JP2009135523A - Coil and current sensor using the same - Google Patents

Coil and current sensor using the same Download PDF

Info

Publication number
JP2009135523A
JP2009135523A JP2009055274A JP2009055274A JP2009135523A JP 2009135523 A JP2009135523 A JP 2009135523A JP 2009055274 A JP2009055274 A JP 2009055274A JP 2009055274 A JP2009055274 A JP 2009055274A JP 2009135523 A JP2009135523 A JP 2009135523A
Authority
JP
Japan
Prior art keywords
coil
conductor
current sensor
insulating base
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009055274A
Other languages
Japanese (ja)
Other versions
JP4710996B2 (en
Inventor
Akimi Shiokawa
明実 塩川
Yasuo Ichimura
安男 市村
Eiji Iwami
英司 岩見
Takaaki Tadasawa
孝明 忠澤
Kazuhisa Takahashi
和久 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009055274A priority Critical patent/JP4710996B2/en
Publication of JP2009135523A publication Critical patent/JP2009135523A/en
Application granted granted Critical
Publication of JP4710996B2 publication Critical patent/JP4710996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coil which is formed with a good pitch accuracy and a high pitch, and is inexpensively manufactured, and also to provide a current sensor using the coil. <P>SOLUTION: A coil is constituted of: an insulating base 1 comprising a flat shaped insulating body 1c having approximately Z-shaped plurality of conductors 6 formed on a reference surface on one side, with center sides pattern-formed at equal intervals so as to be parallel with each other, and an insulating film 1d disposed in such a manner as superposing on the insulating body 1c to cover each conductor 6; coil lines 2, with a conductor 5 formed on the insulating film 1d, for electrically connecting one end and the other end of the two adjacent conductors 6, in a zig-zag form by conductor 6 and conductor 5; and an output terminal provided on the reference surface in the vicinity of the coil lines 2, for respectively connecting a start end and a terminal end of the coil lines 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気、電子部品、磁気検出センサ等に用いられる空芯のコイル、及びそのコイルを用いた電流センサに関するものである。   The present invention relates to an air-core coil used for electrical, electronic components, magnetic detection sensors, and the like, and a current sensor using the coil.

空芯のコイルは鉄心が無いため軽量で、また鉄心による飽和がないという利点がある。その代表的な空芯のコイルとしてはロゴスキーコイルがある。このロゴスキーコイルは、分電盤内で主幹ブレーカだけでなく各々の分岐ブレーカに流れる電流計測に従来用いられていた変流器(CT)のような電流センサに代わり、電流検出用コイルとして用いられ、その特徴である鉄心の飽和がなく点を生かしたダイナミックレンジが広く、大電流まで検出できる電流センサを実現している。   An air-core coil is advantageous in that it has no iron core and is light in weight and is not saturated by the iron core. A typical air-core coil is a Rogowski coil. This Rogowski coil is used as a current detection coil in place of a current sensor such as a current transformer (CT) that has been used in the past to measure not only the main breaker but also each branch breaker in the distribution board. As a result, a current sensor capable of detecting even a large current with a wide dynamic range utilizing the point without saturation of the iron core, which is the feature of the sensor, has been realized.

ロゴスキーコイルの説明を、空芯のトーラス状の巻線で、コイルの中心を通って戻る構造をもった一例により行う。このロゴスキーコイルの場合、コイルを突き抜ける電流が変化すると電磁誘導によりコイルの両端に電圧が誘起されることで、電流検出用コイルとして機能するようになっている。   The Rogowski coil will be described with an example in which a torus-shaped winding with an air core is used to return through the center of the coil. In the case of this Rogowski coil, when the current penetrating the coil changes, a voltage is induced at both ends of the coil by electromagnetic induction, thereby functioning as a current detection coil.

更に詳説するとロゴスキーコイルの出力電圧Vは、測定対象となる電線に流れる被測定電流を微分したものであり、以下の式で表され、この出力電圧Vを積分すれば電流波形が得られる。   More specifically, the output voltage V of the Rogowski coil is obtained by differentiating the current to be measured flowing through the electric wire to be measured, and is expressed by the following equation. If this output voltage V is integrated, a current waveform can be obtained.

ここで、Iは被測定電流、Sはロゴスキーコイルのコイルの断面積、μ0は真空の透磁率、Nはロゴスキーコイルの単位長さ当たりの巻数である。   Here, I is the current to be measured, S is the cross-sectional area of the Rogowski coil, μ0 is the vacuum permeability, and N is the number of turns per unit length of the Rogowski coil.

Figure 2009135523
Figure 2009135523

この式で得られる出力電圧Vは、μ0(=4π×10−7)が係数として乗算されるため、例えば上述のような分電盤の各ブレーカに流れる一般的な負荷電流(数A〜)を検出しようとする場合、非常に小さい電圧となる。この出力電圧Vを大きくするには、コイルの単位長さ当たりの巻数Nやコイル断面積Sを大きくすれば良いが、電流検出用コイルとしてロゴスキーコイルを用いる場合、1次側の電流が流れる電線の貫通位置による影響を抑えるため、巻きピッチのばらつきを抑え、精度良く巻く必要がある。   Since the output voltage V obtained by this equation is multiplied by μ0 (= 4π × 10−7) as a coefficient, for example, a general load current (several A˜) flowing through each breaker of the distribution board as described above, for example. When trying to detect this, the voltage becomes very small. In order to increase the output voltage V, the number of turns N per unit length of the coil and the coil cross-sectional area S may be increased. However, when a Rogowski coil is used as the current detection coil, a primary current flows. In order to suppress the influence by the penetration position of an electric wire, it is necessary to suppress the winding pitch variation and to wind with high accuracy.

近年、前記の問題を解決する空芯のコイル(ロゴスキーコイル)の構造として、プリント基板の両面を用いて、裏面側と表面側とをスルーホールで接続しコイル状になるようにパターニングしてコイルを形成する構成が提案されている(例えば、特許文献1)。   In recent years, as an air-core coil (Rogowski coil) structure that solves the above-mentioned problems, both sides of the printed circuit board are connected and patterned to form a coil by connecting the back side and the front side with through holes. The structure which forms a coil is proposed (for example, patent documents 1).

特開2003−50254号公報(図1、段落番号0039〜0040)JP 2003-50254 A (FIG. 1, paragraph numbers 0039 to 0040)

ところで上述の特許文献1に開示されているようなプリント回路基板を用いたコイルでは、ピッチのばらつき精度といった点についてはコイル巻きと比較して良いものの、プリント基板の表裏の接続を1ターン毎にスルーホールで行うために、穴あけ、メッキ等工程が多く、コストが高いといった問題があった。また、スルーホールは範囲にランドが必要であり、これがピッチを細かくする妨げとなっていた。   By the way, in the coil using the printed circuit board as disclosed in the above-mentioned Patent Document 1, although the pitch variation accuracy may be compared with the coil winding, the connection of the front and back of the printed board is made every turn. In order to carry out through holes, there are many processes such as drilling and plating, and the cost is high. In addition, the through hole requires a land in the range, which hinders the fine pitch.

本発明は、上述の問題点に鑑みて為されたもので、その目的とするところは、ピッチ精度が良く、且つ高ピッチ形成可能で、安価に製造可能なコイル及びそれを用いた電流センサを提供することにある。   The present invention has been made in view of the above-described problems, and the object of the present invention is to provide a coil having good pitch accuracy, capable of forming a high pitch, and capable of being manufactured at low cost, and a current sensor using the coil. It is to provide.

前記目的を達成するために請求項1のコイルの発明では、中央辺が並行するように等間隔にパターン形成された略Z字状の複数の第1の導体を片側の板面に形成した平板状の絶縁体と、前記各第1の導体を覆うように前記絶縁体の前記板面に重ねられて配設される絶縁性薄膜とで構成された絶縁ベースと、隣接する二つの前記第1の導体の一方の一端と他方の他端との間を電気的に接続する第2の導体を前記絶縁性薄膜表面に形成して前記第1の導体と前記第2の導体とで蛇行状に構成されたコイル線路部と、前記コイル線路部近傍の前記板面に設けられ、前記コイル線路部の始端、終端を夫々接続する第1、第2の出力端子とから成ることを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, a flat plate in which a plurality of substantially Z-shaped first conductors that are patterned at equal intervals so that the central sides are parallel are formed on one plate surface. And an insulating base composed of an insulating thin film disposed on the plate surface of the insulator so as to cover the first conductors, and the two adjacent firsts A second conductor that electrically connects one end of the other conductor and the other end of the other conductor is formed on the surface of the insulating thin film so that the first conductor and the second conductor meander. The coil line section is configured, and the first and second output terminals are provided on the plate surface in the vicinity of the coil line section and connect the start end and the end of the coil line section, respectively.

請求項1のコイルの発明によれば、絶縁ベースの片面のみへの加工であるから、従来のスルーホールを用いた両面基板のときのように表裏の位置合わせが不要となって製造が容易となり、しかも絶縁ベースの裏面を別の用途に使用することが可能な上に、上述のスルーホールを設けるときに必要であったランドが不要な上に、ピッチを細かくすることができ、更にまた変形部の形成を例えば絶縁ベースの成形する金型により形成することで、変形部の間隔を精度良することができ、しかも構造が簡単なので、歩留まりが良く、安価に製造することが可能であり、特に平板状の絶縁体上に導体のパターン形成と、絶縁性薄膜の積層及び導体のパターン形成とを順次行うことで形成することができ、多層のコイル形成を可能とする。   According to the invention of the coil of claim 1, since the processing is performed only on one side of the insulating base, it is not necessary to align the front and back as in the case of a double-sided substrate using a conventional through hole, and the manufacture becomes easy. In addition, the back surface of the insulating base can be used for other purposes, and the land necessary for providing the above-mentioned through hole is unnecessary, and the pitch can be made finer, and further deformation is possible. By forming the part with a mold for forming an insulating base, for example, the distance between the deformed parts can be improved, and since the structure is simple, the yield is good and it can be manufactured at low cost. In particular, a conductor pattern can be formed on a flat insulator by sequentially performing insulating thin film lamination and conductor pattern formation, thereby enabling multilayer coil formation.

請求項2の電流センサの発明では、請求項1のコイルを用い、前記絶縁ベースを円筒状に形成するとともにコイル線路部の終端をコイル巻き戻し線路部により始端側に戻したロゴスキーコイルを構成して電流検出用コイルとしていることを特徴とする。   According to a second aspect of the present invention, there is provided a Rogowski coil using the coil of the first aspect, wherein the insulating base is formed in a cylindrical shape and the end of the coil line portion is returned to the start end side by the coil rewind line portion. Thus, a current detection coil is provided.

請求項2の電流センサの発明によれば、請求項1のコイルの特徴を生かしたロゴスキーコイルにより高精度で、低コスト、更に小型化が可能な電流検出用コイルを備えた電流センサを提供できる。   According to the invention of the current sensor of claim 2, a current sensor provided with a current detection coil that can be miniaturized with high accuracy, low cost, by the Rogowski coil utilizing the features of the coil of claim 1. it can.

請求項3の電流センサの発明では、請求項2の発明において、前記絶縁ベースの裏面に導体箔を貼り付けてシールド部を構成し、前記コイル巻き戻し線路部を介して前記コイル線路部の終端を接続する第2の出力端子を前記導体箔に電気的に接続していることを特徴とする。   According to a third aspect of the present invention, there is provided a current sensor according to the second aspect, wherein a conductor foil is attached to the back surface of the insulating base to form a shield portion, and the termination of the coil line portion is provided via the coil rewind line portion. The second output terminal for connecting is electrically connected to the conductor foil.

請求項3の電流センサの発明によれば、配線とコイル線路部との間の静電結合によって商用周波数の静電ノイズが発生するのを導体箔のシールド部で防ぐことができる。   According to the invention of the current sensor of claim 3, it is possible to prevent the commercial noise electrostatic noise from being generated by the shield portion of the conductor foil due to the electrostatic coupling between the wiring and the coil line portion.

請求項4の電流センサの発明では、請求項3の発明において、前記コイル線路部の終端を前記導体箔に接続するとともに、前記出力端子を前記コイル線路部の始端付近で前記導体箔に電気的に接続し、前記導体箔をコイル巻き戻し線路部として用いたことを特徴とする。   According to a fourth aspect of the current sensor of the present invention, in the third aspect of the present invention, the terminal of the coil line portion is connected to the conductor foil, and the output terminal is electrically connected to the conductor foil in the vicinity of the start end of the coil line portion. The conductor foil is used as a coil rewinding line portion.

請求項4の電流センサの発明によれば、ロゴスキーコイルのコイル巻き戻し線路部をシールド部の導体箔で兼用することによって、構成を無駄の無い構成とすることができる。   According to the fourth aspect of the current sensor of the present invention, the coil rewinding line portion of the Rogowski coil is also used as the conductor foil of the shield portion, so that the configuration can be made useless.

請求項5の電流センサの発明では、請求項3又は4の発明において、前記導体箔に並行する複数条の絶縁用切り込みを形成していることを特徴とする。   The invention of claim 5 is characterized in that, in the invention of claim 3 or 4, a plurality of strips of insulation are formed in parallel with the conductor foil.

請求項5の電流センサの発明によれば、外部からの磁束がシールド部の導体箔に鎖交する際の渦電流の発生を抑制することができ、そのため渦電流によって生じる不均一な電位差を起因とするシールド性能の低下を防ぐことができる。   According to the invention of the current sensor of claim 5, it is possible to suppress the generation of eddy current when the magnetic flux from the outside is linked to the conductor foil of the shield part, and hence the nonuniform potential difference caused by the eddy current is caused. It is possible to prevent a decrease in shielding performance.

請求項6の電流センサの発明では、請求項2、3又は5の発明において、前記コイル巻き戻し線路と前記コイル線路部のコイル線路部とを同形状に形成していることを特徴とする。   The invention of claim 6 is characterized in that, in the invention of claim 2, 3 or 5, the coil rewinding line and the coil line part of the coil line part are formed in the same shape.

請求項6の電流センサの発明によれば、外乱磁界を効果的に防ぐことができるという効果がある。   According to the current sensor of the sixth aspect, there is an effect that a disturbance magnetic field can be effectively prevented.

請求項7の電流センサの発明では、請求項6の発明において、前記コイル線路部の形成位置と、前記巻き戻し線路の形成位置とを前記変形部の両端方向にずらして両線路を並行させて前記コイル線路部と前記巻き戻し線路の巻き方向を同じ方向としたことを特徴とする。   In the invention of the current sensor of claim 7, in the invention of claim 6, the formation position of the coil line portion and the formation position of the rewinding line are shifted in the both end directions of the deforming portion so that both lines are parallel to each other. The coil line section and the rewind line are wound in the same direction.

請求項7の電流センサの発明によれば、外乱磁界を効果的に防ぐことができ、また同一面にコイル線路部とコイル巻き戻し線路部を形成することが可能となって、製造が容易で、且つ被測定電流が流れる電線の貫通位置の精度向上が期待できる。   According to the invention of the current sensor of claim 7, a disturbance magnetic field can be effectively prevented, and the coil line portion and the coil rewind line portion can be formed on the same surface, which is easy to manufacture. In addition, an improvement in accuracy of the penetration position of the electric wire through which the current to be measured flows can be expected.

請求項8の電流センサの発明では、請求項2の発明において、前記変形部の両端方向に並行する前記第1,2の導体間の前記絶縁ベース表面に、グランド用導体を第1,第2の導体に並行するように形成していることを特徴とする。   According to an eighth aspect of the current sensor of the present invention, in the second aspect of the present invention, a ground conductor is provided on the surface of the insulating base between the first and second conductors parallel to both ends of the deformed portion. It is formed so as to be parallel to the conductor.

請求項8の電流センサの発明によれば、コイル線路部の導体のパターニングと同時にシールド効果が期待できるグランド用導体のパターン形成を行うことができ、そのため導体箔の貼り付け場合に比べて工程数を削減することができる。   According to the invention of the current sensor of claim 8, it is possible to perform the pattern formation of the ground conductor that can be expected to have a shielding effect simultaneously with the patterning of the conductor of the coil line portion. Can be reduced.

請求項9の電流センサの発明では、請求項8の発明において、グランド用導体は前記変形部の表面と、隣接する変形部間の絶縁ベースの板面部位に交互に形成していることを特徴とする。   According to a ninth aspect of the current sensor of the present invention, in the eighth aspect of the invention, the ground conductors are alternately formed on the surface of the deformed portion and the plate surface portion of the insulating base between the adjacent deformed portions. And

請求項9の電流センサの発明によれば、基準面となる板面と変形部の両方に対する静電ノイズを防止する効果が期待できる。   According to the current sensor of the ninth aspect, an effect of preventing electrostatic noise on both the plate surface serving as the reference surface and the deformed portion can be expected.

本発明は、絶縁ベースの片面のみへの加工であるから、従来のスルーホールを用いた両面基板のときのように表裏の位置合わせが不要となって製造が容易となり、しかも絶縁ベースの裏面を別の用途に使用することが可能で、その上スルーホールを設けるときに必要であったランドが不要となるため、ピッチを細かくすることができ、更にまた絶縁ベースを成形すると同時に同じ金型により変形部を成形することで、変形部の間隔を精度良することができ、しかも構造が簡単なので、歩留まりが良く、安価に製造することが可能であるという効果を奏するコイル及びそれを用いた電流センサを提供することができる。   Since the present invention is processing only on one side of the insulating base, it is not necessary to align the front and back as in the case of a double-sided substrate using a conventional through hole, and manufacturing is facilitated. It can be used for other purposes, and the land that was necessary when providing a through hole is no longer required. Therefore, the pitch can be made finer, and the insulating mold is formed simultaneously with the same mold. By forming the deformed portion, the interval between the deformed portions can be improved with accuracy, and the structure is simple, so that the yield is good and the coil can be manufactured at low cost, and the current using the coil. A sensor can be provided.

実施形態8の製造プロセスの説明図である。FIG. 10 is an explanatory diagram of the manufacturing process of the eighth embodiment. 参考例1の一部省略せる斜視図である。It is a perspective view which can omit a part of reference example 1. (a)は図2のA−A断面図、(b)は図2のB−B断面図で、(c)は参考例1の変形部の別の例の断面図である。2A is a cross-sectional view taken along the line AA in FIG. 2, FIG. 2B is a cross-sectional view taken along the line BB in FIG. 2, and FIG. 参考例1の変形例に用いる絶縁ベースの斜視図である。10 is a perspective view of an insulating base used in a modification of Reference Example 1. FIG. 参考例1の別の変形例に用いる絶縁ベースを示すもので、(a)は斜視図、(b)は平面断面図である。The insulation base used for another modification of the reference example 1 is shown, (a) is a perspective view, (b) is a plane sectional view. 参考例1の他の変形例に用いる絶縁ベースの平面図である。10 is a plan view of an insulating base used in another modification of Reference Example 1. FIG. 参考例1の別の導体形成例を示すもので、(a)は一部破断省略せる斜視図、(b)は同上の拡大斜視図である。The another conductor formation example of the reference example 1 is shown, (a) is a perspective view which a part fracture | rupture abbreviate | omits, (b) is an expansion perspective view same as the above. (a)は参考例1に用いる別の絶縁ベース例の断面図、(b)は参考例1に用いる他の絶縁ベース例の断面図である。(A) is sectional drawing of the example of another insulation base used for the reference example 1, (b) is sectional drawing of the example of another insulation base used for the reference example 1. FIG. 実施形態1の他の絶縁ベースを用いた例を示すもので、(a)は一部破断省略せる斜視図、(b)は(a)のC−C断面図である。The example using the other insulation base of Embodiment 1 is shown, (a) is a perspective view which can be abbreviate | omitted partially broken, (b) is CC sectional drawing of (a). 実施形態1の一部省略せる斜視図である。FIG. 3 is a perspective view of a part of Embodiment 1 that can be omitted. 実施形態1による電流センサの回路構成図である。2 is a circuit configuration diagram of a current sensor according to Embodiment 1. FIG. 実施形態1のへ変形例の模式図である。6 is a schematic diagram of a modified example of the first embodiment. FIG. (a)は実施形態2の模式図、(b)は実施形態3の模式図、(c)は実施形態4の模式図である。(A) is a schematic diagram of Embodiment 2, (b) is a schematic diagram of Embodiment 3, (c) is a schematic diagram of Embodiment 4. FIG. 実施形態5を示すものであって、(a)は模式図、(b)は一部省略せる斜視図である。FIG. 9 shows a fifth embodiment, in which (a) is a schematic view, and (b) is a perspective view that can be partially omitted. 実施形態6を示すものであって、(a)は模式図、(b)は一部省略せる斜視図である。Embodiment 6 is shown, in which (a) is a schematic view and (b) is a perspective view that can be partially omitted. 実施形態7を示すものであって、(a)は模式図、(b)は一部省略せる斜視図である。FIG. 9 shows a seventh embodiment, where (a) is a schematic view and (b) is a perspective view that can be partially omitted. 参考例2の一部省略せる分解斜視図である。It is a disassembled perspective view which a part of reference example 2 can abbreviate | omit.

以下本発明を実施形態により説明する。   Embodiments of the present invention will be described below.

(参考例1)
本参考例のコイルは、図2に示すように非磁性材で絶縁性を有する樹脂成形品からなる平板状の絶縁ベース1の片側の板面(表面)側に蛇行したコイル線路部2を形成したものであって、コイル線路部2の一対の出力端子3a,3bはコイル線路部2近傍の絶縁ベースの一対の対角部付近の板面上に夫々設けてある。
(Reference Example 1)
As shown in FIG. 2, the coil of this reference example forms a coil line portion 2 meandering on the plate surface (front surface) side of a flat insulating base 1 made of a non-magnetic material and an insulating resin molded product. Thus, the pair of output terminals 3a and 3b of the coil line portion 2 are provided on the plate surfaces near the pair of diagonal portions of the insulating base near the coil line portion 2, respectively.

絶縁ベース1は長手方向に絶縁ベース1の平坦な板面を基準面として凹形状(溝状)に変位させた変形部4を等間隔で長手方向が並行するように複数形成しており、コイル線路部2は絶縁ベース1上に形成されたものである。つまり各変形部4の長手両端間の表面(内面)に図3(a)に示すように形成した第1の導体5と、各隣接する変形部4,4間の絶縁ベース1の板面部位上に図3(b)に示すように形成し、且つ一端を隣接する一方側の変形部4の第1の導体5の一端に、他端を隣接する他方側の変形部4の第1の導体5の他端に電気的に接続するように延長形成した第2の導体6とで全体が蛇行状に構成され、始端側の導体5の端部を前記基準面上に形成した接続用導体6aを介して第1の出力端子3aに、終端側の導体5の端部を前記基準面上に形成した接続用導体6bを介して第2の出力端子3bに電気的に接続している。   The insulating base 1 has a plurality of deformed portions 4 that are displaced in a concave shape (groove shape) with the flat plate surface of the insulating base 1 as a reference surface in the longitudinal direction so that the longitudinal directions are parallel to each other at equal intervals. The line portion 2 is formed on the insulating base 1. That is, the plate surface portion of the insulating base 1 between the first conductor 5 formed on the surface (inner surface) between the longitudinal ends of each deformed portion 4 as shown in FIG. As shown in FIG. 3B, the first end of the first conductor 5 of the deformable portion 4 on one side adjacent to one end and the first of the deformable portion 4 on the other side adjacent to the other end are formed. A connecting conductor having a second conductor 6 extended so as to be electrically connected to the other end of the conductor 5 and having a serpentine shape as a whole, and an end of the conductor 5 on the start end side formed on the reference plane An end of the terminal-side conductor 5 is electrically connected to the second output terminal 3b via a connecting conductor 6b formed on the reference plane, to the first output terminal 3a via 6a.

そして変形部4の底面と基準面たる板面との高低差の間隔が絶縁ベース1の長手方向に連なることでコイルの空芯たる中心透孔が形成されることになる。   And the center through-hole which is an air core of a coil is formed because the space | interval of the height difference of the bottom face of the deformation | transformation part 4 and the board surface which is a reference plane continues in the longitudinal direction of the insulating base 1. FIG.

ここで第1の導体5のパターンは変形部4の内面に導電性インクを噴射してパターニングが可能なインクジェット印刷(或いはスタンプ方法)によって形成し、絶縁ベース1の板面上に形成する第2の導体6及び接続用導体6a,6bは銅箔によるパターニングが可能なエッチング工法により形成する。勿論第2の導体6,6a,6bを導電性インクによって形成しても良い。   Here, the pattern of the first conductor 5 is formed by ink jet printing (or a stamping method) capable of patterning by ejecting conductive ink on the inner surface of the deformed portion 4, and is formed on the plate surface of the insulating base 1. The conductor 6 and the connecting conductors 6a and 6b are formed by an etching method capable of patterning with a copper foil. Of course, the second conductors 6, 6a, 6b may be formed of conductive ink.

上述のインクジェット印刷によるパターニングを行う場合、パターニングを確実に行うために、導電性インクの噴射方向に対して変形部4の印刷部位がなるべく直角になるように印刷部位に勾配を設ける必要がある。インクジェット印刷を採用することで、パターニング幅を数十μm程度まで微細化できるので、変形部4の形状の形状に対して余裕のあるパターニングが可能である。   When patterning by the above-described ink jet printing is performed, it is necessary to provide a gradient in the printing site so that the printing site of the deformable portion 4 is as perpendicular as possible to the ejection direction of the conductive ink in order to ensure the patterning. By adopting ink jet printing, the patterning width can be reduced to about several tens of μm, so that patterning with a margin for the shape of the deformed portion 4 is possible.

これにより変形部4での導体形成が容易に行える上に、導電率の低い導電性インクの導体のみではコイル線路部の抵抗値が高くなるのを、基準面となる板面での導体6,6a,6bを導電性の高い銅箔によって形成することでコイル線路部の抵抗値を低く抑えることができ、製造上の容易性と良好な電気的特性の確保とを同時に図れる。   As a result, the conductor can be easily formed in the deformed portion 4, and the resistance value of the coil line portion is increased only with the conductive ink having a low conductivity. By forming 6a and 6b with a highly conductive copper foil, the resistance value of the coil line portion can be kept low, and the ease of manufacture and the securing of good electrical characteristics can be achieved simultaneously.

而して本参考例では、絶縁ベース1の片側板面(表面)側のみへの加工によりコイル線路部2を形成することができるから、製造が容易上に線間のピッチを細かくすることができ、更にまた変形部4を絶縁ベース1の成形する金型により形成することで、変形部4の間隔を精度良することができる。また上述のようにインクジェット印刷によるパターニングを確実にするために変形部4の長手両端内面を上り傾斜した斜面(勾配)とすれば、変形部4と基準面との境界部位(エッジ部位)での導体破断も起きにくく、歩留まりの向上が図れる。更に長手両端内面に勾配を形成する代わりに、図3(c)に示すように変形部4の長手両端方向の内面全体をなだらかなR面とすることで、勾配と同様にインクジェット印刷によるパターニングが確実になり、導体破断をも同様に防ぐことができる。導体材料によって破断が生じにくい場合には変形部4の両端の内面を底面から垂直に立ち上がる面としても勿論良く、勾配やR面に形成することに限定されるものではない。   Thus, in the present reference example, the coil line portion 2 can be formed by processing only the one side plate surface (front surface) side of the insulating base 1. Further, by forming the deformable portion 4 by a mold for molding the insulating base 1, the interval between the deformable portions 4 can be improved. Further, as described above, if the inner surfaces of the longitudinal ends of the deformable portion 4 are inclined to be inclined (gradient) in order to ensure the patterning by ink jet printing, the boundary portion (edge portion) between the deformable portion 4 and the reference surface is formed. Conductor breakage does not easily occur, and the yield can be improved. Furthermore, instead of forming a gradient on the inner surfaces at both ends, the entire inner surface in the direction of both ends of the deformed portion 4 is a gentle R surface as shown in FIG. As a result, conductor breakage can be similarly prevented. In the case where breakage is unlikely to occur due to the conductive material, the inner surfaces at both ends of the deformable portion 4 may naturally be surfaces that rise vertically from the bottom surface, and the present invention is not limited to the formation on the gradient or the R surface.

ところで図2のコイルは絶縁ベース1が平板状のままであるが、絶縁ベース1をフレキシブルな絶縁性の樹脂成形体で形成して両端を図4に示すように突き合わせるよう円筒形状とすることで、トロイダル状のコイルを構成することもできる。   In the coil of FIG. 2, the insulating base 1 remains flat, but the insulating base 1 is formed of a flexible insulating resin molded body and has a cylindrical shape so that both ends are abutted as shown in FIG. Thus, a toroidal coil can be formed.

また図5(a),(b)に示すように円筒状に成形した絶縁性樹脂成形品で絶縁ベース1を構成し、その絶縁ベース1の平坦な板面である表面若しくは裏面を基準面として、上述と同様な変形部4を円周方向に等間隔で形成し、図2の場合と同様な導体5,6を設けることでコイル線路部2を形成してもトロイダル状のコイルを形成することができる。   Further, as shown in FIGS. 5A and 5B, the insulating base 1 is constituted by an insulating resin molded product formed into a cylindrical shape, and the front or back surface, which is a flat plate surface of the insulating base 1, is used as a reference plane. The toroidal coil is formed even if the coil line portion 2 is formed by forming the deformed portions 4 similar to those described above at equal intervals in the circumferential direction and providing the conductors 5 and 6 similar to the case of FIG. be able to.

更に絶縁ベース1を図6に示すように円環状に形成して、その基準面に周方向に等間隔に変形部4を形成し、図2の場合と同様な導体5,6を設けてコイル線路部2を形成してもトロイダル状のコイルを実現できる。   Further, the insulating base 1 is formed in an annular shape as shown in FIG. 6, the deformed portions 4 are formed at equal intervals in the circumferential direction on the reference surface, and the conductors 5 and 6 similar to those in FIG. Even if the line portion 2 is formed, a toroidal coil can be realized.

また図2の場合には導体5,6,6a,6bは幅広なパターンであったが、図7(a),(b)に示すように線状のパターンにより形成しても良い。この場合、上述したようにインクジェット印刷を採用して導電性インクによって微細な導体5,6、6a,6bを形成しても良い。この場合も導体5を導電性インクのパターンで形成し、導体6,6a,6bをエッチング工法にて形成した銅箔パターンで形成することで、製造上の容易性の確保と、コイル線路部の抵抗値が高くなるのを抑えることもできる。勿論導体6,6a,6bを導電性インクで形成しても良い。   In the case of FIG. 2, the conductors 5, 6, 6a and 6b are wide patterns, but they may be formed in a linear pattern as shown in FIGS. 7 (a) and 7 (b). In this case, as described above, the fine conductors 5, 6, 6a, and 6b may be formed by conductive ink using ink jet printing. Also in this case, the conductor 5 is formed with a conductive ink pattern, and the conductors 6, 6a, 6b are formed with a copper foil pattern formed by an etching method, thereby ensuring ease of manufacturing and the coil line portion. An increase in the resistance value can also be suppressed. Of course, the conductors 6, 6a, 6b may be formed of conductive ink.

尚変形部4の底面に導電性インクにより導体5を形成する場合には、変形部4の底面に長手両端方向に図8(a),(b)に示すように横断面形状がV字又はU字に形成してパターン形成ガイド用溝7とし、これにより導電性インクにより導体5を形成する際に導電性インクを溝7内に集めることができ、そのため折り曲げ等の応力により断線がしにくい導体5を形成することができ、またパターニングの位置精度を高めることができる。尚図8では導体6も導電性インクで形成する場合に対応させて導体6を形成する板面(基準面)にも同様なパターン形成ガイド用溝7’を設けてある。   When the conductor 5 is formed on the bottom surface of the deformable portion 4 with conductive ink, the cross-sectional shape of the bottom surface of the deformable portion 4 is V-shaped as shown in FIGS. A U-shaped pattern forming guide groove 7 is formed, so that the conductive ink can be collected in the groove 7 when the conductor 5 is formed by the conductive ink, and therefore, it is difficult to break due to stress such as bending. The conductor 5 can be formed, and the positional accuracy of patterning can be increased. In FIG. 8, a similar pattern formation guide groove 7 'is also provided on the plate surface (reference surface) on which the conductor 6 is formed corresponding to the case where the conductor 6 is also formed of conductive ink.

更に図2の場合には導体6は変形部4,4間の絶縁ベース1の基準面上に変形部4の導体5と並行させる形で形成しているが、図9(a),(b)に示すように変形部4,4間に凸形状の変形部40を形成し、この変形部40の長手方向に導体6を形成するようにしても良い。この構成の場合基準面たる絶縁ベース1の基準面に対して小さな高低差でコイルの空芯部の断面積を大きくすることができる。尚変形部40に形成する導体6は導電性インクをインクジェット印刷によって吹き付けることによってパターン形成したもので、凸形状の表面へのパターニングを容易としている。また変形部40にあっても両端面に勾配(若しくはR面)を持たせることで導体6の破断を防ぐようになっている。   Further, in the case of FIG. 2, the conductor 6 is formed on the reference surface of the insulating base 1 between the deformed portions 4 and 4 so as to be parallel to the conductor 5 of the deformed portion 4. ), A convex deformation portion 40 may be formed between the deformation portions 4 and 4, and the conductor 6 may be formed in the longitudinal direction of the deformation portion 40. In this configuration, the cross-sectional area of the air core portion of the coil can be increased with a small height difference with respect to the reference surface of the insulating base 1 serving as the reference surface. The conductor 6 formed in the deformed portion 40 is formed by patterning by spraying conductive ink by ink jet printing, and facilitates patterning on the convex surface. Even in the deformed portion 40, the conductor 6 is prevented from being broken by providing gradients (or R surfaces) on both end faces.

(実施形態1)
上述の参考例1は、一般的な空芯のコイルであったが、空芯のコイルの一つである所謂ロゴスキーコイルを構成し、このロゴスキーコイルを用いて電流センサとしたのが本実施形態である。
(Embodiment 1)
The reference example 1 described above is a general air-core coil, but a so-called Rogowski coil, which is one of air-core coils, is configured, and this Rogsky coil is used as a current sensor. It is an embodiment.

ここで本実施形態のロゴスキーコイルは、図10に示すように第1,第2の出力端子3a,3bを絶縁ベース1の一端側に配置し、コイル線路部2の始端側を第1の出力端子3aに接続し、コイル線路部2と並行するように絶縁ベース1の片側の基準面上に形成したコイル巻き戻し線路部8を介して、コイル線路部2の終端側を第2の出力端子3bに接続したものである。   Here, the Rogowski coil of this embodiment arrange | positions the 1st, 2nd output terminals 3a and 3b in the one end side of the insulation base 1, as shown in FIG. The terminal side of the coil line part 2 is connected to the output terminal 3a and the second output is connected to the terminal side of the coil line part 2 via the coil rewind line part 8 formed on one reference surface of the insulating base 1 so as to be parallel to the coil line part 2. This is connected to the terminal 3b.

そして絶縁ベース1としてフレキシブルな絶縁性の樹脂成形体(例えば可撓性を有し、変形部4の形成加工が容易で導体のパターニングができるものであれば良く、特に熱可塑性樹脂が適している)を用い、図11に示すように充電部が露出するコイル線路部2を内側とし、且つコイル線路部2の端部を合わせために、絶縁ベース1の両端部が一部重なるようにして円筒形状に曲げて、ロゴスキーコイルからなる電流検出用コイルAを構成している。コイル線路部2の充電部が露出するコイル線路部2を保護するために実際に使用する場合には保護用構造体に入れると良い。   The insulating base 1 may be a flexible insulating resin molded body (for example, as long as it has flexibility, can easily form the deformed portion 4 and can perform conductor patterning, and a thermoplastic resin is particularly suitable. 11), the coil line part 2 from which the charging part is exposed as shown in FIG. 11 is set inside, and the ends of the coil line part 2 are aligned so that both ends of the insulating base 1 partially overlap each other. The current detection coil A made of a Rogowski coil is formed by bending into a shape. When actually used to protect the coil line part 2 from which the charging part of the coil line part 2 is exposed, the coil line part 2 may be put in a protective structure.

尚コイル巻き戻し線路部8の導体形成は導体6、6aとともにエッチング工法によって銅箔により形成している。勿論これら導体6,6aとともに導電性インクで形成しても良い。その他の構成は参考例1の構成と同じであるので、同じ構成要素には同じ符号を付して説明は省略する。   The conductor of the coil rewinding line portion 8 is formed of copper foil by the etching method together with the conductors 6 and 6a. Of course, these conductors 6 and 6a may be formed of conductive ink. Since the other configuration is the same as the configuration of Reference Example 1, the same components are denoted by the same reference numerals and description thereof is omitted.

図11は上述の電流検出用コイルAを用いた電流センサ全体の構成を示しており、電流検出用コイルAの出力端子3a,3bからの出力電圧を積分する積分回路9aと、積分出力をセンサ仕様に応じた電圧まで増幅する増幅回路9bとからなる信号処理部9を設け、電流検出用コイルAで検出する電流に対応した電流波形に復元した検出出力を出力するようなっている。尚ロゴスキーコイルからなる電流検出用コイルAの出力電圧が微小なため、電流検出用コイルAと信号処理回路部9との接続には、外部ノイズの影響を防ぐためにツイストペアシールド線等を用いることが望ましく、理想的には電流検出用コイルAと信号処理回路部9とを一体化させて接続線を無くすことが望ましい。   FIG. 11 shows the configuration of the entire current sensor using the above-described current detection coil A. The integration circuit 9a integrates the output voltage from the output terminals 3a and 3b of the current detection coil A, and the integration output is detected by the sensor. A signal processing unit 9 including an amplifier circuit 9b that amplifies the voltage according to the specification is provided, and a detection output restored to a current waveform corresponding to the current detected by the current detection coil A is output. Since the output voltage of the current detection coil A, which is a Rogowski coil, is very small, a twisted pair shielded wire or the like is used for the connection between the current detection coil A and the signal processing circuit unit 9 in order to prevent the influence of external noise. Ideally, it is desirable that the current detection coil A and the signal processing circuit unit 9 be integrated to eliminate the connection line.

更に電流検出用コイルAとしての感度を上げるために、並行する導体5,6の間隔をなるべく微細化し、また凹形状の変形部4の基準面からの深さ(後述する凸形状の変形部の場合には高さ)が大きい程、出力電圧が大きくなり感度がよくなる。例えば、間隔を200μmとし、絶縁ベース1の変形部4の深さを100μm、変形部4の長手両端方向の長さを20mmとして、円筒形状に丸めてトロイダルコイル型の電流検出用コイルAとした場合、出力電圧は約3.9μV/A(1次側の周波数が50Hz時)の電圧が発生する。この場合、絶縁ベース1の大きさは、例えば100mm×25mm、厚さが0.2mmが適当である。勿論絶縁ベース1の大きさは、電流検出用コイルAが設置される場所の形状等の物理的制約、貫通する1次側の電線の直径等当該コイルが使用される外的条件に応じて変更することができる。   Further, in order to increase the sensitivity as the current detection coil A, the interval between the parallel conductors 5 and 6 is made as small as possible, and the depth from the reference surface of the concave deformed portion 4 (the convex deformed portion described later). In some cases, the higher the height), the greater the output voltage and the better the sensitivity. For example, the distance is set to 200 μm, the depth of the deformed portion 4 of the insulating base 1 is set to 100 μm, the length of the deformed portion 4 in both longitudinal directions is set to 20 mm, and rounded into a cylindrical shape to form a toroidal coil type current detection coil A. In this case, a voltage of about 3.9 μV / A (when the frequency on the primary side is 50 Hz) is generated. In this case, the size of the insulating base 1 is suitably, for example, 100 mm × 25 mm and the thickness is 0.2 mm. Of course, the size of the insulating base 1 is changed in accordance with the physical conditions such as the shape of the place where the current detection coil A is installed and the external conditions in which the coil is used, such as the diameter of the primary wire passing therethrough. can do.

更に絶縁ベース1としては図5に示すような円筒状に成形したものを用いても良い。また電流検出用コイルAとしては円筒状でなく、図6のような円環状であっても良い。更に変形部4の形状としては図4(a),(c)のような構成を、更に図8(a),(b)のようなパターン形成ガイド用溝7を用いた構成を採用しても良い。更にまた図7に示すような線状の導体パターンを採用しても良い。また更に図9のような構成の絶縁ベース1を用いても良い。   Further, the insulating base 1 may be formed in a cylindrical shape as shown in FIG. Further, the current detection coil A may not be cylindrical but may be an annular shape as shown in FIG. Further, as the shape of the deformed portion 4, a configuration as shown in FIGS. 4A and 4C is adopted, and a configuration using a pattern formation guide groove 7 as shown in FIGS. 8A and 8B is adopted. Also good. Furthermore, a linear conductor pattern as shown in FIG. 7 may be adopted. Furthermore, an insulating base 1 having a configuration as shown in FIG. 9 may be used.

コイル巻き戻し線路部8を図12に示すように絶縁ベース1の裏面の中央に長手方向に形成し、その一端に絶縁ベース1の表面側のコイル線路部2の終端をスルーホールを介して接続し、他端に絶縁ベース1の表面側の出力端子3bをスルーホールを介して接続するようにしても良い。尚図12ではコイル線路部2を模式的に示しているが、コイル線路部2を構成する第1,第2の導体5,6及び接続構成の構造は参考例1に準ずるものとする。   As shown in FIG. 12, the coil rewinding line portion 8 is formed in the center of the back surface of the insulating base 1 in the longitudinal direction, and the terminal of the coil line portion 2 on the surface side of the insulating base 1 is connected to one end thereof through a through hole. Then, the output terminal 3b on the surface side of the insulating base 1 may be connected to the other end through a through hole. In FIG. 12, the coil line portion 2 is schematically shown. However, the first and second conductors 5 and 6 constituting the coil line portion 2 and the structure of the connection configuration are in accordance with the first embodiment.

(実施形態2)
ところで実施形態1のように電流センサの電流検出用コイルAとしては用いる場合、静電ノイズの影響を考慮しなければならない。そこで本実施形態では図13(a)に示すようにコイル線路部2の形成部位に対応した絶縁ベース1の裏面に導体箔10を貼り付けてシールド部を構成している。そしてグランド側の出力端子3b側のコイル巻き戻し線路部8の端部を絶縁ベース1に形成したスルーホール11を利用して裏面側に導体箔10に電気的に接続している。
(Embodiment 2)
By the way, when used as the current detection coil A of the current sensor as in the first embodiment, the influence of electrostatic noise must be taken into consideration. Therefore, in the present embodiment, as shown in FIG. 13A, a conductor foil 10 is attached to the back surface of the insulating base 1 corresponding to the site where the coil line portion 2 is formed to constitute a shield portion. Then, the end of the coil rewinding line portion 8 on the ground side output terminal 3 b side is electrically connected to the conductor foil 10 on the back side using the through hole 11 formed in the insulating base 1.

而して本実施形態では導体箔10からなるシールド部で静電ノイズによる影響を排除することができ、またコイル線路部2が設けられない絶縁ベース1の裏面を有効に活用できる。   Thus, in the present embodiment, the influence of electrostatic noise can be eliminated by the shield portion made of the conductive foil 10, and the back surface of the insulating base 1 where the coil line portion 2 is not provided can be effectively utilized.

尚コイル線路部2を図13(a)では模式的に示しているが、コイル線路部2を構成する第1、第2の導体5,6及び接続構成の構造は参考例1に準ずるものとする。   Although the coil line portion 2 is schematically shown in FIG. 13A, the structure of the first and second conductors 5 and 6 and the connection configuration constituting the coil line portion 2 is the same as in Reference Example 1. To do.

(実施形態3)
前記実施形態2ではコイル巻き戻し線路部8を絶縁ベース1の表面側に形成しているが、本実施形態では、図13(b)に示すようにコイル線路部2の終端をスルーホール12aを用いて絶縁ベース1の長手方向の一端側の裏面に位置する導体箔10の端部中央に電気的に接続し、また出力端子3bに一端を接続した導体6cの他端をスルーホール12bを用いて絶縁ベース1の長手方向の他端側の裏面に位置する導体箔10の端部中央に電気的に接続することで、シールド部を構成する導体箔10をコイル巻き戻し線路部として兼用している。
(Embodiment 3)
In the second embodiment, the coil rewinding line portion 8 is formed on the surface side of the insulating base 1, but in this embodiment, the end of the coil line portion 2 is connected to the through hole 12a as shown in FIG. Using the through hole 12b, the other end of the conductor 6c having one end connected to the output terminal 3b is electrically connected to the center of the end portion of the conductor foil 10 positioned on the back surface on one end side in the longitudinal direction of the insulating base 1. By electrically connecting to the center of the end portion of the conductor foil 10 located on the back surface on the other end side in the longitudinal direction of the insulating base 1, the conductor foil 10 constituting the shield portion is also used as the coil rewinding line portion. Yes.

而して本実施形態では導体箔10によって静電ノイズの影響を排除することができる上に、コイル巻き戻し線路部をパターニング形成する必要が無い。   Thus, in the present embodiment, the influence of electrostatic noise can be eliminated by the conductor foil 10, and it is not necessary to pattern the coil rewinding line portion.

尚コイル線路部2を図13(b)では模式的に示しているが、コイル線路部2を構成する第1,第2の導体5,6及び接続構成の構造は参考例1に準ずるものとする。   In addition, although the coil line part 2 is typically shown in FIG.13 (b), the structure of the 1st, 2nd conductors 5 and 6 which comprise the coil line part 2, and a connection structure shall follow a reference example 1. To do.

(実施形態4)
実施形態2,3では絶縁ベース1の裏面に導体箔10によるシールド部を形成しているが、導体箔10を貫く磁界によって導体箔10に渦電流が発生してノイズ増大の恐れがあるので、本実施形態では、図13(c)に示すように長手方向に切れ込み13を複数並行形成し、この切れ込み13によって渦電流に対する絶縁効果を図り、ノイズ低減を図っている。つまり渦電流による電位差によってノイズが発生するのを防ぐようになっている。
(Embodiment 4)
In the second and third embodiments, the shield portion is formed by the conductor foil 10 on the back surface of the insulating base 1, but an eddy current is generated in the conductor foil 10 due to the magnetic field penetrating the conductor foil 10, and there is a risk of noise increase. In the present embodiment, as shown in FIG. 13C, a plurality of cuts 13 are formed in parallel in the longitudinal direction, and the cuts 13 provide an insulation effect against eddy currents to reduce noise. That is, noise is prevented from being generated due to a potential difference caused by eddy current.

尚本実施形態は、コイル巻き戻し線路部を導体箔10により構成した実施形態3の構成を利用しているが、実施形態2の導体箔10に対して切れ込み13を入れても勿論良い。   In addition, although this embodiment utilizes the structure of Embodiment 3 which comprised the coil rewinding line | wire part with the conductor foil 10, it is needless to say that the notch 13 may be made with respect to the conductor foil 10 of Embodiment 2.

(実施形態5)
実施形態1,2ではロゴスキーコイルとして構成するためのコイル巻き戻し線路部8とコイル線路部2とを絶縁ベース1の同一面(表面)に形成しているが、本実施形態では図14(a)に示すように同一面側にコイル線路部2と同じ形状で、絶縁ベース1の短手方向に位置をずらしてコイル線路部2と並行するようにコイル巻き戻し線路部8を形成することで、スルーホール等を利用する必要が無く、しかも外乱磁界を防ぐ効果を上げている。
(Embodiment 5)
In the first and second embodiments, the coil rewinding line portion 8 and the coil line portion 2 to be configured as a Rogowski coil are formed on the same surface (front surface) of the insulating base 1, but in this embodiment, FIG. As shown in a), the coil unwinding line portion 8 is formed on the same surface side in the same shape as the coil line portion 2 and shifted in the short direction of the insulating base 1 so as to be parallel to the coil line portion 2. Thus, there is no need to use a through hole or the like, and the effect of preventing a disturbance magnetic field is increased.

図14(a)は線路部構成を模式的に示したものであるが、本実施形態では、実際には図14(b)に示すように絶縁ベース1の成形時に凹形状の変形部4を形成するとともに、隣接する変形部4,4間に絶縁ベース1の基準面を基準面として上向きに突出させた凸形状の変形部40を形成して、この変形部4を交互にコイル巻き戻し線路部8の導体80の形成部と、コイル線路部2の第1の導体5の形成部とするとともに、変形部40をコイル戻し線路8の導体80’の形成部と、コイル線路部2の第2の導体6の形成部として使用するようになっている。   FIG. 14A schematically shows the configuration of the line portion. In this embodiment, however, the concave deformed portion 4 is actually formed when the insulating base 1 is formed as shown in FIG. A convex deformed portion 40 is formed between the adjacent deformed portions 4 and 4 so as to protrude upward with the reference surface of the insulating base 1 as a reference surface, and the deformed portions 4 are alternately turned into coil rewind lines. The conductor 80 forming part of the part 8 and the forming part of the first conductor 5 of the coil line part 2 are used, and the deformed part 40 is used as the conductor 80 'forming part of the coil return line 8 and the coil line part 2 2 is used as a formation part of the second conductor 6.

そして導体5,6の接続を絶縁ベース1の基準面に形成した導体60a、60bにより行って蛇行状のコイル線路部2を構成している。同様に体80,80’間の接続を絶縁ベース1の基準面に形成した導体80a、80bにより行うことで蛇行状のコイル巻き戻し線路部8を構成している。   The conductors 5 and 6 are connected by the conductors 60 a and 60 b formed on the reference surface of the insulating base 1 to constitute the meandering coil line portion 2. Similarly, the conductors 80a and 80b formed on the reference surface of the insulating base 1 are connected between the bodies 80 and 80 'to constitute the meandering coil rewinding line portion 8.

尚導体5,6及び80、80’は共にインクジェット印刷工法による導電性インクのパターンで形成する。また本実施形態では工程を簡略化するために導体60a、60b,80a、80bもインクジェット印刷によって形成しているが、エッチング工法による銅箔によって形成することで低抵抗値を図っても良い。   The conductors 5, 6 and 80, 80 'are both formed of a conductive ink pattern by an ink jet printing method. In this embodiment, the conductors 60a, 60b, 80a, and 80b are also formed by inkjet printing in order to simplify the process. However, a low resistance value may be achieved by forming the conductor 60a by a copper foil by an etching method.

(実施形態6)
上述のように実施形態2〜5では導体箔10を用いてシールド部を構成しているが、本実施形態では、図15(a)に示すようにコイル戻し線路部8からコイル線路部2の並行する導体5,6間に介在するシールド線路81を延出形成し、これらシールド線路81により静電ノイズに対するシールド部を構成して、静電ノイズに対する対策を図っている。このシールド線路81は、具体的には図15(b)に示すように絶縁ベース1の基準面上に形成された第2の導体6と並行するように基準面上に形成してある。
(Embodiment 6)
As described above, in the second to fifth embodiments, the conductor foil 10 is used to form the shield portion. However, in the present embodiment, the coil return line portion 8 to the coil line portion 2 as shown in FIG. A shield line 81 interposed between the parallel conductors 5 and 6 is formed to extend, and a shield portion against electrostatic noise is configured by these shield lines 81 to take measures against electrostatic noise. Specifically, the shield line 81 is formed on the reference surface so as to be parallel to the second conductor 6 formed on the reference surface of the insulating base 1 as shown in FIG.

(実施形態7)
実施形態6ではコイル戻し線路部8から延出したシールド線路81をコイル線路部2の並行する導体5,6間に片方から介在させた構成であるが、本実施形態は図16(a)に示すようにコイル戻し線路部8に対してコイル線路部2を挟んで反対側の絶縁ベース1の基準面上にコイル戻し線路8と並行する形でグランド線路部8’を形成し、このグランド線路部8’からもシールド線路81’を延出させてシールド線路81とは反対方向からコイル線路部2の導体5,6間に介在させている。グランド線路部8’は出力端子3b付近でコイル戻し線路部8に対して接続してある。シールド線路81’は、具体的には図16(b)に示すように変形部4内に導体5と並行するように延出形成してある。
(Embodiment 7)
In the sixth embodiment, the shield line 81 extending from the coil return line portion 8 is interposed between the parallel conductors 5 and 6 of the coil line portion 2 from one side, but this embodiment is shown in FIG. As shown, a ground line portion 8 ′ is formed in parallel with the coil return line 8 on the reference surface of the insulating base 1 on the opposite side across the coil line portion 2 with respect to the coil return line portion 8. The shield line 81 ′ is also extended from the portion 8 ′ and interposed between the conductors 5 and 6 of the coil line portion 2 from the opposite direction to the shield line 81. The ground line portion 8 ′ is connected to the coil return line portion 8 in the vicinity of the output terminal 3b. Specifically, the shield line 81 ′ is formed so as to extend in parallel with the conductor 5 in the deformed portion 4 as shown in FIG.

(参考例2)
前記各実施形態および参考例1の絶縁ベース1は一枚の絶縁性樹脂成形品により構成したものであったが、本参考例では図17に示すように絶縁ベース1を、スリット状の貫通孔14を等間隔に複数並行形成し、前記各貫通孔14の一端側から当該貫通孔14に並行隣接する表面上を介して隣接する貫通孔の他端側に至るZ字状の第2の導体6を形成した板状の第1の絶縁体1aと、貫通孔14の長手方向の長さよりやや長く、また開口形状の幅と略同一の幅で且つ貫通孔14の間隔と同じ間隔で並行する複数の第1の導体5を表面に形成した第2の絶縁体1bとで構成した点に特徴があり、第1の絶縁体1aの各貫通孔14に対応する各第1の導体5を臨ませ且つ第1の導体5の一端を両側に隣接する第2の導体6の一方の一端に接続し、他端を他方の他端に臨ませるように第1の絶縁体1aの裏面に第2の絶縁体1bを貼り合わせることで、貫通孔14と貫通孔14の底部となる絶縁体1bによって実施形態1と同様な凹形状の変形部4を夫々形成するようになっている。
(Reference Example 2)
The insulating base 1 of each of the embodiments and the reference example 1 is constituted by a single insulating resin molded product. In this reference example, the insulating base 1 is formed as a slit-like through-hole as shown in FIG. 14 are formed in parallel at equal intervals, and a Z-shaped second conductor extending from one end side of each through hole 14 to the other end side of the adjacent through hole via the surface adjacent to the through hole 14 in parallel. 6 is formed in parallel to the plate-like first insulator 1a, which is slightly longer than the length of the through hole 14 in the longitudinal direction, substantially the same as the width of the opening shape, and at the same interval as the interval of the through holes 14. The second insulator 1b is formed with a plurality of first conductors 5 formed on the surface, and each first conductor 5 corresponding to each through hole 14 of the first insulator 1a is exposed. In addition, one end of the first conductor 5 is connected to one end of the second conductor 6 adjacent to both sides, and the other The first insulator 1b is bonded to the back surface of the first insulator 1a so that the other end faces the other end, so that the through hole 14 and the insulator 1b serving as the bottom of the through hole 14 are used in the first embodiment. Concave-shaped deformed portions 4 similar to the above are formed.

ここで第2の導体6の端部は各貫通孔14の両端の傾斜面(勾配)上に延長形成しており、絶縁体1a,1bの貼り合わせ時には導体5の端部と接触して電気的に接続されるが、接触信頼性を高めるために貼り合わせ後電気接続部位に導電性インクをインクジェット印刷により塗布して両者の電気的接続を確実にしている。   Here, the end portion of the second conductor 6 extends on the inclined surfaces (gradients) at both ends of each through-hole 14, and contacts the end portions of the conductor 5 when the insulators 1 a and 1 b are bonded together. However, in order to improve contact reliability, a conductive ink is applied to the electrical connection portion after bonding by ink jet printing to ensure electrical connection between the two.

ここで本参考例でもロゴスキーコイルの電流検出用コイルAとするため、絶縁体1aにはコイル戻し線路8を配線してある。また円筒状に形成するために絶縁体1a,1bは、何れも可撓性を有する絶縁性体により構成してある。例えば貫通孔14を設ける絶縁ベース1aは、例えば厚さ200μmのフィルムでありポリイミドフィルム等を用いることができる。この絶縁フィルムからなる絶縁体1aの導体6は、例えばスパッタリング工法を用いて銅箔で形成することも、インクジェット印刷方法を用いて導電性インクによって形成することもできる。また絶縁体1bは表面が平坦面であるので、導体5はスパッタリング工法によって形成することもできるが、プリント回路基板の工法であるエッチングによるパターニングも可能である。この場合、厚さが例えば18μm程度の銅箔で導体5を形成できるので、導体5,6を共に銅箔で形成すれば、コイル線路部2の抵抗値を非常に低抵抗値とすることが可能である。尚両絶縁体1a,1bの材料としては貼り合わせることを考えると、互いに接着力が強く、熱などに対する変形に対して同等の性質を有するものが好ましい。   Here, also in this reference example, the coil return line 8 is wired to the insulator 1a in order to use the current detection coil A of the Rogowski coil. Moreover, in order to form in a cylindrical shape, the insulators 1a and 1b are both constituted by a flexible insulator. For example, the insulating base 1a provided with the through holes 14 is a film having a thickness of 200 μm, for example, and a polyimide film or the like can be used. The conductor 6 of the insulator 1a made of this insulating film can be formed of a copper foil using, for example, a sputtering method, or can be formed of a conductive ink using an ink jet printing method. Since the insulator 1b has a flat surface, the conductor 5 can be formed by a sputtering method, but patterning by etching, which is a method for forming a printed circuit board, is also possible. In this case, since the conductor 5 can be formed of a copper foil having a thickness of, for example, about 18 μm, if both the conductors 5 and 6 are formed of a copper foil, the resistance value of the coil line portion 2 can be made extremely low. Is possible. As materials for the two insulators 1a and 1b, in view of bonding, those having strong mutual adhesive strength and equivalent properties against deformation due to heat or the like are preferable.

尚図17では出力端子の図示を省略してあるが、実施形態1の場合と同様にコイル線路部2の始端を接続する出力端子と、コイル戻し線路8を介してコイル線路部2の終端とを接続する出力端子とを設けてある。   Although illustration of the output terminal is omitted in FIG. 17, the output terminal for connecting the start end of the coil line portion 2 and the end of the coil line portion 2 via the coil return line 8 are the same as in the case of the first embodiment. Are connected to the output terminal.

而して本参考例によるコイルでは、両面基板を用いてコイルを構成する場合のようにスルーホールのランドの存在によって導体5,6間隔を微細化することは難しいが本参考例のような構造ではランド等のスペースを必要としないため、間隔を細かくすることが可能である。   Thus, in the coil according to the present reference example, it is difficult to reduce the distance between the conductors 5 and 6 due to the presence of the through-hole lands as in the case where the coil is formed using the double-sided substrate, but the structure as in the present reference example. Then, since a space such as a land is not required, the interval can be made fine.

(実施形態8)
本実施形態では、変形部4を凸状形状とするものであって、図1(a)に示すように中央辺が並行するように等間隔にパターン形成された略Z字状の複数の導体6を片側の基準面となる表面に形成した平板状の絶縁体1cと、前記各導体6の両端部以外を覆うように絶縁体1c上に図1(b)に示すように貼り合わせて絶縁ベース1を構成する絶縁性薄膜たる絶縁フィルム1dとからなり、この図1(b)に示すように絶縁体1c上に絶縁フィルム1dを貼り合わせ後に、隣接する二つの前記導体6の一方の一端と他方の他端との間を電気的に接続する導体5をインクジェット印刷方法により導体インクを絶縁フィルム1d上に噴射してパターン形成し、図1(c),(d)に示すように導体5,6とで蛇行状のコイル線路部2を構成するようになっている。
(Embodiment 8)
In the present embodiment, the deformable portion 4 has a convex shape, and a plurality of substantially Z-shaped conductors that are patterned at equal intervals so that the central sides are parallel as shown in FIG. As shown in FIG. 1B, the flat insulator 1c formed on the surface serving as a reference surface on one side and the insulator 1c so as to cover other than both ends of each conductor 6 are insulated. An insulating film 1d, which is an insulating thin film constituting the base 1, and after bonding the insulating film 1d on the insulator 1c as shown in FIG. 1 (b), one end of one of the two adjacent conductors 6 A conductor 5 electrically connecting between the other end and the other end is formed by spraying a conductive ink onto the insulating film 1d by an ink jet printing method to form a conductor as shown in FIGS. 1 (c) and 1 (d). 5 and 6 constitute a meandering coil line section 2 It has become.

而して本実施形態では絶縁体1cの表面を基準面としたときに絶縁フィルム1dの厚み分だけが基準面より高くなり、絶縁フィルム1dが変形部として機能することになる。   Thus, in this embodiment, when the surface of the insulator 1c is used as a reference plane, only the thickness of the insulating film 1d is higher than the reference plane, and the insulating film 1d functions as a deformed portion.

尚本実施形態でもロゴスキーコイルとして電流検出用コイルAとするため、絶縁体1aにはコイル戻し線路8を配線してある。また図1では出力端子の図示を省略してあるが、実施形態1の場合と同様にコイル線路部2の始端を接続する出力端子と、コイル戻し線路8を介してコイル線路部2の終端とを接続する出力端子とを設けてある。   In this embodiment as well, a coil return line 8 is wired to the insulator 1a in order to use the current detection coil A as a Rogowski coil. Although the output terminal is not shown in FIG. 1, the output terminal for connecting the starting end of the coil line portion 2 and the end of the coil line portion 2 via the coil return line 8 are the same as in the case of the first embodiment. Are connected to the output terminal.

ここで絶縁体1cが平坦面を有する平板状の絶縁性樹脂成形体で形成しているので、導体6の形成方法としてはスパッタリング工法を用いることもエッチング工法を用いることもできる。また絶縁フィルム1dも表面が平坦面であるため導体5の形成にはインクジェット印刷による方法以外にスパッタリング等を採用することもできる。   Here, since the insulator 1c is formed of a flat insulating resin molding having a flat surface, the conductor 6 can be formed by a sputtering method or an etching method. Further, since the insulating film 1d has a flat surface, the conductor 5 can be formed by sputtering or the like in addition to the ink jet printing method.

1 絶縁ベース
1c 絶縁体
1d 絶縁フィルム(絶縁性薄膜)
2 コイル線路部
5 導体(第2の導体)
6 導体(第1の導体)
1 Insulation base 1c Insulator 1d Insulation film (insulating thin film)
2 Coil line part 5 Conductor (second conductor)
6 conductor (first conductor)

Claims (9)

中央辺が並行するように等間隔にパターン形成された略Z字状の複数の第1の導体を片側の板面に形成した平板状の絶縁体と、前記各第1の導体を覆うように前記絶縁体の前記板面に重ねられて配設される絶縁性薄膜とで構成された絶縁ベースと、隣接する二つの前記第1の導体の一方の一端と他方の他端との間を電気的に接続する第2の導体を前記絶縁性薄膜表面に形成して前記第1の導体と前記第2の導体とで蛇行状に構成されたコイル線路部と、前記コイル線路部近傍の前記板面に設けられ、前記コイル線路部の始端、終端を夫々接続する第1、第2の出力端子とから成ることを特徴とするコイル。   A flat insulator in which a plurality of substantially Z-shaped first conductors patterned at equal intervals so that the central sides are parallel to each other are formed on one side of the plate surface, and so as to cover the first conductors An electrical insulation between an insulating base composed of an insulating thin film disposed on the plate surface of the insulator and one end and the other end of the two adjacent first conductors A coil line portion formed in a meandering manner by the first conductor and the second conductor formed on the surface of the insulating thin film, and the plate in the vicinity of the coil line portion A coil comprising a first output terminal and a second output terminal which are provided on a surface and which respectively connect a start end and a terminal end of the coil line portion. 請求項1のコイルを用い、前記絶縁ベースを円筒状に形成するとともにコイル線路部の終端をコイル巻き戻し線路部により始端側に戻したロゴスキーコイルを構成して電流検出用コイルとしていることを特徴とする電流センサ。   Using the coil of claim 1, forming a Rogowski coil in which the insulating base is formed in a cylindrical shape and the terminal end of the coil line part is returned to the start end side by the coil rewinding line part to form a current detecting coil. Characteristic current sensor. 前記絶縁ベースの裏面に導体箔を貼り付けてシールド部を構成し、前記コイル巻き戻し線路部を介して前記コイル線路部の終端を接続する第2の出力端子を前記導体箔に電気的に接続していることを特徴とする請求項2記載の電流センサ。   A conductor foil is attached to the back surface of the insulating base to form a shield portion, and a second output terminal that connects the terminal end of the coil line portion is electrically connected to the conductor foil via the coil rewind line portion. The current sensor according to claim 2, wherein: 前記コイル線路部の終端を前記導体箔に接続するとともに、前記出力端子を前記コイル線路部の始端付近で前記導体箔に電気的に接続し、前記導体箔をコイル巻き戻し線路部として用いたことを特徴とする請求項3記載の電流センサ。   The terminal end of the coil line part was connected to the conductor foil, the output terminal was electrically connected to the conductor foil in the vicinity of the starting end of the coil line part, and the conductor foil was used as a coil rewind line part. The current sensor according to claim 3. 前記導体箔に並行する複数条の絶縁用切り込みを形成していることを特徴とする請求項3又は4記載の電流センサ。   5. The current sensor according to claim 3, wherein a plurality of strips of insulation are formed in parallel with the conductor foil. 前記コイル巻き戻し線路と前記コイル線路部とを同形状に形成していることを特徴とする請求項2、3又は5記載の電流センサ。   6. The current sensor according to claim 2, wherein the coil rewind line and the coil line portion are formed in the same shape. 前記コイル線路部の形成位置と、前記巻き戻し線路の形成位置とを前記変形部の両端方向にずらして両線路を並行させて前記コイル線路部と前記巻き戻し線路の巻き方向を同じ方向としたことを特徴とする請求項6記載の電流センサ。   The formation position of the coil line portion and the formation position of the rewind line are shifted in the both end directions of the deformable portion so that both lines are parallel and the winding direction of the coil line portion and the rewind line is the same direction. The current sensor according to claim 6. 前記変形部の両端方向に並行する前記第1,2の導体間の前記絶縁ベース表面に、グランド用導体を第1,第2の導体に並行するように形成していることを特徴とする請求項2記載の電流センサ。   The ground conductor is formed on the surface of the insulating base between the first and second conductors parallel to both ends of the deformed portion so as to be parallel to the first and second conductors. Item 3. The current sensor according to Item 2. グランド用導体は前記変形部の表面と、隣接する変形部間の絶縁ベースの板面部位に交互に形成していることを特徴とする請求項8記載の電流センサ。   9. The current sensor according to claim 8, wherein the ground conductors are alternately formed on the surface of the deformed portion and the plate surface portion of the insulating base between the adjacent deformed portions.
JP2009055274A 2009-03-09 2009-03-09 Current sensor Expired - Fee Related JP4710996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009055274A JP4710996B2 (en) 2009-03-09 2009-03-09 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009055274A JP4710996B2 (en) 2009-03-09 2009-03-09 Current sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005008239A Division JP4301168B2 (en) 2005-01-14 2005-01-14 Coil and current sensor using the same

Publications (2)

Publication Number Publication Date
JP2009135523A true JP2009135523A (en) 2009-06-18
JP4710996B2 JP4710996B2 (en) 2011-06-29

Family

ID=40867032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009055274A Expired - Fee Related JP4710996B2 (en) 2009-03-09 2009-03-09 Current sensor

Country Status (1)

Country Link
JP (1) JP4710996B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049154A (en) * 2015-09-03 2017-03-09 大電株式会社 Electromagnetic field sensor
WO2019102571A1 (en) * 2017-11-24 2019-05-31 新電元工業株式会社 Detection substrate, assembly, and method for producing detection substrate
JP2020085860A (en) * 2018-11-30 2020-06-04 株式会社東芝 Current detecting device
CN112352163A (en) * 2018-07-04 2021-02-09 新电元工业株式会社 Electronic module

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284452A (en) * 1975-12-31 1977-07-14 Fujitsu Ltd Method of manufacturing coil
JPS53103147U (en) * 1977-01-25 1978-08-19
JPS60158341A (en) * 1983-12-30 1985-08-19 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Radio frequency coil device
JPS62137569A (en) * 1985-12-11 1987-06-20 Toshiba Corp Current sensor
JPS6417414A (en) * 1987-07-10 1989-01-20 Fuji Electric Co Ltd Current transformer
JPH02272753A (en) * 1989-04-14 1990-11-07 Kawasaki Steel Corp Semiconductor device
JPH09270657A (en) * 1996-03-29 1997-10-14 Mitsubishi Materials Corp Noise absorbing element
JPH10125548A (en) * 1996-10-21 1998-05-15 Toshiba Corp Transformer for grounded type instrument
JPH11186693A (en) * 1997-12-25 1999-07-09 Kyocera Corp High-frequency circuit board
JP2002221538A (en) * 2001-01-25 2002-08-09 Chuo Electric Works Ltd Current sensor and current measuring circuit
JP2003077745A (en) * 2001-09-05 2003-03-14 Mitsubishi Electric Corp Zero-phase current transformer
JP2004056133A (en) * 2002-07-22 2004-02-19 Xerox Corp Out-of-plane micro-coil having ground-plane structure
JP2004055973A (en) * 2002-07-23 2004-02-19 Keisoku Kenkyusho:Kk Coil device and its manufacturing method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284452A (en) * 1975-12-31 1977-07-14 Fujitsu Ltd Method of manufacturing coil
JPS53103147U (en) * 1977-01-25 1978-08-19
JPS60158341A (en) * 1983-12-30 1985-08-19 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Radio frequency coil device
JPS62137569A (en) * 1985-12-11 1987-06-20 Toshiba Corp Current sensor
JPS6417414A (en) * 1987-07-10 1989-01-20 Fuji Electric Co Ltd Current transformer
JPH02272753A (en) * 1989-04-14 1990-11-07 Kawasaki Steel Corp Semiconductor device
JPH09270657A (en) * 1996-03-29 1997-10-14 Mitsubishi Materials Corp Noise absorbing element
JPH10125548A (en) * 1996-10-21 1998-05-15 Toshiba Corp Transformer for grounded type instrument
JPH11186693A (en) * 1997-12-25 1999-07-09 Kyocera Corp High-frequency circuit board
JP2002221538A (en) * 2001-01-25 2002-08-09 Chuo Electric Works Ltd Current sensor and current measuring circuit
JP2003077745A (en) * 2001-09-05 2003-03-14 Mitsubishi Electric Corp Zero-phase current transformer
JP2004056133A (en) * 2002-07-22 2004-02-19 Xerox Corp Out-of-plane micro-coil having ground-plane structure
JP2004055973A (en) * 2002-07-23 2004-02-19 Keisoku Kenkyusho:Kk Coil device and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017049154A (en) * 2015-09-03 2017-03-09 大電株式会社 Electromagnetic field sensor
WO2019102571A1 (en) * 2017-11-24 2019-05-31 新電元工業株式会社 Detection substrate, assembly, and method for producing detection substrate
JPWO2019102571A1 (en) * 2017-11-24 2020-11-19 新電元工業株式会社 Manufacturing method of detection substrate, union and detection substrate
JP6995879B2 (en) 2017-11-24 2022-01-17 新電元工業株式会社 Manufacturing method of detection board, union and detection board
US11268988B2 (en) 2017-11-24 2022-03-08 Shindengen Electric Manufacturing Co., Ltd. Detection substrate, assembly, and method for manufacturing detection substrate
CN112352163A (en) * 2018-07-04 2021-02-09 新电元工业株式会社 Electronic module
JP2020085860A (en) * 2018-11-30 2020-06-04 株式会社東芝 Current detecting device
JP7258526B2 (en) 2018-11-30 2023-04-17 株式会社東芝 current detector

Also Published As

Publication number Publication date
JP4710996B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4301168B2 (en) Coil and current sensor using the same
JP6490160B2 (en) Enhancement of planar RF sensor technology
CN1988076B (en) Alternating current detection coil
JP4965402B2 (en) Current sensor
EP3508863B1 (en) Offset current sensor structure
US20120146620A1 (en) Current sensor
CN107490715B (en) Current sensor and method for manufacturing current sensor
US20150262748A1 (en) Magneto-impedance element and method for producing the same
US11549969B2 (en) Low-noise, large dynamic-range sensor for measuring current
JP2007057494A (en) Coil for detecting alternating current
JP4710996B2 (en) Current sensor
JP4220727B2 (en) Air core coil
JP6300016B2 (en) Toroidal coil device and current measuring device using the same
JP2013130571A (en) Current sensor
KR20030073959A (en) Fluxgate sensor integrated in print circuit board and method for manufacturing the same
EP3120159B1 (en) Flexible circuit rogowski coil
JP7016238B2 (en) Directional coupler
JP4715419B2 (en) Current detection coil
JP2010266233A (en) Device for detection of magnetic field
JP6621581B2 (en) Eddy current displacement sensor
JP2015059838A (en) Wiring current detection structure
JP4499707B2 (en) Current sensor
JP2014085259A (en) Strain gauge, strain measuring device and strain gauge type converter
JP4780249B2 (en) Current detection coil
JP5139822B2 (en) Magnetic field probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees