JP2009123380A - Anode base material - Google Patents

Anode base material Download PDF

Info

Publication number
JP2009123380A
JP2009123380A JP2007293301A JP2007293301A JP2009123380A JP 2009123380 A JP2009123380 A JP 2009123380A JP 2007293301 A JP2007293301 A JP 2007293301A JP 2007293301 A JP2007293301 A JP 2007293301A JP 2009123380 A JP2009123380 A JP 2009123380A
Authority
JP
Japan
Prior art keywords
negative electrode
plating process
organic film
electrode substrate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007293301A
Other languages
Japanese (ja)
Other versions
JP5231785B2 (en
Inventor
Koichi Misumi
浩一 三隅
Mitsuhiro Watanabe
充広 渡辺
Hideo Honma
英夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Kanto Gakuin University Surface Engineering Research Institute
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Kanto Gakuin University Surface Engineering Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd, Kanto Gakuin University Surface Engineering Research Institute filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2007293301A priority Critical patent/JP5231785B2/en
Priority to KR1020080110228A priority patent/KR20090049022A/en
Priority to US12/268,130 priority patent/US8835050B2/en
Priority to CN2008101762628A priority patent/CN101436658B/en
Publication of JP2009123380A publication Critical patent/JP2009123380A/en
Application granted granted Critical
Publication of JP5231785B2 publication Critical patent/JP5231785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode base material having high output voltage and high energy density, and capable of realizing excellent charge and discharge cycle characteristics, a secondary battery using the anode base material, a resist composition used for forming the anode base material, and a manufacturing method of the anode base material. <P>SOLUTION: With the anode base material 10 made by forming a metal film 13 on a support body 11 equipped with a patterned organic film 12 formed by a light imprinting method, the battery having high output voltage and high energy density, and excellent charge and discharge cycle characteristics can be provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、負極基材、この負極基材を用いた二次電池、この負極基材の形成に用いられるレジスト組成物、及びこの負極基材の製造方法に関し、特に、充放電サイクル特性に優れた電池を提供できる負極基材、この負極基材を用いた二次電池、この負極基材の形成に用いられるレジスト組成物、及びこの負極基材の製造方法に関する。   The present invention relates to a negative electrode substrate, a secondary battery using the negative electrode substrate, a resist composition used for forming the negative electrode substrate, and a method for producing the negative electrode substrate, and particularly excellent in charge / discharge cycle characteristics. The present invention relates to a negative electrode substrate capable of providing a battery, a secondary battery using the negative electrode substrate, a resist composition used for forming the negative electrode substrate, and a method for producing the negative electrode substrate.

従来、高い出力電圧と、高いエネルギー密度を兼ね備えた電池の研究開発が盛んに進められている。特に、内部抵抗が低く、充放電による電池容量の低下が少ない、充放電サイクル特性に優れた二次電池が求められている。例えば、薄膜状の非晶質シリコン又は微結晶シリコンを負極材料(負極活物質)として用いたリチウム二次電池が知られている(特許文献1参照)。具体的には、集電体上にシリコン薄膜からなる負極材料層を形成した負極を用いたリチウム二次電池が開示されており、シリコン薄膜の形成には、CVD法(化学気相成長法、化学蒸着法ともいう)やスパッタリング法等の薄膜形成手法が用いられている。   Conventionally, research and development of batteries having high output voltage and high energy density have been actively promoted. In particular, a secondary battery having a low internal resistance and a low battery capacity decrease due to charge / discharge and excellent charge / discharge cycle characteristics is required. For example, a lithium secondary battery using thin-film amorphous silicon or microcrystalline silicon as a negative electrode material (negative electrode active material) is known (see Patent Document 1). Specifically, a lithium secondary battery using a negative electrode in which a negative electrode material layer made of a silicon thin film is formed on a current collector is disclosed. For the formation of a silicon thin film, a CVD method (chemical vapor deposition method, Thin film forming methods such as chemical vapor deposition and sputtering are used.

ここで、シリコン等の材料は、リチウムの吸蔵/放出に伴って、膨張/収縮を繰り返すと考えられている。集電体上にシリコン薄膜を形成した負極では、集電体と負極材料層との密着性が高いため、負極材料の膨張/収縮に伴う集電体の膨張/収縮が頻繁に行われることになる。このため、充放電に伴って負極材料層及び集電体に皺等の不可逆的な変形が発生するおそれがある。特に、集電体に銅箔等の延性に富んだ金属箔を用いた場合、変形の程度が大きくなる傾向にある。負極が変形すると、電極としての体積が増加して電気化学反応が不均一になる等の理由から、電池のエネルギー密度が低下するおそれがある。また、充放電に伴う膨張/収縮を繰り返す間に、負極材料が微粉化して集電体から脱離したり、場合によっては薄膜状のまま脱離したりするおそれもあり、電池の充放電サイクル特性が悪化する要因となる。   Here, it is considered that a material such as silicon repeats expansion / contraction as the lithium is occluded / released. In the negative electrode in which the silicon thin film is formed on the current collector, the adhesion between the current collector and the negative electrode material layer is high, and thus the current collector is frequently expanded / contracted due to the expansion / contraction of the negative electrode material. Become. For this reason, there is a possibility that irreversible deformation such as wrinkles may occur in the negative electrode material layer and the current collector along with charging and discharging. In particular, when a metal foil having a high ductility such as a copper foil is used for the current collector, the degree of deformation tends to increase. When the negative electrode is deformed, the energy density of the battery may be lowered due to an increase in volume as an electrode and non-uniform electrochemical reaction. In addition, while the expansion / contraction associated with charge / discharge is repeated, the negative electrode material may be pulverized and detached from the current collector, or in some cases may be detached as a thin film. It becomes a factor to deteriorate.

負極の変形を抑制する方法としては、引張り強さや引張り弾性率等の機械的強度が高い材料を集電体として用いる方法が挙げられる。しかしながら、このような材料からなる集電体上に、薄膜状の負極材料からなる負極材料層を形成した場合、負極材料層と集電体との密着性が不十分となり、十分な充放電サイクル特性が得られないおそれがある。このため、特許文献1には、負極材料と合金化する材料からなる中間層を集電体と負極材料層との間に配置し、中間層よりも機械的強度が高い集電体を用いることによって、充放電時における負極材料の脱離を抑制するとともに、皺等の発生を抑制する技術が開示されている。具体的には、中間層として銅層を用い、集電体としてニッケル箔が用いられている。   Examples of a method for suppressing deformation of the negative electrode include a method in which a material having high mechanical strength such as tensile strength and tensile elastic modulus is used as a current collector. However, when a negative electrode material layer made of a thin film negative electrode material is formed on a current collector made of such a material, the adhesion between the negative electrode material layer and the current collector becomes insufficient, and a sufficient charge / discharge cycle Characteristics may not be obtained. For this reason, in Patent Document 1, an intermediate layer made of a material that forms an alloy with the negative electrode material is disposed between the current collector and the negative electrode material layer, and a current collector having higher mechanical strength than the intermediate layer is used. Discloses a technique for suppressing the detachment of the negative electrode material during charging and discharging and suppressing the generation of soot and the like. Specifically, a copper layer is used as the intermediate layer, and a nickel foil is used as the current collector.

上記特許文献1以外にも、負極材料層としてシリコンに銅を固溶させた薄膜を用い、リチウムの吸蔵量を抑制することによって、リチウムを吸蔵した場合の負極材料の膨張を抑制する技術が開示されている(特許文献2参照)。また、負極材料層として、リチウムと合金化する金属と、リチウムと合金化しない金属とからなる合金薄膜を用い、リチウムの吸蔵量を抑制することによって、リチウムを吸蔵した場合の負極材料の膨張を抑制する技術が開示されている(特許文献3参照)。具体的には、リチウムと合金化して固溶体又は金属間化合物等を形成する金属として、Sn、Ge、Al、In、Mg、及びSi等が用いられ、リチウムと合金化しない金属として、Cu、Fe、Ni、Co、Mo、W、Ta、及びMn等が用いられている。   In addition to Patent Document 1, a technique for suppressing expansion of the negative electrode material when lithium is occluded by using a thin film in which copper is dissolved in silicon as the negative electrode material layer and suppressing the occlusion amount of lithium is disclosed. (See Patent Document 2). Moreover, as the negative electrode material layer, an alloy thin film composed of a metal alloying with lithium and a metal not alloying with lithium is used, and by suppressing the occlusion amount of lithium, the negative electrode material expands when lithium is occluded. The technique to suppress is disclosed (refer patent document 3). Specifically, Sn, Ge, Al, In, Mg, Si, or the like is used as a metal that is alloyed with lithium to form a solid solution or an intermetallic compound. Cu, Fe, and the like that are not alloyed with lithium are used. Ni, Co, Mo, W, Ta, Mn, and the like are used.

また、厚さ方向への変形量が5μm〜20μmである変形部が、1cmあたり10個以上形成され、且つ、変形部による開口率が4%以下である集電体を用いることによって、充放電に伴う電極の変形を抑制する技術が開示されている(特許文献4参照)。さらには、リチウムを可逆的に吸蔵/放出できる薄膜状の負極材料層の表面及び内部の少なくとも一方に、リチウム非吸蔵性材料を配置させる技術が開示されている(特許文献5参照)。
特開2002−083594号公報 特開2002−289177号公報 特開2002−373647号公報 特開2003−017069号公報 特開2005−196971号公報
Further, by using a current collector in which 10 or more deformed portions having a deformation amount in the thickness direction of 5 μm to 20 μm are formed per 1 cm 2 and an aperture ratio by the deformed portions is 4% or less, charging is performed. A technique for suppressing deformation of an electrode accompanying discharge is disclosed (see Patent Document 4). Furthermore, a technique is disclosed in which a lithium non-occlusion material is disposed on at least one of the surface and the inside of a thin film negative electrode material layer capable of reversibly occluding / releasing lithium (see Patent Document 5).
Japanese Patent Laid-Open No. 2002-083594 JP 2002-289177 A JP 2002-373647 A JP 2003-017069 A JP 2005-196971 A

しかしながら、上述の各種負極材料いずれをもってしても、十分な出力電圧、エネルギー密度、及び充放電サイクル特性を有する電池は得られていないのが現状である。従って、本発明の目的は、上述した従来技術とは異なる構成により、高い出力電圧と高いエネルギー密度を有し、且つ充放電サイクル特性に優れた電池の実現を可能とする負極基材、この負極基材を用いた二次電池、この負極基材の形成に用いられるレジスト組成物、及びこの負極基材の製造方法を提供することにある。   However, even with any of the various negative electrode materials described above, a battery having a sufficient output voltage, energy density, and charge / discharge cycle characteristics has not been obtained. Accordingly, an object of the present invention is to provide a negative electrode base material that can realize a battery having a high output voltage, a high energy density, and excellent charge / discharge cycle characteristics by a configuration different from that of the above-described conventional technology. It is providing the secondary battery using a base material, the resist composition used for formation of this negative electrode base material, and the manufacturing method of this negative electrode base material.

本発明者らは、上記に鑑みて鋭意研究を重ねた結果、光インプリント法により成形されたパターン化有機膜上に金属膜が形成された負極基材によれば、高い出力電圧と高いエネルギー密度を有し、且つ充放電サイクル特性に優れた電池を提供できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the above, the present inventors have found that, according to a negative electrode substrate in which a metal film is formed on a patterned organic film formed by a photoimprint method, a high output voltage and high energy are obtained. It has been found that a battery having a high density and excellent charge / discharge cycle characteristics can be provided, and the present invention has been completed.

即ち、本発明は、光インプリント法により成形されたパターン化有機膜を備えた支持体に金属膜を形成してなることを特徴とする負極基材、この負極基材を用いた二次電池、この負極基材の形成に用いられるレジスト組成物、さらにはこの負極基材の製造方法を提供する。   That is, the present invention relates to a negative electrode substrate comprising a metal film formed on a support provided with a patterned organic film formed by a photoimprint method, and a secondary battery using this negative electrode substrate The resist composition used for forming this negative electrode base material, and also the manufacturing method of this negative electrode base material are provided.

本発明によれば、高い出力電圧と高いエネルギー密度を有し、且つ充放電サイクル特性に優れた電池の実現を可能とする負極基材、この負極基材を用いた二次電池、この負極基材の形成に用いられるレジスト組成物、さらにはこの負極基材の製造方法を提供できる。   According to the present invention, a negative electrode substrate capable of realizing a battery having a high output voltage and a high energy density and excellent charge / discharge cycle characteristics, a secondary battery using the negative electrode substrate, and the negative electrode substrate A resist composition used for forming the material, and a method for producing the negative electrode substrate can be provided.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<負極基材>
本発明に係る負極基材10の模式図を図1に示す。図1に示される通り、本発明に係る負極基材10は、支持体11と、パターン化有機膜12と、金属膜13とから構成される。より詳しくは、光インプリント法により所定形状にパターン化されたパターン化有機膜12を備えた支持体11に対して、金属膜13を形成してなることを特徴とする。
<Negative electrode base material>
A schematic diagram of a negative electrode substrate 10 according to the present invention is shown in FIG. As shown in FIG. 1, the negative electrode substrate 10 according to the present invention includes a support 11, a patterned organic film 12, and a metal film 13. More specifically, the metal film 13 is formed on the support 11 provided with the patterned organic film 12 patterned into a predetermined shape by the optical imprint method.

<支持体>
本発明に係る負極基材10に用いられる支持体11は、その表面上にパターン化有機膜12を形成できるものであればよく、特に限定されない。例えば、電子部品用の基板等の従来公知のものが用いられる。具体的には、シリコンウエハ、有機系又は無機系の反射防止膜が設けられたシリコンウエハ、磁性膜が形成されたシリコンウエハ、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。なお、これらの支持体は、銅、ニッケル、ステンレス、モリブデン、タングステン、チタン、及びタンタルから選ばれる少なくとも1種の元素を含む材料、金属箔、不織布、三次元構造を有する金属集電体等の集電体を兼ねてもよいし、これらの集電体上に形成されてもよい。
<Support>
The support 11 used for the negative electrode substrate 10 according to the present invention is not particularly limited as long as it can form the patterned organic film 12 on the surface thereof. For example, a conventionally known substrate such as a substrate for electronic components is used. Specifically, a silicon wafer, a silicon wafer provided with an organic or inorganic antireflection film, a silicon wafer provided with a magnetic film, a metal substrate such as copper, chromium, iron, aluminum, or a glass substrate Etc. These supports are made of a material containing at least one element selected from copper, nickel, stainless steel, molybdenum, tungsten, titanium, and tantalum, a metal foil, a nonwoven fabric, a metal current collector having a three-dimensional structure, etc. It may serve as a current collector or may be formed on these current collectors.

<有機膜>
本発明に係る負極基材10におけるパターン化有機膜12は、後述するレジスト組成物を光インプリント法により成形することにより形成されるものである。
<Organic film>
The patterned organic film 12 in the negative electrode substrate 10 according to the present invention is formed by molding a resist composition described later by a photoimprint method.

[レジスト組成物]
本発明に係る負極基材10におけるパターン化有機膜12の形成に用いられるレジスト組成物としては、エポキシ樹脂、ヒドロキシスチレン樹脂、アクリル樹脂、及びメタクリル樹脂の中から選ばれる少なくとも1種を含有してなるレジスト組成物であれば特に限定されない。
[Resist composition]
The resist composition used for forming the patterned organic film 12 in the negative electrode substrate 10 according to the present invention contains at least one selected from an epoxy resin, a hydroxystyrene resin, an acrylic resin, and a methacrylic resin. If it is the resist composition which becomes, it will not specifically limit.

前記レジスト組成物を構成する樹脂成分としては、例えば、ビスフェノールA型ノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンエポキシ樹脂などのエポキシ樹脂、ヒドロキシスチレンの単独重合体、ヒドロキシスチレンと他のスチレン系単量体との共重合体、ヒドロキシスチレンとアクリル酸またはメタクリル酸あるいはその誘導体との共重合体などのヒドロキシスチレン樹脂、アクリル酸、メタクリル酸、あるいはその誘導体、またはこれらの共重合体などのアクリル系樹脂などが挙げられる。   Examples of the resin component constituting the resist composition include bisphenol A type novolak type epoxy resins, phenol novolak type epoxy resins, cresol novolak type epoxy resins, dicyclopentadiene epoxy resins and the like, and hydroxystyrene homopolymers. Hydroxystyrene resins such as copolymers of hydroxystyrene and other styrenic monomers, copolymers of hydroxystyrene and acrylic acid or methacrylic acid or derivatives thereof, acrylic acid, methacrylic acid or derivatives thereof, or Examples thereof include acrylic resins such as these copolymers.

前記樹脂成分の質量平均分子量は、支持体上に有機膜を形成できる範囲内で適宜調整可能であるが、特に、ゲルパーミエーションクロマトグラフィによるポリスチレン換算質量平均分子量(Mw)は、樹脂の種類にもよるが、パターン形成の点から好ましくは2,000〜100,000、より好ましくは3,000〜30,000である。   The mass average molecular weight of the resin component can be appropriately adjusted within a range in which an organic film can be formed on the support. In particular, the polystyrene-reduced mass average molecular weight (Mw) by gel permeation chromatography is also determined by the type of resin. However, it is preferably 2,000 to 100,000, more preferably 3,000 to 30,000 from the viewpoint of pattern formation.

また、レジスト組成物は、有機溶剤を含有していることが好ましい。このような有機溶剤は、前述の樹脂を溶解し得る有機溶剤であれば特に限定されないが、具体的には、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソアミルケトン、2−ヘプタノン等のケトン類;エチレングリコール、プロピレングリコール、ジエチレングリコール、エチレングリコールモノアセテート、プロピレングリコールモノアセテート、ジエチレングリコールモノアセテート、あるいはこれらのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテルまたはモノフェニルエーテル等の多価アルコール類およびその誘導体;ジオキサンのような環式エーテル類;および酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル等のエステル類、γ−ブチロラクトンなどがあげられる。   The resist composition preferably contains an organic solvent. Such an organic solvent is not particularly limited as long as it is an organic solvent capable of dissolving the above-mentioned resin. Specifically, ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone, 2-heptanone; ethylene glycol, Polyhydric alcohols such as propylene glycol, diethylene glycol, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, or monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether and derivatives thereof; Cyclic ethers such as: methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, methyl pyruvate, ethyl pyruvate, methoxypropionic acid Chill, esters such as ethyl ethoxypropionate and γ- butyrolactone and the like.

上記有機溶剤の中でも、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、2−ヘプタノン、乳酸メチル、乳酸エチル、及びγ−ブチロラクトンの中から選ばれる少なくとも1種の有機溶剤を用いることが好ましい。これらの溶剤を用いる場合、全有機溶剤中、50質量%以上とすることが望ましい。   Among the above organic solvents, use at least one organic solvent selected from propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, 2-heptanone, methyl lactate, ethyl lactate, and γ-butyrolactone. Is preferred. When using these solvents, it is desirable that the total organic solvent be 50% by mass or more.

また、レジスト組成物には、光重合開始剤が含まれることが好ましく、このような光重合開始剤としては、公知のレジスト組成物に用いられる任意の光重合開始剤を使用することができ、具体的には、ハロゲン含有トリアジン化合物、オキシムスルホネ−ト基含有化合物、カチオン部にナフタレン環を有するオニウム塩、ビススルホニルジアゾメタン類、ニトロベンジル誘導体、スルホン酸エステル、トリフルオロメタンスルホン酸エステル類、オニウム塩、ベンゾイントシレート類、ジフェニルヨ−ドニウム塩、トリフェニルスルホニウム塩、フェニルジアゾニウム塩、ベンジルカルボナ−ト類等があげられる。このような光重合開始剤を配合する場合、その配合量は、レジスト組成物中、0.05〜5質量%とすることが好ましい。   The resist composition preferably contains a photopolymerization initiator, and as such a photopolymerization initiator, any photopolymerization initiator used in a known resist composition can be used, Specifically, halogen-containing triazine compounds, oxime sulfonate group-containing compounds, onium salts having a naphthalene ring in the cation part, bissulfonyldiazomethanes, nitrobenzyl derivatives, sulfonate esters, trifluoromethanesulfonate esters, onium Salts, benzoin tosylate, diphenyliodonium salt, triphenylsulfonium salt, phenyldiazonium salt, benzyl carbonate and the like. When mix | blending such a photoinitiator, it is preferable that the compounding quantity shall be 0.05-5 mass% in a resist composition.

さらには、レジスト組成物には、架橋剤を配合してもよく、このような架橋剤としては具体的には、アミノ化合物、例えばメラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル−ホルムアルデヒド樹脂、スクシニルアミド−ホルムアルデヒド樹脂、エチレン尿素−ホルムアルデヒド樹脂等が用いられる。このような架橋剤を配合する場合、前述の樹脂成分100質量部に対して1〜30質量部の範囲で配合されることが好ましい。   Furthermore, the resist composition may contain a crosslinking agent. Specific examples of such crosslinking agents include amino compounds such as melamine resin, urea resin, guanamine resin, glycoluril-formaldehyde resin, succinyl. Amide-formaldehyde resin, ethylene urea-formaldehyde resin and the like are used. When mix | blending such a crosslinking agent, it is preferable to mix | blend in 1-30 mass parts with respect to 100 mass parts of above-mentioned resin components.

[パターン化有機膜] [Patterned organic film]

パターン化有機膜12は、前記レジスト組成物を、支持体11上にスピンナーを用いて塗布して有機膜を形成したのち、該有機膜に対して所定条件下でモールド材を押圧し、光照射した後、前記モールド材を前記有機膜から離間することによりパターン化有機膜を得る、光インプリント法を用いることにより形成される。   The patterned organic film 12 is formed by applying the resist composition on the support 11 using a spinner to form an organic film, and then pressing a molding material on the organic film under a predetermined condition for light irradiation. After that, the patterning organic film is obtained by separating the mold material from the organic film to obtain a patterned organic film.

なお、上記のようにして得られたパターン化有機膜12のアスペクト比は、0.1以上であることが好ましい。パターン化有機膜12のアスペクト比を0.1以上とすることにより、負極基材10の表面積を増大でき、後述するメッキ処理により形成される金属膜量を増大させることができる結果、さらなる高出力化、高エネルギー密度化が達成される。   The aspect ratio of the patterned organic film 12 obtained as described above is preferably 0.1 or more. By setting the aspect ratio of the patterned organic film 12 to 0.1 or more, the surface area of the negative electrode substrate 10 can be increased, and the amount of the metal film formed by the plating process described later can be increased. And high energy density are achieved.

前記モールド材としては、光インプリント法に一般的に用いられるモールド材であれば特に限定されず、具体的には、石英、サファイア等からなるモールド材が使用可能である。また、あらかじめフッ素系又はシリコン系などの離型材を用いて、モールド材の表面を離型処理してもよい。   The mold material is not particularly limited as long as it is a mold material generally used in the optical imprint method. Specifically, a mold material made of quartz, sapphire, or the like can be used. Alternatively, the surface of the mold material may be subjected to a mold release treatment using a mold release material such as fluorine or silicon.

また、パターン化有機膜12を形成する所定条件としては、光インプリント法に一般的に用いられる条件であれば特に限定されるものではないが、通常は、モールド材の押圧条件を1〜1000Nに調整し、その後、200〜500nmの光を全面照射し、有機膜を硬化させた後、モールド材を有機膜から離間することにより行われる。また、モールド材の凸部に相当する有機膜の残膜部分については、パターン化有機膜12を形成後、酸素プラズマエッチング処理等により除去してもよい。パターン化有機膜12を形成した後、該パターン化有機膜を加熱処理してパターンを硬化させても良い。また、前記加熱処理の前に光照射(UVキュア)して表面を硬化させても良い。   Further, the predetermined condition for forming the patterned organic film 12 is not particularly limited as long as it is a condition generally used in the optical imprinting method. Usually, the pressing condition of the molding material is 1 to 1000 N. After that, the entire surface is irradiated with light of 200 to 500 nm to cure the organic film, and then the mold material is separated from the organic film. Further, the remaining film portion of the organic film corresponding to the convex portion of the molding material may be removed by oxygen plasma etching or the like after forming the patterned organic film 12. After the patterned organic film 12 is formed, the patterned organic film may be heated to cure the pattern. Further, the surface may be cured by light irradiation (UV curing) before the heat treatment.

[金属膜]
本発明に係る負極基材10における金属膜13は、メッキ処理により形成されるものが好ましいが、特に限定されるものではない。メッキ処理は従来公知のものが用いられ、上述のパターン化有機膜12上に金属膜13を形成できるものであれば特に限定されない。また、金属膜13は、多段階メッキ処理により複数の層から構成されていてもよい。このような金属膜13を形成する工程、即ちメッキ処理工程は、好ましくは、洗浄工程、触媒化処理工程に続いて、無電解ニッケルメッキ、又は無電解銅メッキ工程を行い、さらに無電解錫メッキ工程、又は電解錫メッキ工程を含む。
[Metal film]
The metal film 13 in the negative electrode substrate 10 according to the present invention is preferably formed by plating, but is not particularly limited. A conventionally known plating process is used, and there is no particular limitation as long as the metal film 13 can be formed on the patterned organic film 12 described above. Further, the metal film 13 may be composed of a plurality of layers by a multistage plating process. The step of forming the metal film 13, that is, the plating step, is preferably performed by performing an electroless nickel plating or an electroless copper plating step following the cleaning step and the catalyzing step, and further electroless tin plating. A process, or an electrolytic tin plating process.

本発明に好適なメッキ処理について、以下に具体的に説明する。   The plating process suitable for the present invention will be specifically described below.

[洗浄工程]
先ず、パターン化有機膜12を備えた支持体11を、リン酸系溶液中に浸漬させて洗浄を行う。リン酸系溶液としては、リン酸ナトリウムなどが用いられる。浸漬時間は、30〜180秒とすることが好ましく、45〜90秒とすることがより好ましい。
[Washing process]
First, the support 11 provided with the patterned organic film 12 is immersed in a phosphoric acid solution for cleaning. As the phosphoric acid solution, sodium phosphate or the like is used. The immersion time is preferably 30 to 180 seconds, and more preferably 45 to 90 seconds.

[触媒化工程]
上記洗浄工程を経た支持体11を、所定濃度の塩化錫(SnCl)水溶液中に所定時間浸漬させる。塩化錫の濃度は、0.01g/dm〜0.10g/dmが好ましく、0.03g/dm〜0.07g/dmがより好ましい。また、浸漬時間は15〜180秒とすることが好ましく、30〜60秒とすることがより好ましい。
[Catalysis process]
The support 11 that has undergone the cleaning step is immersed in a tin chloride (SnCl 2 ) aqueous solution having a predetermined concentration for a predetermined time. The concentration of tin chloride is preferably from 0.01g / dm 3 ~0.10g / dm 3 , 0.03g / dm 3 ~0.07g / dm 3 are more preferred. Further, the immersion time is preferably 15 to 180 seconds, and more preferably 30 to 60 seconds.

次いで、塩化錫(SnCl)水溶液中に所定時間浸漬させた支持体11を、所定濃度の塩化パラジウム(PdCl)水溶液中に所定時間浸漬させる。塩化パラジウムの濃度は、0.01g/dm〜0.3g/dmが好ましく、0.03g/dm〜0.07g/dmがより好ましい。また、浸漬時間は15〜180秒とすることが好ましく、30〜60秒とすることがより好ましい。 Next, the support 11 immersed in a tin chloride (SnCl 2 ) aqueous solution for a predetermined time is immersed in a palladium chloride (PdCl 2 ) aqueous solution having a predetermined concentration for a predetermined time. The concentration of palladium chloride is preferably from 0.01g / dm 3 ~0.3g / dm 3 , 0.03g / dm 3 ~0.07g / dm 3 are more preferred. Further, the immersion time is preferably 15 to 180 seconds, and more preferably 30 to 60 seconds.

[無電解ニッケルメッキ工程]
上記触媒化工程を経た支持体11を、ニッケルメッキ浴中に浸漬させてニッケルメッキを行う。ニッケルメッキ浴としては、従来公知のものが用いられる。例えば、硫酸ニッケルを0.05M〜0.20M、次亜リン酸ナトリウムを0.10M〜0.30M、鉛イオンを0.05ppm〜0.30ppm、錯化剤を0.05M〜0.30M含有するニッケルメッキ浴が一例として挙げられる。錯化剤としては、カルボン酸類の錯化剤が好ましく用いられる。ニッケルメッキ浴の温度は、50℃〜70℃が好ましく、pHは4.0〜5.5が好ましい。pHの調整には水酸化ナトリウム、硫酸が用いられる。
[Electroless nickel plating process]
Nickel plating is performed by immersing the support 11 that has undergone the catalyzing step in a nickel plating bath. A conventionally known nickel plating bath is used. For example, nickel sulfate 0.05M-0.20M, sodium hypophosphite 0.10M-0.30M, lead ions 0.05ppm-0.30ppm, complexing agent 0.05M-0.30M An example is a nickel plating bath. As the complexing agent, a complexing agent of carboxylic acids is preferably used. The temperature of the nickel plating bath is preferably 50 ° C to 70 ° C, and the pH is preferably 4.0 to 5.5. Sodium hydroxide and sulfuric acid are used to adjust the pH.

なお、上記無電解ニッケルメッキの代わりに、無電解銅メッキを行ってもよい。銅メッキ浴としては、従来公知のものが用いられる。   In place of the electroless nickel plating, electroless copper plating may be performed. A conventionally well-known thing is used as a copper plating bath.

[無電解銅メッキ工程]
上記触媒化工程を経た支持体11を、銅メッキ浴中に浸漬させて銅メッキを行う。銅メッキ浴としては、従来公知のものが用いられる。例えば、硫酸銅を0.02M〜0.10M、ホルマリンを0.10M〜0.40M、2,2’−ビピリジルを1.0ppm〜20.0ppm、界面活性剤(ポリエチレングリコールなど)を50.0ppm〜500ppm、錯化剤を0.20M〜0.40M含有する銅メッキ浴が一例として挙げられる。錯化剤としては、エチレン−アミン系の錯化剤が好ましく用いられる。銅メッキ浴の温度は、50℃〜70℃が好ましく、pHは11.5〜12.5が好ましい。また、空気通気による攪拌を行うのが好ましい。pHの調整には水酸化カリウム、硫酸が用いられる。
[Electroless copper plating process]
The support 11 that has undergone the catalyzing step is dipped in a copper plating bath to perform copper plating. A conventionally well-known thing is used as a copper plating bath. For example, 0.02 M to 0.10 M of copper sulfate, 0.10 M to 0.40 M of formalin, 1.0 ppm to 20.0 ppm of 2,2′-bipyridyl, 50.0 ppm of surfactant (polyethylene glycol, etc.) An example is a copper plating bath containing ˜500 ppm and a complexing agent of 0.20 M to 0.40 M. As the complexing agent, an ethylene-amine complexing agent is preferably used. The temperature of the copper plating bath is preferably 50 ° C to 70 ° C, and the pH is preferably 11.5 to 12.5. Moreover, it is preferable to perform stirring by air ventilation. For adjusting the pH, potassium hydroxide and sulfuric acid are used.

[無電解錫メッキ工程]
上記無電解ニッケルメッキ、又は無電解銅メッキ工程を経た支持体11を、錫メッキ浴中に浸漬させて錫メッキを行うことにより、パターン化有機膜12上に金属膜13が形成される。錫メッキ浴としては、従来公知のものが用いられる。例えば、塩化錫を0.02M〜0.20M、三塩化チタンなどの還元剤を0.02M〜0.08M、クエン酸3ナトリウム、エチレンジアミン四酢酸2ナトリウム(EDTA−2Na)、ニトリロ三酢酸(NTA)などの錯化剤を0.10M〜0.50M含有する錫メッキ浴が一例として挙げられる。錫メッキ浴の温度は、45℃〜70℃が好ましく、pHは6.5〜8.5が好ましい。pHの調整には炭酸ナトリウム又はアンモニアと塩酸が用いられる。なお、錫メッキ処理は、窒素雰囲気下で行われるのが好ましい。
[Electroless tin plating process]
The metal film 13 is formed on the patterned organic film 12 by immersing the support 11 that has undergone the electroless nickel plating or electroless copper plating process in a tin plating bath and performing tin plating. A conventionally well-known thing is used as a tin plating bath. For example, 0.02M to 0.20M tin chloride, 0.02M to 0.08M reducing agent such as titanium trichloride, trisodium citrate, disodium ethylenediaminetetraacetate (EDTA-2Na), nitrilotriacetic acid (NTA) An example is a tin plating bath containing 0.10 M to 0.50 M of a complexing agent such as The temperature of the tin plating bath is preferably 45 ° C to 70 ° C, and the pH is preferably 6.5 to 8.5. Sodium carbonate or ammonia and hydrochloric acid are used to adjust the pH. The tin plating process is preferably performed in a nitrogen atmosphere.

[電解錫メッキ工程]
なお、上記無電解錫メッキの代わりに、電解錫メッキを行ってもよい。このような錫メッキ工程としては、上記無電解ニッケルメッキ、又は無電解銅メッキ工程を経た支持体11を、錫メッキ浴中に浸漬、通電させて電解錫メッキを行うことにより、パターン化有機膜12上に金属膜13が形成される。電解錫メッキ浴としては、従来公知のものが用いられる。例えば、レイボルド株式会社の市販メッキ液、スタータークルモ錫メッキ浴が一例として挙げられる。錫メッキ浴の温度は、10℃〜28℃が好ましく、pHは1.0〜1.5とすることが好ましい。また、適用電流密度は0.5A/dm〜6.0A/dmが好ましい。
[Electrolytic tin plating process]
In place of the electroless tin plating, electrolytic tin plating may be performed. As such a tin plating process, the patterned organic film is obtained by performing electrolytic tin plating by immersing and energizing the support 11 that has undergone the electroless nickel plating or electroless copper plating process in a tin plating bath. A metal film 13 is formed on 12. A conventionally well-known thing is used as an electrolytic tin plating bath. Examples thereof include a commercial plating solution manufactured by Reybold Co., Ltd. and a starter Kurumo tin plating bath. The temperature of the tin plating bath is preferably 10 ° C to 28 ° C, and the pH is preferably 1.0 to 1.5. The applied current density is preferably 0.5 A / dm 2 to 6.0 A / dm 2 .

[二次電池]
上記負極基材10は、二次電池用負極基材、特にリチウム二次電池用負極基材として好適に用いられる。リチウム二次電池は、電解液として有機溶媒及びリチウム塩を用い、負極と正極との間で行われるリチウムイオン(Li)の移動による電荷の授受により、充放電がなされる二次電池であり、出力電圧が高く、エネルギー密度が高いという利点を有する。従来のリチウム二次電池では、通常、負極として炭素、正極として遷移金属酸化物リチウム化合物が用いられていたが、近年ではさらなる高出力、高エネルギー密度を求めて負極材料の検討が進められている。負極材料は、薄膜を形成することができ、且つリチウムを可逆的に吸蔵/放出できるものであることが必要であるところ、上記負極基材10はこれらの要求を満たすため、好適に用いられる。ここで、「吸蔵」とは、リチウムを可逆的に内包したり、リチウムと可逆的に合金、固溶体等を形成したり、リチウムと可逆的に化学結合したりすることである。
[Secondary battery]
The said negative electrode base material 10 is used suitably as a negative electrode base material for secondary batteries, especially a negative electrode base material for lithium secondary batteries. A lithium secondary battery is a secondary battery that uses an organic solvent and a lithium salt as an electrolytic solution, and is charged and discharged by transfer of charge by movement of lithium ions (Li + ) performed between a negative electrode and a positive electrode. , It has the advantages of high output voltage and high energy density. In conventional lithium secondary batteries, carbon is usually used as the negative electrode and a transition metal oxide lithium compound is used as the positive electrode. However, in recent years, studies on negative electrode materials have been conducted in search of higher power and higher energy density. . The negative electrode material needs to be capable of forming a thin film and reversibly occluding / releasing lithium, and the negative electrode base material 10 is preferably used because it satisfies these requirements. Here, “occlusion” means reversibly encapsulating lithium, reversibly forming an alloy or solid solution with lithium, or reversibly chemically bonding with lithium.

上記負極基材10を、リチウム二次電池の負極材料として利用する際には、負極基材10を集電体上に積層して負極を形成することが必要である。ただし、上記支持体11が導電性を有するものであればその必要はなく、支持体11が集電体となり得る。集電体は、導電性を有するものであればよく、その材料や構造等は特に限定されない。従来一般的なリチウム二次電池に用いられる集電体が用いられる。好ましくは、上記負極基材10との密着性が良好なものである。また、リチウムと合金化しない材料であることが好ましい。具体的には、銅、ニッケル、ステンレス、モリブデン、タングステン、チタン、及びタンタルよりなる群から選ばれる少なくとも1種の元素を含む材料が挙げられる。また、金属箔、不織布、三次元構造を有する金属集電体等の構造が好ましい。特に、金属箔を用いることが好ましく、具体的には、銅箔等を用いることが好ましい。集電体の厚さは特に限定されない。   When the negative electrode substrate 10 is used as a negative electrode material for a lithium secondary battery, it is necessary to form the negative electrode by laminating the negative electrode substrate 10 on a current collector. However, it is not necessary if the support 11 has conductivity, and the support 11 can be a current collector. The current collector is not particularly limited as long as it has conductivity, and its material, structure, and the like are not particularly limited. A current collector used for a conventional lithium secondary battery is used. Preferably, the adhesiveness with the negative electrode substrate 10 is good. Moreover, it is preferable that it is a material which does not alloy with lithium. Specifically, a material containing at least one element selected from the group consisting of copper, nickel, stainless steel, molybdenum, tungsten, titanium, and tantalum can be given. Moreover, structures, such as metal foil, a nonwoven fabric, and the metal electrical power collector which has a three-dimensional structure, are preferable. In particular, a metal foil is preferably used, and specifically, a copper foil or the like is preferably used. The thickness of the current collector is not particularly limited.

一般に、集電体上に薄膜状の負極材料層を積層して形成された負極では、粒子状の負極材料を結着剤等とともに集電体上に積層した負極に比べ、内部抵抗を低減できる。即ち、上記負極基材10を集電体上に積層して形成された負極によれば、発電特性が高いリチウム二次電池が得られる。しかしながら、集電体上に薄膜状の負極材料層を積層した負極では、負極材料層と集電体との密着性が大きいため、充放電に伴う負極材料層の膨張/収縮によって、負極材料層や集電体に皺等の変形が発生するおそれがある。特に、銅箔等の延性に富んだ金属箔を集電体に用いた場合、変形の程度がより大きくなる傾向にある。このため、薄膜状の負極材料層を集電体上に単に積層するだけでは、電池としてのエネルギー密度が低下したり、充放電サイクル特性が悪化するおそれがある。   Generally, in a negative electrode formed by laminating a thin film negative electrode material layer on a current collector, the internal resistance can be reduced compared to a negative electrode in which a particulate negative electrode material is laminated on a current collector together with a binder or the like. . That is, according to the negative electrode formed by laminating the negative electrode substrate 10 on the current collector, a lithium secondary battery having high power generation characteristics can be obtained. However, in a negative electrode in which a thin-film negative electrode material layer is laminated on a current collector, the adhesion between the negative electrode material layer and the current collector is large, and therefore the negative electrode material layer is expanded or contracted by charge / discharge. There is a risk of deformation such as wrinkles in the current collector. In particular, when a metal foil rich in ductility such as copper foil is used for the current collector, the degree of deformation tends to be greater. For this reason, simply laminating a thin-film negative electrode material layer on the current collector may reduce the energy density of the battery or deteriorate the charge / discharge cycle characteristics.

これに対して、本発明に係る上記負極基材10は、パターン化有機膜12上に金属膜13が積層された構造を有するため、リチウムの吸蔵/放出に伴って金属膜13が膨張/収縮することにより生ずる応力は、パターン化有機膜12の緩衝作用により緩和される。このため、充放電時に生ずる応力の増大を抑制することができる結果、負極基材や集電体における皺等の変形の発生を抑制できる。ひいては、負極基材の亀裂や集電体からの剥離を抑制できる。即ち、上記負極基材10を集電体上に積層して形成された負極によれば、高い出力電圧と高いエネルギー密度を有し、且つ充放電サイクル特性に優れたリチウム二次電池が得られる。   On the other hand, since the negative electrode substrate 10 according to the present invention has a structure in which the metal film 13 is laminated on the patterned organic film 12, the metal film 13 expands / contracts as lithium is occluded / released. The stress generated by this is alleviated by the buffering action of the patterned organic film 12. For this reason, as a result of being able to suppress the increase in the stress which arises at the time of charging / discharging, generation | occurrence | production of deformation | transformation, such as a flaw in a negative electrode base material or a collector, can be suppressed. As a result, cracking of the negative electrode substrate and peeling from the current collector can be suppressed. That is, according to the negative electrode formed by laminating the negative electrode substrate 10 on the current collector, a lithium secondary battery having a high output voltage, a high energy density, and excellent charge / discharge cycle characteristics can be obtained. .

なお、負極以外の構成については特に限定されず、従来公知のリチウム二次電池と同様の構成でよい。具体的には、リチウムを可逆的に吸蔵/放出できる正極、リチウム伝導性を有する電解質から主に構成される。電解質は、必要によりセパレータによって保持され、セパレータに保持された状態で負極及び正極と接触し、リチウムの交換が行われる。   In addition, it is not specifically limited about structures other than a negative electrode, The structure similar to a conventionally well-known lithium secondary battery may be sufficient. Specifically, it is mainly composed of a positive electrode capable of reversibly inserting / extracting lithium and an electrolyte having lithium conductivity. The electrolyte is held by a separator as necessary, and in contact with the negative electrode and the positive electrode while being held by the separator, lithium is exchanged.

正極は、リチウムを可逆的に吸蔵/放出できる限り特に限定されず、リチウム二次電池に一般的に用いられる正極が用いられる。具体的には、集電体上に正極材料層を積層した正極を用いればよい。例えば、正極材料と導電剤、結着剤とを分散溶媒中に分散させてスラリー状とし、集電体上に塗布した後に乾燥させることにより形成される。集電体、正極材料層の厚さは特に限定されず、電池設計容量等に応じて任意に設定される。   The positive electrode is not particularly limited as long as lithium can be reversibly occluded / released, and a positive electrode generally used for a lithium secondary battery is used. Specifically, a positive electrode in which a positive electrode material layer is stacked over a current collector may be used. For example, it is formed by dispersing a positive electrode material, a conductive agent, and a binder in a dispersion solvent to form a slurry, coating the current collector, and drying. The thicknesses of the current collector and the positive electrode material layer are not particularly limited, and are arbitrarily set according to the battery design capacity and the like.

正極材料も特に限定されず、リチウムと遷移元素とを含む酸化物等の従来公知のものが用いられる。具体的には、LiCoO、LiNiO、LiMnO、LiMn、LiCo0.5Ni0.5等が用いられる。導電剤は、電気伝導性を有する材料であれば特に限定されず、例えば、アセチレンブラック、カーボンブラック、黒鉛粉末等が用いられる。結着剤は、正極を形成した後に正極材料層の形状を保持できるものであれば特に限定されず、ゴム系結着剤や、フッ素樹脂等の樹脂系結着剤が用いられる。 The positive electrode material is not particularly limited, and a conventionally known material such as an oxide containing lithium and a transition element is used. Specifically, LiCoO 2, LiNiO 2, LiMnO 2, LiMn 2 O 4, LiCo 0.5 Ni 0.5 O 2 or the like is used. The conductive agent is not particularly limited as long as it is a material having electrical conductivity. For example, acetylene black, carbon black, graphite powder, or the like is used. The binder is not particularly limited as long as it can maintain the shape of the positive electrode material layer after forming the positive electrode, and a rubber-based binder or a resin-based binder such as a fluororesin is used.

セパレータは、リチウム伝導性を有する電解質を保持することができ、負極と正極との間の電気的な絶縁を保つことができるものであればよく、その材料や構造等は特に限定されない。例えば、多孔質ポリプロピレン薄膜、多孔質ポリエチレン薄膜等の多孔質性樹脂薄膜や、ポリオレフィン等を含む樹脂製不織布等が用いられる。   The separator is not particularly limited as long as it can hold an electrolyte having lithium conductivity and can maintain electrical insulation between the negative electrode and the positive electrode. For example, a porous resin thin film such as a porous polypropylene thin film or a porous polyethylene thin film, or a resin nonwoven fabric containing polyolefin or the like is used.

電解質は、リチウム伝導性を有するものであればよく、特に限定されない。例えば、リチウムを含む電解質を非水溶媒に溶解させた非水電解質溶液が用いられる。リチウムを含む電解質としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiCFSO等のリチウム塩が用いられる。非水溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状炭酸エステル、テトラヒドロフラン、1,3−ジオキソラン等の環状エーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン等の鎖状エーテル、γ−ブチロラクトン等の環状エステル、酢酸メチル等の鎖状エステル、又はこれら非水溶媒の混合溶媒が用いられる。非水電解質溶液の濃度は特に限定されない。電解質として、ポリマー電解質や固体電解質等を用いてもよい。 The electrolyte is not particularly limited as long as it has lithium conductivity. For example, a nonaqueous electrolyte solution in which an electrolyte containing lithium is dissolved in a nonaqueous solvent is used. As the electrolyte containing lithium, for example, a lithium salt such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 is used. Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, cyclic ethers such as tetrahydrofuran and 1,3-dioxolane, A chain ether such as 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, a cyclic ester such as γ-butyrolactone, a chain ester such as methyl acetate, or a mixed solvent of these nonaqueous solvents is used. It is done. The concentration of the nonaqueous electrolyte solution is not particularly limited. As the electrolyte, a polymer electrolyte, a solid electrolyte, or the like may be used.

本発明に係る上記負極基材10を負極として利用したリチウム二次電池は、コイン形、円筒形、角形、あるいは平板形の電池等の様々な形状とすることができる。また、その容量も特に限定されず、精密機器等に用いる小型の電池からハイブリッド自動車等に用いる大型の電池にまで適用できる。   The lithium secondary battery using the negative electrode substrate 10 according to the present invention as a negative electrode can have various shapes such as a coin-shaped battery, a cylindrical battery, a rectangular battery, or a flat battery. Further, the capacity is not particularly limited, and it can be applied from a small battery used for precision equipment to a large battery used for a hybrid vehicle or the like.

以下、実施例を用いて本発明をさらに詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

〔実施例〕
多官能ビスフェノールAノボラック型エポキシ樹脂である「エピコート157S70(商品名:ジャパンエポキシレジン社製)」100質量部、ジフェニル〔4−(フェニルチオ)フェニル〕スルホニウムヘキサフルオロフォスフェートとチオジ−p−フェニレンビス(ジフェニルスルホニウム)ビス(ヘキサフルオロホスフェート)の混合物である「UVI−6992(商品名:ダウケミカル社製)」5質量部、1,5−ジヒドロキシナフタレン5質量部、及びγ−ブチロラクトン43質量部を混合してネガ型ホトレジスト組成物を調製した。
〔Example〕
100 parts by mass of “Epicoat 157S70 (trade name: manufactured by Japan Epoxy Resin Co., Ltd.)” which is a polyfunctional bisphenol A novolac type epoxy resin, diphenyl [4- (phenylthio) phenyl] sulfonium hexafluorophosphate and thiodi-p-phenylenebis ( 5 parts by weight of “UVI-6992 (trade name: manufactured by Dow Chemical)” which is a mixture of diphenylsulfonium) bis (hexafluorophosphate), 5 parts by weight of 1,5-dihydroxynaphthalene, and 43 parts by weight of γ-butyrolactone are mixed. Thus, a negative photoresist composition was prepared.

このレジスト組成物を、シリコンウエハ上にスピン塗布し、60℃で5分および90℃で5分のプレベーク処理を行い、膜厚30μmの有機膜を形成した。該有機膜に対して、NM401 Imprinter(明昌機工社製)を用いて石英モールド材を、200Nの押圧条件下で、5分間押圧処理し、基板全面に紫外線照射装置TOSCURE252(ハリソン東芝ラインティング株式会社製)により超高圧水銀ランプを照射し(露光量1500mJ/cm)、その後該モールド材を有機膜から離間することにより直径10μm(ピッチ20μm)のピラー形状のパターン化有機膜を形成した。 This resist composition was spin-coated on a silicon wafer and pre-baked at 60 ° C. for 5 minutes and at 90 ° C. for 5 minutes to form an organic film having a thickness of 30 μm. The organic film is subjected to a pressing treatment for 5 minutes under a 200 N pressing condition using a NM401 Imprinter (manufactured by Meisho Kiko Co., Ltd.), and an ultraviolet irradiation device TOSCURE252 (Harrison Toshiba Lighting Co., Ltd.) is applied to the entire surface of the substrate. The pillar-shaped patterned organic film having a diameter of 10 μm (pitch of 20 μm) was formed by irradiating an ultra-high pressure mercury lamp (manufactured) (exposure amount: 1500 mJ / cm 2 ) and then separating the mold material from the organic film.

このパターン化有機膜が形成されたシリコンウエハを、リン酸ナトリウム溶液中に60秒間浸漬して洗浄処理を行った。続いて、上記洗浄工程を経たシリコンウエハを、0.05g/dmの塩化錫(SnCl)水溶液中に60秒間浸漬させ、さらに、0.05g/dmの塩化パラジウム(PdCl)水溶液中に60秒間浸漬させることにより、触媒化工程を行った。 The silicon wafer on which the patterned organic film was formed was immersed in a sodium phosphate solution for 60 seconds for cleaning treatment. Subsequently, the silicon wafer that has undergone the above cleaning step is immersed in a 0.05 g / dm 3 tin chloride (SnCl 2 ) aqueous solution for 60 seconds, and further in a 0.05 g / dm 3 palladium chloride (PdCl 2 ) aqueous solution. The catalyzing process was performed by immersing the film in 60 seconds.

次いで、上記触媒化工程を経たシリコンウエハを、硫酸ニッケル0.20M、次亜リン酸ナトリウム0.30M、鉛イオン0.30ppm、カルボン酸類の錯化剤0.30Mからなるニッケルメッキ浴中に浸漬させてニッケルメッキ処理を行った。なお、このときのニッケルメッキ浴の温度は70℃とし、pHは5.5に調整した。   Next, the silicon wafer that has undergone the catalyzing step is immersed in a nickel plating bath comprising 0.20M nickel sulfate, 0.30M sodium hypophosphite, 0.30ppm lead ion, and 0.30M carboxylic acid complexing agent. And nickel plating treatment was performed. The temperature of the nickel plating bath at this time was 70 ° C., and the pH was adjusted to 5.5.

さらに、上記無電解ニッケルメッキ工程を経たシリコンウエハを、塩化錫を0.20M、三塩化チタン等の還元剤を0.08M、クエン酸3ナトリウム0.50Mからなる錫メッキ浴中に浸漬させて錫メッキ処理を行った。なお、このときの錫メッキ浴の温度は70℃とし、pHは8.5に調整した。   Further, the silicon wafer that has undergone the electroless nickel plating step is immersed in a tin plating bath made of 0.20M tin chloride, 0.08M reducing agent such as titanium trichloride, and 0.50M trisodium citrate. A tin plating process was performed. At this time, the temperature of the tin plating bath was 70 ° C., and the pH was adjusted to 8.5.

上記実施例にて得られた負極基材を用い、以下の手法で非水電解液二次電池を作製した。この電池の1〜3サイクル後の放電容量を以下の方法で測定した。結果を以下の表1に示す。   Using the negative electrode substrate obtained in the above example, a non-aqueous electrolyte secondary battery was produced by the following method. The discharge capacity after 1 to 3 cycles of this battery was measured by the following method. The results are shown in Table 1 below.

実施例で得た負極基材を作用極とし、対極(正極)としてLiCoOを用い、両極を、セパレータを介して対向させた。非水電解液としてLiPF6/エチレンカーボネートとジメチルカーボネートの混合液(1:1容量比)を用いて常法により非水電解液二次電池を作製した。この非水電解液二次電池は、正極と負極との容量比は1:1であった。 The negative electrode substrate obtained in the example was used as a working electrode, LiCoO 2 was used as a counter electrode (positive electrode), and both electrodes were opposed to each other through a separator. A nonaqueous electrolyte secondary battery was produced by a conventional method using a mixed solution (1: 1 volume ratio) of LiPF 6 / ethylene carbonate and dimethyl carbonate as a nonaqueous electrolyte. In this non-aqueous electrolyte secondary battery, the capacity ratio between the positive electrode and the negative electrode was 1: 1.

1〜3サイクル後の各放電容量として単位容積当たりの放電容量(mAh/cm)を測定した。単位容積当たりの放電容量は、負極の体積を基準とした。但し、充電時の負極の膨張は考慮しなかった。 The discharge capacity per unit volume (mAh / cm 2 ) was measured as each discharge capacity after 1 to 3 cycles. The discharge capacity per unit volume was based on the volume of the negative electrode. However, the expansion of the negative electrode during charging was not considered.

Figure 2009123380
Figure 2009123380

上記負極基材に対して、実施例の錫メッキ処理を施した負極基材の表面積は、平面状にメッキ処理を施した場合の約190%であった。   The surface area of the negative electrode base material subjected to the tin plating treatment of the example with respect to the negative electrode base material was about 190% when the plating treatment was performed in a planar shape.

本発明に係る負極基材によれば、高い出力電圧と高いエネルギー密度を有し、且つ充放電サイクル特性に優れた電池の実現が可能であり、例えば、携帯機器等に用いる小型の電池から、ハイブリッド自動車等に用いる大型の電池まで、容量を問わず、各種用途に用いることができる。   According to the negative electrode substrate according to the present invention, it is possible to realize a battery having a high output voltage and a high energy density, and having excellent charge / discharge cycle characteristics. For example, from a small battery used for a portable device or the like, Even large batteries used in hybrid vehicles can be used for various purposes regardless of capacity.

本発明に係る負極基材の模式図である。It is a schematic diagram of the negative electrode base material which concerns on this invention.

符号の説明Explanation of symbols

10 負極基材
11 支持体
12 パターン化有機膜
13 金属膜
DESCRIPTION OF SYMBOLS 10 Negative electrode base material 11 Support body 12 Patterned organic film 13 Metal film

Claims (10)

光インプリント法により成形されたパターン化有機膜を備えた支持体に金属膜を形成してなることを特徴とする負極基材。   A negative electrode substrate comprising a metal film formed on a support provided with a patterned organic film formed by a photoimprint method. 前記パターン化有機膜が、アスペクト比0.1以上のパターン化有機膜であることを特徴とする請求項1に記載の負極基材。   The negative electrode substrate according to claim 1, wherein the patterned organic film is a patterned organic film having an aspect ratio of 0.1 or more. 前記パターン化有機膜が、エポキシ樹脂、ヒドロキシスチレン樹脂、アクリル樹脂、及びメタクリル樹脂の中から選ばれる少なくとも1種の樹脂成分を含有するレジスト組成物を光インプリント法により成形したパターン化有機膜であることを特徴とする請求項1又は2に記載の負極基材。   The patterned organic film is a patterned organic film formed by photoimprinting a resist composition containing at least one resin component selected from an epoxy resin, a hydroxystyrene resin, an acrylic resin, and a methacrylic resin. The negative electrode substrate according to claim 1, wherein the negative electrode substrate is provided. 前記金属膜が、メッキ処理により形成された金属膜であることを特徴とする請求項1から3のいずれか1項に記載の負極基材。   The negative electrode substrate according to any one of claims 1 to 3, wherein the metal film is a metal film formed by plating. 前記メッキ処理が、無電解銅メッキ処理、無電解ニッケルメッキ処理、無電解錫メッキ処理、及び電解錫メッキ処理よりなる群から選ばれた少なくとも1種のメッキ処理であることを特徴とする請求項4に記載の負極基材。   The plating process is at least one kind of plating process selected from the group consisting of an electroless copper plating process, an electroless nickel plating process, an electroless tin plating process, and an electrolytic tin plating process. 4. The negative electrode substrate according to 4. 前記メッキ処理が、無電解銅メッキ処理及び無電解ニッケルメッキ処理のうち少なくとも1種のメッキ処理と、無電解錫メッキ処理及び電解錫メッキ処理のうち少なくとも1種のメッキ処理とを含む多段階メッキ処理であることを特徴とする請求項4又は5に記載の負極基材。   The plating process includes a multi-step plating process including at least one plating process of electroless copper plating process and electroless nickel plating process and at least one plating process of electroless tin plating process and electrolytic tin plating process. The negative electrode substrate according to claim 4, wherein the negative electrode substrate is a treatment. 前記負極基材が、二次電池用負極基材であることを特徴とする請求項1から6のいずれか1項に記載の負極基材。   The said negative electrode base material is a negative electrode base material for secondary batteries, The negative electrode base material of any one of Claim 1 to 6 characterized by the above-mentioned. 請求項1から7のいずれか1項に記載の負極基材と、電解質と、この電解質を吸蔵及び放出できる正極基材とを含むことを特徴とする二次電池。   A secondary battery comprising: the negative electrode substrate according to claim 1; an electrolyte; and a positive electrode substrate capable of inserting and extracting the electrolyte. 請求項1から8のいずれか1項に記載のパターン化有機膜の形成に用いられるレジスト組成物であって、エポキシ樹脂、ヒドロキシスチレン樹脂、アクリル樹脂、及びメタクリル樹脂の中から選ばれる少なくとも1種を含有することを特徴とするレジスト組成物。   It is a resist composition used for formation of the patterned organic film of any one of Claim 1 to 8, Comprising: At least 1 sort (s) chosen from an epoxy resin, a hydroxy styrene resin, an acrylic resin, and a methacryl resin A resist composition comprising: 負極基材の製造方法であって、
(i)支持体上に、請求項9に記載のレジスト組成物を塗布し、有機膜を形成する工程と、
(ii)前記有機膜に対して、モールドを押圧し、続いて支持体全面を光硬化することにより、パターン化有機膜を形成する工程と、
(iii)前記パターン化有機膜上にメッキ処理により金属膜を形成するメッキ処理工程と、
を含むことを特徴とする負極基材の製造方法。
A method for producing a negative electrode substrate, comprising:
(I) applying a resist composition according to claim 9 on a support and forming an organic film;
(Ii) forming a patterned organic film by pressing a mold against the organic film and subsequently photocuring the entire support;
(Iii) a plating process for forming a metal film on the patterned organic film by a plating process;
The manufacturing method of the negative electrode base material characterized by including.
JP2007293301A 2007-11-12 2007-11-12 Negative electrode base material for lithium secondary battery Active JP5231785B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007293301A JP5231785B2 (en) 2007-11-12 2007-11-12 Negative electrode base material for lithium secondary battery
KR1020080110228A KR20090049022A (en) 2007-11-12 2008-11-07 Cathode substrate
US12/268,130 US8835050B2 (en) 2007-11-12 2008-11-10 Anode substrate
CN2008101762628A CN101436658B (en) 2007-11-12 2008-11-10 Cathode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293301A JP5231785B2 (en) 2007-11-12 2007-11-12 Negative electrode base material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2009123380A true JP2009123380A (en) 2009-06-04
JP5231785B2 JP5231785B2 (en) 2013-07-10

Family

ID=40815346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293301A Active JP5231785B2 (en) 2007-11-12 2007-11-12 Negative electrode base material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5231785B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203078B2 (en) 2012-04-02 2015-12-01 Tokyo Ohka Kogyo Co., Ltd. Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2019057488A (en) * 2017-03-28 2019-04-11 荒川化学工業株式会社 Slurry for thermal crosslinking type lithium ion battery, manufacturing method thereof, electrode for lithium ion battery, separator for lithium ion battery, separator/electrode laminate for lithium ion battery, and lithium ion battery
JP2021012840A (en) * 2019-07-09 2021-02-04 ローム株式会社 Thin-film all-solid-state battery, electronic device, and manufacturing method of thin-film all-solid-state battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031224A (en) * 2001-04-10 2003-01-31 Toyo Kohan Co Ltd Light-weight current collector for secondary battery
JP2004127561A (en) * 2002-09-30 2004-04-22 Hitachi Maxell Ltd Micro-patterned thin film electrode and lithium secondary battery using the same as negative electrode
JP2006173508A (en) * 2004-12-20 2006-06-29 Pulsa:Kk Optical imprint method
JP2007142092A (en) * 2005-11-17 2007-06-07 Ibaraki Univ Manufacturing method of high density wiring substrate, high density wiring substrate manufactured by using the method, electronic device and electronic apparatus
JP2007216501A (en) * 2006-02-16 2007-08-30 Kri Inc Method for producing pattern forming mold and pattern forming mold
JP2007273249A (en) * 2006-03-31 2007-10-18 Arisawa Mfg Co Ltd Manufacturing method of lithium ion secondary battery
JP2009123379A (en) * 2007-11-12 2009-06-04 Tokyo Ohka Kogyo Co Ltd Anode base material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031224A (en) * 2001-04-10 2003-01-31 Toyo Kohan Co Ltd Light-weight current collector for secondary battery
JP2004127561A (en) * 2002-09-30 2004-04-22 Hitachi Maxell Ltd Micro-patterned thin film electrode and lithium secondary battery using the same as negative electrode
JP2006173508A (en) * 2004-12-20 2006-06-29 Pulsa:Kk Optical imprint method
JP2007142092A (en) * 2005-11-17 2007-06-07 Ibaraki Univ Manufacturing method of high density wiring substrate, high density wiring substrate manufactured by using the method, electronic device and electronic apparatus
JP2007216501A (en) * 2006-02-16 2007-08-30 Kri Inc Method for producing pattern forming mold and pattern forming mold
JP2007273249A (en) * 2006-03-31 2007-10-18 Arisawa Mfg Co Ltd Manufacturing method of lithium ion secondary battery
JP2009123379A (en) * 2007-11-12 2009-06-04 Tokyo Ohka Kogyo Co Ltd Anode base material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203078B2 (en) 2012-04-02 2015-12-01 Tokyo Ohka Kogyo Co., Ltd. Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2019057488A (en) * 2017-03-28 2019-04-11 荒川化学工業株式会社 Slurry for thermal crosslinking type lithium ion battery, manufacturing method thereof, electrode for lithium ion battery, separator for lithium ion battery, separator/electrode laminate for lithium ion battery, and lithium ion battery
JP7127325B2 (en) 2017-03-28 2022-08-30 荒川化学工業株式会社 Slurry for thermally crosslinked lithium ion battery and method for producing the same, electrode for lithium ion battery, separator for lithium ion battery, separator/electrode laminate for lithium ion battery, and lithium ion battery
JP2021012840A (en) * 2019-07-09 2021-02-04 ローム株式会社 Thin-film all-solid-state battery, electronic device, and manufacturing method of thin-film all-solid-state battery
JP7319114B2 (en) 2019-07-09 2023-08-01 ローム株式会社 Thin-film type all-solid-state battery, electronic device, and method for manufacturing thin-film type all-solid-state battery

Also Published As

Publication number Publication date
JP5231785B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5433144B2 (en) Negative electrode base material for lithium secondary battery
KR101448190B1 (en) Negative electrode base member
KR101156225B1 (en) Lithium deposited anode for Lithium Second Battery and Method for Preparation thereof
JP4642835B2 (en) Current collector for electrode
JP6404214B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP5336041B2 (en) Negative electrode base material for lithium secondary battery
JP5237547B2 (en) Negative electrode base material for lithium secondary battery
JP5237548B2 (en) Negative electrode base material for lithium secondary battery
JP5237546B2 (en) Negative electrode base material for lithium secondary battery
JP2010182479A (en) Negative electrode for lithium ion secondary battery, and method for manufacturing the same
US20190074520A1 (en) Secondary battery anode comprising lithium metal layer having micropattern and protective layer thereof, and method for producing same
US9196897B2 (en) Secondary battery porous electrode
JP5231785B2 (en) Negative electrode base material for lithium secondary battery
KR20220021241A (en) Porous composite electrode having ratio gradient of active material/current-collecting material by three-dimensional nanostructure, method for manufacturing electrode and secondary battery including the electrode
TWI605630B (en) Pattern forming method, structure, manufacturing method of comb-type electrode, and secondary battery
US8835050B2 (en) Anode substrate
TW201405922A (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2008135376A (en) Electrode plate for battery and lithium secondary battery including the same
JP2005340132A (en) Negative electrode for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using the same
JP2008251475A (en) Anode base material
JP5512332B2 (en) Method for designing negative electrode for secondary battery, method for producing negative electrode for secondary battery, negative electrode for secondary battery, and negative electrode copper foil for secondary battery
JP2007052960A (en) Method of manufacturing electrode
JP2001052683A (en) Electrode having void lattice layer and battery having the same
KR20100005807A (en) Secondary battery without independant separator
JP2004071464A (en) Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5231785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250