JP3035791B2 - Method and apparatus for measuring light-absorbing substance concentration in living tissue and thickness of intervening tissue in living body - Google Patents

Method and apparatus for measuring light-absorbing substance concentration in living tissue and thickness of intervening tissue in living body

Info

Publication number
JP3035791B2
JP3035791B2 JP10524514A JP52451498A JP3035791B2 JP 3035791 B2 JP3035791 B2 JP 3035791B2 JP 10524514 A JP10524514 A JP 10524514A JP 52451498 A JP52451498 A JP 52451498A JP 3035791 B2 JP3035791 B2 JP 3035791B2
Authority
JP
Japan
Prior art keywords
light
thickness
measuring
sensor
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10524514A
Other languages
Japanese (ja)
Inventor
克之 山本
雅嗣 庭山
利一 志賀
一久 田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP10524514A priority Critical patent/JP3035791B2/en
Priority claimed from PCT/JP1997/004301 external-priority patent/WO1998023916A1/en
Application granted granted Critical
Publication of JP3035791B2 publication Critical patent/JP3035791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】 技術分野 この発明は、近赤外光を用いて非侵襲的に生体組織内
のヘモグロビンのような吸光物質の濃度を計測する方
法、および生体表面と計測対象の吸光物質が主として存
在する生体組織との間に介在する組織の厚みを計測する
方法、ならびにその計測装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method for non-invasively measuring the concentration of a light-absorbing substance such as hemoglobin in a living tissue using near-infrared light, and a living body surface and a light-absorbing substance to be measured. The present invention relates to a method for measuring the thickness of a tissue interposed between a living tissue and a living tissue mainly present, and a measuring device therefor.

背景技術 たとえば近赤外光を用いた組織酸素計測装置は、生体
表面から近赤外光を入射させ、生体組織からの反射光を
受光し、その受光量に基づいて組織酸素を計測するもの
である。たとえば、特表平4−502563号公報には、運動
中の検査対象の組織代謝状態を近赤外光により計測す
る、使用者に着用可能なヘモグロビン計が記載されてい
る。このような装置は、脳や筋肉の組織代謝の時間変化
を知る上できわめて有用であり、患者モニタ、救急医
療、リハビリテーション医学およびスポーツ医学などで
期待されている。
BACKGROUND ART For example, a tissue oxygen measurement device using near-infrared light emits near-infrared light from the surface of a living body, receives reflected light from living tissue, and measures tissue oxygen based on the amount of received light. is there. For example, Japanese Patent Publication No. 4-502563 discloses a hemoglobin meter that can be worn by a user, which measures the metabolic state of a test subject during exercise by near-infrared light. Such a device is extremely useful for knowing the temporal change in tissue metabolism of the brain and muscle, and is expected in patient monitoring, emergency medicine, rehabilitation medicine, sports medicine, and the like.

ところで、たとえば筋肉組織内の酸化ヘモグロビンの
ような吸光物質を生体表面から近赤外光によって計測す
る場合、筋肉組織に比べ、介在組織としての皮下脂肪層
は血液がほとんど存在しないため光吸収が一桁程度少な
く、近赤外光をよく透過する。しかしながら、従来の装
置では、たとえば筋肉組織と皮下脂肪層とを区別して筋
肉組織の酸素を計測しておらず、脂肪層のような介在組
織の影響を考慮しない測定は、近赤外光を用いた組織酸
素計測が普及するに伴い、大きな問題となる。
By the way, when a light-absorbing substance such as oxyhemoglobin in a muscle tissue is measured from the surface of a living body by near-infrared light, the subcutaneous fat layer as an intervening tissue has less light absorption than a muscle tissue because almost no blood is present. It is about an order of magnitude smaller and transmits near infrared light well. However, in the conventional apparatus, for example, oxygen in muscle tissue is not measured by distinguishing between muscle tissue and subcutaneous fat layer, and measurement without considering the influence of intervening tissue such as fat layer uses near infrared light. With the widespread use of tissue oxygen measurement, it becomes a major problem.

つまり、たとえば筋肉組織を計測する場合、生体表面
と筋肉組織との間に皮下脂肪層が介在していると、脂肪
層を含めた計測となり、脂肪層の厚みの影響を受け、計
測感度が大きく変化してしまう。これは、脳組織を計測
する場合も同様で、頭表面と脳組織との間には頭蓋骨が
存在し、さらに頭蓋骨と脳組織との間には脳脊髄液が存
在するため、これらの介在組織の厚みを含めた計測にな
り、計測感度が大きく変化する。そのため、各個人間で
計測値の比較ができず、計測値は相対値としてその変化
速度や変化パターンの測定に使われるのみで、絶対値と
しての評価ができないため、診断には使われていない。
That is, for example, when measuring muscle tissue, if a subcutaneous fat layer is interposed between the surface of the living body and the muscle tissue, the measurement includes the fat layer, and the measurement sensitivity is greatly affected by the thickness of the fat layer. Will change. This is also the case when measuring brain tissue.The skull exists between the head surface and the brain tissue, and the cerebrospinal fluid exists between the skull and the brain tissue. And the measurement sensitivity greatly changes. For this reason, measurement values cannot be compared between individuals, and the measurement values are only used as relative values for measuring the change speed and the change pattern, but cannot be evaluated as absolute values, and thus are not used for diagnosis.

また、上記連続光方式とは異なり、時間分解法などの
手法により酸素飽和度としての絶対値を計測する方法も
開発されているが、これも同様に生体表面からの計測で
あるため、脂肪層のような介在組織が存在すると、計測
値に大きく影響する。このような問題点は、連続光方
式、時間分解法などの方式によらず、それらに共通した
大きな問題である。
Unlike the continuous light method, a method of measuring the absolute value of oxygen saturation by a method such as a time-resolved method has also been developed. The presence of such an intervening tissue greatly affects the measured values. Such a problem is a major problem common to both systems, such as a continuous light system and a time-resolved system.

この発明は、そのような従来の問題点に着目してなさ
れたものであり、生体表面と計測対象の組織との間の介
在組織の厚みの影響を受けずに吸光物質の濃度を計測す
ることができる生体組織内の吸光物質濃度の計測方法お
よび計測装置を提供することを目的としている。
The present invention has been made in view of such a conventional problem, and it is intended to measure the concentration of a light absorbing substance without being affected by the thickness of an intervening tissue between a living body surface and a tissue to be measured. It is an object of the present invention to provide a method and a device for measuring the concentration of a light-absorbing substance in a living tissue, which can be performed.

この発明の他の目的は、生体表面と計測対象の吸光物
質が主として存在する生体組織との間の介在組織の厚み
を測定することができる生体の介在組織厚の計測方法お
よび計測装置を提供することである。
Another object of the present invention is to provide a method and a device for measuring the thickness of an intervening tissue in a living body, which can measure the thickness of the intervening tissue between the surface of the living body and the living tissue mainly containing the light-absorbing substance to be measured. That is.

発明の開示 上記目的を達成するため、この発明のある局面に従う
と計測方法は、送受光間距離の異なる複数のセンサによ
り物質表面における吸光度変化を計測し、得られた吸光
度変化の比率に基づいて、吸光物質層の厚みを算出する
ことを特徴とする。
DISCLOSURE OF THE INVENTION In order to achieve the above object, according to an aspect of the present invention, a measurement method measures an absorbance change on a material surface by a plurality of sensors having different distances between transmission and reception, and based on a ratio of the obtained absorbance change. And calculating the thickness of the light absorbing substance layer.

この発明の他の局面に従うと、計測方法は、送受光間
距離の異なる複数のセンサまたは1つのセンサにより生
体組織中の吸光度変化を計測し、得られた吸光度変化の
比率に基づいて、吸光物質層の厚みを算出することを特
徴とする。
According to another aspect of the present invention, a measurement method measures a change in absorbance in a biological tissue with a plurality of sensors or a single sensor having different distances between transmission and reception, and based on a ratio of the obtained change in absorbance, a light-absorbing substance. It is characterized in that the thickness of the layer is calculated.

この発明の他の局面に従うと、計測方法は、送受光間
距離の異なる複数のセンサまたは1つのセンサにより生
体表面における吸光度変化を計測し、得られた吸光度変
化の比率に基づいて、生体内脂肪層の厚みを算出するこ
とを特徴とする。
According to another aspect of the present invention, a measurement method measures a change in absorbance on the surface of a living body with a plurality of sensors or a single sensor having different distances between sending and receiving light, and based on a ratio of the obtained absorbance change, a method for measuring fat in vivo. It is characterized in that the thickness of the layer is calculated.

この発明の他の局面に従うと、計測方法は、送受光間
距離の異なる複数のセンサまたは1つのセンサにより、
生体に対して発光光量を直線的に変化させたときの受光
光量の直線的変化を計測し、得られた直線的変化に係る
比例係数を前記センサの既知の送受光間距離により求
め、求めた比例係数に基づいて、吸光物質層の厚みを算
出することを特徴とする。
According to another aspect of the present invention, the measurement method includes a plurality of sensors or a single sensor having different transmission / reception distances.
A linear change in the amount of received light when the amount of emitted light was changed linearly with respect to the living body was measured, and a proportional coefficient related to the obtained linear change was obtained from the known transmission / reception distance of the sensor. The thickness of the light-absorbing substance layer is calculated based on the proportional coefficient.

この発明の他の局面に従うと、吸光物質層厚の計測装
置は、送受光間距離の異なる複数のセンサまたは1つの
センサと、このセンサにより吸光物質層の厚みに対する
吸光度変化を計測する吸光度変化計測手段と、得られた
吸光度変化の比率に基づいて吸光物質層の厚みを算出す
る吸光物質層厚算出手段とを備えることを特徴とする。
According to another aspect of the present invention, a light-absorbing material layer thickness measuring device includes a plurality of sensors or one sensor having different distances between transmission and reception, and an absorbance change measuring device that measures an absorbance change with respect to the thickness of the light-absorbing material layer using the sensor. Means, and a light-absorbing material layer thickness calculating means for calculating the thickness of the light-absorbing material layer based on the obtained ratio of the change in absorbance.

この発明の他の局面に従うと、生体の脂肪層厚の計測
装置は、送受光間距離の異なる複数のセンサまたは1つ
のセンサと、このセンサにより生体表面における吸光度
変化を計測する吸光度変化計測手段と、得られた吸光度
変化の比率に基づいて脂肪層の厚みを算出する脂肪層厚
算出手段とを備える。
According to another aspect of the present invention, an apparatus for measuring a fat layer thickness of a living body includes a plurality of sensors or one sensor having different distances between transmission and reception, and an absorbance change measuring unit configured to measure an absorbance change on the surface of the living body with the sensor. And a fat layer thickness calculating means for calculating the thickness of the fat layer based on the obtained ratio of the change in absorbance.

この発明の他の局面に従うと、生体の介在組織厚の計
測装置は、送受光間距離の異なる複数のセンサまたは1
つのセンサと、このセンサにより生体に対して発光光量
を直線的に変化させたときの受光光量の直線的変化を計
測する受光光量計測手段と、得られた直線的変化に係る
比例係数を前記センサの既知の送受光間距離により求
め、求めた比例係数に基づいて、測定対象の吸光物質が
主として存在する生体組織と生体表面との間の介在組織
の厚みを算出する介在組織厚算出手段とを備えることを
特徴とする。
According to another aspect of the present invention, an apparatus for measuring the thickness of an intervening tissue of a living body includes a plurality of sensors or ones having different distances between transmission and reception.
Sensor, light-receiving-amount measuring means for measuring a linear change in the received light amount when the light-emitting amount is linearly changed with respect to the living body by the sensor, and a sensor for calculating a proportional coefficient relating to the obtained linear change. The intervening tissue thickness calculating means for calculating the thickness of the intervening tissue between the living tissue where the light-absorbing substance to be measured mainly exists and the living body surface, based on the known transmission-reception distance, and based on the obtained proportionality coefficient. It is characterized by having.

さらに好ましくは、前記センサは、波長の異なる複数
波長発光素子を有することを特徴とする。
More preferably, the sensor has a plurality of light emitting elements having different wavelengths.

さらに好ましくは、計測装置は、センサの投光素子ま
たは受光素子を着脱自在に保持する複数の装着部を有
し、この複数の装着部によって送受光間距離を異ならせ
るプローブをを有する。
More preferably, the measuring device has a plurality of mounting portions for detachably holding the light emitting element or the light receiving element of the sensor, and has a probe for changing the distance between transmission and reception by the plurality of mounting portions.

この発明の他の局面に従うと、生体組織内の吸光物質
濃度の計測方法は、送受光間距離の異なる複数のセンサ
または1つのセンサにより、測定対象の吸光物質が主と
して存在する生体組織と生体表面との間の介在組織の厚
みを測定し、介在組織の厚みに対する各送受光間距離で
の測定感度の変化を求め、その測定感度の変化に基づい
て介在組織の厚みと測定感度の補正係数との関係を求
め、この関係から前記センサの既知の送受光間距離と計
測対象部位での介在組織の厚みとにより補正係数を求
め、求めた補正係数に基づいて介在組織の影響がないよ
うに計測値を補正することを特徴とする。
According to another aspect of the present invention, a method of measuring the concentration of a light-absorbing substance in a living tissue is performed by using a plurality of sensors or a single sensor having different distances between transmission and reception by using a biological tissue and a living body surface where the light-absorbing substance to be measured mainly exists. Measure the thickness of the intervening tissue between, determine the change in measurement sensitivity at each transmission and reception distance to the thickness of the intervening tissue, and based on the change in the measurement sensitivity, the thickness of the intervening tissue and a correction coefficient for the measurement sensitivity and And a correction coefficient is calculated from the relationship between the known inter-transmission / reception distance of the sensor and the thickness of the intervening tissue at the measurement target site, and measurement is performed based on the obtained correction coefficient so as not to be affected by the intervening tissue. The value is corrected.

さらに好ましくは、介在組織の厚みは、予め介在組織
の厚みに対する受光量を求めるとともにそのときの送光
量を設定し、計測時にその送光量を生体に照射したとき
の受光量に基づいて算出することを特徴とする。
More preferably, the thickness of the intervening tissue is determined in advance based on the amount of received light with respect to the thickness of the intervening tissue and the amount of transmitted light at that time is set, and the amount of transmitted light is measured based on the amount of received light when the living body is irradiated. It is characterized by.

この発明の他の局面に従うと、吸光物質濃度の計測装
置は、送受光間距離の異なる複数のセンサまたは1つの
センサと、このセンサにより測定対象の吸光物質が主と
して存在する生体組織と生体表面との間の介在組織の厚
みを測定する介在組織厚測定手段と、介在組織の厚みに
対する各送受光間距離での測定感度の変化を求める測定
感度算出手段と、その測定感度の変化に基づいて介在組
織の厚みと測定感度の補正係数との関係を求める補正係
数算出手段と、その関係から前記センサの既知の送受光
間距離と計測対象部位での介在組織の厚みとにより補正
係数を求め、求めた補正係数に基づいて介在組織の影響
がないように計測値を補正する計測値補正手段とを備え
る。
According to another aspect of the present invention, a light-absorbing substance concentration measuring device includes a plurality of sensors or one sensor having different distances between transmission and reception, and a living tissue and a living body surface where the light-absorbing substance to be measured is mainly present by the sensor. Intervening tissue thickness measuring means for measuring the thickness of the intervening tissue, measuring sensitivity calculating means for determining a change in the measuring sensitivity at each distance between the transmitting and receiving light with respect to the intervening tissue thickness, and interposing based on the change in the measuring sensitivity. Correction coefficient calculating means for determining the relationship between the thickness of the tissue and the correction coefficient for the measurement sensitivity, and determining the correction coefficient from the relationship between the known inter-transmission / reception distance of the sensor and the thickness of the intervening tissue at the measurement target site from the relationship; Measurement value correction means for correcting the measurement value based on the corrected coefficient so as not to be affected by the intervening tissue.

さらに好ましくは介在組織厚測定手段は、予め介在組
織の厚みに対する受光量を求めるとともにそのときの送
光量を設定し、計測時にその送光量を生体に照射したと
きの受光量に基づいて算出するものであることを特徴と
する。
More preferably, the intervening tissue thickness measuring means obtains the amount of received light with respect to the thickness of the intervening tissue in advance, sets the amount of transmitted light at that time, and calculates the amount of transmitted light based on the amount of received light when the living body is irradiated with the amount of transmitted light during measurement. It is characterized by being.

さらに好ましくはセンサは、波長の異なる近赤外複数
波長発光素子を有することを特徴とする。
More preferably, the sensor has near-infrared multi-wavelength light emitting elements having different wavelengths.

さらに好ましくは、センサの送受光間距離は20mm、30
mm、40mmであることを特徴とする。
More preferably, the distance between the sending and receiving of the sensor is 20 mm, 30
mm, 40 mm.

図面の簡単な説明 図1は、本発明の第1の実施の形態に係る計測装置の
構成を示すブロック図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of a measuring device according to a first embodiment of the present invention.

図2A〜2Cは、自動車エルゴメータによる負荷と無負荷
の運動を交互に繰返したときの酸素(酸化ヘモグロビ
ン)の変化を示す図である。
2A to 2C are diagrams showing changes in oxygen (oxyhemoglobin) when a load and a no-load exercise by an automobile ergometer are alternately repeated.

図3は、各送受光間距離(20、30、40mm)での脂肪層
の厚みに対する酸素(酸化ヘモグロビン)の変化を示す
図である。
FIG. 3 is a diagram showing a change in oxygen (oxygenated hemoglobin) with respect to the thickness of the fat layer at each transmission / reception distance (20, 30, 40 mm).

図4は、各送受光間距離(20、30、40mm)での脂肪層
の厚みに対する吸光度変化を示す図である 図5は、各送受光間距離(20、30、40mm)での脂肪層
の厚みと補正係数との関係を示す図である。
FIG. 4 is a diagram showing a change in absorbance with respect to the thickness of the fat layer at each inter-transmission / reception distance (20, 30, 40 mm). FIG. 5 is a diagram illustrating the fat layer at each inter-transmission / reception distance (20, 30, 40 mm). FIG. 6 is a diagram showing a relationship between the thickness of the image and the correction coefficient.

図6は、各送受光間距離(20、30、40mm)での脂肪層
の厚みに対する受光電流値の変化を示す図である。
FIG. 6 is a diagram showing a change in the received light current value with respect to the thickness of the fat layer at each of the inter-transmission / reception distances (20, 30, 40 mm).

図7は、各送受光間距離(20、30、40mm)での脂肪層
の厚みに対する受光強度の変化を示す図である。
FIG. 7 is a diagram showing a change in received light intensity with respect to the thickness of the fat layer at each distance between transmission and reception (20, 30, 40 mm).

図8は、本発明の第2の実施の形態における計測方法
の原理を説明するための、脂肪層の厚みと吸光度変化と
の関係を示す図である。
FIG. 8 is a diagram for explaining the principle of the measurement method according to the second embodiment of the present invention, showing the relationship between the thickness of the fat layer and the change in absorbance.

図9Aおよび9Bは、本発明の第2の実施の形態における
計測方法の原理を説明するための、発光光量と受光光量
との関係を示す図である。
9A and 9B are diagrams illustrating the relationship between the amount of emitted light and the amount of received light for explaining the principle of the measurement method according to the second embodiment of the present invention.

図10は、本発明の第2の実施の形態の計測方法の変形
例を説明するための、脂肪層の厚みと各送受光間距離で
の傾きのlogとの関係を示す図である。
FIG. 10 is a diagram illustrating the relationship between the thickness of the fat layer and the log of the slope at each distance between light transmission and reception for describing a modification of the measurement method according to the second embodiment of the present invention.

図11A〜11Cは、本発明の第3の実施の形態におけるプ
ローブの構成を示す外観図である。
11A to 11C are external views showing the configuration of a probe according to the third embodiment of the present invention.

図12A〜12Cは、投光部110と受光部112との間の距離が
10mmであるプローブの外観図である。
12A to 12C show that the distance between the light emitting unit 110 and the light receiving unit 112 is different.
It is an external view of the probe which is 10 mm.

図13A〜13Cは、投光部110と受光部112との間の距離が
20mmであるプローブの外観図である。
13A to 13C show that the distance between the light emitting unit 110 and the light receiving unit 112 is different.
It is an external view of the probe which is 20 mm.

図14A〜14Cは、投光部110と受光部112との間の距離が
30mmであるプローブの外観図である。
14A to 14C show that the distance between the light emitting unit 110 and the light receiving unit 112 is different.
It is an external view of the probe which is 30 mm.

図15A〜15Cは、投光部110と受光部112との間の距離が
40mmであるプローブの外観図である。
15A to 15C show that the distance between the light emitting unit 110 and the light receiving unit 112 is different.
It is an external view of the probe which is 40 mm.

図16は、本発明の第4の実施の形態における測定装置
の構成を示すブロック図である。
FIG. 16 is a block diagram illustrating a configuration of a measuring device according to the fourth embodiment of the present invention.

発明を実施するための最良の形態 本発明をより詳細に説明するために、添付の図面に従
ってこれを説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the accompanying drawings.

[第1の実施の形態] 図1は本発明の第1の実施の形態における計測装置の
構成を示すブロック図である。
First Embodiment FIG. 1 is a block diagram illustrating a configuration of a measurement device according to a first embodiment of the present invention.

この計測装置は、生体(組織)1の表面に装着される
プローブ10と、プローブ10とケーブルなどで接続された
本体20とで構成される。
This measuring device includes a probe 10 mounted on the surface of a living body (tissue) 1 and a main body 20 connected to the probe 10 by a cable or the like.

プローブ10は、生体1に光を照射する光源としての発
光素子11と、生体1からの反射光を受光する受光素子と
しての3つのフォトダイオード(PD)12,13,14と、各PD
12,13,14の受光信号をS/Nの向上のために低インピーダ
ンス信号に初段増幅するアンプ15,16,17とを有する。
The probe 10 includes a light emitting element 11 as a light source for irradiating the living body 1 with light, three photodiodes (PD) 12, 13, and 14 as light receiving elements for receiving reflected light from the living body 1, and each PD.
It has amplifiers 15, 16, and 17 that amplify the light receiving signals of 12, 13, and 14 to low impedance signals in the first stage in order to improve the S / N.

発光素子11は、ここでは波長の異なる近赤外2波長発
光ダイオード(LED、波長:760nm、840nm)からなり、各
PD12,13,14は、それぞれLED11から20mm、30mm、40mmの
距離をおいて配置されている。これにより、生体1から
の反射光を異なる3つの位置で同時に受光できる。な
お、この実施の形態では、LED11と、PD12〜14とでセン
サが構成されている。
The light-emitting element 11 is composed of near-infrared two-wavelength light-emitting diodes (LEDs, wavelengths: 760 nm and 840 nm) having different wavelengths.
The PDs 12, 13, and 14 are arranged at a distance of 20 mm, 30 mm, and 40 mm from the LED 11, respectively. Thereby, the reflected light from the living body 1 can be simultaneously received at three different positions. In this embodiment, a sensor is constituted by the LED 11 and the PDs 12 to 14.

本体20は、LED11を駆動するLEDドライバ21と、各PD1
2,13,14からの信号を切換えるマルチプレクサ22と、切
換えられた信号を増幅するアンプ23と、CPU24とを有す
る。さらに、本体20は、図1には示されていないが、LC
D、メモリカードインタフェース、電源などを有する。
アンプ23は、初段増幅された信号を7段階のゲインで20
〜2000倍に増幅する。
The main body 20 includes an LED driver 21 for driving the LED 11 and each PD 1
It has a multiplexer 22 for switching signals from 2, 13, and 14, an amplifier 23 for amplifying the switched signals, and a CPU 24. Further, the body 20 is not shown in FIG.
D, memory card interface, power supply, etc.
The amplifier 23 converts the signal amplified at the first stage into a 20-
Amplify up to 2000 times.

CPU24は、LED11が各波長で交互に点灯を繰返すように
発光のタイミングを制御し、D/Aコンバータを介して光
量も調整している。またCPU24は、センサにより測定対
象の吸光物質が主として存在する生体組織と生体表面と
の間の介在組織の厚みを測定する介在組織厚測定機能、
介在組織の厚みに対する各送受光間距離での測定感度の
変化を求める測定感度算出機能、その測定感度の変化に
基づいて介在組織の厚みと測定感度の補正係数との関係
を求める補正係数算出機能、その関係からセンサの既知
の送受光間距離と計測対象部位での介在組織の厚みとに
より補正係数を求め、求めた補正係数に基づいて介在組
織の影響がないように計測値を補正する計測値補正機能
などを有する。LCDは、計測状態、条件を確認できるよ
うに計測に必要な情報を表示する。
The CPU 24 controls the timing of light emission so that the LED 11 alternately repeats lighting at each wavelength, and also adjusts the amount of light via a D / A converter. Also, the CPU 24 has an intervening tissue thickness measurement function of measuring the thickness of the intervening tissue between the living tissue and the living body surface where the light-absorbing substance to be measured mainly exists by the sensor,
A measurement sensitivity calculation function that calculates the change in measurement sensitivity at each inter-transmit / receive distance with respect to the thickness of the intervening tissue, and a correction coefficient calculation function that calculates the relationship between the thickness of the intervening tissue and the correction coefficient for the measurement sensitivity based on the change in the measurement sensitivity From the relationship, a correction coefficient is calculated based on the known distance between the transmitting and receiving light of the sensor and the thickness of the intervening tissue at the measurement target site, and the measurement is performed based on the obtained correction coefficient so that the measured value is corrected so as not to be affected by the intervening tissue. It has a value correction function and the like. The LCD displays information necessary for measurement so that the measurement state and conditions can be checked.

プローブ10と本体20とで構成される計測装置は、単独
で使用してもよいが(このような使用をオフライン使用
という)、図1に示すように、本体20をコンピュータ
(パソコン)30にRS−232Cなどのシリアル入出力線を介
して接続し、さらにパソコン30にCRT31を接続して使用
してもよい(このような使用をオンライン使用とい
う)。
The measuring device composed of the probe 10 and the main body 20 may be used alone (this kind of use is called off-line use). However, as shown in FIG. A connection may be made via a serial input / output line such as −232C, and a CRT 31 may be further connected to the personal computer 30 (this use is called online use).

この場合、本体20の計測データは、オンライン使用時
には、RS−232Cを介してパソコン30に取込まれ、吸光物
質(酸化ヘモグロビンなど)の濃度の変化、血液量変
化、介在組織の厚みなどとしてリアルタイムで表示さ
れ、オフライン使用時には、本体20に差込まれたメモリ
カードに蓄積される。
In this case, the measurement data of the main body 20 is taken into the personal computer 30 via the RS-232C at the time of online use, and the real-time data such as a change in the concentration of the light-absorbing substance (oxyhemoglobin, etc.), a change in the blood volume, the thickness of the intervening tissue, etc. Are stored in the memory card inserted into the main unit 20 when the device is used offline.

次に、上記のように構成された計測装置を用いた計測
値の補正方法について説明する。
Next, a method of correcting a measured value using the measuring device configured as described above will be described.

まず、図1に示す計測装置を用いて、自動車エルゴメ
ータによる120Wの負荷と無負荷(空漕ぎ)の運動を30秒
ごとに繰返し、その運動中の大腿部外側広筋の酸素変化
量を計測した結果を図2A〜2Cに示す。
First, using a measuring device shown in Fig. 1, a 120W load and no load (empty row) exercise by a car ergometer is repeated every 30 seconds, and the amount of oxygen change of the thigh outside wide muscle during the exercise is measured. The results obtained are shown in FIGS.

ここでは、生体組織内の酸化ヘモグロビン(HbO2)濃
度を測定しており、図2Aは送受光間距離が20mmの場合、
図2Bは30mmの場合、図2Cは40mmの場合である。図2A〜2C
から、送受光間距離が長くなると、酸素変化の計測感度
が増大することがわかる。これは、送受光間距離が長く
なるのに伴い、平均光路長が長くなり、より深くの組織
を計測できるようになるからである。
Here, the oxyhemoglobin (HbO 2 ) concentration in the living tissue is measured, and FIG. 2A shows the case where the distance between sending and receiving is 20 mm.
FIG. 2B shows a case of 30 mm, and FIG. 2C shows a case of 40 mm. Figures 2A-2C
From this, it can be seen that the longer the distance between transmission and reception, the greater the measurement sensitivity of oxygen change. This is because the average optical path length increases with an increase in the distance between light transmission and reception, so that a deeper tissue can be measured.

この各送受光間距離での酸素濃度変化幅の平均値を、
13名の被験者による計測値をもとにプロットした結果を
図3(脂肪層の厚みと酸素濃度との関係)に示す。ま
た、モンテカルロシミュレーションによる理論計算結果
を図4(脂肪層の厚みと吸光度変化との関係)に示す。
両者の結果は極めてよく合致しており、脂肪層の厚みに
より測定感度が変化すること、すなわち脂肪層が厚くな
ると送受光間距離に関わらず測定感度が大きく減少する
ことがわかる。
The average value of the oxygen concentration change width at each transmission / reception distance is
The result of plotting based on the measured values by 13 subjects is shown in FIG. 3 (relationship between fat layer thickness and oxygen concentration). FIG. 4 (relationship between thickness of fat layer and change in absorbance) shows the result of theoretical calculation by Monte Carlo simulation.
Both results agree very well, and it can be seen that the measurement sensitivity changes depending on the thickness of the fat layer, that is, the measurement sensitivity greatly decreases irrespective of the distance between transmission and reception when the fat layer becomes thicker.

この測定感度を補正するために以下の処理を行なう。
たとえば図4に示されるように、各送受光間距離での脂
肪層の厚みに対する吸光度変化(測定感度)の理論曲線
を用い、この曲線の多項近似式を求める。求めた多項近
似式から、各送受光間距離での脂肪層の厚みが0の場合
の酸素変化に対する比率を求め、得られた比率の逆数を
補正係数とする。
The following processing is performed to correct the measurement sensitivity.
For example, as shown in FIG. 4, using a theoretical curve of a change in absorbance (measurement sensitivity) with respect to the thickness of the fat layer at each distance between transmission and reception, a polynomial approximation formula of this curve is obtained. From the obtained polynomial approximation formula, the ratio to the oxygen change when the thickness of the fat layer is 0 at each transmission / reception distance is obtained, and the reciprocal of the obtained ratio is used as a correction coefficient.

図5は、実用的な脂肪層の厚み範囲(0〜12mm程度)
における各送受光間距離での脂肪層の厚みに対する補正
係数の関係を示す図である。
Fig. 5 shows the thickness range of practical fat layer (about 0 to 12mm)
FIG. 5 is a diagram showing a relationship between a correction coefficient and a thickness of a fat layer at each inter-transmission / reception distance in FIG.

この脂肪層の厚みと補正係数との関係により、送受光
間距離が既知であり、計測対象部位での脂肪層の厚みが
既知であるならば、そのときの補正係数を求めることが
できる。また、求めた補正係数を計測値に乗ずることに
より、脂肪層の厚みが0の場合の計測感度(すなわち計
測値)に補正することができる。たとえば、送受光間距
離が20mmで、脂肪層の厚みが8mmである場合、図5から
補正係数は約4.2となり、この4.2を計測値に乗ずれば、
脂肪層の厚みの影響を受けない計測値を算出することが
できる。
If the distance between transmission and reception is known from the relationship between the thickness of the fat layer and the correction coefficient and the thickness of the fat layer at the measurement target site is known, the correction coefficient at that time can be obtained. Further, by multiplying the measured value by the obtained correction coefficient, it is possible to correct the measurement sensitivity (that is, the measured value) when the thickness of the fat layer is 0. For example, if the distance between the sending and receiving light is 20 mm and the thickness of the fat layer is 8 mm, the correction coefficient is about 4.2 from FIG. 5, and if this 4.2 is multiplied by the measured value,
It is possible to calculate a measurement value that is not affected by the thickness of the fat layer.

一方、脂肪層の厚みと計測感度との関係を示す図3か
ら、脂肪層の厚みがわかり、送受光間距離がわかってい
れば、その測定感度を補正することができる。
On the other hand, from FIG. 3 showing the relationship between the thickness of the fat layer and the measurement sensitivity, the measurement sensitivity can be corrected if the thickness of the fat layer is known and the distance between transmission and reception is known.

上記実施の形態では、補正係数を求めるために既知の
脂肪層の厚みを利用しているが、当該計測装置を使用し
て脂肪層の厚みを算出するには、たとえば次の処理を行
なう。
In the above embodiment, the known fat layer thickness is used to obtain the correction coefficient. However, in order to calculate the fat layer thickness using the measurement device, for example, the following processing is performed.

プローブ11を計測部位に装着した計測状態の計測光量
初期値を各受光素子12,13,14での受光電流値として、脂
肪層の厚みと送受光間距離との関係を求めたグラフを図
6に示す。
FIG. 6 is a graph showing the relationship between the thickness of the fat layer and the distance between light transmission and reception, with the initial value of the measured light amount in the measurement state in which the probe 11 is attached to the measurement site as the light reception current value in each of the light receiving elements 12, 13, and 14. Shown in

また、モンテカルロシミュレーションによる同様の関
係(各送受光間距離での脂肪層の厚みと受光強度との関
係)の理論計算結果を図7に示す。これらによると、両
者ともほぼ同様の結果であることがわかる。
FIG. 7 shows theoretical calculation results of the same relationship (the relationship between the thickness of the fat layer and the intensity of received light at each inter-transmission / reception distance) by Monte Carlo simulation. According to these, it can be seen that both have almost the same results.

そこで、脂肪層の厚みがすべての場合の受光量を予め
求めておき、そのときの送光量を設定しておき、ファン
トムなどによって計測時にその送光量になるようにキャ
リブレーションする。その送光量を生体に照射したとい
の受光量によって、理論計算による図7により求めた下
記の計算式を用い、測定部位での脂肪層の厚みを算出す
ることができる。
Therefore, the amount of received light when the thickness of the fat layer is all is determined in advance, the amount of transmitted light at that time is set, and calibration is performed using a phantom or the like so that the amount of transmitted light is measured at the time of measurement. The thickness of the fat layer at the measurement site can be calculated from the amount of light received when the living body is irradiated with the amount of transmitted light, using the following calculation formula obtained from FIG. 7 based on theoretical calculation.

すなわち、脂肪層の厚みHは、 H={log(I/2200)+1.241}/0.113 (I:送受光間距離40mmにおける発光波長840nmのA/D入力
時、0〜3600程度) で求められる。
That is, the thickness H of the fat layer is calculated as follows: H = {log (I / 2200) +1.241} /0.113 (I: about 0 to 3600 when inputting an A / D with an emission wavelength of 840 nm at a distance between transmission and reception of 40 mm) Can be

なお、上記実施の形態では、脂肪層の厚みは、一例と
して当該計測装置により計測しているが、、超音波法な
どの他の計測法によって求めてもよい。また、上記実施
の形態においては、脂肪層の厚みを測定しているが、そ
の他の介在組織(頭骨、皮膚、脳脊髄液など)も同様に
測定でき、その厚みの影響を受けずに吸光物質濃度を計
測することができる。
In the above embodiment, the thickness of the fat layer is measured by the measuring device as an example, but may be obtained by another measuring method such as an ultrasonic method. In the above embodiment, the thickness of the fat layer is measured. However, other intervening tissues (skull, skin, cerebrospinal fluid, etc.) can be measured in the same manner, and the light absorbing material is not affected by the thickness. The concentration can be measured.

さらに、上記実施の形態では、センサとして1つのLE
Dと3つのPDを使用しているが、反対に3つのLEDと1つ
のPDを使用してもよく、あるいはLEDとPDを1つずつ使
用してもかまわない。しかしながら、送受光間距離の異
なる複数のセンサを用いることにより、計測領域が広が
ることになる。
Further, in the above embodiment, one LE is used as a sensor.
Although D and three PDs are used, conversely, three LEDs and one PD may be used, or one LED and one PD may be used. However, by using a plurality of sensors having different transmission / reception distances, the measurement area is expanded.

また、上記実施の形態においては生体の脂肪層の厚み
を計測することとしたが、生体以外のたとえば食肉など
の厚みを計測することもできる。
Further, in the above-described embodiment, the thickness of the fat layer of the living body is measured, but the thickness of, for example, meat other than the living body can also be measured.

以上説明したように、本実施の形態における生体組織
内の吸光物質濃度の計測方法および計測装置によれば、
いずれも計測対象の生体組織と生体表面との間に介在す
る組織(皮膚、頭蓋骨、皮下脂肪層、脳脊髄液など)の
厚みを除去して吸光物質濃度を計測できるので、下記の
効果を奏する。
As described above, according to the method and the apparatus for measuring the concentration of the light-absorbing substance in the living tissue in the present embodiment,
In any case, the thickness of the intervening tissue (skin, skull, subcutaneous fat layer, cerebrospinal fluid, etc.) between the living tissue to be measured and the surface of the living body can be removed and the concentration of the light-absorbing substance can be measured. .

(1) 計測の個人差を除去し、各個人間で計測値を定
量的に比較することができる。
(1) Individual differences in measurement can be eliminated, and measured values can be quantitatively compared between individuals.

(2) 計測値を絶対値指標とすることができる。(2) The measured value can be used as an absolute value index.

(3) 計測と同時に介在組織の厚みに関する情報を計
測表示することができる。
(3) At the same time as the measurement, information on the thickness of the intervening tissue can be measured and displayed.

(4) 上記(1)〜(3)の効果により、計測時の生
理的意義は大きく、臨床的な診断にも極めて有用であ
る。
(4) Due to the effects of the above (1) to (3), the physiological significance at the time of measurement is large, and it is extremely useful for clinical diagnosis.

[第2の実施の形態] 本発明の第2の実施の形態における計測装置のハード
ウェア構成は、第1の実施の形態と同じであるためここ
での説明を繰返さない。
[Second Embodiment] The hardware configuration of a measuring apparatus according to a second embodiment of the present invention is the same as that of the first embodiment, and thus description thereof will not be repeated.

以下に本実施の形態における計測装置によって生体中
の介在組織(脂肪層)の厚みを計測する原理について説
明する。
Hereinafter, the principle of measuring the thickness of the intervening tissue (fat layer) in the living body by the measuring device according to the present embodiment will be described.

(第1の計測方法) まず、第1の計測方法について説明する。図8は、LE
D11からの距離がそれぞれ異なる各PD12,13,14で得られ
る脂肪層の厚みと、筋肉組織の吸光度が変化した場合の
生体表面で計測される吸光度変化との関係を示すグラフ
である。
(First Measurement Method) First, the first measurement method will be described. Figure 8 shows LE
9 is a graph showing the relationship between the thickness of a fat layer obtained in each of PDs 12, 13, and 14 having different distances from D11 and the change in absorbance measured on the surface of a living body when the absorbance of muscle tissue changes.

このグラフより、脂肪層の厚みにより測定感度が大き
く変化すること、送受光間距離によって測定感度の減少
度合いに差異があることと、各距離での吸光度変化の比
率が異なることとがわかる。ここで、たとえば脂肪層の
厚みが約4mm、7mm、10mmの場合の各距離での吸光度変化
の比率を示すと、図8に示される棒状グラフのようにな
る。この吸光度変化の比率によると、脂肪層の厚みが小
さい場合は、送受光間距離が20mmでの吸光度変化が比較
的大きく、脂肪層の厚みが大きい場合は、送受光間距離
が30mm、40mmでの吸光度変化が比較的大きい。
From this graph, it can be seen that the measurement sensitivity greatly changes depending on the thickness of the fat layer, that the degree of decrease in the measurement sensitivity differs depending on the distance between transmission and reception, and that the ratio of the change in absorbance at each distance differs. Here, for example, when the thickness of the fat layer is about 4 mm, 7 mm, and 10 mm, the ratio of the change in absorbance at each distance is shown in a bar graph shown in FIG. According to the ratio of the change in absorbance, when the thickness of the fat layer is small, the change in absorbance at the distance between transmission and reception of 20 mm is relatively large, and when the thickness of the fat layer is large, the distance between transmission and reception is 30 mm and 40 mm. Has a relatively large absorbance change.

したがって、実測の範囲(脂肪層の厚みが4〜12mm程
度)であれば、各送受光間距離での吸光度変化の比率を
求めることにより、脂肪層の厚みを算出することができ
る。
Therefore, within the range of the actual measurement (the thickness of the fat layer is about 4 to 12 mm), the thickness of the fat layer can be calculated by calculating the ratio of the change in absorbance at each distance between transmission and reception.

ただし、脂肪層の厚みの計測中には、計測中の変動そ
のものを利用することにより脂肪層の厚みを算出できる
が、計測中にあまり変動がない場合や、計測前に当該方
式により脂肪層の厚みを算出する場合には、酸素濃度に
変化を与える必要がある。それにはたとえば、 ・プローブを生体の計測部に強く押しつける。
However, while measuring the thickness of the fat layer, the thickness of the fat layer can be calculated by using the fluctuation itself during the measurement. When calculating the thickness, it is necessary to change the oxygen concentration. To do this, for example:-Press the probe strongly against the measuring part of the living body.

・カフで計測部を阻血する。・ Cuff cuffs the measuring unit.

・計測部を加温する。-Heat the measuring section.

・心臓の高さに対して計測部の高さを上下させる。-Raise or lower the height of the measurement unit with respect to the height of the heart.

などを行なえばよい。And so on.

(第2の計測方法) 次に第2の計測方法について説明する。LED11の発光
光量を直線的に変化させたときの脂肪層の厚みに対する
受光光量は、図9Aに示すように直線的に変化する。それ
によると、脂肪層の厚みが大きい方が受光光量の変化が
大きい。また、LED11の発光光量を直線的に変化させた
ときの送受光間距離に対する受光光量は、図9Bに示すよ
うに直線的に変化する。それによると、送受光間距離が
長い方が受光光量の変化が小さい。つまり、脂肪層の厚
みが大きい場合の直線的変化に係る比例係数は大きく、
送受光間距離が長い場合の直線的変化に係る比例係数は
小さくなる。
(Second Measurement Method) Next, a second measurement method will be described. The amount of received light with respect to the thickness of the fat layer when the amount of light emitted from the LED 11 is changed linearly changes linearly as shown in FIG. 9A. According to this, the larger the thickness of the fat layer, the larger the change in the amount of received light. Further, when the amount of light emitted from the LED 11 is changed linearly, the amount of received light with respect to the distance between transmission and reception changes linearly as shown in FIG. 9B. According to this, the change in the amount of received light is smaller when the distance between transmission and reception is longer. In other words, the proportional coefficient relating to the linear change when the thickness of the fat layer is large is large,
When the distance between transmission and reception is long, the proportional coefficient relating to the linear change becomes small.

したがって、この直線的変化の比例係数を前記既知の
送受光間距離(ここでは20mm、30mm、40mm)により求
め、求めた比例係数に基づいて脂肪層の厚みを算出する
ことができる。
Therefore, the proportional coefficient of this linear change can be obtained from the known distance between transmission and reception (here, 20 mm, 30 mm, and 40 mm), and the thickness of the fat layer can be calculated based on the obtained proportional coefficient.

なお、この計測方法の変形例として、前記異なる送受
光間距離でもそれぞれ同様に係数を求め、各係数の比率
を求めることによっても、脂肪層の厚みを算出すること
ができる。
As a modification of this measuring method, the thickness of the fat layer can also be calculated by calculating the coefficients in the same manner for the different distances between the transmitting and receiving light and calculating the ratio of the coefficients.

たとえばここでは、送受光間距離が20mm、30mm、40mm
であるから、図10に示すよに各距離での長さlogをとる
と、脂肪層の厚みaとbとでは、距離20mmと40mmでの係
数の比率は、それぞれa1/a2、b1/b2となり、脂肪層の厚
みにより係数の比率が異なる。したがって、異なる送受
光間距離での係数の比率を求めれば、脂肪層の厚みを算
出することができる。
For example, here, the distance between sending and receiving light is 20mm, 30mm, 40mm
Therefore, as shown in FIG. 10, taking the length log at each distance, the thickness ratios of the fat layers a and b at the distances of 20 mm and 40 mm are a1 / a2 and b1 / b2, respectively. And the ratio of the coefficients differs depending on the thickness of the fat layer. Therefore, the thickness of the fat layer can be calculated by calculating the ratio of the coefficients at different distances between the transmission and reception.

なお、この第2の計測方法によれば、最初にLED11の
発光光量をキャリブレーションする必要がないという利
点がある。また、異なる数点のデータにより脂肪層の厚
みを算出するので、安定かつ精度よく脂肪層の厚みを算
出でき、光量が飽和してしまうようなことが少なく、算
出可能な脂肪層の厚みの範囲が広くなり、しかも計測に
とって最適な送受光間距離、光量を選択することができ
るという利点もある。
According to the second measurement method, there is an advantage that it is not necessary to calibrate the light emission amount of the LED 11 first. In addition, since the thickness of the fat layer is calculated from several different data, the thickness of the fat layer can be calculated stably and accurately, the amount of light is less likely to be saturated, and the range of the thickness of the fat layer that can be calculated. In addition, there is an advantage that the distance between light transmission and reception and the light amount optimal for measurement can be selected.

なお、上記実施の形態は、介在組織として脂肪層の厚
みを計測する場合について説明したが、脳組織を計測す
る際の頭表面と脳組織との間に介在する頭蓋骨、脳脊髄
液などの場合も同様に計測することができる。
In the above embodiment, the case where the thickness of the fat layer is measured as an intervening tissue has been described, but the case of a skull, cerebrospinal fluid, etc. interposed between the head surface and the brain tissue when measuring the brain tissue Can be similarly measured.

また、上記実施の形態においては、センサとして1つ
のLEDと3つのPDを使用しているが、反対に3つのLEDと
1つのPDを使用してもよく、あるいはLEDとPDを1つず
つ使用しても構わない。しかしながら、送受光間距離の
異なる複数のセンサを用いることにより、計測領域が広
がることになる。
Further, in the above embodiment, one LED and three PDs are used as sensors, but three LEDs and one PD may be used on the contrary, or one LED and one PD may be used. It does not matter. However, by using a plurality of sensors having different transmission / reception distances, the measurement area is expanded.

さらに、本実施の形態においては生体の測定を行なう
こととしたが、生体以外のたとえば食肉などの測定を行
なうこともできる。
Furthermore, in the present embodiment, measurement of a living body is performed, but measurement of meat other than a living body, such as meat, may be performed.

以上説明したように、本実施の形態における生体の介
在組織厚の計測方法および計測装置によれば、いずれも
実際に計測したい生体組織と生体表面との間に介在する
組織(皮膚、頭蓋骨、皮下脂肪層、脳脊髄液など)の厚
みを計測できるので、介在組織自体の厚みがかるだけで
なく、それを利用することで介在組織の厚みの影響を受
けずに計測対象となる生体組織の酸素計測を精度よく行
なうことができる。
As described above, according to the method and the apparatus for measuring the thickness of an intervening tissue in a living body according to the present embodiment, any of the tissues (skin, skull, subcutaneous, Fat layer, cerebrospinal fluid, etc.), so that not only the thickness of the intervening tissue itself can be measured, but also by using it, oxygen measurement of the living tissue to be measured without being affected by the thickness of the intervening tissue Can be performed with high accuracy.

[第3の実施の形態] 図11A〜11Cは、本発明の第3の実施の形態における計
測装置に用いられるプローブの構成を示す図であり、図
11Aはその側面図、図11Bは平面図、図11Cは正面図であ
る。
Third Embodiment FIGS. 11A to 11C are diagrams showing a configuration of a probe used in a measuring apparatus according to a third embodiment of the present invention.
11A is a side view, FIG. 11B is a plan view, and FIG. 11C is a front view.

図を参照して、プローブは、本体と接続するためのコ
ネクタ101と、受光部を着脱自在に取付けるシリコン系
ゴムからなるプローブ基体100と、プローブ基体とコネ
クタとを接続するケーブル102と、プローブ基体100に固
定された投光部110と、受光部を投光部から10〜40mmま
で各10mmごとに間隔を離して着脱自在に取付ける受光部
取付部111a〜111dとから構成される。
Referring to the drawing, the probe includes a connector 101 for connecting to the main body, a probe base 100 made of silicon rubber for detachably attaching a light receiving section, a cable 102 for connecting the probe base and the connector, and a probe base. The light-emitting unit 110 includes a light-emitting unit 110 fixed to 100 and light-receiving unit mounting units 111a to 111d for detachably mounting the light-receiving unit 10 mm to 40 mm from the light-emitting unit at intervals of 10 mm.

投光部110は、この実施の形態においては光量を増加
させるため同じLEDを2つ取付けている。ただし、1つ
のLEDで光量が十分確保できる場合には、1つのLEDをプ
ローブ基体に取付けるようにしてもよい。
In this embodiment, the light emitting unit 110 has two identical LEDs mounted thereon to increase the amount of light. However, if one LED can secure a sufficient amount of light, one LED may be attached to the probe base.

本実施の形態においては、受光部を投光部から10〜40
mmまで各10mmごとに間隔を離して着脱自在としているた
め、受光部を複数用いなくても、2〜4回間隔の異なる
受光部の配置で測定を行ない、その結果を合成すれば上
記第1〜第2の実施の形態と同様の効果を奏することが
できる。
In the present embodiment, the light receiving unit is set at 10 to 40
The distance is set to 10 mm for each 10 mm and is detachable. Therefore, even if a plurality of light receiving units are not used, the measurement is performed with the arrangement of the light receiving units having different intervals of 2 to 4 times, and the results are combined. -The same effects as those of the second embodiment can be obtained.

図12A〜図15Cはそれぞれ、投光部と受光部との間隔が
10mm、20mm、30mm、および40mmである状態を示した図で
ある。
FIGS. 12A to 15C show that the distance between the light emitting unit and the light receiving unit is
It is a figure showing the state which is 10 mm, 20 mm, 30 mm, and 40 mm.

[第4の実施の形態] 図16は、本発明の第4の実施の形態における計測装置
の構成を示すブロック図である。
Fourth Embodiment FIG. 16 is a block diagram illustrating a configuration of a measuring device according to a fourth embodiment of the present invention.

図を参照して、計測装置は大きくは計測装置本体200
とプローブ200とから構成される。
Referring to the figure, the measuring device is roughly a measuring device main body 200.
And a probe 200.

プローブは発光ダイオード(LED)211〜213とフォト
ダイオード(受光素子)210と、フォトダイオードから
の信号を低インピーダンス信号に初段増幅するアンプ21
4とを含む。測定時にはプローブ200は、生体組織1に取
付けられる。
The probe is a light emitting diode (LED) 211-213, a photodiode (light receiving element) 210, and an amplifier 21 that amplifies the signal from the photodiode to a low impedance signal in the first stage.
And 4 inclusive. At the time of measurement, the probe 200 is attached to the living tissue 1.

本体220は、アンプ214からの信号をさらに増幅するア
ンプ221と、発光ダイオードを駆動するためのLEDドライ
バ222〜224と、CPU225とを含む。
The main body 220 includes an amplifier 221 for further amplifying a signal from the amplifier 214, LED drivers 222 to 224 for driving light emitting diodes, and a CPU 225.

本体220は、パーソナルコンピュータ30やCRT31に接続
される。
The main body 220 is connected to the personal computer 30 and the CRT 31.

本実施の形態においては、センサとして1つのフォト
ダイオード210と3つの発光ダイオード211〜213とを用
いている。これにより第1および第2の実施の形態と同
様にフォトダイオードと発光ダイオードとの間の距離を
変化させることができ、生体組織内の吸光物質濃度や生
体の介在組織厚の測定をすることができる。
In the present embodiment, one photodiode 210 and three light emitting diodes 211 to 213 are used as sensors. As a result, the distance between the photodiode and the light emitting diode can be changed in the same manner as in the first and second embodiments, and the concentration of the light absorbing substance in the living tissue and the thickness of the intervening tissue in the living body can be measured. it can.

産業上の利用可能性 以上のようにこの発明によれば、生体組織内の吸光物
質濃度や生体の介在組織厚を正確に測定することができ
るので、この発明は医療機器などの分野において有利に
適用することができる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, the concentration of a light-absorbing substance in a living tissue and the thickness of an intervening tissue in a living body can be accurately measured. Can be applied.

フロントページの続き (72)発明者 田部 一久 京都府京都市右京区花園土堂町10番地 オムロン株式会社内 (56)参考文献 特開 平9−168531(JP,A) 特開 平8−182654(JP,A) 特開 平4−132540(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 102 A61B 5/06 - 5/22 Continuation of the front page (72) Inventor Kazuhisa Tabe 10 Okado Dodocho, Ukyo-ku, Kyoto-shi, Kyoto Omron Corporation (56) References JP-A-9-168531 (JP, A) JP-A-8-182654 (JP) (A) JP-A-4-132540 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/00-11/30 102 A61B 5/06-5/22

Claims (17)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】送受光間距離の異なる複数のセンサにより
物質表面における吸光度変化を計測し、得られた吸光度
変化の比率に基づいて、吸光物質層の厚みを算出するこ
とを特徴とする、吸光物質層厚の計測方法。
1. A method of measuring a change in absorbance on a material surface with a plurality of sensors having different distances between transmission and reception, and calculating a thickness of a light-absorbing material layer based on a ratio of the obtained change in absorbance. Measurement method of material layer thickness.
【請求項2】送受光間距離の異なる複数のセンサまたは
1つのセンサにより生体組織中の吸光度変化を計測し、
得られた吸光度変化の比率に基づいて、吸光物質層の厚
みを算出することを特徴とする、生体の吸光物質層厚の
計測方法。
2. A method of measuring a change in absorbance in a living tissue with a plurality of sensors or a single sensor having different distances between transmission and reception.
A method for measuring the thickness of a light-absorbing substance layer of a living body, comprising calculating the thickness of a light-absorbing substance layer based on the obtained ratio of absorbance change.
【請求項3】送受光間距離の異なる複数のセンサまたは
1つのセンサにより生体表面における吸光度変化を計測
し、得られた吸光度変化の比率に基づいて、生体内脂肪
層の厚みを算出することを特徴とする、生体の脂肪層厚
の計測方法。
3. A method of measuring a change in absorbance on the surface of a living body using a plurality of sensors or a single sensor having different distances between transmission and reception, and calculating a thickness of a fat layer in the living body based on a ratio of the obtained change in absorbance. Characteristic method for measuring fat layer thickness of a living body.
【請求項4】送受光間距離の異なる複数のセンサまたは
1つのセンサにより、生体に対して発光光量を直線的に
変化させたときの受光光量の直線的変化を計測し、得ら
れた直線的変化に係る比例係数を前記センサの既知の送
受光間距離により求め、求めた比例係数に基づいて、吸
光物質層の厚みを算出することを特徴とする、生体の吸
光物質層厚の計測方法。
4. A linear change in the amount of received light when the amount of emitted light is linearly changed with respect to a living body is measured by a plurality of sensors or one sensor having different distances between transmission and reception. A method for measuring the thickness of a light-absorbing substance layer of a living body, wherein a proportional coefficient relating to a change is obtained from a known distance between the sensor and the sensor, and a thickness of the light-absorbing substance layer is calculated based on the obtained proportional coefficient.
【請求項5】送受光間距離の異なる複数のセンサまたは
1つのセンサと、 このセンサにより吸光物質層の厚みに対する吸光度変化
を計測する吸光度変化計測手段と、 得られた吸光度変化の比率に基づいて吸光物質層の厚み
を算出する吸光物質層厚算出手段とを備えることを特徴
とする、吸光物質層厚の計測装置。
5. A plurality of sensors or one sensor having different distances between sending and receiving light, an absorbance change measuring means for measuring an absorbance change with respect to the thickness of the light absorbing material layer using the sensor, and a ratio of the obtained absorbance change. A light-absorbing substance layer thickness calculating means for calculating the thickness of the light-absorbing substance layer.
【請求項6】送受光間距離の異なる複数のセンサまたは
1つのセンサと、 このセンサにより生体表面における吸光度変化を計測す
る吸光度変化計測手段と、 得られた吸光度変化の比率に基づいて脂肪層の厚みを算
出する脂肪層厚算出手段とを備えることを特徴とする、
生体の脂肪層厚の計測装置。
6. A plurality of sensors or one sensor having different distances between transmitting and receiving light, an absorbance change measuring means for measuring an absorbance change on the surface of a living body with the sensor, and a sensor for detecting a change in the fat layer based on a ratio of the obtained absorbance change. Characterized by comprising a fat layer thickness calculating means for calculating the thickness,
Measuring device for fat thickness of living body.
【請求項7】送受光間距離の異なる複数のセンサまたは
1つのセンサと、 このセンサにより、生体に対して発光光量を直線的に変
化させたときの受光光量の直線的変化を計測する受光光
量計測手段と、 得られた直線的変化に係る比例係数を前記センサの既知
の送受光間距離により求め、求めた比例係数に基づい
て、測定対象の吸光物質が主として存在する生体組織と
生体表面との間の介在組織の厚みを算出する介在組織厚
算出手段とを備えることを特徴とする、生体の介在組織
厚の計測装置。
7. A plurality of sensors or one sensor having different distances between transmission and reception, and a sensor for detecting a linear change in the amount of received light when the amount of emitted light is linearly changed with respect to a living body using the sensor. Measuring means, the proportional coefficient according to the obtained linear change is determined by the known inter-transmission / reception distance of the sensor, and based on the determined proportional coefficient, the biological tissue and the biological surface mainly containing the light-absorbing substance to be measured are determined. And an intervening tissue thickness calculating means for calculating the thickness of the intervening tissue between the two.
【請求項8】前記センサは、波長の異なる複数波長発光
素子を有することを特徴とする、請求の範囲第5項から
第7項のいずれかに記載の厚みの計測装置。
8. The thickness measuring device according to claim 5, wherein said sensor has a plurality of light emitting elements having different wavelengths.
【請求項9】前記センサの投光素子または受光素子を着
脱自在に保持する複数の装着部を有し、 この複数の装着部によって前記送受光間距離を異ならせ
るプローブを設けたことを特徴とする、請求の範囲第5
項から第7項のいずれかに記載の厚みの計測装置。
9. A sensor having a plurality of mounting portions for detachably holding a light emitting element or a light receiving element of the sensor, and a probe for varying the distance between the light transmitting and receiving light by the plurality of mounting portions. To claim 5
Item 8. The thickness measuring device according to any one of items 7 to 7.
【請求項10】送受光間距離の異なる複数のセンサまた
は1つのセンサにより、測定対象の吸光物質が主として
存在する生体組織と生体表面との間の介在組織の厚みを
測定し、 介在組織の厚みに対する各送受光間距離での測定感度の
変化を求め、 その測定感度の変化に基づいて介在組織の厚みと測定感
度の補正係数との関係を求め、 この関係から前記センサの既知の送受光間距離と計測対
象部位での介在組織の厚みとにより補正係数を求め、求
めた補正係数に基づいて介在組織の影響がないように計
測値を補正することを特徴とする、生体組織内の吸光物
質濃度の計測方法。
10. A method for measuring the thickness of an intervening tissue between a living tissue mainly containing a light-absorbing substance to be measured and a living body surface using a plurality of sensors or a single sensor having different distances between transmission and reception. The change in the measurement sensitivity at each inter-transmission / reception distance with respect to is determined, and the relationship between the thickness of the intervening tissue and the correction coefficient of the measurement sensitivity is determined based on the change in the measurement sensitivity. A light-absorbing substance in living tissue, wherein a correction coefficient is obtained based on the distance and the thickness of the intervening tissue at the measurement target site, and the measured value is corrected based on the obtained correction coefficient so as not to be affected by the intervening tissue. How to measure the concentration.
【請求項11】前記介在組織の厚みは、予め介在組織の
厚みに対する受光量を求めるとともにそのときの送光量
を設定し、計測時にその送光量を生体に照射したときの
受光量に基づいて算出することを特徴とする、請求の範
囲第10項記載の生体組織内の吸光物質濃度の計測方法。
11. The thickness of the intervening tissue is calculated in advance based on the amount of light received with respect to the thickness of the intervening tissue, the amount of light transmitted at that time is set, and the amount of light transmitted is applied to the living body at the time of measurement. 11. The method for measuring the concentration of a light-absorbing substance in a biological tissue according to claim 10, wherein:
【請求項12】送受光間距離の異なる複数のセンサ又は
1つのセンサと、 このセンサにより測定対象の吸光物質が主として存在す
る生体組織と生体表面との間の介在組織の厚みを測定す
る介在組織厚測定手段と、 介在組織の厚みに対する各送受光間距離での測定感度の
変化を求める測定感度算出手段と、 その測定感度の変化に基づいて介在組織の厚みと測定感
度の補正係数との関係を求める補正係数算出手段と、 その関係から前記センサの既知の送受光間距離と計測対
象部位での介在組織の厚みとにより補正係数を求め、求
めた補正係数に基づいて介在組織の影響がないように計
測値を補正する計測値補正手段とを備えることを特徴と
する、生体組織内の吸光物質濃度の計測装置。
12. A plurality of sensors or one sensor having different distances between transmitting and receiving light, and an intervening tissue for measuring the thickness of the intervening tissue between the living tissue and the living body surface mainly containing the light-absorbing substance to be measured by the sensor. Thickness measuring means; measuring sensitivity calculating means for determining a change in measurement sensitivity at each inter-transmit / receive distance with respect to the thickness of the intervening tissue; and a relationship between the thickness of the intervening tissue and a correction coefficient of the measuring sensitivity based on the change in the measuring sensitivity. And a correction coefficient calculating means for obtaining a correction coefficient from the relationship between the known transmission / reception distance of the sensor and the thickness of the intervening tissue at the measurement target site based on the relationship, and there is no influence of the intervening tissue based on the obtained correction coefficient. And a measurement value correcting means for correcting the measurement value as described above.
【請求項13】前記介在組織厚測定手段は、予め介在組
織の厚みに対する受光量を求めるとともに、そのときの
送光量を設定し、計測時にその送光量を生体に照射した
ときの受光量に基づいて算出するものであることを特徴
とする、請求の範囲第12項記載の生体組織内の吸光物質
濃度の計測装置。
13. The intervening tissue thickness measuring means obtains the amount of received light with respect to the thickness of the intervening tissue in advance, sets the amount of transmitted light at that time, and based on the amount of received light when irradiating the living body with the amount of transmitted light during measurement. 13. The apparatus for measuring the concentration of a light-absorbing substance in a biological tissue according to claim 12, wherein the measurement is performed by calculation.
【請求項14】前記センサは、波長の異なる近赤外複数
波長発光素子を有することを特徴とする、請求の範囲第
12項または第13項記載の生体組織内の吸光物質濃度の計
測装置。
14. A sensor according to claim 1, wherein said sensor has near-infrared multi-wavelength light emitting elements having different wavelengths.
14. The measuring device for measuring the concentration of a light-absorbing substance in a biological tissue according to item 12 or 13.
【請求項15】前記センサの送受光間距離は、20mm、30
mm、40mmであることを特徴とする、請求の範囲第12項記
載の生体組織内の吸光物質濃度の計測装置。
15. The distance between transmission and reception of the sensor is 20 mm, 30
13. The measuring apparatus for measuring the concentration of a light-absorbing substance in a biological tissue according to claim 12, wherein the measuring distance is mm and 40 mm.
【請求項16】前記センサの送受光間距離は、20mm、30
mm、40mmであることを特徴とする、請求の範囲第13項記
載の生体組織内の吸光物質濃度の計測装置。
16. The distance between transmission and reception of the sensor is 20 mm, 30
14. The apparatus for measuring the concentration of a light-absorbing substance in a living tissue according to claim 13, wherein the measuring apparatus has a diameter of 40 mm.
【請求項17】前記センサの送受光間距離は、20mm、30
mm、40mmであることを特徴とする、請求の範囲第14項記
載の吸光物質濃度の計測装置。
17. The distance between transmission and reception of the sensor is 20 mm, 30
15. The light-absorbing substance concentration measuring device according to claim 14, wherein the measuring device has a diameter of 40 mm.
JP10524514A 1996-11-26 1997-11-25 Method and apparatus for measuring light-absorbing substance concentration in living tissue and thickness of intervening tissue in living body Expired - Lifetime JP3035791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10524514A JP3035791B2 (en) 1996-11-26 1997-11-25 Method and apparatus for measuring light-absorbing substance concentration in living tissue and thickness of intervening tissue in living body

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8-314345 1996-11-26
JP8-314344 1996-11-26
JP31434496 1996-11-26
JP31434596 1996-11-26
PCT/JP1997/004301 WO1998023916A1 (en) 1996-11-26 1997-11-25 Method and apparatus for measuring concentration of light absorbing material in living tissue and thickness of intercalary tissue
JP10524514A JP3035791B2 (en) 1996-11-26 1997-11-25 Method and apparatus for measuring light-absorbing substance concentration in living tissue and thickness of intervening tissue in living body

Publications (1)

Publication Number Publication Date
JP3035791B2 true JP3035791B2 (en) 2000-04-24

Family

ID=27339398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10524514A Expired - Lifetime JP3035791B2 (en) 1996-11-26 1997-11-25 Method and apparatus for measuring light-absorbing substance concentration in living tissue and thickness of intervening tissue in living body

Country Status (1)

Country Link
JP (1) JP3035791B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6584340B1 (en) 1998-12-24 2003-06-24 Matsushita Electric Industrial Co., Ltd. Living body information measuring apparatus living body information measuring method body fat measuring apparatus body fat measuring method and program recording medium
WO2004110273A1 (en) * 2003-06-13 2004-12-23 Matsushita Electric Industrial Co., Ltd. Optical fat measuring device
JP2009136434A (en) * 2007-12-05 2009-06-25 National Institute Of Advanced Industrial & Technology Optical meter
US7860547B2 (en) 2003-02-18 2010-12-28 Panasonic Electric Works Co., Ltd. Visceral fat measuring apparatus, visceral fat measuring method, program, and recording medium
US8095211B2 (en) 2005-01-26 2012-01-10 Panasonic Electric Works Co., Ltd. Body fat measuring device
JP7193611B2 (en) 2019-03-06 2022-12-20 旭化成株式会社 biological information measuring instrument

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6584340B1 (en) 1998-12-24 2003-06-24 Matsushita Electric Industrial Co., Ltd. Living body information measuring apparatus living body information measuring method body fat measuring apparatus body fat measuring method and program recording medium
US7860547B2 (en) 2003-02-18 2010-12-28 Panasonic Electric Works Co., Ltd. Visceral fat measuring apparatus, visceral fat measuring method, program, and recording medium
WO2004110273A1 (en) * 2003-06-13 2004-12-23 Matsushita Electric Industrial Co., Ltd. Optical fat measuring device
US8095211B2 (en) 2005-01-26 2012-01-10 Panasonic Electric Works Co., Ltd. Body fat measuring device
JP2009136434A (en) * 2007-12-05 2009-06-25 National Institute Of Advanced Industrial & Technology Optical meter
JP7193611B2 (en) 2019-03-06 2022-12-20 旭化成株式会社 biological information measuring instrument

Similar Documents

Publication Publication Date Title
US20170196493A1 (en) Optical sensor path selection
US6801799B2 (en) Pulse oximeter and method of operation
US5524617A (en) Isolated layer pulse oximetry
EP0613652B1 (en) Apparatus and method for non-invasive measurement of oxygen saturation
US9364176B2 (en) Tissue oximetry apparatus and method
US8923942B2 (en) In vivo blood spectrometry
WO1998023916A1 (en) Method and apparatus for measuring concentration of light absorbing material in living tissue and thickness of intercalary tissue
EP2291111B1 (en) Contactless respiration monitoring of a patient and optical sensor for a photoplethysmography measurement
US6839580B2 (en) Adaptive calibration for pulse oximetry
US20180220965A1 (en) Measurement of oxygen saturation of blood haemoglobin
US20080312542A1 (en) Multi-sensor array for measuring blood pressure
JP2008532680A5 (en)
US20120220844A1 (en) Regional Saturation Using Photoacoustic Technique
EP0512987A1 (en) Enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
WO2009113346A1 (en) Blood pressure information measurement device allowing precise measurement using optical method
JP3035791B2 (en) Method and apparatus for measuring light-absorbing substance concentration in living tissue and thickness of intervening tissue in living body
US10506961B1 (en) Diagnostic transducer and method
KR20200129811A (en) Blood Pressure Meter And Method For Measuring Blood Pressure Using The Same
EP3213686A1 (en) Biological information measurement device, mixed venous oxygen saturation estimation method, and program
Yoon et al. Development of a compact home health monitor for telemedicine
JP7418872B2 (en) Oxygen saturation measurement device, probe configured for use therewith, and method for oxygen saturation measurement