JP2009126115A - Laminated sheet and product using the same - Google Patents

Laminated sheet and product using the same Download PDF

Info

Publication number
JP2009126115A
JP2009126115A JP2007305216A JP2007305216A JP2009126115A JP 2009126115 A JP2009126115 A JP 2009126115A JP 2007305216 A JP2007305216 A JP 2007305216A JP 2007305216 A JP2007305216 A JP 2007305216A JP 2009126115 A JP2009126115 A JP 2009126115A
Authority
JP
Japan
Prior art keywords
core material
core
resin
copper
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007305216A
Other languages
Japanese (ja)
Inventor
Isamu So
勇 曹
Tatsuhiko Ueki
達彦 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2007305216A priority Critical patent/JP2009126115A/en
Publication of JP2009126115A publication Critical patent/JP2009126115A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate damage caused by short circuit and removal of de-lamination of a resin layer and also to get an electromagnetic wave shielding property. <P>SOLUTION: A metal mesh 25 obtained by weaving an electric conductive fiber material is used as a metal core (core material 21) of a printed wiring board 11 having a metal core structure, whereby deposition for making rough which causes damage by a short circuit is eliminated and also tight adhesion between the metal mesh 25 and a resin is increased, and also an electromagnetic wave shielding property can be obtained by using the metal mesh 25 as an electromagnetic wave shielding layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、放熱性を有するプリント配線板に関し、より詳しくは、短絡不具合やデラミネーションなどのない高性能化を図ることができるような、プリント配線板およびその部品に関する。   The present invention relates to a printed wiring board having heat dissipation, and more particularly, to a printed wiring board and its components that can achieve high performance without short circuit defects and delamination.

放熱性を有するプリント配線板としては、銅板をコア(芯材)として有するメタルコア構造のプリント配線板がある。この種のプリント配線板は図16に示すような工程を経て製造されている。   As a printed wiring board having heat dissipation, there is a printed wiring board having a metal core structure having a copper plate as a core (core material). This type of printed wiring board is manufactured through a process as shown in FIG.

まず、コアとなる所定厚の銅板を所定大所定形状に裁断して基材101を得る(図16(a)参照)。続いて、この基材101の所定位置に貫通孔102をあける穴あけ加工をする(図16(b)参照)。   First, a base plate 101 is obtained by cutting a copper plate having a predetermined thickness as a core into a predetermined large predetermined shape (see FIG. 16A). Subsequently, a drilling process is performed to open the through hole 102 at a predetermined position of the base material 101 (see FIG. 16B).

つぎに、下記特許文献1に開示されている方法にて穴あき基材103の表面に粗化処理を施す(図16(c)参照)。この粗化処理は、電解めっきにより樹枝状銅電着層を形成した後、電解処理により樹枝状銅をコブ状銅101aに変化させるというものである。   Next, a roughening process is performed on the surface of the perforated base material 103 by the method disclosed in Patent Document 1 (see FIG. 16C). In this roughening treatment, a dendritic copper electrodeposition layer is formed by electrolytic plating, and then the dendritic copper is changed to bumpy copper 101a by electrolytic treatment.

この後は、下記特許文献2に示すように、粗化処理後の穴あき基材103の両面にプリプレグ104と銅箔105とを重ね(図16(d)参照)、これらを熱プレスにより積層一体化させる(図16(e)参照)。すなわち、穴あき基材103の両面には樹脂層104aを介して銅箔105が存在する。これが銅張積層板106である。   Thereafter, as shown in Patent Document 2 below, the prepreg 104 and the copper foil 105 are stacked on both surfaces of the perforated base material 103 after the roughening treatment (see FIG. 16D), and these are laminated by hot pressing. They are integrated (see FIG. 16 (e)). That is, the copper foil 105 exists on both surfaces of the perforated base material 103 via the resin layer 104a. This is the copper clad laminate 106.

つぎに、所定位置にスルーホール107をあけ(図16(f)参照)、この後、スルーホールめっき108、パターン109形成、ソルダレジスト110などの必要な処理を行って、メタルコア構造のプリント配線板111を得る(図16(g)参照)。   Next, through holes 107 are formed at predetermined positions (see FIG. 16 (f)), and thereafter, necessary processing such as through-hole plating 108, pattern 109 formation, solder resist 110 is performed, and a printed wiring board having a metal core structure. 111 is obtained (see FIG. 16G).

特開2005−353920号公報JP 2005-353920 A 特開昭64−89592号公報Japanese Unexamined Patent Publication No. 64-89592

穴あき基材に対する粗化処理は、メタルコアと樹脂層との密着性を高めるために不可欠であり、大切な処理である。しかし、上記のような方法で粗化処理を行うと、基材の貫通孔周りに電流が集中するため、その部分に優先的に樹枝状銅が付着し、この結果、貫通孔周りにコブ状銅101aが大きく堆積する。   The roughening treatment for the perforated substrate is indispensable and important for improving the adhesion between the metal core and the resin layer. However, when the roughening treatment is performed by the method as described above, the current concentrates around the through hole of the base material, so that dendritic copper adheres preferentially to that part, and as a result, a hump-like shape around the through hole Copper 101a is largely deposited.

このため、後の熱プレス時に、プリプレグの樹脂が貫通孔に流入するに際してコブ状銅101aが剥がれ落ちて、バリ101bとなって貫通孔102内の樹脂中に遊離した状態になることがある(図16(e)参照)。   For this reason, at the time of subsequent hot pressing, when the resin of the prepreg flows into the through hole, the bump-shaped copper 101a may be peeled off to become a burr 101b and be released into the resin in the through hole 102 ( (Refer FIG.16 (e)).

このような状態になると、スルーホール107穴あけをし、スルーホールめっき108を施すと、バリ101bがスルーホールめっき108と接触し、短絡不具合が発生してしまう。   In such a state, if the through-hole 107 is drilled and the through-hole plating 108 is applied, the burr 101b comes into contact with the through-hole plating 108 and a short circuit failure occurs.

また、導電性を有する銅板をベース(芯材)として有するメタルコア構造のプリント配線板では、コアとしての銅板を電磁波シールドのためのシールド材として用いることが可能である。しかし、メタルベースを電磁波シールド材として利用しようとすると、機器の重量が重くなるという欠点がある。   Moreover, in the printed wiring board of the metal core structure which has a copper plate which has electroconductivity as a base (core material), it is possible to use the copper plate as a core as a shielding material for electromagnetic wave shielding. However, if the metal base is used as an electromagnetic shielding material, there is a drawback that the weight of the device becomes heavy.

そこで、この発明は、短絡不具合がなく、樹脂層のデラミネーションもないようにすることを主たる目的とする。また、導電性を有する芯材を電磁波シールド材として利用することもできるようにすることを目的とする。   In view of this, the main object of the present invention is to prevent short circuit defects and delamination of the resin layer. It is another object of the present invention to make it possible to use a conductive core material as an electromagnetic shielding material.

そのための手段は、樹脂層の上に導電層を有する積層板であって、上記樹脂層の内部に、多孔状で導電性を持ったシート状の芯材がコアとして備えられた積層板である。   Means therefor is a laminate having a conductive layer on a resin layer, and a laminate in which a porous and conductive sheet-like core material is provided as a core inside the resin layer. .

別の手段は、樹脂層の上に導電層を有する積層板であって、上記樹脂層の内部に、厚み内において面方向への広がりを有し表裏両面に開口した空間を有する多孔状で導電性を持ったシート状の芯材がコアとして備えられた積層板である。   Another means is a laminated plate having a conductive layer on the resin layer, and is porous and conductive having a space extending in the surface direction within the thickness and opening on both the front and back surfaces inside the resin layer. It is a laminated board provided with a sheet-like core material having properties as a core.

上記の芯材は、金属メッシュで形成されたものであるとよい。   Said core material is good in it being formed with the metal mesh.

別の手段は、上記の積層板における導電層で配線パターンが形成されたプリント配線板である。   Another means is a printed wiring board in which a wiring pattern is formed of a conductive layer in the above laminated board.

以上のように、この発明によれば、コアとしての芯材が金属メッシュ等からなる多孔状のシート状であって、プリプレグを積層して行う熱プレス時における溶融樹脂は多孔状の孔をなす空間内に入り込むことが可能であるので、別途に粗化処理を施さずとも樹脂層の一体化を行うことができる。このため、従来のような短絡不具合が発生しないようにすることができる。   As described above, according to the present invention, the core material as the core is a porous sheet formed of a metal mesh or the like, and the molten resin at the time of hot pressing performed by laminating prepregs forms porous holes. Since it is possible to enter the space, the resin layers can be integrated without a separate roughening treatment. For this reason, it is possible to prevent a conventional short circuit failure from occurring.

また、多孔状の程度によって、製品に必要なアンカー効果を得て、密着性を高め、デラミネーションの発生をなくすこともできる。   Further, depending on the degree of porosity, the anchor effect necessary for the product can be obtained, the adhesion can be improved, and the occurrence of delamination can be eliminated.

さらに、芯材は導電性を有しているので、放熱性を有することはもちろんのこと、電磁波シールド性も得られる。   Furthermore, since the core material has electrical conductivity, not only it has heat dissipation properties but also electromagnetic wave shielding properties can be obtained.

この発明を実施するための一形態を、以下図面を用いて説明する。
図1は、メタルコア構造のプリント配線板11の一例を示す断面図であり、図2は、その製造工程を示す模式図、図3はメタルコアとして用いられる芯材21とこれを用いた銅張積層板41の断面図、図4は芯材21の平面図である。
An embodiment for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of a printed wiring board 11 having a metal core structure, FIG. 2 is a schematic view showing a manufacturing process thereof, and FIG. 3 is a core material 21 used as a metal core and a copper-clad laminate using the core material 21. 4 is a cross-sectional view of the plate 41, and FIG.

これらの図に示されたように、短絡不具合がなく、樹脂層31aのデラミネーションもないようにするという目的を、樹脂層31aの内部に、多孔状で導電性を持ったシート状の芯材21をコアとして備えるという構成にて実現した。   As shown in these figures, a sheet-like core material that is porous and conductive inside the resin layer 31a is used for the purpose of preventing short circuit defects and delamination of the resin layer 31a. This is realized with a configuration in which 21 is provided as a core.

上記の芯材21は、導電性の金属メッシュ25,26やパンチングメタル(図示せず)で構成されて、芯材21全体が導電性を有する導電性部分(図1、図5参照)であるも、非導電性の織布28aや不織布27aの表面に形成されためっき被膜27b,28bが形成されてめっき被膜27b,28bのみが導電性を有する導電性部分(図7、図9参照)であるもよい。   The core material 21 is composed of conductive metal meshes 25 and 26 and punching metal (not shown), and the entire core material 21 is a conductive portion (see FIGS. 1 and 5) having conductivity. However, the plated coatings 27b and 28b formed on the surface of the non-conductive woven fabric 28a and the nonwoven fabric 27a are formed, and only the plated coatings 27b and 28b are conductive portions (see FIGS. 7 and 9). There may be.

また、多孔状の孔を形成する空間は、単独発泡状のものではなく連続発泡状のものであって、芯材21の表裏両面から溶融樹脂が流入したときに円滑に入り込む形態の空間であるのがよく、より好ましくは、芯材21の表裏で連通している形態のものや、芯材21の厚み内において面方向への広がりを有し表裏両面に開口したものであるのがよい。   The space for forming the porous holes is not a single foam but a continuous foam, and is a space that smoothly enters when molten resin flows from both the front and back surfaces of the core material 21. More preferably, the core material 21 communicates on the front and back sides, or has a spread in the surface direction within the thickness of the core material 21 and opens on both front and back surfaces.

以下、具体的に説明する。
図1は、メタルコア構造のプリント配線板11を示す断面図であり、この図に示すように、コア部分、すなわち芯材21は、導電性を有する金属線からなる金属メッシュ25で構成されている。図2は、このようなプリント配線板11の製造工程を模式的に表現したもので、この図においては芯材21を破線であらわしている。製造は順に、シート状の材料21a(図2(a)参照)に対する裁断及び穴あけ工程(図2(b))、積層一体化工程(図2(c)、(d)参照)と、スルーホール形成工程(図2(e)参照)と、スルーホールめっき、パターン形成などの適宜必要な工程(図示せず)を経て行われ、所望のプリント配線板11(図2(f)参照)が得られる。
This will be specifically described below.
FIG. 1 is a cross-sectional view showing a printed wiring board 11 having a metal core structure. As shown in FIG. 1, a core portion, that is, a core material 21 is composed of a metal mesh 25 made of a conductive metal wire. . FIG. 2 is a schematic representation of the manufacturing process of such a printed wiring board 11. In this figure, the core material 21 is represented by a broken line. In order to manufacture, the sheet-like material 21a (see FIG. 2 (a)) is cut and drilled (see FIG. 2 (b)), the laminated integration process (see FIGS. 2 (c) and (d)), and the through hole. A desired printed wiring board 11 (see FIG. 2 (f)) is obtained through a formation process (see FIG. 2 (e)) and necessary steps (not shown) such as through-hole plating and pattern formation. It is done.

上記の裁断及び穴あけ工程は、材料21aをあらかじめ定められた所定の大きさ・形状に裁断するとともに必要な位置に貫通孔22をあける工程である。貫通孔22は材料に応じてダイスとポンチを用いた金型加工、ドリル加工などの適宜手段によって行われ、これによって芯材21としての穴あき基材が得られる。   The above-described cutting and drilling step is a step of cutting the material 21a into a predetermined size and shape determined in advance and opening the through holes 22 at necessary positions. The through hole 22 is made by an appropriate means such as die processing using a die and a punch or drilling depending on the material, and thereby a perforated base material as the core material 21 is obtained.

積層一体化工程は、芯材21(穴あけが完了した穴あき基材)の両面に、プリプレグ31と銅箔32とを順に重ね合わせて、熱プレスをする工程である。熱プレスは、真空雰囲気中で熱と圧力をかけて行い、溶けたプリプレグ31の樹脂を芯材21の貫通孔22等に充填し、樹脂と芯材21との密着化を図る。この積層一体化によって、芯材21の両面に樹脂層31aと、導電層としての銅箔32が配設された銅張積層板41が得られる。上記の銅箔32の一部が、後にパターン32aとなる。   The lamination and integration step is a step in which the prepreg 31 and the copper foil 32 are sequentially superposed on both surfaces of the core material 21 (a perforated base material for which the drilling has been completed), and hot pressing is performed. The hot press is performed by applying heat and pressure in a vacuum atmosphere, filling the melted resin of the prepreg 31 into the through-holes 22 of the core material 21 and the like, thereby achieving close contact between the resin and the core material 21. By this lamination integration, a copper-clad laminate 41 in which the resin layer 31a and the copper foil 32 as the conductive layer are disposed on both surfaces of the core material 21 is obtained. A part of the copper foil 32 becomes a pattern 32a later.

スルーホール形成工程は、芯材21の貫通孔22のうちの必要な貫通孔22に対応する位置に、その貫通孔22よりも小径の孔(スルーホール42)をあける工程で、後に行われるスルーホールめっき43(図2(f)参照)によってスルーホール43の内面に導電性を付与すると、表裏の銅箔32が電気的に接続可能となる。   The through hole forming step is a step of forming a hole (through hole 42) having a smaller diameter than the through hole 22 at a position corresponding to the required through hole 22 among the through holes 22 of the core member 21. When conductivity is imparted to the inner surface of the through hole 43 by the hole plating 43 (see FIG. 2F), the front and back copper foils 32 can be electrically connected.

図3は、金属線で構成された多孔状の金属メッシュ25からなる材料21aを銅張積層板41にするまでの製造工程を示す説明図である。すなわち、より具体的には、図4に示したごとく格子状に織成された金属メッシュ25からなる材料21a(図3(a)参照)を所定大所定形状に裁断するとともに、所定位置に貫通孔22を形成する(図3(b)参照)。続いて、穴あき基材である芯材21の両面にプリプレグ31と銅箔32とを順に重ねて、熱プレスを行ってすべてを一体化して銅張積層板41を得る(図3(c)、(d)参照)。   FIG. 3 is an explanatory view showing the manufacturing process until the material 21a made of the porous metal mesh 25 composed of metal wires is made into the copper-clad laminate 41. FIG. More specifically, as shown in FIG. 4, a material 21a (see FIG. 3A) made of a metal mesh 25 woven in a lattice shape is cut into a predetermined shape and penetrated into a predetermined position. The hole 22 is formed (see FIG. 3B). Subsequently, the prepreg 31 and the copper foil 32 are sequentially stacked on both surfaces of the core material 21 which is a perforated base material, and heat pressing is performed to integrate them all to obtain a copper-clad laminate 41 (FIG. 3C). (See (d)).

この一体化においては、熱で溶けたプリプレグの樹脂が、貫通孔22はもちろんのこと、金属メッシュ25の網目内にも流入し、流入した樹脂は、金属線同士の隙間を埋めた状態で表裏両面からつながって、芯材21を介在した状態で一体となる。   In this integration, the resin of the prepreg melted by heat flows into the mesh of the metal mesh 25 as well as the through holes 22, and the inflowed resin fills the gaps between the metal wires. They are connected from both sides and are integrated with the core material 21 interposed.

金属メッシュ25は、多孔状でその網目(多孔状の孔を形成する空間)は、金属メッシュ25の厚み内において面方向への広がりを有し、表裏両面に開口している。このため、網目内に入り込んだ樹脂は、抜けとめがなされたようになって、アンカー効果の高い一体化ができる。   The metal mesh 25 is porous and its mesh (a space for forming a porous hole) extends in the surface direction within the thickness of the metal mesh 25 and opens on both the front and back surfaces. For this reason, the resin that has entered the mesh is like a piece that has been removed and can be integrated with a high anchor effect.

しかも、樹脂の横への広がりが抑制され、樹脂分の不足による樹脂板のボイドなども起こらず、厚さも均一になる。このような銅張積層板41では、内側から両外側に向けて、芯材21、樹脂層31a、銅箔32が順に形成されたものとなる。   In addition, the spread of the resin to the side is suppressed, the resin plate does not have a void due to the lack of resin, and the thickness becomes uniform. In such a copper-clad laminate 41, the core material 21, the resin layer 31a, and the copper foil 32 are formed in this order from the inside toward the outside.

芯材21は、その他の材料で構成することもできるので、図5〜図10を用いて他の若干の例を説明する。
図5、図6は、導電性を有する金属メッシュの他の例として、エキスパンドメタルで構成された多孔状の金属メッシュ26を芯材21として用いたプリント配線板11の例である。すなわち、図5に示したように、プリント配線板11は、エキスパンドメタルで構成された金属メッシュ26全体を樹脂で包み込んで構成された銅張積層板41を用いて製造されている。製造は、図6に示したように、ひし形の網目を有した金属メッシュ26からなる材料21a(図6(a)参照)を所定大所定形状に裁断するとともに、所定位置に貫通孔22を形成する(図6(b)参照)。続いて、穴あき基材である芯材21の両面にプリプレグ31と銅箔32とを順に重ねて、熱プレスを行ってすべてを一体化して銅張積層板41を得る(図6(c)、(d)参照)。
Since the core material 21 can also be comprised with another material, another some example is demonstrated using FIGS. 5-10.
5 and 6 are examples of a printed wiring board 11 using a porous metal mesh 26 made of expanded metal as a core material 21 as another example of a conductive metal mesh. That is, as shown in FIG. 5, the printed wiring board 11 is manufactured using a copper-clad laminate 41 configured by wrapping the entire metal mesh 26 made of expanded metal with a resin. As shown in FIG. 6, the material 21a (see FIG. 6 (a)) made of a metal mesh 26 having a rhombus mesh is cut into a predetermined shape and a through hole 22 is formed at a predetermined position. (See FIG. 6B). Subsequently, the prepreg 31 and the copper foil 32 are sequentially stacked on both surfaces of the core material 21 which is a perforated base material, and hot pressing is performed to integrate them all to obtain a copper-clad laminate 41 (FIG. 6C). (See (d)).

この一体化においては、熱で溶けたプリプレグの樹脂が、貫通孔22はもちろんのこと、ひし形の網目内にも流入し、流入した樹脂は、芯材21のすべての隙間を埋めた状態で表裏両面からつながって、芯材21を介在した状態で一体となる。   In this integration, the resin of the prepreg melted by heat flows into the rhombus mesh as well as the through-holes 22, and the inflowed resin fills all the gaps of the core material 21. They are connected from both sides and are integrated with the core material 21 interposed.

エキスパンドメタルからなる金属メッシュ26は、多孔状でその網目(多孔状の孔を形成する空間)は、金属メッシュ25の厚み内において面方向への広がりを有し、表裏両面に開口している。このため、金属メッシュ26の網目内に入った樹脂は、網目を形成する傾斜した線部分と絡み合って高い一体性が得られる。また図3の例と同様に、樹脂の横への広がりが抑制され、樹脂分の不足による樹脂板のボイドなども起こらず、厚さも均一になる。   The metal mesh 26 made of expanded metal is porous and its mesh (a space for forming a porous hole) extends in the surface direction within the thickness of the metal mesh 25, and is open on both the front and back surfaces. For this reason, the resin that enters the mesh of the metal mesh 26 is entangled with the inclined line portion forming the mesh, and high integrity is obtained. Further, as in the example of FIG. 3, the spread of the resin to the side is suppressed, the void of the resin plate due to insufficient resin content does not occur, and the thickness becomes uniform.

図7、図8は、表面に導電性のめっきが施されたシート材27を芯材21として用いたプリント配線板11の例である。すなわち、図7に示したように、プリント配線板11は、粗面状の不織布27aの表面に導電性のめっき被膜27bを有するシート材27全体を樹脂で包み込んで構成された銅張積層板41を用いて製造されている。不織布27aとしては、適宜の材料のものが使用できるが、強度の点からガラス繊維からなるものが好適に使用できる。製造は、図8に示したように、不織布27aの表裏両面にめっき被膜27bが形成されたシート材27からなる材料21a(図8(a)参照)を所定大所定形状に裁断するとともに、所定位置に貫通孔22を形成する(図8(b)参照)。続いて、穴あき基材である芯材21の両面にプリプレグ31と銅箔32とを順に重ねて、熱プレスを行ってすべてを一体化して銅張積層板41を得る(図8(c)、(d)参照)。   FIGS. 7 and 8 are examples of the printed wiring board 11 using the sheet material 27 whose surface is subjected to conductive plating as the core material 21. That is, as shown in FIG. 7, the printed wiring board 11 is a copper-clad laminate 41 configured by enclosing a sheet material 27 having a conductive plating film 27 b on the surface of a rough nonwoven fabric 27 a with a resin. It is manufactured using. As the non-woven fabric 27a, an appropriate material can be used, but from the point of strength, a glass fiber can be preferably used. As shown in FIG. 8, the production is performed by cutting the material 21a (see FIG. 8A) made of the sheet material 27 having the plating film 27b formed on both the front and back surfaces of the nonwoven fabric 27a into a predetermined large predetermined shape, A through hole 22 is formed at the position (see FIG. 8B). Subsequently, the prepreg 31 and the copper foil 32 are sequentially stacked on both surfaces of the core material 21 which is a perforated base material, and are subjected to hot pressing to integrate them all to obtain a copper-clad laminate 41 (FIG. 8C). (See (d)).

この一体化においては、熱で溶けたプリプレグ31の樹脂が、貫通孔22に流入するとともに、多孔孔の不織布27a内の空間内にも入り込む。そして、貫通孔22や空間内に流入した樹脂は、芯材21のすべての貫通孔22を埋めた状態で表裏両面からつながって、芯材21を介在した状態で一体となる。   In this integration, the resin of the prepreg 31 melted by heat flows into the through hole 22 and also enters the space in the porous hole non-woven fabric 27a. The resin that has flowed into the through holes 22 and the space is connected from both the front and back surfaces in a state where all the through holes 22 of the core material 21 are filled, and is integrated with the core material 21 interposed.

図9、図10は、表面に導電性のめっきが施されたシート材28を芯材として用いたプリント配線板11の他の例である。すなわち、図9に示したように、プリント配線板11は、多孔状又は粗面状の織布28aの表面に導電性のめっき被膜28bを有するシート材28全体を樹脂で包み込んで構成された銅張積層板41を用いて製造されている。織布28aとしては、適宜のものが使用できるが、強度の点からガラス繊維からなるものが好適に使用できる。また、織布28aは、メッシュ状のものであるも、網目のない状態のものであるもよい。製造は、図10に示したように、織布28aの表裏両面にめっき被膜28bが形成されたシート材28からなる材料21a(図10(a)参照)を所定大所定形状に裁断するとともに、所定位置に貫通孔22を形成する(図10(b)参照)。続いて、穴あき基材である芯材21の両面にプリプレグ31と銅箔32とを順に重ねて、熱プレスを行ってすべてを一体化して銅張積層板41を得る(図10(c)、(d)参照)。   FIG. 9 and FIG. 10 show another example of the printed wiring board 11 using the sheet material 28 whose surface is subjected to conductive plating as a core material. That is, as shown in FIG. 9, the printed wiring board 11 includes a copper sheet formed by wrapping an entire sheet material 28 having a conductive plating film 28 b on a surface of a porous or rough woven fabric 28 a with a resin. Manufactured using a tension laminate 41. As the woven fabric 28a, an appropriate one can be used, but one made of glass fiber can be suitably used from the viewpoint of strength. Further, the woven fabric 28a may be a mesh-like one or a mesh-free one. As shown in FIG. 10, the material 21a (see FIG. 10A) made of the sheet material 28 in which the plating film 28 b is formed on both the front and back surfaces of the woven fabric 28 a is cut into a predetermined large predetermined shape, A through hole 22 is formed at a predetermined position (see FIG. 10B). Subsequently, the prepreg 31 and the copper foil 32 are sequentially stacked on both surfaces of the core material 21 which is a perforated base material, and heat pressing is performed to integrate them all to obtain a copper-clad laminate 41 (FIG. 10C). (See (d)).

この一体化においては、熱で溶けたプリプレグ31の樹脂が、貫通孔22に流入するとともに、網目を有する場合にはその網目である空間や繊維間の空間内にも流入する。そして、貫通孔22や網目内等に流入した樹脂は芯材21のすべての貫通孔22を埋めた状態で表裏両面からつながって、芯材21を介在した状態で一体となる。   In this integration, the resin of the prepreg 31 melted by heat flows into the through-hole 22 and, when having a mesh, also flows into the space that is the mesh and the space between the fibers. The resin that has flowed into the through holes 22 or the mesh is connected from both the front and back surfaces in a state where all the through holes 22 of the core material 21 are filled, and is integrated with the core material 21 interposed.

なお、上記の例では、芯材21を一枚備えた銅張積層板41とプリント配線板11について説明したが、芯材21は、複数枚備えることもできる。たとえば、図11に示したように、2枚の芯材21,21の間にプリプレグ31を挟みこむことで、2枚の芯材21を備えた銅張積層板41とプリント配線板31を得ることができる。   In the above example, the copper clad laminate 41 and the printed wiring board 11 provided with one core material 21 have been described. However, a plurality of core materials 21 may be provided. For example, as shown in FIG. 11, a copper-clad laminate 41 and a printed wiring board 31 having two core members 21 are obtained by sandwiching a prepreg 31 between two core members 21 and 21. be able to.

複数枚の芯材21を備える場合であって、芯材が図12に示したように金属メッシュ25からなる場合には、金属メッシュ25同士をあらかじめ接合しておくもよい。接合はスポット溶接25aなどの適宜手段で容易に行える。接合しておくことで、熱プレス時の位置ずれを防止できる。   In the case where a plurality of core materials 21 are provided, and the core material is made of the metal mesh 25 as shown in FIG. 12, the metal meshes 25 may be joined in advance. The joining can be easily performed by appropriate means such as spot welding 25a. By joining, position shift at the time of hot pressing can be prevented.

さらに、上記の例では、メタルコア構造のプリント配線板11を用いて両面配線のものを説明したが、図13に示したように、片面配線構造のプリント配線板11を構成することもできる。図13(a)は、金属線からなる金属メッシュ25を芯材21として用いた例、図13(b)は、エキスパンドメタルからなる金属メッシュ26を芯材21として用いた例、図13(c)は、めっき付き不織布からなるシート材27を芯材21として用いた例、図13(d)は、めっき付き織布からなるシート材28を芯材21として用いた例である。上述の構成と同一の部分については、同一の符号を付してその詳しい説明を省略する。   Further, in the above example, the double-sided wiring is described using the printed wiring board 11 having the metal core structure, but the printed wiring board 11 having the single-sided wiring structure can also be configured as shown in FIG. 13A shows an example in which a metal mesh 25 made of a metal wire is used as the core material 21, FIG. 13B shows an example in which a metal mesh 26 made of an expanded metal is used as the core material 21, and FIG. ) Is an example in which a sheet material 27 made of a non-woven fabric with plating is used as the core material 21, and FIG. 13D is an example in which a sheet material 28 made of a woven fabric with plating is used as the core material 21. About the same part as the above-mentioned structure, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.

以上のように、銅張積層板41の製造に際して、芯材21に対しての従来のような粗化処理が不要である。粗化処理をしないので、粗化処理によって形成された銅めっきが剥がれ落ちて、これがバリとなって短絡不良を引き起こすようなことはない。   As described above, when the copper clad laminate 41 is manufactured, the conventional roughening process for the core material 21 is not necessary. Since the roughening treatment is not performed, the copper plating formed by the roughening treatment is peeled off, and this does not become a burr and cause a short circuit failure.

しかも、芯材21は多孔状に形成されているので、樹脂との密着性を得ることができ、デラミネーションの発生をなくすこともできる。   In addition, since the core material 21 is formed in a porous shape, adhesion with the resin can be obtained, and the occurrence of delamination can be eliminated.

また、金属板を用いる場合よりも軽量にすることができ、車載用等として有益である。その上、それ自体に導電性が備わっているので、適当な均熱性・放熱性、それに電磁波シールド性を得ることができる。   Moreover, it can be made lighter than when a metal plate is used, and is useful for in-vehicle use. In addition, since the material itself has electrical conductivity, it is possible to obtain appropriate heat equalization / heat dissipation properties and electromagnetic wave shielding properties.

電磁波シールド性については、芯材21の目の大きさなどの条件設定によって、遮蔽する電磁波の周波数帯域を変えることができる。また、複数枚の芯材21を重ねることによって、遮蔽効果を高められるほか、遮蔽する電磁波の周波数帯域が異なるものを組み合わせることによって、より広い周波数帯域の電磁波を遮蔽することができるようになる。   Regarding the electromagnetic wave shielding property, the frequency band of the electromagnetic wave to be shielded can be changed by setting conditions such as the eye size of the core material 21. In addition to enhancing the shielding effect by stacking a plurality of core materials 21, it is possible to shield electromagnetic waves in a wider frequency band by combining those having different frequency bands of the electromagnetic waves to be shielded.

上述のようにして製造したプリント配線板を試料として用い、電磁波シールド効果を試す実験を行った。実験は、銅線からなる金属メッシュを試料として用いて目の大きさによるシールド効果の違いを試す第1試験(図14参照)と、金属メッシュを構成する材料を異にした場合のシールド効果の違いを試す第2試験(図15参照)とを行った。   Using the printed wiring board manufactured as described above as a sample, an experiment was conducted to test the electromagnetic shielding effect. The experiment is a first test (see FIG. 14) in which a metal mesh made of copper wire is used as a sample to test the difference in shielding effect depending on the size of the eye, and the shielding effect when the materials constituting the metal mesh are different. A second test (see FIG. 15) was conducted to test the difference.

実験では、KEC(関西電子工業振興センター)法を用いて、10MHz〜10GHzの周波数帯域の電磁波に対するシールド効果を調べた。なお、図4に示したように、線径dは金属線の太さであり、開目wは、金属線間の間隔である。   In the experiment, the shielding effect against electromagnetic waves in the frequency band of 10 MHz to 10 GHz was examined using the KEC (Kansai Electronics Industry Promotion Center) method. In addition, as shown in FIG. 4, the wire diameter d is the thickness of a metal wire, and the opening w is the space | interval between metal wires.

第1実験の結果によれば、開目が小さいほど、電磁波シールド効果が高いことがわかる(図14参照)。   According to the results of the first experiment, it can be seen that the smaller the opening, the higher the electromagnetic shielding effect (see FIG. 14).

第2実験の結果によれば線径および開目を同じくしても、材料によって電磁波シールド性が異なることがわかる(図15参照)。また、導電性の金属としては、銅や銀を用いるのが好ましいことがわかる。   According to the result of the second experiment, it can be seen that the electromagnetic wave shielding property varies depending on the material even if the wire diameter and the opening are the same (see FIG. 15). Moreover, it turns out that it is preferable to use copper and silver as a conductive metal.

この発明の構成と、上述の一形態の構成との対応において、
この発明の導電層は、上述の銅箔32に対応し、
以下同様に、
積層板は、銅張積層板41に対応するも、
この発明は上述の構成のみに限定されるものではなく、その他の形態を採用することができる。
たとえば、導電層や芯材は銅以外の材料で形成することもできる。
In correspondence between the configuration of the present invention and the configuration of the above-described embodiment,
The conductive layer of the present invention corresponds to the copper foil 32 described above,
Similarly,
The laminate corresponds to the copper clad laminate 41,
The present invention is not limited to the above-described configuration, and other forms can be adopted.
For example, the conductive layer and the core material can be formed of a material other than copper.

プリント配線板の断面図。Sectional drawing of a printed wiring board. プリント配線板の製造工程の模式図。The schematic diagram of the manufacturing process of a printed wiring board. 積層板の製造工程の説明図。Explanatory drawing of the manufacturing process of a laminated board. 金属線で構成された金属メッシュからなる芯材の平面図。The top view of the core material which consists of a metal mesh comprised with the metal wire. プリント配線板の断面図。Sectional drawing of a printed wiring board. 積層板の製造工程の説明図。Explanatory drawing of the manufacturing process of a laminated board. プリント配線板の断面図。Sectional drawing of a printed wiring board. 積層板の製造工程の説明図。Explanatory drawing of the manufacturing process of a laminated board. プリント配線板の断面図。Sectional drawing of a printed wiring board. 積層板の製造工程の説明図。Explanatory drawing of the manufacturing process of a laminated board. 他の例に係る銅張積層板の構造を示す説明図。Explanatory drawing which shows the structure of the copper clad laminated board which concerns on another example. 他の例に係る芯材の構造を示す断面図。Sectional drawing which shows the structure of the core material which concerns on another example. 他の例に係るプリント配線板の断面図。Sectional drawing of the printed wiring board which concerns on another example. 開目の違いによる電磁波シールド効果を示す表。The table | surface which shows the electromagnetic wave shielding effect by the difference in opening. 材質の違いによる電磁波シールド効果を示す表。The table | surface which shows the electromagnetic wave shielding effect by the difference in material. 従来のプリント配線板の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the conventional printed wiring board.

符号の説明Explanation of symbols

11…プリント配線板
21…芯材
25,26…金属メッシュ
27a…不織布
28a…織布
27b,28b…めっき被膜
31a…樹脂層
32…銅箔
41…銅張積層板
DESCRIPTION OF SYMBOLS 11 ... Printed wiring board 21 ... Core material 25, 26 ... Metal mesh 27a ... Non-woven fabric 28a ... Woven cloth 27b, 28b ... Plating film 31a ... Resin layer 32 ... Copper foil 41 ... Copper-clad laminate

Claims (4)

樹脂層の上に導電層を有する積層板であって、
上記樹脂層の内部に、多孔状で導電性を持ったシート状の芯材がコアとして備えられた
積層板。
A laminate having a conductive layer on a resin layer,
A laminate in which a porous sheet-like core material is provided as a core inside the resin layer.
樹脂層の上に導電層を有する積層板であって、
上記樹脂層の内部に、厚み内において面方向への広がりを有し表裏両面に開口した空間を有する多孔状で導電性を持ったシート状の芯材がコアとして備えられた
積層板。
A laminate having a conductive layer on a resin layer,
A laminated board in which a porous and conductive sheet-like core material having a space extending in the surface direction within the thickness and having openings opened on both front and back surfaces is provided as a core inside the resin layer.
前記芯材が、金属メッシュで形成された
請求項1または請求項2に記載の積層板。
The laminate according to claim 1 or 2, wherein the core material is formed of a metal mesh.
前記請求項1から請求項3のうちのいずれか一項に記載の積層板における導電層で配線パターンが形成された
プリント配線板。
The printed wiring board by which the wiring pattern was formed with the conductive layer in the laminated board as described in any one of the said Claims 1-3.
JP2007305216A 2007-11-27 2007-11-27 Laminated sheet and product using the same Pending JP2009126115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007305216A JP2009126115A (en) 2007-11-27 2007-11-27 Laminated sheet and product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007305216A JP2009126115A (en) 2007-11-27 2007-11-27 Laminated sheet and product using the same

Publications (1)

Publication Number Publication Date
JP2009126115A true JP2009126115A (en) 2009-06-11

Family

ID=40817501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007305216A Pending JP2009126115A (en) 2007-11-27 2007-11-27 Laminated sheet and product using the same

Country Status (1)

Country Link
JP (1) JP2009126115A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143275A (en) * 2013-12-26 2017-08-17 インクテック カンパニー, リミテッドInktec Co., Ltd. Production method of electromagnetic wave shielding film and electromagnetic wave shielding film produced by the method
CN110089202A (en) * 2016-12-28 2019-08-02 株式会社藤仓 The manufacturing method of circuit board and circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143275A (en) * 2013-12-26 2017-08-17 インクテック カンパニー, リミテッドInktec Co., Ltd. Production method of electromagnetic wave shielding film and electromagnetic wave shielding film produced by the method
CN110089202A (en) * 2016-12-28 2019-08-02 株式会社藤仓 The manufacturing method of circuit board and circuit board

Similar Documents

Publication Publication Date Title
US4780957A (en) Method for producing rigid-type multilayer printed wiring board
JP2014523120A (en) Method of manufacturing rigid flexible printed circuit board and rigid flexible printed circuit board
US20180042124A1 (en) Wiring board and method for manufacturing the same
KR20110067921A (en) A carrier member for manufacturing a substrate and a method of manufacturing a substrate using the same
JP4768059B2 (en) Multilayer flexible printed wiring board
CN102098883A (en) Carrier for manufacturing substrate and method of manufacturing substrate using the same
JP2010232249A (en) Multilayer printed wiring board and manufacturing method of the same
US20120192417A1 (en) Method of manufacturing a metal clad laminate
JP2005079402A (en) Circuit board and its manufacturing method
US20030121700A1 (en) Method for fabricating electrical connecting element, and electrical connecting element
JP2010123829A (en) Printed wiring board and manufacturing method thereof
JP2009126115A (en) Laminated sheet and product using the same
JP2009010266A (en) Printed circuit board and method of manufacturing same
KR20190005191A (en) Method for manufacturing multi-layer substrate
JP2010278067A (en) Method of manufacturing multilayer flexible printed circuit board, and multilayer circuit base material
JPH08153971A (en) Multilayered printed wiring board and its manufacture
JP4728980B2 (en) Printed wiring board and manufacturing method thereof
JP2000133913A (en) Manufacture of printed wiring board and metal plate
CN103889169A (en) Circuit board and manufacturing method thereof
JP2009188154A (en) Printed circuit board and its production process
JP4851377B2 (en) Printed wiring board and manufacturing method thereof
JP6469010B2 (en) LAMINATE FOR PRINTED WIRING BOARD MANUFACTURING, ITS MANUFACTURING METHOD, AND PRINTED WIRING BOARD MANUFACTURING METHOD
JP2011160005A (en) Partially-multilayered flexible printed wiring board
JP2007294932A (en) Metal core printed wiring board and its manufacturing method
WO2015125267A1 (en) Printed wiring board and manufacturing method for printed wiring board