JP2009133783A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2009133783A
JP2009133783A JP2007311389A JP2007311389A JP2009133783A JP 2009133783 A JP2009133783 A JP 2009133783A JP 2007311389 A JP2007311389 A JP 2007311389A JP 2007311389 A JP2007311389 A JP 2007311389A JP 2009133783 A JP2009133783 A JP 2009133783A
Authority
JP
Japan
Prior art keywords
current
signal processing
correction
coils
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007311389A
Other languages
Japanese (ja)
Other versions
JP4877214B2 (en
Inventor
Eiji Iwami
英司 岩見
Yusuke Miyamura
雄介 宮村
Akimi Shiokawa
明実 塩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007311389A priority Critical patent/JP4877214B2/en
Publication of JP2009133783A publication Critical patent/JP2009133783A/en
Application granted granted Critical
Publication of JP4877214B2 publication Critical patent/JP4877214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate setting for correction of a current to be measured, in a current sensor for processing a signal by using in common each current to be measured by two Rogowski coils by a single signal processing circuit. <P>SOLUTION: This current sensor 1 is equipped with a printed board 2, coils 3, 4 having openings 31, 41, respectively, and a signal processing circuit 5 which is used in common for signal processing of each detection current detected by the coils 3, 4. The coils 3, 4 and the signal processing circuit 5 are formed on the same substrate 2. Output ends 32, 42 of the coils 3, 4 for outputting each detection current signal are connected, respectively, to the input end 51 of the signal processing circuit 5 through transmission lines 11, 12 having substantially the same length L1 and formed on the printed board 2. As a result, since each unnecessary detection current, based on an external magnetic field detected respectively by the transmission lines 11, 12 can be adjusted to be substantially the same, each measurement error, based on the external magnetic field of each current to be measured detected by the coils 3, 4, becomes approximately the same; and when correcting the current to be measured, setting for correction is facilitated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、家庭用分電盤の分岐回路等に流れる電流を測定する電流センサに関する。   The present invention relates to a current sensor for measuring a current flowing through a branch circuit or the like of a domestic distribution board.

近年、送変電機器や家庭用分電盤等の電線に通電される交流電流量を非接触で測定するための電流センサでは、外部磁界の影響の少ないロゴスキコイルがよく用いられると共に、複数の電線の電流を測定するため、複数のロゴスキコイルと、これらロゴスキコイルからの検出電流を信号処理する信号処理回路とがプリント基板上に一体化されてきている。また、このような電流センサでは、小型化とコスト削減のため、2つのロゴスキコイルからの電流検出出力をプリント基板に設けた各伝送線路で1つの共用の信号処理回路に接続して信号処理がなされている。   In recent years, Rogowski coils that are less affected by external magnetic fields are often used in current sensors for non-contact measurement of the amount of alternating current that is passed through wires such as power transmission and transformation equipment and household distribution boards. In order to measure this, a plurality of Rogowski coils and a signal processing circuit for signal-processing detected currents from these Rogowski coils have been integrated on a printed circuit board. Moreover, in such a current sensor, signal processing is performed by connecting the current detection output from two Rogowski coils to one common signal processing circuit in each transmission line provided on the printed circuit board for miniaturization and cost reduction. ing.

ところで、このような電流センサは、プリント基板上に不要な外部磁界が入射すると、ロゴスキコイルから信号処理回路までの伝送線路等において外部磁界の影響を受け、この外部磁界に基き各伝送線路等で発生される不要検出電流は、信号処理回路に入力され、被測定電流の測定誤差となる。このとき、2つのロゴスキコイルからの各伝送線路の長さが異なると、各伝送線路における外部磁界による不要検出電流に差が生じ、各ロゴスキコイルで検出される被測定電流の測定誤差が一定とはならない。このため、測定誤差を補正しようとした場合には、各被測定電流毎に補正量が異なり、補正の設定を複雑化させることになる。   By the way, when an unnecessary external magnetic field is incident on the printed circuit board, such a current sensor is affected by the external magnetic field in the transmission line from the Rogowski coil to the signal processing circuit, and is generated in each transmission line based on the external magnetic field. The unnecessary detection current is input to the signal processing circuit and becomes a measurement error of the current to be measured. At this time, if the lengths of the transmission lines from the two Rogowski coils are different, a difference occurs in the unnecessary detection current due to the external magnetic field in each transmission line, and the measurement error of the measured current detected by each Rogowski coil is not constant. . For this reason, when the measurement error is to be corrected, the correction amount differs for each current to be measured, which complicates the correction setting.

ところで、2つのロゴスキコイルからの各検出出力がそれぞれプリント基板上の各伝送線路を介してセンサユニットに入力され、センサユニットの入力を切替えて各検出出力に基くそれぞれの検知データを生成する電流センサが知られている(特許文献1参照)。しかしながら、この電流センサでは、各伝送線路における外部磁界の影響対策としての伝送線路長に関する開示がなされていない。
特開2007−195294号公報
By the way, each detection output from the two Rogowski coils is input to the sensor unit via each transmission line on the printed circuit board, and a current sensor that generates each detection data based on each detection output by switching the input of the sensor unit. It is known (see Patent Document 1). However, in this current sensor, there is no disclosure regarding the transmission line length as a countermeasure against the influence of the external magnetic field in each transmission line.
JP 2007-195294 A

本発明は、上記の問題を解決するためになされたものであり、2つのロゴスキコイルとこれらコイルからの各検出電流の信号処理に共用される信号処理回路とが同一基板に形成された電流センサにおいて、2つのロゴスキコイルの各出力端部と信号処理回路の入力端部とを接続する各伝送線路における外部磁界の影響を略同じにすることにより、被測定電流の外部磁界に基く測定誤差を補正するとき、補正の設定が容易となる電流センサを提供することを目的とする。   The present invention has been made in order to solve the above problem, and in a current sensor in which two Rogowski coils and a signal processing circuit shared for signal processing of each detected current from these coils are formed on the same substrate. The measurement error based on the external magnetic field of the current to be measured is corrected by making the influence of the external magnetic field in each transmission line connecting the output ends of the two Rogowski coils and the input end of the signal processing circuit substantially the same. It is an object to provide a current sensor that facilitates the setting of correction.

上記目的を達成するために請求項1の発明は、電流が流れる被測定電線が貫通する開口を有する少なくとも2つのロゴスキコイルと、これらロゴスキコイルで検出された各検出電流の信号処理に共用される信号処理回路とを備え、前記ロゴスキコイルと信号処理回路とが同一基板上に形成された電流センサであって、前記ロゴスキコイルの各検出電流信号が出力される出力端部と、前記信号処理回路の入力端部とは、前記基板に形成された略同じ長さの伝送線路でそれぞれ接続されるものである。   In order to achieve the above object, the invention of claim 1 is characterized in that at least two Rogowski coils having openings through which electric wires to be measured through which current flows pass, and signal processing shared by signal processing of each detected current detected by these Rogowski coils. A current sensor in which the Rogowski coil and the signal processing circuit are formed on the same substrate, an output end from which each detected current signal of the Rogowski coil is output, and an input end of the signal processing circuit Are connected by transmission lines of substantially the same length formed on the substrate.

請求項2の発明は、請求項1に記載の交流電流検出用コイルにおいて、前記信号処理回路の各入力端部は、隣接して配設されると共に、各入力端部と、各入力端部が前記伝送線路で接続される出力端部を持つ前記ロゴスキコイルの各開口の中心とが互いに略等距離に配設されているものである。   According to a second aspect of the present invention, in the AC current detection coil according to the first aspect, each input end of the signal processing circuit is disposed adjacent to each other, and each input end and each input end Are arranged at substantially equal distances from the center of each opening of the Rogowski coil having an output end connected by the transmission line.

請求項3の発明は、請求項1又は請求項2に記載の交流電流検出用コイルにおいて、前記信号処理回路は、前記検出電流を増幅及び積分するための増幅回路及び積分回路を備え、前記増幅回路及び積分回路での増幅作用及び積分作用を補助するための付加回路部品が、前記増幅回路及び積分回路に隣接して接続され、それらと同一基板面に配設されているものである。   According to a third aspect of the present invention, in the AC current detection coil according to the first or second aspect, the signal processing circuit includes an amplification circuit and an integration circuit for amplifying and integrating the detection current, and the amplification Additional circuit components for assisting amplification and integration in the circuit and the integration circuit are connected adjacent to the amplification circuit and the integration circuit, and disposed on the same substrate surface.

請求項4の発明は、請求項1乃至請求項3のいずれか一項に記載の電流センサにおいて、前記信号処理回路は、前記ロゴスキコイルで検出された検出電流の値を補正する補正処理部を備えたものである。   According to a fourth aspect of the present invention, in the current sensor according to any one of the first to third aspects, the signal processing circuit includes a correction processing unit that corrects a value of a detected current detected by the Rogowski coil. It is a thing.

請求項5の発明は、請求項1乃至請求項4のいずれか一項に記載の電流センサにおいて、前記検出電流の値を補正するために必要な補正量を検出するための補正用ロゴスキコイルを、さらに備え、前記補正処理部は、前記補正用ロゴスキコイルで検出された補正量に基いて、前記検出電流の値を補正するものである。   According to a fifth aspect of the present invention, in the current sensor according to any one of the first to fourth aspects, a correction logoski coil for detecting a correction amount necessary for correcting the value of the detection current is provided. In addition, the correction processing unit corrects the value of the detection current based on a correction amount detected by the correcting Rogowski coil.

請求項1の発明によれば、2つのロゴスキコイルの各出力端部と信号処理回路の各入力端部とを結ぶ各伝送線路での外部磁界の影響が略同じになるので、外部磁界により生じる各伝送線路の不要検出電流も略同じとなり、被測定電流の補正を行う場合、各被測定電流の補正を略同じ補正量で行うことができ、補正の設定が容易になる。   According to the first aspect of the present invention, the influence of the external magnetic field on each transmission line connecting the output ends of the two Rogowski coils and the input ends of the signal processing circuit becomes substantially the same. The unnecessary detection current of the transmission line is also substantially the same, and when the current to be measured is corrected, each current to be measured can be corrected with substantially the same correction amount, and the setting of the correction becomes easy.

請求項2の発明によれば、信号処理回路の各入力端部と各開口の中心とを結ぶ線上近傍にロゴスキコイルの各出力端部を配設することにより、各伝送線路を、開口の各中心から等距離にある直線に関して略線対称に配設することができる。これにより、各伝送線路を略同じ長さに保ちつつ、各コイルと信号処理回路とを略最短距離で接近できるので、伝送線路の長さを短くでき、外部磁界による影響が小さくなり、同じ補正量で、かつ、補正量を小さくでき、補正誤差を少なくできる。   According to the invention of claim 2, by arranging each output end of the Rogowski coil near the line connecting each input end of the signal processing circuit and the center of each opening, each transmission line is connected to each center of the opening. It can arrange | position substantially symmetrically about the straight line which is equidistant from. As a result, each coil and the signal processing circuit can be approached at a substantially shortest distance while keeping each transmission line substantially the same length, so that the length of the transmission line can be shortened, the influence of the external magnetic field is reduced, and the same correction is performed. The amount of correction can be made small, and the correction error can be reduced.

請求項3の発明によれば、増幅回路、積分回路とそれらに接続される付加回路部品とを接続する伝送線路の長さを短くできるので、外部磁界の影響を軽減することができる。   According to the invention of claim 3, since the length of the transmission line connecting the amplifier circuit, the integrating circuit, and the additional circuit components connected to them can be shortened, the influence of the external magnetic field can be reduced.

請求項4の発明によれば、外部磁界の影響を補正して低減することができるので、電流測定精度が向上する。   According to the invention of claim 4, since the influence of the external magnetic field can be corrected and reduced, the current measurement accuracy is improved.

請求項5の発明によれば、補正用ロゴスキコイルにより、常時、補正量を検出できるので、測定中のロゴスキコイルで検出される検出電流をリアルタイムで補正することができ、より電流測定精度が向上する。   According to the invention of claim 5, since the correction amount can always be detected by the correction logoski coil, the detection current detected by the logoski coil under measurement can be corrected in real time, and the current measurement accuracy is further improved.

以下、本発明の第1の実施形態に係る電流センサ1について、図1乃至図4を参照して説明する。図1に示すように、本実施形態の電流センサ1は、多層構造のプリント基板2と、被測定電線に流れる電流を検出するための2つのロゴスキコイル(以下、コイルという)3、4と、コイル3、4の検出電流の信号処理を行う信号処理回路5とを備え、ロゴスキコイル3、4と信号処理回路5とが同一基板上に形成されている。   Hereinafter, a current sensor 1 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4. As shown in FIG. 1, a current sensor 1 of the present embodiment includes a printed circuit board 2 having a multilayer structure, two Rogowski coils (hereinafter referred to as coils) 3 and 4 for detecting a current flowing through a measured wire, and a coil. The signal processing circuit 5 performs signal processing of the detected currents 3 and 4, and the Rogowski coils 3 and 4 and the signal processing circuit 5 are formed on the same substrate.

プリント基板2には、コイル3、4を形成するための貫通孔となる開口31、41が形成され、その表面には、コイル3、4の出力端子(出力端部)32、42を信号処理回路5の入力端部51(51a、51b)に接続する伝送線路11、12がそれぞれ形成されている。出力端子32、42は、各検出電流信号の信号端子と接地端子をそれぞれ備えている。また、入力端部51は、各検出電流信号からの入力信号が入力され、隣接して配設される入力端子51a、51bを備え、入力端子51a、51bは、それそれ信号端子と接地端子を有する。   Openings 31 and 41 serving as through holes for forming the coils 3 and 4 are formed in the printed circuit board 2, and signal processing is performed on the output terminals (output end portions) 32 and 42 of the coils 3 and 4 on the surface. Transmission lines 11 and 12 connected to the input end 51 (51a and 51b) of the circuit 5 are formed. The output terminals 32 and 42 are each provided with a signal terminal for each detected current signal and a ground terminal. The input end 51 is provided with input terminals 51a and 51b arranged adjacent to each other, to which input signals from the respective detection current signals are input. The input terminals 51a and 51b each have a signal terminal and a ground terminal. Have.

ここで、ロゴスキコイル3、4の各検出電流信号が出力される出力端部32と信号処理回路5の入力端部51は、プリント基板2に形成された略同じ長さL1の伝送線路11、12でそれぞれ接続されている。また、ここでは、信号処理回路5の入力端部51の入力端子51a、51bは、略同じ位置に隣接して配設されると共に、2つのロゴスキコイルの開口31、41の中心30、40よりそれぞれ略等距離に配設されている。また、伝送線路11、12は信号線と接地線の2本からなり、それぞれ入力端子51a、51b、出力端子32、42の各信号端子及び接地端子に対応して接続されている。なお、プリント基板2としては、上記のような多層基板に限らず、両面基板を用いてもよい。   Here, the output end 32 from which the respective detection current signals of the Rogowski coils 3 and 4 are output and the input end 51 of the signal processing circuit 5 are formed on the printed circuit board 2 and have substantially the same length L1 of the transmission lines 11 and 12. Are connected to each other. Also, here, the input terminals 51a and 51b of the input end 51 of the signal processing circuit 5 are disposed adjacent to substantially the same position, and from the centers 30 and 40 of the openings 31 and 41 of the two Rogowski coils, respectively. They are arranged at approximately the same distance. The transmission lines 11 and 12 include two signal lines and a ground line, and are connected to the signal terminals and the ground terminals of the input terminals 51a and 51b and the output terminals 32 and 42, respectively. The printed board 2 is not limited to the multilayer board as described above, and a double-sided board may be used.

コイル3、4は、プリント基板2に形成された開口31、41を貫通して配設された各被測定電線20に流れる電流を検出し、これらの検出電流は、コイル3、4の出力端子32及び42から出力される。これら出力端子32及び42からの出力電流は、各出力端子32、42に接続される伝送線路11、12を介して、入力端部51の入力端子51a、51bにそれぞれ接続される。   The coils 3 and 4 detect currents flowing through the wires under test 20 disposed through the openings 31 and 41 formed in the printed circuit board 2, and these detected currents are output terminals of the coils 3 and 4. 32 and 42. The output currents from the output terminals 32 and 42 are connected to the input terminals 51a and 51b of the input end 51 via the transmission lines 11 and 12 connected to the output terminals 32 and 42, respectively.

ここで、本実施形態に用いるコイル3、4について、図2、3を参照して説明する。コイル3、コイル4は同じ構成であるので、ここでは、コイル3についてのみ説明する。   Here, the coils 3 and 4 used in the present embodiment will be described with reference to FIGS. Since the coils 3 and 4 have the same configuration, only the coil 3 will be described here.

コイル3は、プリント基板2の開口31の周囲の絶縁性基板21の表裏両面の導体箔22、23に放射状に形成された複数の放射状ライン33と、これら放射状ライン33の両端部に形成され絶縁性基板21をその厚さ方向に貫通するスルーホール34とを備える。このスルーホール34は、絶縁性基板21を貫通すると共に、プリント基板2の表裏両面をその厚さ方向に貫通する貫通スルーホール34a、34b、34cよりなる。この貫通スルーホール34a、34b、34cにより、絶縁性基板21の表裏両面の放射状ライン33がその端部で互いに電気的に連続して接続され、トロイダルコイル35が形成される。このトロイダルコイル35は、接続部38により互いに接触を避けるようにした巻き進み方向の巻き進みコイル36と巻き戻し方向の巻き戻しコイル37とに二重形成され、これら巻き進みコイル36と巻き戻しコイル37を連続接続することにより、コイル3が構成される。このコイル3により、開口31を貫通する被測定電線20を流れる電流の検出電流は、出力端子32から取出される。巻き進みコイル36と巻き戻しコイル37に発生する各誘導電流の和となり、全コイルの巻き数に比例した誘導電流が得られ、不要外部磁界に対しては、巻き進みコイル36と巻き戻しコイル37で検出される誘導電流の差が検出され、不要外部磁界が軽減される。   The coil 3 includes a plurality of radial lines 33 formed radially on the conductive foils 22 and 23 on both the front and back surfaces of the insulating substrate 21 around the opening 31 of the printed circuit board 2, and insulation is formed at both ends of the radial lines 33. And a through hole 34 penetrating through the conductive substrate 21 in the thickness direction. The through hole 34 includes through through holes 34a, 34b, and 34c that penetrate the insulating substrate 21 and penetrate both the front and back surfaces of the printed board 2 in the thickness direction. Through the through-holes 34a, 34b, 34c, the radial lines 33 on both the front and back surfaces of the insulating substrate 21 are electrically connected to each other at their ends to form a toroidal coil 35. This toroidal coil 35 is formed in a double manner by a winding advance coil 36 and a rewind coil 37 in a rewind direction that are prevented from contacting each other by a connecting portion 38, and the rewind coil 36 and the rewind coil. The coil 3 is configured by continuously connecting 37. With this coil 3, the detected current of the current flowing through the measured electric wire 20 that passes through the opening 31 is taken out from the output terminal 32. The sum of the induction currents generated in the winding advance coil 36 and the rewinding coil 37 is obtained, and an induction current proportional to the number of turns of all the coils is obtained. For the unnecessary external magnetic field, the winding advance coil 36 and the rewinding coil 37 are obtained. The difference between the induced currents detected at 1 is detected, and the unnecessary external magnetic field is reduced.

信号処理回路5は、図4に示すように、増幅部6、積分部7、およびデータ出力部8を備える。増幅部6は、入力切替回路61と増幅回路62を備え、入力切替回路61は、入力端子51a、51bから入力されたコイル3、4からの各検出電流の入力信号を時間的に切替えて増幅回路62に送る。   As shown in FIG. 4, the signal processing circuit 5 includes an amplifying unit 6, an integrating unit 7, and a data output unit 8. The amplifying unit 6 includes an input switching circuit 61 and an amplifying circuit 62. The input switching circuit 61 amplifies the input signals of the detection currents from the coils 3 and 4 input from the input terminals 51a and 51b by temporally switching. Send to circuit 62.

増幅回路62は、増幅用のオペアンプ63を備え、その周辺には、オペアンプ63の増幅作用を補助する付加回路部品9となる入力抵抗91、帰還抵抗92が接続されている。増幅回路62は、入力切替回路61から送られてきた入力信号を増幅して積分部7に送る。積分部7は、積分回路71を備え、積分回路71は積分用のオペアンプ72を有している。オペアンプ72の周辺には、オペアンプ72の積分作用を補助する付加回路部品9となる入力抵抗93、帰還用抵抗94、帰還用コンデンサ95が接続されている。積分部7は、各コイル3、4により微分形で出力され、増幅回路62で増幅された検出出力を積分して信号処理のし易い電流波形を生成する。また、データ出力部8は、積分部7により得られた電流波形からその実効値を演算する実効値演算部81と、実効値演算部81により得られた実効値(検出データ)をアナログ信号からデジタル信号に変換するA/D変換部82と、A/D変換部82でデジタル信号に変換された検出データを記憶するメモリ部83とを備えている。   The amplifier circuit 62 includes an operational amplifier 63 for amplification, and an input resistor 91 and a feedback resistor 92 that are additional circuit components 9 that assist the amplification operation of the operational amplifier 63 are connected to the periphery thereof. The amplifier circuit 62 amplifies the input signal sent from the input switching circuit 61 and sends it to the integrating unit 7. The integration unit 7 includes an integration circuit 71, and the integration circuit 71 includes an operational amplifier 72 for integration. Around the operational amplifier 72, an input resistor 93, a feedback resistor 94, and a feedback capacitor 95, which are additional circuit components 9 that assist the integration of the operational amplifier 72, are connected. The integrator 7 integrates the detection output output by the coils 3 and 4 in a differential form and amplified by the amplifier circuit 62 to generate a current waveform that is easy to process signals. The data output unit 8 also calculates an effective value calculation unit 81 that calculates an effective value from the current waveform obtained by the integration unit 7 and an effective value (detection data) obtained by the effective value calculation unit 81 from an analog signal. An A / D conversion unit 82 that converts to a digital signal and a memory unit 83 that stores detection data converted into a digital signal by the A / D conversion unit 82 are provided.

このように構成された電流センサ1においては、コイル3、4の開口31、41を貫通する各被測定電線20に電流が流れると、コイル3、4は各被測定電線20に流れる被検出電流を検出して出力端子32、42から出力する。これら出力端子32、42から取り出される各被検出電流は、線路長L1の伝送線路11、12を通って信号処理回路5の入力端部51に入力される。   In the current sensor 1 configured as described above, when a current flows through each measured wire 20 that passes through the openings 31 and 41 of the coils 3 and 4, the detected currents that the coils 3 and 4 flow through each measured wire 20. Is output from the output terminals 32 and 42. Each detected current taken out from these output terminals 32 and 42 is input to the input end 51 of the signal processing circuit 5 through the transmission lines 11 and 12 having the line length L1.

入力端部51の入力端子51a、51bに入力された各被検出電流は、信号処理回路5の入力信号となって入力切替回路61で時分割で切替えられて、信号処理回路5内で信号処理され、検知データが生成される。この検知データは、データ出力部8から測定電流データとして配電盤の制御装置等へ出力される。このように、コイル3、コイル4の各被検出電流は、同じ信号処理回路5で切替えて処理される。このため、信号処理回路5で生じる処理誤差は同じとなり、検出データのバラツキが抑制される。   Each detected current input to the input terminals 51 a and 51 b of the input end 51 becomes an input signal of the signal processing circuit 5 and is switched in a time division manner by the input switching circuit 61, and signal processing is performed in the signal processing circuit 5. And detection data is generated. This detection data is output from the data output unit 8 as measurement current data to a control device of the switchboard and the like. Thus, the detected currents of the coil 3 and the coil 4 are switched and processed by the same signal processing circuit 5. For this reason, the processing errors generated in the signal processing circuit 5 are the same, and variations in detection data are suppressed.

ここで、被測定電流の検出の際、例えば、遠方に存在する外部電線に大電流が流れて、磁界が発生すると、この遠方の外部磁界は、電流センサ1にとって不要外部磁界となる。この不要外部磁界は、遠方磁界なので、電流センサ1上では、略同じレベルの磁界分布となっている。従って、伝送線路11、12は同じ磁界レベルの不要外部磁界を受けることになる。ここで、伝送線路11、12が不要外部磁界を受信したとすると、この外部磁界による不要検出電流が伝送線路11、12に付加されて流れる。これにより、伝送線路11、12には、各被検出電流に不要検出電流がそれぞれ重畳された混合電流が流れることになる。信号処理回路5は、これら混合電流が入力されると、この混合電流を基に検出データを生成するため、検出データは不要検出電流の分だけ測定誤差を含むことになる。   Here, when a current to be measured is detected, for example, if a large current flows through an external electric wire existing far away to generate a magnetic field, the remote external magnetic field becomes an unnecessary external magnetic field for the current sensor 1. Since this unnecessary external magnetic field is a far magnetic field, the magnetic field distribution has substantially the same level on the current sensor 1. Therefore, the transmission lines 11 and 12 receive an unnecessary external magnetic field having the same magnetic field level. Here, if the transmission lines 11 and 12 receive an unnecessary external magnetic field, an unnecessary detection current due to the external magnetic field is added to the transmission lines 11 and 12 and flows. As a result, a mixed current in which an unnecessary detection current is superimposed on each detected current flows through the transmission lines 11 and 12. When these mixed currents are input, the signal processing circuit 5 generates detection data based on the mixed currents. Therefore, the detection data includes a measurement error corresponding to the unnecessary detection current.

このとき、本実施形態では、伝送線路11、12の長さを略同じにしているので、略均一な磁界分布の外部磁界により、各伝送線路11、12には、略同じ大きさの不要被検出電流が流れる。従って、被測定電流の補正を行う場合には、コイル3及びコイル4で検出される各被測定電流は、とも同じ誤差量を補正すればよいので、補正の設定が容易となる。   At this time, in this embodiment, since the lengths of the transmission lines 11 and 12 are substantially the same, the transmission lines 11 and 12 have an unnecessary covering with substantially the same size due to the external magnetic field having a substantially uniform magnetic field distribution. Detection current flows. Therefore, when the current to be measured is corrected, it is only necessary to correct the same error amount for each current to be detected detected by the coil 3 and the coil 4, so that the correction can be easily set.

また、信号処理回路5の入力端部51と、開口31及び開口41の中心30、40との距離を略等距離にしているので、信号処理回路5の入力端部51と各開口31、41の中心とを結ぶ線上近傍にコイル3、4の各出力端部を配設することにより、各伝送線路11、12を、開口31、41の各中心30、40から等距離にある直線に関して略線対称に配設することができる。これにより、各伝送線路11、12を略同じ長さに保ちつつ、コイル3、4と信号処理回路5とを略最短距離で接近できるので、伝送線路11、12の長さを短くでき、外部磁界による影響が小さくなる。これにより、各被測定電流を同じ補正量で補正できると共に、補正量そのものが小さくなるので、補正誤差が少なくなり、測定精度が向上する。   In addition, since the distance between the input end 51 of the signal processing circuit 5 and the centers 30 and 40 of the opening 31 and the opening 41 is substantially equal, the input end 51 of the signal processing circuit 5 and each of the openings 31 and 41 are arranged. By arranging the output ends of the coils 3 and 4 in the vicinity of the line connecting the centers of the transmission lines 11 and 12, the transmission lines 11 and 12 are approximately connected to the straight lines that are equidistant from the centers 30 and 40 of the openings 31 and 41. They can be arranged in line symmetry. As a result, the coils 3 and 4 and the signal processing circuit 5 can be approached at a substantially shortest distance while keeping the transmission lines 11 and 12 substantially the same length, so that the length of the transmission lines 11 and 12 can be shortened. The influence of the magnetic field is reduced. As a result, each current to be measured can be corrected with the same correction amount, and the correction amount itself is reduced, so that a correction error is reduced and measurement accuracy is improved.

このように、本実施形態の電流センサ1によれば、コイル3、4の各出力端と、信号処理回路5の入力端を結ぶ伝送線路11、12の長さを略同じに構成したことにより、コイル3、4の検出電流の外部磁界による測定誤差を同じとすることができるので、測定誤差を略同じにできる。従って、例えば、予め測定誤差を検出して記憶しておき、この記憶された誤差データにより補正する場合も、コイル3、4の被測定電流毎にそれぞれ補正値を設定する必要がなく、1つの共通の補正値で補正できる。従って、補正する場合に、補正の設定が簡単になり、記憶する補正データ量が少なくて済み、メモリ量を削減することができ、低価格化できる。   Thus, according to the current sensor 1 of the present embodiment, the lengths of the transmission lines 11 and 12 that connect the output ends of the coils 3 and 4 and the input end of the signal processing circuit 5 are configured to be substantially the same. Since the measurement error due to the external magnetic field of the detection current of the coils 3 and 4 can be made the same, the measurement error can be made substantially the same. Therefore, for example, when a measurement error is detected and stored in advance and correction is performed using the stored error data, it is not necessary to set a correction value for each measured current of the coils 3 and 4, and Correction can be made with a common correction value. Accordingly, when correction is performed, the correction setting is simplified, the amount of correction data to be stored is small, the amount of memory can be reduced, and the price can be reduced.

また、各伝送線路11、12を同じに保ちつつ、コイル3、4に信号処理回路5を略最短距離で接近できるので、伝送線路の長さを短くでき、外部磁界による影響が小さくなると共に、補正量を小さくでき、これにより、補正誤差が少なくなる。   In addition, since the signal processing circuit 5 can be approached to the coils 3 and 4 at a substantially shortest distance while keeping the transmission lines 11 and 12 the same, the length of the transmission line can be shortened, and the influence of the external magnetic field is reduced. The correction amount can be reduced, thereby reducing the correction error.

次に、本発明の第2の実施形態に係る電流センサの変形例について、図5を参照して説明する。本変形例の電流センサ1は、伝送線路11、12をL字型に線対称の位置に形成したものであり、その他の構成は、前記第1の実施形態と同様である。   Next, a modification of the current sensor according to the second embodiment of the present invention will be described with reference to FIG. The current sensor 1 of this modification is formed by forming transmission lines 11 and 12 at L-shaped line-symmetric positions, and other configurations are the same as those of the first embodiment.

本変形例の電流センサ1によれば、伝送線路11、12は、その全長L2が略同じ長さを成すと共に、L字型の直交する部分と平行する部分がそれぞれ略同じ長さとなる。これにより、伝送線路11、12は、外部磁界の方向が変わっても同じ受信レベルを保つことができ、各被測定電流を補正する際、補正量を略同じにできる。   According to the current sensor 1 of this modification, the transmission lines 11 and 12 have substantially the same total length L2, and the portions parallel to the L-shaped orthogonal portion have substantially the same length. As a result, the transmission lines 11 and 12 can maintain the same reception level even when the direction of the external magnetic field changes, and the correction amount can be made substantially the same when correcting each measured current.

次に、本発明の第2の実施形態に係る電流センサ1について、図6を参照して説明する。本実施形態の電流センサ1は、増幅回路62及び積分回路71での増幅作用及び積分作用を補助するための付加回路部品9が、増幅回路62及び積分回路71に隣接して接続され、それらと同一基板面2aに配設されている。その他の構成は、前記第1の実施形態と同様である。   Next, a current sensor 1 according to a second embodiment of the present invention will be described with reference to FIG. In the current sensor 1 of the present embodiment, an additional circuit component 9 for assisting amplification and integration in the amplification circuit 62 and the integration circuit 71 is connected adjacent to the amplification circuit 62 and the integration circuit 71, and It is disposed on the same substrate surface 2a. Other configurations are the same as those in the first embodiment.

増幅回路62及び積分回路71は、増幅又は積分用にオペアンプ63、72を含む半導体LSI60を備え、LSI60の周囲には、付加回路部品9(入力抵抗91、帰還抵抗92、入力抵抗93、帰還用抵抗94、帰還用コンデンサ95、及び電源ノイズ対策用コンデンサ96など)が隣接して接続されて、このLSI60と付加回路部品9は、プリント基板2の同一基板面2a上に実装されている。このように、付加回路部品9がスルーホールなどを使用せず同一平面上に接近して配設されるので、LSI60と付加回路部品9とを接続する接続配線が短くなり、接続配線における外部磁界の影響を小さくすることができる。なお、ここでは、伝送線路11、12は、プリント基板2の表裏の金属箔線をスルーホール33pを介して接続することにより形成されている。   The amplifier circuit 62 and the integration circuit 71 are provided with a semiconductor LSI 60 including operational amplifiers 63 and 72 for amplification or integration. Around the LSI 60, there are additional circuit components 9 (an input resistor 91, a feedback resistor 92, an input resistor 93, and a feedback circuit). A resistor 94, a feedback capacitor 95, a power supply noise countermeasure capacitor 96, and the like are connected adjacently, and the LSI 60 and the additional circuit component 9 are mounted on the same board surface 2a of the printed board 2. As described above, since the additional circuit component 9 is disposed close to the same plane without using a through hole or the like, the connection wiring for connecting the LSI 60 and the additional circuit component 9 is shortened, and the external magnetic field in the connection wiring is reduced. The influence of can be reduced. Here, the transmission lines 11 and 12 are formed by connecting the metal foil wires on the front and back of the printed circuit board 2 through the through holes 33p.

次に、本発明の第3の実施形態に係る電流センサ1について、図7を参照して説明する。本実施形態の電流センサ1は、信号処理回路5が、コイル3、4で検出された検出電流の値を補正する補正処理部84を備えたものであり、その他の構成は、前記第1の実施形態と同様である。   Next, a current sensor 1 according to a third embodiment of the present invention will be described with reference to FIG. In the current sensor 1 of the present embodiment, the signal processing circuit 5 includes a correction processing unit 84 that corrects the value of the detected current detected by the coils 3 and 4. This is the same as the embodiment.

補正処理部84は、データ出力部8内に形成され、補正値を取得する補正値取得部85と、補正値取得部85で取得した補正値を記憶する補正値記憶部86とを備える。補正値取得部85は、被測定電線20の電流を測定する際、先ず、開口31、41に被測定電線20を通した状態で、被測定電線20の電流をオフして無負荷状態で被測定電流を検出し、この検出された被測定電流を補正値として補正値記憶部86に予め記憶する。次に、被測定電線20の電流をオンしたとき(負荷時状態)の被検出電流を測定する。補正処理部84は、負荷状態時の被検出電流から補正値である無負荷状態時の被検出電流を差し引くことにより補正を行う。即ち、無負荷状態時の被検出電流は、外部磁界に基づく被検出電流と見なす。これにより、測定実態に即した状態で簡単に補正することができる。   The correction processing unit 84 includes a correction value acquisition unit 85 that is formed in the data output unit 8 and acquires a correction value, and a correction value storage unit 86 that stores the correction value acquired by the correction value acquisition unit 85. When measuring the current of the measured wire 20, the correction value acquisition unit 85 first turns off the current of the measured wire 20 while passing the measured wire 20 through the openings 31 and 41, and loads the measured wire 20 in an unloaded state. A measurement current is detected, and the detected current to be measured is stored in advance in the correction value storage unit 86 as a correction value. Next, the current to be detected is measured when the current of the wire 20 to be measured is turned on (in the load state). The correction processing unit 84 performs correction by subtracting the detected current in the no-load state, which is a correction value, from the detected current in the loaded state. That is, the detected current in the no-load state is regarded as a detected current based on an external magnetic field. Thereby, it can correct | amend easily in the state according to the measurement actual condition.

また、伝送線路11、12を流れる電流には、コイル3、4で検出した被検出電流と、外部磁界に基いて流れる不要検出電流とが存在するが、これらの電流の位相が異なると、これらの合成電流は、互いの位相によって、振幅が増加したり、減少したりする。このため、ここでは、位相検出部(不図示)を設け、予め被測定電線20に流れる位相と、外部磁界による電流の位相とを検出して、電流位相情報を補正値記憶部86に記憶しておく。外部磁界による不要検出電流の位相は、負荷状態時の被検出電流から検出することができる。これにより、被検出電流と不要検出電流が同位相の場合における補正は、被検出電流から不要検出電流を差し引き、逆位相の場合は、被検出電流に不要検出電流を加えることにより補正する。これにより、より精度の高い補正ができる。   In addition, the current flowing through the transmission lines 11 and 12 includes a detected current detected by the coils 3 and 4 and an unnecessary detected current that flows based on an external magnetic field. If the phases of these currents are different, The combined current increases or decreases depending on the phase of each other. For this reason, here, a phase detection unit (not shown) is provided, the phase flowing through the wire 20 to be measured and the phase of the current due to the external magnetic field are detected in advance, and the current phase information is stored in the correction value storage unit 86. Keep it. The phase of the unnecessary detection current due to the external magnetic field can be detected from the detected current in the load state. Thereby, the correction in the case where the detected current and the unnecessary detected current are in phase is corrected by subtracting the unnecessary detected current from the detected current, and in the opposite phase, the correction is performed by adding the unnecessary detected current to the detected current. Thereby, correction with higher accuracy can be performed.

次に、本発明の第4の実施形態に係る電流センサ1について、図8を参照して説明する。本実施形態の電流センサ1は、検出電流の値を補正するために必要な補正量を検出するための補正用ロゴスキコイル3b、4bを、さらに備え、補正処理部84は、補正用ロゴスキコイル3b、4bで検出された補正量に基いて、検出電流の値を補正するものである。その他の構成は、前記第1の実施形態と同様である。   Next, a current sensor 1 according to a fourth embodiment of the present invention will be described with reference to FIG. The current sensor 1 of the present embodiment further includes correction logoski coils 3b and 4b for detecting a correction amount necessary for correcting the value of the detected current, and the correction processing unit 84 includes the correction logoski coils 3b and 4b. The value of the detected current is corrected based on the correction amount detected in step (1). Other configurations are the same as those in the first embodiment.

本実施形態の電流センサ1は、同じプリント基板2上に、測定用のコイル3、4と同じ構成を成す、他の測定用のコイル3a、4bと、補正用コイル3b、4bとを設けている。ここでは、4本の隣接する被測定電線20の電流を測定する場合を示す。他方の測定用のコイル3a、4b及び補正用コイル3b、4bは、開口31a、41a及び開口31b、41bをそれぞれ有し、それらの被検出電流は、伝送線路11、12を介して、それぞれの信号処理回路5a、5bに入力され、信号処理される。   The current sensor 1 of the present embodiment is provided with other measurement coils 3a and 4b and correction coils 3b and 4b, which have the same configuration as the measurement coils 3 and 4 on the same printed circuit board 2. Yes. Here, the case where the electric current of the four adjacent to-be-measured electric wires 20 is measured is shown. The other measuring coils 3a and 4b and correction coils 3b and 4b have openings 31a and 41a and openings 31b and 41b, respectively, and their detected currents are transmitted through the transmission lines 11 and 12, respectively. The signals are input to the signal processing circuits 5a and 5b and processed.

補正用ロゴスキコイル3b、4bは、被測定電線20が開口31b、41bに挿入されていない状態で使用される。即ち、補正用ロゴスキコイル3b、4bは、被測定電線20に電流が流れていない状態と略同じ条件で無負荷状態時の被測定電流を測ることができる。図8に示すように、遠方に外部電線100に矢印Xの方向に大電流Iが流れると、電流Iによって磁界Hが外部電線100の回りに発生する。この磁界Hが、電流センサ1に入射されると、測定用のコイル3、4、コイル3a、4a、及び補正用のコイル3b、4bは同じように、影響を受ける。従って、補正用ロゴスキコイル3b、4bで検出される外部磁界の不要検出電流に基き、測定用のコイル3、4、及びコイル3a、3bの被測定電流を補正することができる。   The correction logoski coils 3b and 4b are used in a state where the measured electric wire 20 is not inserted into the openings 31b and 41b. That is, the correcting Rogowski coils 3b and 4b can measure the current under measurement in a no-load state under substantially the same conditions as when no current is flowing through the wire under measurement 20. As shown in FIG. 8, when a large current I flows through the external electric wire 100 in the direction of the arrow X in the distance, a magnetic field H is generated around the external electric wire 100 by the current I. When this magnetic field H is incident on the current sensor 1, the measurement coils 3, 4, the coils 3a, 4a, and the correction coils 3b, 4b are similarly affected. Therefore, the measured currents of the measuring coils 3 and 4 and the coils 3a and 3b can be corrected based on the unnecessary detection current of the external magnetic field detected by the correcting Rogowski coils 3b and 4b.

信号処理回路5bは、補正値を演算するための補正値演算部87を備える。補正値演算部87は、補正用ロゴスキコイル3b、4bで検出された被測定電流(無負荷状態時の電流に相当)が増幅部6、積分部7で処理されて出力された電流波形から実効値を演算して補正値データを求める。この補正値データは、信号処理回路5、5aのデータ出力部8の補正処理部84に伝送される。補正処理部84は、送られてきた補正値データに基いて補正値記憶部86に記憶されている初期補正値を書き換える。このとき、補正値演算部87は、コイル3、4と、コイル3a、4bが負荷状態で被測定電流を測定中においても、リアルタイムで演算した補正値データを送ることができる。これにより、外部磁界の大きさが変わっても、直ぐに補正値記憶部86に記憶されている補正値を修正することができ、データ出力部8から補正された電流データを送出することができる。また、補正値演算部87は、外部磁界に基く不要検出電流の位相も検出するようになっており、外部磁界に基く不要検出電流の位相が変わった場合においても、この位相情報をデータ出力部8に送ることにより、位相情報を基にプラスマイナスの修正方向を決定することができる。   The signal processing circuit 5b includes a correction value calculation unit 87 for calculating a correction value. The correction value calculation unit 87 calculates the effective value from the current waveform output by processing the current to be measured (corresponding to the current in the no-load state) detected by the correction logoski coils 3b and 4b by the amplification unit 6 and the integration unit 7. To calculate correction value data. The correction value data is transmitted to the correction processing unit 84 of the data output unit 8 of the signal processing circuits 5 and 5a. The correction processing unit 84 rewrites the initial correction value stored in the correction value storage unit 86 based on the received correction value data. At this time, the correction value calculation unit 87 can send the correction value data calculated in real time even when the coils 3 and 4 and the coils 3a and 4b are measuring the measured current. Thereby, even if the magnitude of the external magnetic field changes, the correction value stored in the correction value storage unit 86 can be immediately corrected, and the corrected current data can be sent from the data output unit 8. Further, the correction value calculation unit 87 is also configured to detect the phase of the unnecessary detection current based on the external magnetic field. Even when the phase of the unnecessary detection current based on the external magnetic field is changed, this phase information is used as the data output unit. By sending to 8, the plus / minus correction direction can be determined based on the phase information.

このように、本実施形態の電流センサ1によれば、リアルタイムに外部磁界の影響を取り除くように補正することができるので、電流の測定精度をさらに向上することができる。また、補正値演算部87は、信号処理回路5bの増幅部6や積分部7の付加回路部品で受けた外部磁界に基く不要検出電流も含めて演算するので、この補正により、測定用のコイル3、4側の信号処理回路5、5aにおける外部磁界の影響も含めてそれらの被測定電流を補正することができ、さらに電流測定精度が向上する。   As described above, according to the current sensor 1 of the present embodiment, correction can be performed so as to remove the influence of the external magnetic field in real time, so that the current measurement accuracy can be further improved. Further, the correction value calculation unit 87 performs calculation including the unnecessary detection current based on the external magnetic field received by the additional circuit component of the amplification unit 6 and the integration unit 7 of the signal processing circuit 5b. The currents to be measured can be corrected including the influence of the external magnetic field in the signal processing circuits 5 and 5a on the third and fourth sides, and the current measurement accuracy is further improved.

なお、本発明は上記各種の実施形態の構成に限定されるものではなく、発明の趣旨を変更しない範囲で適宜に種々の変形が可能である。上述した各種実施形態では、同一基板上にコイルと信号処理回路を形成しているので、これらを一緒に金属ケースで覆ってシールドすることができ、コイルに対する外部磁界の影響を防ぐと共に、信号処理回路で発生するデジタル処理信号及びその高調波による外部電子機器への不要輻射妨害を抑制することができる。また、ここでは、電流センサと信号処理回路が同一基板上である場合について説明したが、同一基板上でなくても、コイルと信号処理回路回路を結ぶ伝送線路が同じ長さであればよい。また、補正用ロゴスキコイルは、1つでもよい。   In addition, this invention is not limited to the structure of said various embodiment, A various deformation | transformation is possible suitably in the range which does not change the meaning of invention. In the various embodiments described above, since the coil and the signal processing circuit are formed on the same substrate, they can be shielded by covering them together with a metal case, thereby preventing the influence of an external magnetic field on the coil and performing signal processing. It is possible to suppress unnecessary radiation interference to external electronic equipment due to digital processing signals generated in the circuit and harmonics thereof. Although the case where the current sensor and the signal processing circuit are on the same substrate has been described here, the transmission line connecting the coil and the signal processing circuit circuit may be the same length even if they are not on the same substrate. Further, the number of the correcting logo ski coil may be one.

本発明の第1の実施形態に係る電流センサの構成図。The block diagram of the current sensor which concerns on the 1st Embodiment of this invention. 上記電流センサのロゴスキコイルの平面図。The top view of the Rogowski coil of the said current sensor. 上記電流センサのロゴスキコイルの斜視図。The perspective view of the Rogowski coil of the said current sensor. 上記電流センサの信号処理回路の構成図。The block diagram of the signal processing circuit of the said current sensor. 上記第1の実施形態に係る電流センサの変形例の構成図。The block diagram of the modification of the current sensor which concerns on the said 1st Embodiment. 本発明の第2の実施形態に係る電流センサの構成図。The block diagram of the current sensor which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る電流センサの信号処理回路の構成図。The block diagram of the signal processing circuit of the current sensor which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る電流センサの構成図。The block diagram of the current sensor which concerns on the 4th Embodiment of this invention.

符号の説明Explanation of symbols

1 電流センサ
2 プリント基板(基板)
3、3a ロゴスキコイル
3b 補正用ロゴスキコイル
4、4a ロゴスキコイル
4b 補正用ロゴスキコイル
5 信号処理回路
6 増幅部
62 増幅回路
7 積分部
71 積分回路
8 データ出力部(補正処理部)
9、91、92、93、94、95、96 付加回路部品
11 伝送線路
12 伝送線路
20 被測定電線
30 中心
31、31a、31b 開口
32 出力端子(出力端部)
40 中心
41、41a、41b 開口
42 出力端子(出力端部)
51 入力端部
51a、51b 入力端子(入力端部)
84 補正処理部
1 Current sensor 2 Printed circuit board (board)
3, 3a Rogowski Coil 3b Correction Rogowski Coil 4, 4a Rogowski Coil 4b Rogowski Coil for Correction 5 Signal Processing Circuit 6 Amplification Unit 62 Amplification Circuit 7 Integration Unit 71 Integration Circuit 8 Data Output Unit (Correction Processing Unit)
9, 91, 92, 93, 94, 95, 96 Additional circuit components 11 Transmission line 12 Transmission line 20 Wire under test 30 Center 31, 31a, 31b Opening 32 Output terminal (output end)
40 Center 41, 41a, 41b Opening 42 Output terminal (output end)
51 Input end 51a, 51b Input terminal (input end)
84 Correction processing section

Claims (5)

電流が流れる被測定電線が貫通する開口を有する少なくとも2つのロゴスキコイルと、
これらロゴスキコイルで検出された各検出電流の信号処理に共用される信号処理回路とを備え、前記ロゴスキコイルと信号処理回路とが同一基板上に形成された電流センサであって、
前記ロゴスキコイルの各検出電流信号が出力される出力端部と、前記信号処理回路の入力端部とは、前記基板に形成された略同じ長さの伝送線路でそれぞれ接続されることを特徴とする請求項1に記載の電流センサ。
At least two Rogowski coils having openings through which the wire under test through which current flows passes;
A signal processing circuit shared by the signal processing of each detected current detected by these Rogowski coils, the Rogowski coil and the signal processing circuit are current sensors formed on the same substrate,
The output end portion of each of the detected current signals of the Rogowski coil and the input end portion of the signal processing circuit are connected to each other by a transmission line having substantially the same length formed on the substrate. The current sensor according to claim 1.
前記信号処理回路の各入力端部は、隣接して配設されると共に、各入力端部と、各入力端部が前記伝送線路で接続される出力端部を持つ前記ロゴスキコイルの各開口の中心とが互いに略等距離に配設されていることを特徴とする請求項1に記載の電流センサ。   Each input end of the signal processing circuit is arranged adjacent to each other, and each input end and the center of each opening of the Rogowski coil having an output end connected to each input end by the transmission line. The current sensors according to claim 1, wherein the current sensors are arranged at substantially equal distances from each other. 前記信号処理回路は、前記検出電流を増幅及び積分するための増幅回路及び積分回路を備え、
前記増幅回路及び積分回路での増幅作用及び積分作用を補助するための付加回路部品が、前記増幅回路及び積分回路に隣接して接続され、それらと同一基板面に配設されていることを特徴とする前記請求項1又は請求項2に記載の電流センサ。
The signal processing circuit includes an amplification circuit and an integration circuit for amplifying and integrating the detection current,
Additional circuit components for assisting amplification and integration in the amplification circuit and integration circuit are connected adjacent to the amplification circuit and integration circuit and disposed on the same substrate surface. The current sensor according to claim 1 or claim 2.
前記信号処理回路は、前記ロゴスキコイルで検出された検出電流の値を補正する補正処理部を備えたことを特徴とする請求項1乃至請求項3のいずれか一項に記載の電流センサ。   4. The current sensor according to claim 1, wherein the signal processing circuit includes a correction processing unit that corrects a value of a detection current detected by the Rogowski coil. 5. 前記検出電流の値を補正するために必要な補正量を検出するための補正用ロゴスキコイルを、さらに備え、
前記補正処理部は、前記補正用ロゴスキコイルで検出された補正量に基いて、前記検出電流の値を補正することを特徴とする請求項1乃至請求項4のいずれか一項に記載の電流センサ。
A correction logoski coil for detecting a correction amount necessary for correcting the value of the detection current is further provided,
5. The current sensor according to claim 1, wherein the correction processing unit corrects the value of the detection current based on a correction amount detected by the correction logoski coil. .
JP2007311389A 2007-11-30 2007-11-30 Current sensor Active JP4877214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007311389A JP4877214B2 (en) 2007-11-30 2007-11-30 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007311389A JP4877214B2 (en) 2007-11-30 2007-11-30 Current sensor

Publications (2)

Publication Number Publication Date
JP2009133783A true JP2009133783A (en) 2009-06-18
JP4877214B2 JP4877214B2 (en) 2012-02-15

Family

ID=40865788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007311389A Active JP4877214B2 (en) 2007-11-30 2007-11-30 Current sensor

Country Status (1)

Country Link
JP (1) JP4877214B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2275827A2 (en) * 2009-07-17 2011-01-19 Fluke Corporation Clamp-on multimeters including a rogowski coil for measuring alternating current in a conductor
CN103134971A (en) * 2011-11-29 2013-06-05 上海舜宇海逸光电技术有限公司 Conductor current measurement device
JP2017009320A (en) * 2015-06-17 2017-01-12 日置電機株式会社 Current measurement device
JP2023509003A (en) * 2019-12-31 2023-03-06 イートン インテリジェント パワー リミテッド Sensor part for installation in a medium voltage cable section and device for measuring the voltage in a medium voltage circuit comprising the sensor part

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090851A (en) * 2001-09-18 2003-03-28 Mitsubishi Electric Corp Current detection system
JP2004087619A (en) * 2002-08-23 2004-03-18 Mitsubishi Electric Corp Air-core coil
JP2007195294A (en) * 2006-01-17 2007-08-02 Matsushita Electric Works Ltd Measurement system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090851A (en) * 2001-09-18 2003-03-28 Mitsubishi Electric Corp Current detection system
JP2004087619A (en) * 2002-08-23 2004-03-18 Mitsubishi Electric Corp Air-core coil
JP2007195294A (en) * 2006-01-17 2007-08-02 Matsushita Electric Works Ltd Measurement system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2275827A2 (en) * 2009-07-17 2011-01-19 Fluke Corporation Clamp-on multimeters including a rogowski coil for measuring alternating current in a conductor
CN103134971A (en) * 2011-11-29 2013-06-05 上海舜宇海逸光电技术有限公司 Conductor current measurement device
JP2017009320A (en) * 2015-06-17 2017-01-12 日置電機株式会社 Current measurement device
JP2023509003A (en) * 2019-12-31 2023-03-06 イートン インテリジェント パワー リミテッド Sensor part for installation in a medium voltage cable section and device for measuring the voltage in a medium voltage circuit comprising the sensor part

Also Published As

Publication number Publication date
JP4877214B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US20050073292A1 (en) System and method for current sensing using anti-differential, error correcting current sensing
JP2009250976A (en) System and method for monitoring current in conductor
WO2002065143A1 (en) Current sensor and overload current protective device comprising the same
WO2006090769A1 (en) Current measuring instrument
JP5196559B2 (en) Leakage detection device and switch
JPH0792199A (en) Current sensor
JP2002243766A (en) Electric current sensor
JP6669502B2 (en) Current detector and current detection method
JP4877214B2 (en) Current sensor
JP5500956B2 (en) Current detector
JP4481369B2 (en) AC current sensor
JP5162376B2 (en) Current sensor, watt-hour meter
JP5756910B2 (en) Printed circuit boards, current sensors and distribution boards
JP2005321206A (en) Current detection device
CN107340488B (en) Multi-point multi-carrier correction system and correction method
JP2020204524A (en) Current sensor and measuring device
JP7016238B2 (en) Directional coupler
JP2019105546A (en) Current sensor and watt-hour meter
JP2010060546A (en) Current sensor
JP2013053914A (en) Current measuring device
JP2019152558A (en) Current sensor and voltmeter
JP6062761B2 (en) Distribution board
JP6644343B1 (en) Zero flux type magnetic sensor
JP6608861B2 (en) Current sensor, measurement system, and current measurement method
JP2008267832A (en) Electric current measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4877214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3