JP2009136434A - Optical meter - Google Patents

Optical meter Download PDF

Info

Publication number
JP2009136434A
JP2009136434A JP2007314768A JP2007314768A JP2009136434A JP 2009136434 A JP2009136434 A JP 2009136434A JP 2007314768 A JP2007314768 A JP 2007314768A JP 2007314768 A JP2007314768 A JP 2007314768A JP 2009136434 A JP2009136434 A JP 2009136434A
Authority
JP
Japan
Prior art keywords
probe
task
measurement
hemoglobin
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007314768A
Other languages
Japanese (ja)
Other versions
JP5182856B2 (en
Inventor
Toru Yamada
亨 山田
Shinji Umeyama
伸二 梅山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007314768A priority Critical patent/JP5182856B2/en
Publication of JP2009136434A publication Critical patent/JP2009136434A/en
Application granted granted Critical
Publication of JP5182856B2 publication Critical patent/JP5182856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To pick up the functional signal of brain activities from the measured data by the control of endogenous variations caused by autonomic nerve activities, heartbeats or breathing, various forms of changes arising from the bodily movements or physical conditions of a subject, which are known to be included besides the functional signal of brain activities actually measured by fNIRS. <P>SOLUTION: The Reference Subtraction technique (RS method) has been introduced, which newly uses reference probes in the vicinity of light receiving probes for calculating the variations of each hemoglobin (Hb) from measured absorbance differences between these two points. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、近赤外光を用いた生体光計測技術に関し、特に、脳機能計測技術あるいは血中酸素濃度測定技術に関する。   The present invention relates to a biological light measurement technique using near-infrared light, and particularly to a brain function measurement technique or a blood oxygen concentration measurement technique.

近赤外脳機能計測法(fNIRS)は、fMRIと同様、脳活動に伴って生じる脳血流と酸素代謝の変化を、より簡便な装置によってモニターできる手法である。   Near-infrared brain function measurement method (fNIRS) is a technique that can monitor changes in cerebral blood flow and oxygen metabolism accompanying brain activity with a simpler device, similar to fMRI.

とりわけ 定常光光源を用いた装置とModified Beer Lambert lowに基づくアルゴリズムを組み合わせた測定法(以下、「MBL法」と呼ぶ。)は、最も早く提案され、普及も進んでいる(非特許文献1参照)。   In particular, a measurement method (hereinafter referred to as “MBL method”) that combines a device using a stationary light source and an algorithm based on Modified Beer Lambert low has been proposed the earliest and has been widely used (see Non-Patent Document 1). ).

この測定法においては、頭皮から入射した近赤外光のうち、皮膚・筋肉、頭蓋骨、髄液、膜、脳皮質灰白質、白質等、様々な散乱係数と吸収係数をもつ組織を通過して、照射位置から一定距離の位置に置かれた受光プローブに到達した光量を測定するため、その測定量には原理的に通過した組織すべてにおける散乱吸収変化が含まれる。   In this measurement method, near-infrared light incident from the scalp passes through tissues with various scattering coefficients and absorption coefficients, such as skin / muscle, skull, cerebrospinal fluid, membrane, cortical gray matter, and white matter. In order to measure the amount of light reaching the light receiving probe placed at a certain distance from the irradiation position, the amount of measurement includes, in principle, a change in scattering absorption in all the tissues that have passed through.

このうち脳機能計測において重要なのは、神経細胞活動に伴って生じる局所血流変化(非特許文献2参照)に伴う、主として皮質灰白質における酸素化ヘモグロビンおよび脱酸素化ヘモグロビン(oxy-, deoxy-Hb)の変化である。
Obrig H, Villringer A: Beyond the visible - Imaging the human brain with light. Journal of cerebral blood flow and metabolism 23, 1-18 (2003) Roy CS, Sherrington CS: On the regulation of the blood supply of the brain. J. Physiol., 11, 85-108 (1890) Boas DA, Dale AM, and Franceschini MA, Diffuse optical inaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy., Neuro Image, 23, S275-S288, (2004) Okada E, Delpy DT: Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer. APPLIED OPTICS 42, 2906-2914, (2003) Matcher SJ, Elwell CE, Cooper CE, Cope M, Delpy DT, Performance Comparison of Several Published Tissue Near-Infrared Spectroscopy Algorithms, Anal. Biochem. 227 (1): 54-68 (1995)
Among these, what is important in brain function measurement is mainly oxygenated hemoglobin and deoxygenated hemoglobin (oxy-, deoxy-Hb) in cortical gray matter accompanying local blood flow changes caused by neuronal cell activity (see Non-Patent Document 2). ).
Obrig H, Villringer A: Beyond the visible-Imaging the human brain with light.Journal of cerebral blood flow and metabolism 23, 1-18 (2003) Roy CS, Sherrington CS: On the regulation of the blood supply of the brain.J. Physiol., 11, 85-108 (1890) Boas DA, Dale AM, and Franceschini MA, Diffuse optical inaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy., Neuro Image, 23, S275-S288, (2004) Okada E, Delpy DT: Near-infrared light propagation in an adult head model.I. Modeling of low-level scattering in the cerebrospinal fluid layer.APPLIED OPTICS 42, 2906-2914, (2003) Matcher SJ, Elwell CE, Cooper CE, Cope M, Delpy DT, Performance Comparison of Several Published Tissue Near-Infrared Spectroscopy Algorithms, Anal. Biochem. 227 (1): 54-68 (1995)

しかし、実際にfNIRSで計測される信号には、脳活動以外にも、心拍、呼吸、自律神経活動に伴う内因性の変動が含まれており(非特許文献3参照)、その他にも被験者の体動や体位変化に伴う変動が様々な様態で生じることが知られている。これらの変動を抑制し、計測データからこの機能性信号を取り出すことがfNIRSにおける技術的な課題である。   However, signals actually measured by fNIRS include intrinsic fluctuations associated with heartbeat, respiration, and autonomic nerve activity in addition to brain activity (see Non-Patent Document 3). It is known that fluctuations associated with body movement and posture change occur in various ways. It is a technical problem in fNIRS to suppress these fluctuations and extract this functional signal from the measurement data.

頭部での光の伝播の様子については、多くの理論的研究およびファントムを用いた実験的研究がなされているが、解析的には半無限均質媒質中での拡散伝播が解かれているのみである。   Although many theoretical studies and experimental studies using phantoms have been made on the state of light propagation in the head, analytically only diffusion propagation in a semi-infinite homogeneous medium has been solved. It is.

これに対して近年、MRIによって得られる解剖学的知見に沿って計算機的に頭部3次元構造を構成し、ここでの光伝搬をモンテカルロ・シミュレーションにより検証する試みがなされている(非特許文献4参照)。   On the other hand, in recent years, an attempt has been made to construct a three-dimensional head structure computationally according to the anatomical knowledge obtained by MRI, and to verify the light propagation here by Monte Carlo simulation (non-patent literature). 4).

これによれば、頭部に入射した光は、均質媒質中でのいわゆるバナナ状光路分布とは異なり、頭皮から髄液に達する過程(とその逆過程)で相当程度拡散するが、髄液に達した後は髄液層と脳皮質表層の間を通る形で各プローブのほぼ直下の間を結んでいる様子が示されている。   According to this, unlike the so-called banana-like optical path distribution in a homogeneous medium, the light incident on the head diffuses considerably in the process of reaching the cerebrospinal fluid from the scalp (and vice versa). After reaching this point, it is shown that it is connected between the cerebrospinal fluid layer and the surface layer of the brain cortex, almost directly under each probe.

頭皮および皮下の筋肉組織、骨組織は大脳皮質の機能局在と比較すれば、際立ったトポロジカルな構造は持たないと考えられる。   The scalp, subcutaneous muscle tissue, and bone tissue do not have a distinct topological structure compared to the functional localization of the cerebral cortex.

仮にそこで散乱・吸収変化が生じたとしても、これらの層を通過する過程で拡散された光の分布径が1cm内外であることを考えると、受光プローブの1cm程度の近傍ではこれらの組織は概ね一様な分光学的変化を示すと見なせる。   Even if a scattering / absorption change occurs there, if the distribution diameter of the light diffused in the process of passing through these layers is 1 cm inside or outside, these tissues are almost in the vicinity of about 1 cm of the light receiving probe. It can be regarded as showing a uniform spectroscopic change.

そこで我々は、受光プローブの近傍に新たに参照プローブを導入し、二つの位置で測定される吸光度変化の差分に基づいて各ヘモグロビン(Hb)の変化量を算出するReference Subtraction technique (RS法)を導入した。   Therefore, we introduced a new reference probe in the vicinity of the light-receiving probe, and used the Reference Subtraction technique (RS method) to calculate the amount of change in each hemoglobin (Hb) based on the difference in absorbance change measured at the two positions. Introduced.

<測定原理>
従来、3波長の定常光源を用いて行われてきたfNIRS測定すなわちMBL法における各Hb変化量(Δxo,Δxd)の算出アルゴリズムは、以下のように表される。
ここで、loutは照射プローブから受光プローブに至る光の行路長、ελ,o、ελ,dは、波長λでの各Hbの吸光係数、Δ Aλ, outは、波長λの光を受光プローブで観測したときの吸光度の測定開始時刻からの変化量である。+は、( )内の行列の擬似逆行列をとることを示す。
<Measurement principle>
Conventionally, the calculation algorithm of each Hb change amount (Δxo, Δxd) in the fNIRS measurement, that is, MBL method, which has been performed using a three-wavelength stationary light source is expressed as follows.
Here, lout is the path length of light from the irradiation probe to the light receiving probe, ε λ , o, ε λ , d is the extinction coefficient of each Hb at wavelength λ, Δ A λ , out is the light of wavelength λ It is the amount of change from the measurement start time of the absorbance when observed with the light receiving probe. + Indicates that a pseudo inverse matrix of the matrix in () is taken.

これに対して、いま照射プローブと受光プローブを結ぶ直線上に新たに参照プローブを図1のように導入する。岡田らが行ったシミュレーションの知見に基づけば、この場合のそれぞれのプローブで捉えられる光の行路は、図1で示された形状を示すと考えられる。   On the other hand, a reference probe is newly introduced on the straight line connecting the irradiation probe and the light receiving probe as shown in FIG. Based on the knowledge of the simulation conducted by Okada et al., The light path captured by each probe in this case is considered to have the shape shown in FIG.

受光プローブ直下および参照プローブ直下の光通過経路において、両者の散乱吸収の時間変化がほぼ相似であることを仮定すると、この二点で観測される吸光度の差は、図中に楕円で示した脳皮質組織のヘモグロビン動態を主に反映するものと考えられる。   Assuming that the temporal changes in the scattering and absorption of the light passing path directly under the light receiving probe and the reference probe are almost similar, the difference in absorbance observed at these two points is the brain indicated by the ellipse in the figure. It is thought to reflect mainly the hemoglobin dynamics of cortical tissue.

受光プローブと参照プローブのそれぞれで観測される吸光度をAλi, out、Aλi, refし、照射プローブから参照プローブに至る光の行路長をlrefとすると、これらの間には以下の関係が成り立つ。
Assuming that the absorbance observed at each of the light receiving probe and the reference probe is Aλi, out, Aλi, ref, and the path length of light from the irradiation probe to the reference probe is lref, the following relationship is established.

従って、MBL法と同様に吸光係数行列の擬似逆行列を用いれば、以下のように各Hb変化量が算出できる。
実際の計算において、使用波長776nm,809nm,850nmにおける吸光係数は、文献に従った(非特許文献5参照)。
Therefore, using the pseudo inverse matrix of the extinction coefficient matrix as in the MBL method, each Hb change amount can be calculated as follows.
In actual calculations, the extinction coefficients at the operating wavelengths of 776 nm, 809 nm, and 850 nm were in accordance with the literature (see Non-Patent Document 5).

従来のMBL法における結果と比較を行ったところ、MBL法においては、1)体動や体位変化に伴う変動(motion artifact)が存在し、ときに脳活動信号の数倍の大きさにも及び、2)当該の脳活動領野よりもはるかに広い両側半球でタスクと時間相関を持つ変動(systemic response)が見られたが、RS法においては、これらの変動は顕著に低減した。   In comparison with the results of the conventional MBL method, in the MBL method, 1) there are motion artifacts due to body movements and body position changes, and sometimes it is several times as large as the brain activity signal. 2) Although there was a systemic response in the bilateral hemisphere that was far wider than the relevant brain activity area, a task-time-related variation (systemic response) was observed, but these variations were significantly reduced in the RS method.

発明を実施するための最良の形態につき図面を用いて説明する。   The best mode for carrying out the invention will be described with reference to the drawings.

<測定装置>
fNIRS測定の光プローブおよび制御測定装置には、浜松ホトニクス社製酸素モニターNIRO-200およびマルチプローブアダプターを用いた。サンプリング周波数0.5[Hz]、使用波長776nm,809nm,850nm、プローブ先端開口部径約2mm。プローブホルダーとして図2に示す形状のホルダーを用いた。各照射-受光プローブ(図中の1,3,5,7)間距離は、30mmであり、参照プローブ(図中の2,4,6,8)は、この直線上で照射プローブから20mmの位置に導入した。
<Measurement device>
For the optical probe and control measurement device for fNIRS measurement, an oxygen monitor NIRO-200 and a multi-probe adapter manufactured by Hamamatsu Photonics were used. Sampling frequency 0.5 [Hz], working wavelengths 776nm, 809nm, 850nm, probe tip opening diameter about 2mm. As the probe holder, a holder having a shape shown in FIG. 2 was used. The distance between each irradiation-light receiving probe (1, 3, 5, 7 in the figure) is 30 mm, and the reference probe (2, 4, 6, 8 in the figure) is 20 mm from the irradiation probe on this straight line. Introduced into position.

これらのプローブを左右両半球に対称に設置し、脳波計測の電極配置法であるuniversal 10,20 method のCz位置を基準として、ここから両側に約70mmにプローブ1,2および7,8が位置するように被験者頭部にプローブホルダーを装着した。これにより1,3,5,7の位置におけるMBL法と1-2,3-4,5-6,7-8の位置におけるRS法による同時測定を行った。   These probes are placed symmetrically on both the left and right hemispheres, and probes 1, 2 and 7, 8 are positioned approximately 70mm on both sides from the Cz position of universal 10,20 method, which is the electrode placement method for electroencephalogram measurement. A probe holder was attached to the subject's head. As a result, simultaneous measurement was performed by the MBL method at positions 1, 3, 5, and 7 and the RS method at positions 1-2, 3-4, 5-6, and 7-8.

<タスク>
motion artifact の検証として、座位安静にした被験者が自発動作により上体を約45°傾けるタスクを課した(以下「MA課題」という。)。タスクデザインは、初期の上体正立
20s に続いて上体傾斜 20s と上体正立 20sのセットの5回繰り返しである。また、機能性信号検出の検証として、同様の体位にある被験者に親指と人差し指の対向動作(以下、finger opposition、「FO課題」という。)を課した。タスクデザインは、初期安静 20s に続いて左手指動作 20s , 安静 20s, 右手指動作 20s, 安静 20s の順のセットの5回繰り返しである。
<Task>
As a verification of motion artifacts, a subject who sat in a sitting position imposed a task of tilting the upper body by about 45 ° by spontaneous movement (hereinafter referred to as “MA task”). Task design is the initial upper body upright
Following the 20s, the set of the body tilt 20s and the body erect 20s is repeated 5 times. In addition, as a verification of functional signal detection, the opposition of the thumb and index finger (hereinafter referred to as finger opposition, “FO task”) was imposed on subjects in the same position. The task design is an initial rest 20 s followed by a set of 5 left finger movements 20 s, rest 20 s, right finger movements 20 s, rest 20 s.

<結果>
[motion artifact課題時の結果比較]
プローブ配置BでMA課題時に得られる各プローブでのヘモグロビン変化の様子を図3に示す。プローブ1,3,5,7はMBL法で測定される各Hb変化量に相当する。これら各位置でMA課題に相関して各Hbが顕著に変化することが分かる。またこれらの各時系列的変化を詳細に眺めると、ドリフトの有無やドリフト成分と課題相関的成分の大小関係などの面でそれぞれに異なる様相を示していることが分かる。
<Result>
[Comparison of results during motion artifact task]
FIG. 3 shows how hemoglobin changes in each probe obtained at the time of the MA problem with the probe arrangement B. Probes 1, 3, 5, and 7 correspond to each Hb variation measured by the MBL method. It can be seen that at each of these positions, each Hb changes significantly in correlation with the MA problem. Further, looking at these time-series changes in detail, it can be seen that different aspects are shown in terms of the presence or absence of drift and the magnitude relationship between the drift component and the problem-related component.

これに対して、参照プローブである2,4,6,8で測定されたデータは、各測定プローブ位置で得られているデータの時系列変化によく似た挙動を示していることが分かる。RS法で算出した各Hb変化量はその結果として、ドリフトや課題に相関する変動成分が顕著に低減していることが分かる。図4に課題5回の繰り返しを平均化した結果を示す。   On the other hand, it can be seen that the data measured by the reference probes 2, 4, 6, and 8 behaves very similar to the time series change of the data obtained at each measurement probe position. As a result, it can be seen that the fluctuation component correlated with the drift and the problem is remarkably reduced in each Hb variation calculated by the RS method. FIG. 4 shows the result of averaging five repetitions.

[finger opposition課題時の結果比較]
プローブ配置BでFO課題時に得られる各プローブでのヘモグロビン変化を、左手指運動前10secから課題終了後20secおよび右手指運動前10secから課題終了後20secまでの区間で平均化したデータを図5に示す。プローブ1,3,5,7で得られたMBL法による結果には、運動指の同側/反対側半球いずれの位置でもFO課題に応じたHbの変化が生じていることが分かる。
[Result comparison during finger opposition task]
Fig. 5 shows the data obtained by averaging the hemoglobin changes in each probe obtained during FO task with probe arrangement B over the interval from 10 seconds before the left finger movement to 20 seconds after the task ends and from 10 seconds before the right finger movement to 20 seconds after the task ends. Show. The MBL results obtained with the probes 1, 3, 5, and 7 show that Hb changes according to the FO task at either the same hemisphere or the opposite hemisphere of the motor finger.

ただし、同側半球でのHb変化の強度は反対側半球の場合に比べてやや弱い傾向がある。これに対して、RS法で得られるHb変化のデータでは、同側半球でのFO課題に応じた変化が顕著に低減することが分かる。   However, the intensity of Hb change in the same hemisphere tends to be slightly weaker than that in the opposite hemisphere. On the other hand, in the Hb change data obtained by the RS method, it can be seen that the change according to the FO task in the ipsilateral hemisphere is remarkably reduced.

また、反対側半球でのFO課題に応じた変動に関しても、MBL法の場合と異なり、プローブ1,2および7,8に顕著であることが分かる。これらの特徴を定量するために図6として、FO課題開始直前10秒間および開始10秒後から20秒後の10秒間の二つの区間での各Hb変化量の差を変量としてその平均値と標準誤差を図示した。   In addition, it can be seen that the change according to the FO task in the opposite hemisphere is remarkable in the probes 1, 2 and 7, 8 unlike the MBL method. In order to quantify these characteristics, as shown in FIG. 6, the difference between each Hb change amount in the 10 seconds immediately before the start of the FO task and 10 seconds after the start of the FO task is 10 seconds. The error is illustrated.

また図中の数値は反対側条件と同側条件での差をt-検定した時のt値である。MBL法ではすべてのチャンネルでoxy-,deoxy-Hbのいずれもt値は低く、反対側条件と同側条件での統計的有意差は見られなかった。   The numerical values in the figure are t values when t-testing the difference between the opposite condition and the same condition. In the MBL method, t-values of oxy- and deoxy-Hb were low in all channels, and no statistically significant difference was observed between the contralateral and ipsilateral conditions.

これに対して、RS法では、高いt値(危険率5%未満に相当)を示す位置は1,2および7,8に限局することが分かった。   In contrast, in the RS method, it was found that positions showing high t values (corresponding to a risk rate of less than 5%) are limited to 1, 2 and 7, 8.

以上のように、fNIRS測定時に体動に伴って測定信号に変動が重畳することは経験的によく知られている。その一つとして、速い体動に伴って光プローブと頭皮表面の光学的接触が変化し、不規則に信号変動が生じる現象が上げられるが、図3,4で示された結果は、こうした挙動とは異なり、体位の変更にともなって一定のオフセットを生じ、体位の復帰に伴って元のレベルに戻るような変化を示している。   As described above, it is well known from experience that fluctuations are superimposed on a measurement signal with body movement during fNIRS measurement. For example, the optical contact between the optical probe and the scalp surface changes with rapid body movement, resulting in irregular signal fluctuations. The results shown in Figs. In contrast to this, a certain offset is generated with the change of the posture, and the change returns to the original level with the return of the posture.

このため、これは姿勢の変化に伴って観測領域の生体内に生じるヘモグロビン変化をおもに反映しているものと考えられる。またこの値は、FO課題時の課題相関信号の強度と同じかむしろ数倍以上大きく観測された。   For this reason, it is considered that this mainly reflects the hemoglobin change that occurs in the living body in the observation region with the change in posture. This value was observed to be the same as the intensity of the task correlation signal during the FO task, or more than several times larger.

従ってこのような姿勢変化を含む運動課題下でMBL測定を行う際には、課題に相関した信号の中から脳機能に由来する成分を分離・抽出するべく充分慎重な実験デザインを構築して解析する必要がある。   Therefore, when performing MBL measurement under an exercise task that includes such posture changes, a sufficiently careful experimental design is constructed and analyzed to separate and extract components derived from brain function from signals correlated with the task. There is a need to.

これに対してRS法による測定ではこれらの変動成分が著しく低減している。このため、姿勢の変化を伴う課題においても、その影響はキャンセルされ、有効に脳機能由来の信号が抽出される可能性が高いと考えられる。   In contrast, the measurement by the RS method significantly reduces these fluctuation components. For this reason, it is considered that there is a high possibility that the influence is canceled even in a task accompanied by a change in posture and a signal derived from the brain function is effectively extracted.

左右どちらか一方の体側の手指によるFO運動時に、運動と相関するoxy-Hbの増大とdeoxy-Hbの減少が反対側半球と同時に同側半球でも生じることは過去にも報告されている。   It has been reported in the past that an increase in oxy-Hb and a decrease in deoxy-Hb that correlate with movement occur in the ipsilateral hemisphere as well as the opposite hemisphere during FO movement with the left or right body side finger.

また、その種の変動が、関連する領野(一次運動野や体性感覚野)に留まらない広い領域にわたって両半球で同時に観測されることが報告されている。   In addition, it has been reported that this kind of variation is observed simultaneously in both hemispheres over a wide area that is not limited to the related areas (primary motor areas and somatosensory areas).

我々の測定したMBL法での結果もこれらの報告とよく一致した。一方で、同一タスク時にfMRIで観測される活動部位はきわめてよく限局することが知られている。測定方法の違いにより生じるこのような結果の差異に関しては、ほとんど議論されていない。   Our measured MBL results agree well with these reports. On the other hand, it is known that the active sites observed by fMRI during the same task are very limited. There is little discussion about the difference in results resulting from differences in measurement methods.

Al-Rawiらは、脳外科手術時の内外頸動脈クランプに伴う頭部の血流動態を観測し、MBL法を用いて測定されるoxy-,deoxy-Hbの変化量が外頸動脈をクランプするのみでも大きく変動し、この変動はレーザードップラー血流計によって測定された頭蓋外の血流変動とよく相関することを報告している。   Al-Rawi et al. Observed head blood flow dynamics associated with internal and external carotid artery clamp during brain surgery, and changes in oxy- and deoxy-Hb measured using the MBL method clamp the external carotid artery. It has been reported that this change is also significant, and this change correlates well with extracranial blood flow fluctuations measured by a laser Doppler blood flow meter.

これは、MBL法での測定が頭蓋外組織での血流変動の影響を受けやすいことを強く示唆する。血流制御は一般に脳活動時の局所血流変化に留まらず、自律神経等を介したメカニズムの統御下にも置かれており、当然頭皮、筋肉組織中にもこの仕組みはあてはまるが、これらの組織が際立った部位特異性を持つとは考えにくい。   This strongly suggests that MBL measurements are susceptible to blood flow fluctuations in extracranial tissues. Blood flow control is generally not limited to local blood flow changes during brain activity, but is also under the control of mechanisms via autonomic nerves, etc., and naturally this mechanism also applies to the scalp and muscle tissue. It is unlikely that the tissue has outstanding site specificity.

従って、もしも、運動課題に伴って頭皮や筋肉に血流変動が生じた場合、これらの変動は部位特異性を持たない可能性が高い。MBL法で観測される課題に時間相関を持つ信号がfMRIに比較して充分に局在しない理由の一つとして、以上の機序による非局在性の変動成分が混在する可能性が上げられる。   Therefore, if blood flow fluctuations occur in the scalp and muscles accompanying an exercise task, these fluctuations are likely not to have site specificity. One of the reasons why signals that have time correlation with the problems observed by the MBL method are not sufficiently localized compared to fMRI is the possibility that nonlocal fluctuation components due to the above mechanism may be mixed. .

Reference subtraction technique をfNIRS測定に導入した本願発明は、こうした頭蓋外組織の影響を大幅に取り除くことができ、このためMBL法と比較して信号局在が向上したものと理解できる。   The present invention in which the reference subtraction technique is introduced in the fNIRS measurement can largely eliminate the influence of such extracranial tissue, and thus it can be understood that the signal localization is improved as compared with the MBL method.

本願発明を説明する概念図Conceptual diagram explaining the present invention プローブ配置図Probe layout motion artifact課題時のMBL法による測定値(1,3,5,7)、参照プローブでの測定値(2,4,6,8)、及びRS法による測定値(1-2,3-4,5-6,7-8)の結果比較。縦軸:ヘモグロビン変化量、横軸:経過時間、太線:酸素化ヘモグロビン、細線:脱酸素化ヘモグロビンMeasurement value by MBL method (1, 3, 5, 7) for motion artifact problem, measurement value by reference probe (2, 4, 6, 8), measurement value by RS method (1-2, 3-4 , 5-6, 7-8). Vertical axis: hemoglobin change, horizontal axis: elapsed time, thick line: oxygenated hemoglobin, thin line: deoxygenated hemoglobin motion artifact 課題5回施行分の各ヘモグロビン変化を平均した結果。MBL法による測定値(1,3,5,7)、RS法による測定値(1-2,3-4,5-6,7-8)の結果比較。縦軸:ヘモグロビン変化量、横軸:経過時間、太線:酸素化ヘモグロビン、細線:脱酸素化ヘモグロビンmotion artifact Results of averaging the changes in each hemoglobin for 5 tasks. Comparison of measured values by MBL method (1, 3, 5, 7) and measured values by RS method (1-2, 3-4, 5-6, 7-8). Vertical axis: hemoglobin change, horizontal axis: elapsed time, thick line: oxygenated hemoglobin, thin line: deoxygenated hemoglobin finger opposition課題時のMBL法による測定値(1,3,5,7)とRS法による測定値(1-2,3-4,5-6,7-8)の結果比較。縦軸:ヘモグロビン変化量、横軸:経過時間、太線:酸素化ヘモグロビン、細線:脱酸素化ヘモグロビン、実線:反対側手指遂行時、波線:同側手指遂行時Comparison of measured values by MBL method (1,3,5,7) and measured values by RS method (1-2, 3-4, 5-6, 7-8) during finger opposition task. Vertical axis: hemoglobin change, horizontal axis: elapsed time, thick line: oxygenated hemoglobin, thin line: deoxygenated hemoglobin, solid line: when performing the opposite hand, wavy line: when performing the same hand finger opposition課題時のMBL法, RS法による測定結果の統計解析。課題開始前10sec間と開始後10sec-20sec間での測定値の平均と標準誤差。左側黒塗り:酸素化ヘモグロビン、右側白抜き:脱酸素化ヘモグロビン、Contra:反対側手指遂行時、Ipsi:同側手指遂行時。数値は各条件でのContraとIpsi間のt検定におけるt値。Statistical analysis of measurement results by MBL method and RS method during finger opposition task. Average and standard error of measured values for 10 seconds before starting task and 10 to 20 seconds after starting task. Black on the left: oxygenated hemoglobin, white on the right: deoxygenated hemoglobin, Contra: when performing the opposite finger, Ipsi: when performing the same finger. The numerical value is t value in t test between Contra and Ipsi in each condition.

Claims (3)

近赤外光を生体の所定の部位に照射し、該所定の部位の近傍において出射してくる光を検出し、該生体に関する情報を獲得する光計測装置であって、該近赤外光の光源、受光プローブ及び該受光プローブの近傍に参照プローブを設け、受光プローブ及び参照プローブにより測定される吸光度変化の差分に基づいて生体に関する情報を獲得することを特徴とする光計測装置。   An optical measurement device that irradiates a predetermined part of a living body with near infrared light, detects light emitted in the vicinity of the predetermined part, and acquires information about the living body, An optical measurement apparatus comprising a light source, a light receiving probe, and a reference probe in the vicinity of the light receiving probe, and acquiring information related to a living body based on a difference in absorbance change measured by the light receiving probe and the reference probe. 上記所定の部位は、頭脳であることを特徴とする請求項1に記載の光計測装置。   The optical measurement apparatus according to claim 1, wherein the predetermined part is a brain. 上記生体に関する情報は、酸素化ヘモグロビン及び脱酸素化ヘモグロビンであることを特徴とする請求項1に記載の光計測装置。   The optical measurement apparatus according to claim 1, wherein the information related to the living body is oxygenated hemoglobin and deoxygenated hemoglobin.
JP2007314768A 2007-12-05 2007-12-05 Optical measuring device Active JP5182856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007314768A JP5182856B2 (en) 2007-12-05 2007-12-05 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314768A JP5182856B2 (en) 2007-12-05 2007-12-05 Optical measuring device

Publications (2)

Publication Number Publication Date
JP2009136434A true JP2009136434A (en) 2009-06-25
JP5182856B2 JP5182856B2 (en) 2013-04-17

Family

ID=40867728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314768A Active JP5182856B2 (en) 2007-12-05 2007-12-05 Optical measuring device

Country Status (1)

Country Link
JP (1) JP5182856B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010714A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Optical biometric device, game system and biosignal generation method
JP2012239668A (en) * 2011-05-20 2012-12-10 National Institute Of Advanced Industrial Science & Technology Biological light measuring apparatus, program and biological light measuring method
WO2013168294A1 (en) * 2012-05-11 2013-11-14 株式会社島津製作所 Optical biometric system and method for using same
CN104507396A (en) * 2012-07-27 2015-04-08 株式会社岛津制作所 Optical device for living body measurement and method of analysis using same
US9675260B2 (en) 2012-04-25 2017-06-13 Shimadzu Corporation Photobiological measurement apparatus
WO2018167854A1 (en) * 2017-03-14 2018-09-20 株式会社日立ハイテクノロジーズ Analysis apparatus and analysis program
US11096609B2 (en) 2015-01-07 2021-08-24 National Institute Of Advanced Industrial Science And Technology Brain function measurement device and brain function measurement method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500566A (en) * 1993-11-30 1997-01-21 ベル コミュニケーションズ リサーチ,インコーポレイテッド Imaging system and method using direct reconstruction of scattered radiation
JPH0998972A (en) * 1995-10-06 1997-04-15 Hitachi Ltd Measurement equipment of light from living body and image generation method
JPH11299760A (en) * 1998-04-17 1999-11-02 Mitsubishi Electric Corp Brain activity measuring device
JP3035791B2 (en) * 1996-11-26 2000-04-24 オムロン株式会社 Method and apparatus for measuring light-absorbing substance concentration in living tissue and thickness of intervening tissue in living body
JP3310782B2 (en) * 1994-07-14 2002-08-05 株式会社日立製作所 Imaging device for spatial distribution of absorption substance concentration
JP3359756B2 (en) * 1994-10-06 2002-12-24 株式会社日立製作所 Biological light measurement device
JP2003194714A (en) * 2001-12-28 2003-07-09 Omega Wave Kk Measuring apparatus for blood amount in living-body tissue
JP3588880B2 (en) * 1995-11-17 2004-11-17 株式会社日立製作所 Biological light measurement device
JP2005230096A (en) * 2004-02-17 2005-09-02 Shimadzu Corp Measuring method for light measuring apparatus, and standard for measuring deviation among channels
JP2005328933A (en) * 2004-05-18 2005-12-02 Shimadzu Corp Transcranial brain function measuring apparatus
WO2006009178A1 (en) * 2004-07-20 2006-01-26 Toshinori Kato Biofunction diagnosis device, biofunction diagnosis method, bioprobe, bioprobe wearing tool, bioprobe support tool, and bioprobe wearing assisting tool
JP2006075354A (en) * 2004-09-09 2006-03-23 Chunichi Denshi Co Ltd Tissue oxygen saturation measuring device
WO2007012931A2 (en) * 2005-03-14 2007-02-01 Peter Bernreuter Improved in vivo blood spectrometry
JP2007111101A (en) * 2005-10-18 2007-05-10 National Institute Of Advanced Industrial & Technology Baseline stabilization method using wavelength difference for biological light measuring method using near-infrared light

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500566A (en) * 1993-11-30 1997-01-21 ベル コミュニケーションズ リサーチ,インコーポレイテッド Imaging system and method using direct reconstruction of scattered radiation
JP3310782B2 (en) * 1994-07-14 2002-08-05 株式会社日立製作所 Imaging device for spatial distribution of absorption substance concentration
JP3359756B2 (en) * 1994-10-06 2002-12-24 株式会社日立製作所 Biological light measurement device
JPH0998972A (en) * 1995-10-06 1997-04-15 Hitachi Ltd Measurement equipment of light from living body and image generation method
JP3588880B2 (en) * 1995-11-17 2004-11-17 株式会社日立製作所 Biological light measurement device
JP3035791B2 (en) * 1996-11-26 2000-04-24 オムロン株式会社 Method and apparatus for measuring light-absorbing substance concentration in living tissue and thickness of intervening tissue in living body
JPH11299760A (en) * 1998-04-17 1999-11-02 Mitsubishi Electric Corp Brain activity measuring device
JP2003194714A (en) * 2001-12-28 2003-07-09 Omega Wave Kk Measuring apparatus for blood amount in living-body tissue
JP2005230096A (en) * 2004-02-17 2005-09-02 Shimadzu Corp Measuring method for light measuring apparatus, and standard for measuring deviation among channels
JP2005328933A (en) * 2004-05-18 2005-12-02 Shimadzu Corp Transcranial brain function measuring apparatus
WO2006009178A1 (en) * 2004-07-20 2006-01-26 Toshinori Kato Biofunction diagnosis device, biofunction diagnosis method, bioprobe, bioprobe wearing tool, bioprobe support tool, and bioprobe wearing assisting tool
JP2006075354A (en) * 2004-09-09 2006-03-23 Chunichi Denshi Co Ltd Tissue oxygen saturation measuring device
WO2007012931A2 (en) * 2005-03-14 2007-02-01 Peter Bernreuter Improved in vivo blood spectrometry
JP2007111101A (en) * 2005-10-18 2007-05-10 National Institute Of Advanced Industrial & Technology Baseline stabilization method using wavelength difference for biological light measuring method using near-infrared light

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012067634; 山田亨・梅山伸二: '"近赤外分光脳機能計測法における波長差分法を用いたベースライン安定化の試み"' 生体医工学 第43巻、第4号, 20051210, p.530-537, 日本生体医工学会 *
JPN6012067636; 山田亨・梅山伸二: '"近赤外分光脳機能計測法における波長差分法を用いたベースライン安定化の試み"' 医用電子と生体工学 日本生体医工学会大会論文集 第44巻、第45回, 20060515, p.425, 社団法人日本生体医工学会 *
JPN6012067637; Eiji Okada and David T. Delpy: '"Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the' APPLIED OPTICS 第42巻、第16号, 20030601, p.2906-2914, Optical Society of America *
JPN6012067641; Hellmuth Obrig and Arno Villringer: '"Beyond the Visible - Imaging the Human Brain With Light"' Journal of Cerebral Blood Flow & Metabolism 第23巻、第1号, 2003, p.1-18, The International Society for Cerebral Blood Flow *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011010714A (en) * 2009-06-30 2011-01-20 Hitachi Ltd Optical biometric device, game system and biosignal generation method
JP2012239668A (en) * 2011-05-20 2012-12-10 National Institute Of Advanced Industrial Science & Technology Biological light measuring apparatus, program and biological light measuring method
US9675260B2 (en) 2012-04-25 2017-06-13 Shimadzu Corporation Photobiological measurement apparatus
US10052040B2 (en) 2012-04-25 2018-08-21 Shimadzu Corporation Photobiological measurement apparatus
WO2013168294A1 (en) * 2012-05-11 2013-11-14 株式会社島津製作所 Optical biometric system and method for using same
CN104284629A (en) * 2012-05-11 2015-01-14 株式会社岛津制作所 Optical biometric system and method for using same
JP5790877B2 (en) * 2012-05-11 2015-10-07 株式会社島津製作所 Photobiological measurement system and method of using the same
US9895098B2 (en) 2012-05-11 2018-02-20 Shimadzu Corporation Optical biometric system and method for using same
CN104507396A (en) * 2012-07-27 2015-04-08 株式会社岛津制作所 Optical device for living body measurement and method of analysis using same
US11096609B2 (en) 2015-01-07 2021-08-24 National Institute Of Advanced Industrial Science And Technology Brain function measurement device and brain function measurement method
WO2018167854A1 (en) * 2017-03-14 2018-09-20 株式会社日立ハイテクノロジーズ Analysis apparatus and analysis program
JPWO2018167854A1 (en) * 2017-03-14 2019-11-07 株式会社日立ハイテクノロジーズ Analysis device, analysis program

Also Published As

Publication number Publication date
JP5182856B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
Winder et al. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state
Yi et al. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation
Franceschini et al. Noninvasive measurement of neuronal activity with near-infrared optical imaging
Saager et al. Two-detector corrected near infrared spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS
Uludağ et al. Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head
JP5182856B2 (en) Optical measuring device
US8082015B2 (en) Optical measurement of tissue blood flow, hemodynamics and oxygenation
US9724489B2 (en) Self-referencing optical measurement for breast cancer detection
Franceschini et al. Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near‐infrared optical imaging
JP4702107B2 (en) Biological light measurement device
US10342488B2 (en) Probes and pressure modulation algorithms for reducing extratissue contamination in hemodynamic measurement
Desjardins et al. Preliminary investigation of multispectral retinal tissue oximetry mapping using a hyperspectral retinal camera
Pollonini Optical properties and molar hemoglobin concentration of skeletal muscles measured in vivo with wearable near infrared spectroscopy
YAMADA Continuous wave functional near-infrared spectroscopy: various signal components and appropriate management
JP4470681B2 (en) Optical biological measurement device
Wang et al. Diffuse optical multipatch technique for tissue oxygenation monitoring: clinical study in intensive care unit
Cortese et al. In vivo characterization of the optical and hemodynamic properties of the human sternocleidomastoid muscle through ultrasound-guided hybrid near-infrared spectroscopies
JP2005160783A (en) Method for noninvasive brain activity measurement
Kikuchi et al. Prefrontal cerebral activity during a simple “rock, paper, scissors” task measured by the noninvasive near-infrared spectroscopy method
Pifferi et al. Initial non-invasive in vivo sensing of the lung using time domain diffuse optics
Li et al. Assessing working memory in real-life situations with functional near-infrared spectroscopy
Khan et al. Functional near infrared brain imaging with a brush-fiber optode to improve optical contact on subjects with dense hair
Niu et al. Investigation of cerebral hemodynamic changes during repeated sit-stand maneuver using functional near-infrared spectroscopy
Liu Exploring in vivo Optical Imaging Oximetry by Visible Light Optical Coherence Tomography
Haxel et al. Soft shoulder massage amplifies glucose-induced increases in medial prefrontal activity: a pilot study employing a neurovisceral integration perspective

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5182856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250