立位置信号Tcを複数回記憶保持する。即ち、点線で示されている閾値Th3は、入力トルク及び現在中立位置信号Tcのズレをさらに精度良く検出するための閾値であり、現在中立位置信号Tcを複数回(本例では、Tcn−3Tcn−2、Tcn−1、Tcの4回)検出し、検出された現在中立位置信号Tcの最大値と最小値の差を閾値Th3と比較することで入力トルクの有無を確実に検出する。例えば現在中立位置信号Tcを中立位置信号Tcとし、中立位置信号Tcn−1、Tcn−2、Tcn−3のようにn回検出して記憶保持し、記憶保持された中立位置信号Tc〜Tcn−3の中の最大値及び最小値の差の絶対値を閾値Th3と比較して入力トルクの有無を確実に検出するようにする。つまり、所定回数検出される現在中立位置信号Tcの最大値と最小値の差の絶対値を閾値Th3と比較し、閾値Th3の範囲内であれば操舵トルクの入力が無い状態として、補正値演算手段42によってオフセット補正値Toを演算し、安定した高精度なオフセット補正値を算出することができる。
次に、車両の停車状況による残留トルク等を考慮する例を図5のタイムチャートに示して説明する。
図5の縦軸は中立位置電圧の大きさを示しており、横軸はイグニッションキーがOFFにされた回数(第2検査実施回数)を示している。ここで、中立位置信号Tcは運転者からのハンドル操舵が無い状態あっても車両の停車状況によってトルクセンサに残留トルクが発生し、中立位置信号Tcに経年変化が発生してしまう場合がある。経年変化は中立位置信号Tcのズレは同一方向に変化(増加或いは減少)すると想定することができ、上述した第2検査において複数回検出される現在中立位置信号Tcの平均値を中立位置平均値Tcaとし、第2検査終了毎に記憶保持させ、記憶保持された複数回の中立位置平均値Tcaが同一方向で、かつ変動量が±閾値Th4の範囲内であれば、次にイグニッションキーがONされたときに補正を行うようにする。
中立位置平均値Tcaの記憶保持は、図5に示すように今回検出された現在中立位置信号Tcの平均値を中立位置平均値Tca、前回検出された中立位置平均値Tcaを中立位置平均値Tca1、前々回検出された中立位置平均値Tcaを中立位置平均信号Tca2のように継続して所定回数記憶保持させ、±閾値Th4(点線)の範囲外の場合(Tca3‘、Tca2’、Tca1‘、Tca’の場合)は記憶保持させないようにする。そして、検出された現在中立位置信号Tcの平均値である中立位置平均値Tcaと前回の中立位置平均値Tca1との差の絶対値(|Tca1−Tca|)を閾値Th4と比較し、閾値Th4の範囲内であれば検出された中立位置平均値Tcaを記憶保持する。例えば3回の中立位置平均値によって判定する場合には、(Tca2≦Tca1≦Tca)または(Tca2≧Tca1≧Tca)、かつ(|Tca1−Tca|)が閾値Th4の範囲内であれば中立位置平均値Tcaを記憶保持する。一方、中立位置平均値Tca’、中立位置平均値Tca1’、
中立位置平均値Tca2’に示されている中立位置平均値は、閾値Th4の範囲外であり、中立位置平均値の変動が大きく、外乱的要因の影響が考えられるため、中立位置平均値Tca’を記憶保持しないようにする。また、同一方向ではない状態が検出された場合も、記憶保持しないようにする。
このように、ハンドルからの入力トルク及び車両の停車状況による残留トルク等を考慮し、より確実なオフセット補正を実施する構成例を図6に示して説明する。図6の構成例は図2に対応しており、同一部材には同一符号を付して説明を省略する。
ハンドルトルク入力検出手段49は、図4に示したようなハンドルからの入力トルクの有無を検出する手段であり、イグニッションキーからイグニッション信号Igが入力され、乗算手段41から現在中立位置信号Tcが入力されている。また、ハンドルトルク入力検出手段49は、イグニッション信号Igに基づいて第1検査を開始し、検出される現在中立位置信号Tcを閾値Th2と比較し、検出される現在中立位置信号Tcが閾値Th2の範囲内であれば第2検査を開始する。第2検査では、現在中立位置信号Tcを3回検出し、その検出値Tcn−2、Tcn−1、Tcを記憶手段44に記憶保持させ、3回分の中立位置信号Tc〜Tcn−2の最大値と最小値との差の絶対値を閾値Th3と比較して入力トルクの有無を検出する。そして、ハンドルトルク入力検出手段49は第1検査を終了すると、検査終了信号S3を出力して残留トルク検出手段48に入力する。
また、残留トルク検出手段48は、図5に示したような車両の停車状況等による残留トルクを考慮して、中立位置信号Tcのズレを検出する手段であり、ハンドルトルク入力検出手段49から検査終了信号S3が入力されると、前述した第2検査において検出された現在中立位置信号Tcの3回分を記憶手段44から読込み、その現在中立位置信号Tcの3回分の平均値を演算することで中立位置平均値Tcaを求める。また、残留トルク検出手段48は中立位置平均値Tcaを第2検査終了毎に4回求め、その中立位置平均値Tcaのズレが同一方向で、変動量が閾値Th4の範囲内であれば、次にイグニッションキーがONされた時に補正を行う残留トルク検出信号S2を補正可否判定手段45に入力する。また、中立位置平均値Tcaのズレが上記条件を満たさない状態であれば、次にイグニッションキーがONされた時に補正を行わないように残留トルク検出信号S2を出力しない。また、補正値演算手段42は、記憶手段44に記憶保持された中立位置平均値Tcaと設定中立位置信号Tccとの差であるオフセット補正値To(=Tca−Tcc)を演算し、演算されたオフセット補正値Toは補正可否判定手段45に入力されると共に、加算手段47に入力され、乗算手段41からの現在中立位置信号Tcと加算処理され、補正中立位置信号Tco(=Tc+To)が切替手段46の接点c1に入力される。
このような構成において、その動作例を図7のフローチャートに示して説明する。
先ずハンドルトルク入力検出手段49は、イグニッションキーのOFF信号であるイグニッション信号Igを検出し(ステップS20)、イグニッションOFF信号Igが検出されてから所定時間が経過しているか否かを判定する(ステップS21)。ステップS21において所定時間が経過していない場合は、イグニッションキーのOFFが確定されていないため、第1検査の経過時間をクリアし(ステップS22)、さらに第2検査時間をクリアし(ステップS23)、残留トルク検出手段48は記憶手段44から既に中立位置平均値Tca1、Tca2を読込み済みか或いは否かを判定し(ステップS24)、未だに読込んでいない場合は記憶手段44から中立位置平均値Tca1及びTca2を読込んで(ステップS25)、リターンする。
また、上記ステップS21において所定時間が経過した場合には第1検査が開始され(ステップS26)、第1検査が予め定められている経過時間と検査時間Ct1を比較する(ステップS27)、第1検査の経過時間が検査時間Ct1を超えた場合は終了となる。一方、第1検査の経過時間が検査時間Ct1以内であれば、検出される現在中立位置信号Tcを閾値Th2と比較し(ステップS28)、現在中立位置信号Tcが閾値Th2以上の場合は、オフセット補正値による補正を行わないため、上記ステップS23に移行する。
また、上記ステップS28で現在中立位置信号Tcが閾値Th2より小さい場合には第2検査が開始され(ステップS29)、第2検査の経過時間が予め定められている検査時間Ct2を経過したか否かを判定し(ステップS30)、第2検査の経過時間が検査時間Ct2以内であれば、検出される現在中立位置信号Tcを所定回数(3回のサンプリング)記憶手段44に記憶保持させ(ステップS31)、記憶保持された3回分の現在中立位置信号Tcn−2、Tcn−1、Tcの最大値と最小値の差の絶対値が閾値Th3よりも大きいか否かを判定してハンドルからの入力トルクの有無を検出する(ステップS32)。ステップS32において3回分の現在中立位置信号Tcn−2、Tcn−1、Tcの最大値と最小値の差の絶対値が閾値Th3以下の場合にはリターンとなり、現在中立位置信号Tcn−2、Tcn−1、Tcを継続して記憶保持する。一方、3回分の現在中立位置信号Tcn−2、Tcn−1、Tcの最大値と最小値の差の絶対値が閾値Th3よりも大きい場合にはハンドルから入力トルクが有る状態とし、記憶手段44に記憶保持された3回分の現在中立位置信号Tcn−2、Tcn−1、Tcを消去し(ステップS33)、前記ステップS23に移行する。
また、上記ステップS30において第2検査の経過時間が検査時間Ct2を越えると、残留トルク検出手段48は、ハンドルトルク入力検出手段49が検出した現在中立位置信号Tcを記憶手段44から3回分読込み(ステップS34)、中立位置平均値Tcaを求め(ステップS35)、前記ステップS25で読込まれた中立位置平均値Tca1、Tca2及び中立位置平均値Tcaに基づいて変動量を確認する。変動量の確認は上述したように閾値Th4を用いて“((Tca2≦Tca1≦Tca)||(Tca2≧Tca1≧Tca))で、かつ(|Tca1−Tc|≦閾値Th4)”であれば、中立位置平均値Tcaを記憶手段44に記憶保持させ(ステップS37)、次にイグニッションキーがONされた時に補正を行う残留トルク検出信号S2を補正可否判定手段45に入力する。また、補正値演算手段42は、ステップS37において記憶手段44に記憶保持された中立位置平均値Tcaと設定中立位置信号Tccとの差であるオフセット補正値Toを演算する(ステップS38)。残留トルク検出手段48は、中立位置平均値Tca1を中立位置平均値Tca2、中立位置平均値Tcaを中立位置平均値Tca1として記憶手段に記憶保持させ(ステップS39)、終了し、“((Tca2≦Tca1≦Tca)||(Tca2≧Tca1≧Tca))、かつ(|Tca1−Tc|≦閾値Th4)”でなければ中立位置平均値Tcaを保持せずに終了となる。
なお、本例では現在中立位置信号Tcを3回検出しているがその検出回数は任意であり、中立位置平均値Tcaの算出回数も4回でなく、任意回数が可能である。
本発明の原理を従来技術と比較して説明するための図である。 本発明に係る基本構成を示すブロック図である。 本発明の動作例を示すフローチャートである。 本発明を説明するためのタイムチャートである。 本発明を説明するためのタイムチャートである。 本発明の他の構成例を示すブロック図である。 本発明の他の動作例を示すフローチャートである。 従来の電動パワーステアリング装置の構成例を示すブロック図である。 従来のコントロールユニットの構成例を示すブロック図である。
符号の説明
1 ハンドル
2 コラム軸
10 トルクセンサ
11 イグニッションキー
12 車速センサ
20 モータ(M)
41 乗算手段
42 補正値演算手段
43 メイントルク・サブトルク異常判定手段
44 記憶手段
45 補正可否判定手段
46 切替手段
47 加算手段
48 残留トルク検出手段
49 ハンドルトルク入力検出手段

Claims (6)

  1. 少なくともトルクセンサからの操舵トルクに基づいて演算された電流指令値により、操舵系にアシストトルクを付与する電動パワーステアリング装置において、前記トルクセンサに予め設定された設定中立位置信号を記憶保持する記憶手段と、前記トルクセンサで検出される現在中立位置信号のオフセット補正値を演算する補正値演算値手段と、前記現在中立位置信号の補正の可否を判定する補正可否判定手段とを備え、前記補正可否判定手段の判定に基づいて前記現在中立位置信号を前記オフセット補正値で補正することを特徴とする電動パワーステアリング装置。
  2. 前記補正値演算手段が、前記現在中立位置信号と前記設定中立位置信号との差に基づいて前記オフセット補正値を演算する請求項1に記載の電動パワーステアリング装置。
  3. 前記現在中立位置信号を所定回数検出して前記記憶手段に記憶保持するハンドルトルク入力検出手段と、前記所定回数検出された前記現在中立位置信号の平均値である中立位置平均値を演算して前記記憶手段に記憶保持する残留トルク検出手段とをさらに備え、前記補正値演算手段が、前記記憶手段に記憶保持された前記中立位置平均値と前記設定中立位置信号との差に基づいて前記オフセット補正値を演算する請求項1に記載の電動パワーステアリング装置。
  4. 前記補正可否判定手段が、前記オフセット補正値と閾値1及び2とを比較することで前記トルクセンサの前記現在中立位置信号の補正の可否を判定する請求項1乃至3のいずれかに記載の電動パワーステアリング装置。
  5. 前記ハンドルトルク入力検出手段が、イグニッションOFFの確定に応じて第1検査を開始し、前記現在中立位置信号が前記閾値2の範囲内であれば第2検査を開始し、前記所定回数検出される前記現在中立位置信号の最大値と最小値との差が閾値3の範囲内であれば前記所定回数の前記現在中立位置信号を検出して前記記憶手段に記憶保持すると共に、前記残留トルク検出手段が、前記第2検査の終了毎に前記記憶手段から前記所定回数の前記現在中立位置信号を読込み、前記中立位置平均値を演算する請求項3に記載の電動パワーステアリング装置。
  6. 前記残留トルク検出手段が、前記中立位置平均値と前回の前記中立位置平均値との差を閾値4と比較すると共に、前記複数回の前記中立位置平均値からオフセット方向を想定して前記オフセット補正値による補正の可否を判定する請求項5に記載の電動パワーステアリング装置。


JP2007317925A 2007-12-10 2007-12-10 電動パワーステアリング装置 Pending JP2009137514A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007317925A JP2009137514A (ja) 2007-12-10 2007-12-10 電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007317925A JP2009137514A (ja) 2007-12-10 2007-12-10 電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
JP2009137514A true JP2009137514A (ja) 2009-06-25

Family

ID=40868592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007317925A Pending JP2009137514A (ja) 2007-12-10 2007-12-10 電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP2009137514A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066777A (ja) * 2010-09-27 2012-04-05 Mazda Motor Corp ヨーレートのずれ検出装置
JP2017032383A (ja) * 2015-07-31 2017-02-09 株式会社デンソー センサ装置
CN118124671A (zh) * 2024-05-06 2024-06-04 岚图汽车科技有限公司 车辆转向控制方法、装置、存储介质及车辆

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066777A (ja) * 2010-09-27 2012-04-05 Mazda Motor Corp ヨーレートのずれ検出装置
JP2017032383A (ja) * 2015-07-31 2017-02-09 株式会社デンソー センサ装置
CN106394669A (zh) * 2015-07-31 2017-02-15 株式会社电装 传感器装置
US10399596B2 (en) 2015-07-31 2019-09-03 Denso Corporation Sensor device
CN106394669B (zh) * 2015-07-31 2019-12-03 株式会社电装 传感器装置
CN118124671A (zh) * 2024-05-06 2024-06-04 岚图汽车科技有限公司 车辆转向控制方法、装置、存储介质及车辆

Similar Documents

Publication Publication Date Title
US10214235B2 (en) Power steering device and power steering device control unit
JP5402944B2 (ja) 電動パワーステアリング装置
US9821836B2 (en) Electric power steering system
US9050996B2 (en) Control device for electric power steering apparatus
US8831832B2 (en) Motor control apparatus and electric power steering apparatus provided with the same
US9688302B2 (en) In-vehicle electronic control apparatus
US20090125187A1 (en) Control unit of electric power steering apparatus
US6658333B2 (en) Control apparatus of power steering device
US20130033209A1 (en) Motor control device
JP5664447B2 (ja) 電動パワーステアリング装置
JPWO2006123839A1 (ja) 電動パワーステアリング装置の制御装置
KR102494676B1 (ko) 조향 제어 장치
CN109070936B (zh) 转向控制装置
JP2009040225A (ja) 電動パワーステアリング装置
JP2009137514A (ja) 電動パワーステアリング装置
US8554412B2 (en) Electric power steering apparatus, control method thereof and program
JP4742797B2 (ja) モータ駆動制御装置及びそれを用いた電動パワーステアリング装置の制御装置
US20180162440A1 (en) Power-source voltage diagnostic device of electric power steering apparatus
JP2013159289A (ja) 電動パワーステアリング装置
JP2009161156A (ja) 電動パワーステアリング装置
JP2009067222A (ja) 電動パワーステアリング装置
JP2009208497A (ja) 電動パワーステアリング装置の制御装置
JP2009090749A (ja) 電動パワーステアリング装置
JP5181540B2 (ja) 電動パワーステアリング装置
JP2010126081A (ja) 電動パワーステアリング装置